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Abstract

In this thesis we develop methods for optimal design of a monitoring program
for offshore geological CO2 storage. The goal is to find the layout of fixed
chemical sensors at the seafloor that maximizes the probability of detecting a
leakage. Numerical simulations of leakage scenarios are used as origin to predict
the regions that sensors monitor. Based on leakage scenarios, this gives the
detection probability. All methods are tested using test cases. The methods
could be applied to other problems involving monitoring of potential pollutants
into the ocean. The main results are inclusion of spatial variability in the
estimated leakage footprint and an exact inversion of the resulting footprint.
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Chapter 1

Introduction

1.1 CCS as a greenhouse gas technology

Release of the greenhouse gas CO2 from human activities has over the last
hundreds of years increased the concentration of CO2 in the atmosphere with
about 40% [1]. This increases the greenhouse effect, and is one of the main
reasons for global warming.

About 30% of the CO2 released by humans into the atmosphere is dissolved
into the ocean [2]. This leads to an increased concentration of CO2 in the ocean.
To obtain chemical equilibrium, some CO2 reacts with the water. This increases
the concentration of H+, reducing the pH and making the ocean more acid.

There are several options to mitigate the increasing level of CO2 in the
atmosphere, where five different methods are suggested in Metz et al. [10]. The
most obvious thing to do is to reduce the energy consumption by improved
energy efficiency. However, people in developed countries don’t want to lower
their living standard. Together with an increasing living standard in developing
countries, this makes it hard to reduce the energy consumption.

The second possibility is to replace fossil fuels with less carbon intensive
fuels. An example of this is to use natural gas instead of coal. The third option
presented is to increase the use of renewable energy sources or nuclear power.
These energy sources contribute with little or no net CO2. The next possibility
is by sequestering CO2 by improved biological absorption capacity in forests
and soils. The fifth and final method presented is Carbon Capture and Storage
(CCS), either chemically or physically. The different methods are of course not
disjoint, but should be performed together to give a synergy in the mitigation
of the increased CO2 level.

In order to make a significant contribution to the mitigation of climate
changes, CO2 storage needs to be done in quantities of gigatonnes of CO2 per
year [10]. The large scale storage sites being operative today store about one
megatonne. The CO2 must be stored and kept away from the atmosphere for a
long time, at the scale of hundreds to thousands of years [9]. If not, the extra
energy needed to perform CCS may lead to a net increase in the CO2 level in
the atmosphere and in the ocean.

1



2 CHAPTER 1. INTRODUCTION

Capture
Systems for CCS can be installed in power plants to capture CO2 processed in

the plant. The available technology is capable of capturing about 85-95% of the
CO2 in a plant with capture system. However, such plants require approximately
10-40% more energy than their equivalent plants without CCS technology. This
implies that the CO2 emissions from plants with CCS could be reduced by
about 80-90% compared to regular plants without CCS [9]. The capture of CO2

is costly and the main bottleneck of CCS.

Figure 1.1: Schematic diagram of possible CCS systems. Courtesy of CO2CRC.

Transport
The most common method of transportation of CO2 from the capture to

storage site is by pipelines. High pressure gaseous CO2 can be transported over
long distances ranging several thousand kilometres using mature technology [9].
The CO2 may also be transported as liquid in insulated tanks. If the CO2 is
to be transported over large distances, transportation by ship often is the most
economically attractive.

Storage
The only type of CO2 storage having a mature technology is geological

storage [9]. CO2 is injected into underground geological formations and trapped.
The formations may be onshore or offshore where oil and gas reservoirs are
typical formations used. The CO2 is injected in dense form into porous rock
formations that hold or previously have held fluids, typically natural gas or
oil reservoirs or aquifers. For the injection of CO2, much of the technology
developed by the oil and gas industry can be used.
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Storage of CO2 in reservoirs usually takes place at a depth of more than 800
m below the seafloor such as at the Sleipner storage site. At this depth, the
CO2 will be in liquid or supercritical state with a density 50-80% of the density
of water. With this density, the CO2 becomes buoyant and will experience
forces driving it upwards [9]. For this reason, a cap rock sealing the storage
reservoir is needed to keep the CO2 trapped. Injected CO2 will fill the pore
space by displacing fluids already present called the ”in situ fluids”. For oil and
gas reservoirs, most of the pore volume can be made available for storage by
displacement of in situ fluids [9].

The cap rock above the storage formation trapping the CO2 is important to
avoid upward migration and usually consists of shale and clay rock. In addition,
capillary forces help keeping the CO2 in the pores. However, the storage
formation is often open for lateral migration below the cap rock. Independently
of the efforts made to prevent leakages, we can never completely rule out the
possibility of a leakage.

Impact of a leakage

The impact of a leakage on the marine ecosystem is studied in ECO2 [12].
It is found that the CO2 is mixed over a small spatial area. This limits the
impact of a leakage to be mainly local. One of the main factors determining
the severity of a leak, is the decrease in pH due to the leakage. A decrease
of less than approximately 0.5 pH units is found to have minimal impact. A
larger decrease in pH may also have a minimal impact in short term. However,
a large decrease in pH has large long term impact. If the decrease is above
approximately 1 pH unit, the decrease in biomass will be large, and ”after 1
to 3 growing seasons the biomass loss for the macrofauna is near complete”
[12]. An even larger pH decrease, estimated to approximately 1.3 pH units, one
reaches the stage of general mortality. The impact of a leakage will also depend
on other factors as other pollutants, salinity and natural seasonal events.

Even though a potential leakage has relatively small and local impact, it is
important that leakages are detected. To fulfil the trading scheme, it must be
verified that injected CO2 is kept in the storage formation. To do so, one must
ensure that a potential leakage is detected.

Regulations
The EU directive 2009/31/EC on geological storage of CO2 establishes the

legal framework for storage. When performing offshore storage, these regulations
are aligned with the amendments to the 1996 London Protocol and to the
OSPAR Convention. Common for the regulations, is to minimize negative
effects and environmental risks due to the storage. An important part of this is
an adequate monitoring program.

1.2 Monitoring of a storage site

A monitoring system should be created such that the probability of detecting
a leakage from the storage formation is maximized. When creating such a
monitoring system, there are several challenges.
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Storage sites are typically offshore. Marine operations are costly and the
environment is hostile to instruments. In addition, the area of potential leakage
locations is usually large, for the Sleipner storage site at the scale of thousands of
square kilometres. Another problem is the long time frame involved. Leakages
with low flux rates are hard to detect, but the total leaked CO2 may be large
since leakages may last for years.

Monitoring techniques

There are several ways to monitor a storage site. Five different activities
that should be repeated regularly are suggested by ECO2 [12]:

• 3-D seismic: By using seismic surveys, potential ascent of CO2 from the
storage formation is detected as changes in the seismic signatures. When
using this technique, not only the storage reservoir should be monitored,
but also the overlying sequences.

• Bathymetry/backscatter: Using acoustic backscattering techniques,
new seabed structures created at the seabed can be detected.

• Hydro-acoustic: Shallow gas accumulations and gas bubbles seeps at
the seafloor may be detected using hydro-acoustic methods.

• Video/photo: Biological indicators for leakage may be visible on video
or pictures. Mats of bacteria is one such potential indicator.

• Chemical: Sensors are used to measure the concentration of CO2 and
other parameters. A CO2 leakage results in increased CO2 concentration
at the seafloor in a region about the leakage. The other parameters
measured may help to distinguish a leakage from natural variability.

Chemical sensors

We will study the use of chemical sensors to monitor the CCS site. These
sensors measure the concentration of CO2 and other relevant parameters in the
water at the seafloor. Concentrations above a detection limit (Sec. 2.2.1) will
trigger the leakage alarm. Different methods for estimating when this happens
are developed in Ch. 3 to 7.

Fixed sensors
One way to implement a monitoring system using chemical sensors is to make
a fixed array of sensors on the seafloor. This will provide time series of the
concentration at each of the sensor locations, making statistical studies possible.
Due to the cost of installing sensors, it is desirable to find the sensor layout
monitoring the area using as few sensors as possible.

In Hvidevold et al. [8] it is shown that for a fixed number of sensors, the
probability of detecting a leakage can nearly be doubled by an optimal sensor
layout compared to using an equally spaced array of sensors. We will use fixed
sensors in our work, seeking to find optimal sensor layouts. This is a relatively
new field of study, and we will base our work on the framework of Hvidevold et
al. in [8] and [7].
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Surveys
Instead of installing fixed sensors on the seafloor, surveys can be performed to
check for indications of leakages. Measurements of the concentration are taken
at specific locations. This will only give single measurements at a given time,
not concentration time series. Due to the operational cost of the vessel used to
perform the measurements, we still need to limit the number of measurements.
To maximize the probability of detecting a potential leakage, these measurement
locations should be optimized similar to the sensor layout for the fixed sensors.

Taking into account the potential large distances between the measurement
locations, an optimal cruiseplan for the measurements is necessary to minimize
transit time and operational cost. In Hvidevold et al. [7], the survey method is
compared to a fixed sensor grid. An optimal cruise plan for a synthetic problem
is also presented. We will not study the use of surveys, as we are interested in
optimal layouts of fixed sensors.

Alarm response

In case of an alarm by the monitoring system indicating an ongoing leakage,
investigation must be initiated. The first thing that needs to be done is to
localize the potential leakage location. Dependent on the monitoring system,
the potential leakage area of an alarm may be large. Surveys to identify the
source of the increased concentration may then be a costly process. In addition,
the leakage may be large and not only a point source. This implies that the
fluxes measured will be smaller, making the source harder to detect.

If we are certain that there is a leakage, one should stop the injection.
Further action to stop the leakage should also be performed, but since CCS
is relatively new technology, there is no established procedure to stop leakages.
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Chapter 2

Monitoring design:
Mathematical framework

In this chapter we will develop the mathematical framework needed to
estimate and compare the ability of different sensor layouts to detect a leakage.
This leads to the problem of finding the optimal sensor layout having the highest
possible detection probability. Monitoring design can be divided in two parts:
1) The site dependent studies, localizing leakage pathways and predicting leakage
footprints. 2) The detection calculations leading to an optimal sensor layout
and a detection probability. We will focus on the second part by developing the
method for the calculations shown in grey in Fig. 2.1. In the following chapters,
different methods will be developed and studied using test cases.

Storage site

Map
Leak

scenario(s)

Leakage
location pdf

Concentration
footprint(s)

Detection limit Method

Detection
probability

Optimal
sensor layout

Figure 2.1: Schematic presentation of monitoring design. The green boxes are
inputs to the method and the red boxes are outputs.
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2.1 Site characteristics

We will now discuss what information is needed to perform a site study.
Being interested in the method used for detection calculations, and not specific
site studies, a complete site study is not performed here.

2.1.1 Potential leakage locations

We assume that we have the area A to be monitored for leakages. An
important question when designing a monitoring program, is where a leakage is
likely to occur. Places of a high leakage probability is more important to monitor
than those of a low leakage probability. We assume that there is exactly one
leakage ongoing. For this leakage, we create a probability density function f(x)
for the location. In other words, f(x) is the probability density of x being the
leakage location given that there is a leakage ongoing in A, hence

f(x) ≥ 0 ∀x ∈ A and (2.1)∫ ∫
A

f(x)dxdy = 1. (2.2)

The function f(x) will be site dependent. To make a realistic probability
density function, pathways from the storage formation to the seafloor should be
identified and given a leakage probability. This is a cumbersome process and
requires much information about the storage formation and the overburden. A
simplified approach used in Hvidevold et al. [8] is to use a map of faults and
wells. In our work, we think of the leakage location probability density function
as given from site surveys. For this reason, we will use synthetic test cases.

2.1.2 Footprint

To predict the footprints of potential leakages, the General Circulation Model
Bergen Ocean Model is used to simulate leakage scenarios as described in App.
C. Some methods only use the average concentration, giving a leakage footprint.
If all leakage locations are assumed to have the same footprint, only one simulation
is needed. If we on the other hand only have access to one simulation, we have
to assume that all leakage locations have the same footprint. Fig. 2.2 shows the
average concentration footprint from [8] used as test case in Ch. 3 and 4.

2.1.3 Synthetic map

We will adopt the test case of [8], where the Sleipner gas field is to be
monitored. Sleipner was the first large scale storage site in the world used for
CCS, being operative since 1996. Sleipner is located west of Stavanger in the
North Sea, by the border between Norway and Great Britain. A public map
by the Norwegian Petroleum Directorate is used to locate faults and wells in an
area of 77x77 km2. The western part of the region considered is British, and the
map does not include the wells in this area making the test case less authentic.
The map of faults and wells used is shown in Fig. 2.3.

It is assumed that all faults and wells have the same probability of being
the location of a leak, with wells having a higher probability than faults. This
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Figure 2.2: The simulated seafloor CO2 concentration used in [8]. The black
contour line shows where the concentration is above ct = 2.26 · 10−4 kg/m3.

simplification implies that it is not distinguished between faults and wells reaching
and not reaching the storage formation. To do such a distinction would require
a thorough analysis of the overburden.

Due to potential unknown pathways from the storage formation, every location
can be given a small background probability of being the location of a leak.

Assuming that a leakage is ongoing inside the map, a probability density
function f(x) for the location is obtained by normalizing the probabilities such
that the function integrates to 1 according to Eq. 2.2.

2.2 Detection calculations

We will now discuss the mathematical framework of calculating detection
probabilities and optimizing sensor layouts. This section is site independent,
and will be used in the following chapters to develop different methods that can
be applied to any storage site.

2.2.1 Detection limit

A leakage of CO2 will result in an increased CO2 concentration in a region
around the leakage location. This increase in CO2 can be detected by a sensor
if the sensor is sufficiently close to the leakage. Due to natural variability in
the CO2 concentration in the ocean and sensor precision, the increase in the
CO2 concentration from the leakage must be above a threshold value ct before
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Figure 2.3: Map of faults (blue) and wells (red) used in [8].

it is detected by the sensor. Several different threshold values are discussed in
Hvidevold et al. [8].

The theoretical precision for measuring total inorganic carbon is approximately
9.0 ·10−5 kg/m3. The natural variability in the north sea is between 2.260 ·10−3

kg/m3 and 4.520 · 10−3 kg/m3. If we don’t have statistics for this variability, a
high threshold concentration should be used to ensure that the measured value
is statistically significant. Having statistics of the variability, a threshold value
ct = 2.26 · 10−4 kg/m3 is suggested by Hvidevold et al. [8], which we will adopt.

2.2.2 Detection function

Assuming that there is a leakage at a given known location, an important
question when is what the probability of detecting this leakage is for different
sensor locations. This probability will be frequently used, and we will call it the
detection function as in Hvidevold et al. [7]. We assume that the leakage occurs
at x0 and a threshold concentration ct of the sensors. The detection function
D(x;x0; ct) is the probability that the leakage is detected by a sensor at x.

The methods of the different chapters will give different detection functions
D(x;x0; ct), which we will emphasize by using different subscripts and superscripts.
To be a probability, D must satisfy

0 ≤ D(x,x0; ct) ≤ 1 ∀x,x0 ∈ A and ∀ct > 0. (2.3)

Independently of the method used, we expect D to be close to 1 near the
leakage, decreasing away from the leakage and close to 0 far from the leakage.
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2.2.3 Monitoring function

We now assume that we have a sensor at a given location xs with threshold
concentration ct. What area is monitored by this sensor? To answer this, we
define the monitoring function similar to the detection function introduced in
Sec. 2.2.2. The monitoring function M(x;xs; ct) is the probability that a leakage
at x is detected by the sensor at xs.

For the detection function in Sec. 2.2.2, we fixed the leakage location and let
the sensor location be the independent variable. For the monitoring function, we
fix the sensor location and let the leakage location be the independent variable.
This implies that we can look at the monitoring function as an inversion of the
detection function. Thus, different methods of creating the detection function
will give different monitoring functions.

An important relation between the detection and monitoring function showing
their inversion property follows directly from their definitions:

M(x;xs; ct) = D(xs;x; ct). (2.4)

Most of the time, D will be known and we want to find M . To be a
probability, M must satisfy the same condition (Eq. 2.3) as D:

0 ≤M(x,xs; ct) ≤ 1 ∀x,xs ∈ A and ∀ct > 0. (2.5)

Independently of the method used, we expect M to be close to 1 near the
sensor, decreasing away from the sensor and close to 0 far from the sensor.

2.2.4 Detection probability

We now want to estimate the probability that an arbitrary leakage is detected
for a given storage site (Sec. 2.1) and sensor layout. This probability will be
called the detection probability.

We assume that we have N sensors in a given layout and want to estimate
their total detection probability. We assume that the monitoring functions for
the sensors are independent of each other and are calculated as before. Let
xns be the location of sensor n. The monitoring function for this sensor will be
M(x;xns ; ct). We introduce the short notation Mn for the following calculations:

Mn = M(x;xns ; ct). (2.6)

The probability that sensor n does not detect a leakage at x is given by
(1 −Mn). Having independent monitoring functions, the total probability of
none of the sensors detecting a leakage at a given location x is then given by

p(not detect|x) =

N∏
n=1

(1−Mn) = (1−M1) . . . (1−MN ). (2.7)

The probability of detecting a leakage at a given location x is then given by
the complementary probability



12CHAPTER 2. MONITORING DESIGN:MATHEMATICAL FRAMEWORK

p(detect|x) = 1− p(not detect|x) (2.8)

p(detect|x) = 1−
N∏
n=1

(1−Mn) = 1− (1−M1) . . . (1−MN ). (2.9)

Since the probability density function for the leakage location is given by
f(x), the conditional probability density f(x)p(detect|x) will be the non-proper
probability density function for the leakage being located in x and detected by
the sensors. It will be non-proper since it does not necessarily integrate to 1. In
fact, the probability p of detecting an arbitrary leakage is given by the integral
of this non-proper probability density function:

p = p(x1
s; . . . ;x

N
s ; f ; ct) =

∫ ∫
A

f(x)p(detect|x)dxdy. (2.10)

The only time time this will be 1 is if all leakages always are detected
independently of the leakage location implying that we have a perfect monitoring
program. Most of the time, this will certainly not be the case. We will now
look at different ways to compute the detecting probability p. It can of course
be computed directly by

p(x1
s; . . . ;x

N
s ; f ; ct) =

∫ ∫
A

f(x)

(
1−

N∏
n=1

(1−Mn)

)
dxdy. (2.11)

By rewriting the integrand of Eq. 2.11 we obtain

f(x)

(
1−

N∏
n=1

(1−Mn)

)
= (2.12)

f(x)

(
1− (1−MN )

N−1∏
n=1

(1−Mn)

)
= (2.13)

f(x)

(
1−

N−1∏
n=1

(1−Mn) +MN

N−1∏
n=1

(1−Mn)

)
= (2.14)

f(x)

(
1−

N−1∏
n=1

(1−Mn)

)
+MNf(x)

N−1∏
n=1

(1−Mn). (2.15)

We see that the integrand can be divided in two terms. The first term is
what the integrand would look like without the last sensor. The second term
corresponds to the extra probability contribution from adding the last sensor to
a sensor layout of the N − 1 first sensors. This suggests a recursive calculation
placing one sensor at the time. We can continue to rewrite to obtain
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f(x)

(
1−

1∏
n=1

(1−Mn)

)
+

N∑
k=2

Mkf(x)

k−1∏
n=1

(1−Mn) = (2.16)

M1f(x) +

N∑
k=2

Mkf(x)

k−1∏
n=1

(1−Mn) = (2.17)

N∑
k=1

Mkf(x)

k−1∏
n=1

(1−Mn). (2.18)

Here, we have used the convention of an empty product being 1, hence

0∏
n=1

(1−Mn) = 1. (2.19)

We define the residual leakage location probability density functions

fk(x) = f(x)

k∏
n=1

(1−Mn) k = 0, . . . , N. (2.20)

As suggested by the name, fk(x) will be the residual probability left to be
monitored after k of the sensors are placed. The special case k = 0 will be the
original leakage location probability density function. For k 6= 0, the residual
probability density function will usually not integrate to 1 and thus not be a
proper probability density function. If it does, the sensor placed will not monitor
anything and no leakages will be detected independently of the leakage location.

The integrand of Eq. 2.11 can now be written

N∑
k=1

Mkfk−1(x), (2.21)

meaning that the detection probability can be written

p(x1
s; . . . ;x

N
s ; f ; ct) =

∫ ∫
A

N∑
k=1

Mkfk−1(x)dxdy = (2.22)

N∑
k=1

∫ ∫
A

Mkfk−1(x)dxdy. (2.23)

This emphasises the process of placing one sensor at the time and adding
the extra probability contribution of adding the sensor. We observe that

fN (x) = f(x)

N∏
n=1

(1−Mn) and (2.24)

fk(x) = fk−1(x)(1−Mk) k = 1, . . . , N. (2.25)
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We see that the residual probability density functions fk can be calculated
recursively. Since fN is the residual probability density after placing all the
sensors, we can use a recursive process to calculate the detection probability p:

f0(x) = f(x) (2.26)

fn(x) = fn−1(x) (1−Mn) n = 1, . . . , N (2.27)

p = p(x1
s; . . . ;x

N
s ; f ; ct) = 1−

∫ ∫
A

fN (x)dxdy. (2.28)

Note that the numbering of the sensors is irrelevant, as is easily seen using
Eq. 2.11. The sensor layout will look the same and have the same detection
properties independently of the sensor numbering, implying that all permutations
of given sensor locations are the same layout.

2.2.5 Optimization problem

For a given storage site (Sec. 2.1), the detection probability p(x1
s; . . . ;x

N
s ; ct)

given by Eq. 2.28 will be a function of the sensor locations and the threshold
concentration. We will consider problems with fixed threshold concentration.
The detection probability will then be a function only of the sensor locations.

When designing a monitoring program, we want the detection probability
to be as high as possible. Finding the optimal sensor layout can then be viewed
as a non-linear optimization problem. The objective function to maximize is
the detection probability p given by Eq. 2.28. The optimization parameters to
be found are the sensor locations x1

s; . . . ;x
N
s . For each sensor, the location is

given by two parameters, the x- and the y-coordinate. Having N sensors, the
system has 2N degrees of freedom to be determined. Using zn as optimization
parameter vector for sensor n, the optimization problem can be written

[
x1
s; . . . ;x

N
s

]
= argmax (p(z1; . . . ; zN ; f ; ct)) f, ct fixed. (2.29)

Since the numbering of the sensors is irrelevant for the computation of p,
any permutation of the best sensor locations is a solution. There may be several
layouts that have almost the same detection probability. It is suggested in
Hvidevold et al. [8] that other factors as installation and operational cost can
be included in the cost function to choose between the different layouts, but this
is not done here. Due to the complex structure of the cost function, a numerical
optimization toolbox must be applied to solve the problem. We will use the
built-in Genetic Algorithm ga in MATLAB.

As shown in Sec. 2.2.4, the detection probability for a given sensor layout
can be calculated by placing one sensor at the time and consecutively adding
the extra probability contributions from each sensor.

It can be tempting to apply a similar consecutive approach to the optimization
problem by finding the optimal placement of one sensor at the time. This splits
the optimization problem in N optimization problems of two degrees of freedom
instead of one with 2N degrees of freedom. Since the total degrees of freedom
are equal, we expect the N small problems to be easier to solve than the large.

Using the notation of residual leakage location probability density functions
fn, we can write the N smaller optimization problems

xns = argmax (p(zn; fn−1; ct)) n = 1, . . . , N f, ct fixed. (2.30)
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This procedure will place the first sensor at the location having the highest
detection probability for one sensor. The subsequent sensors will then always
be placed at the location having the highest detection probability for one sensor
using the residual leakage location probability density function resulting from
the previous sensors. In other words, this is the intuitive approach of always
placing the next sensor at the best available location.

This does not take into account the interaction between the sensors, which
as noted in Hvidevold et al. [8] is the reason that the best layout of N sensors
does not necessarily have a sensor at the location with the highest detection
probability. A result of this, is that we can only split the optimization problem
into the smaller problems if the sensors of the optimal sensor layout are independent.
Mathematically, this corresponds to the monitoring functions of the sensors of
the optimal sensor layout having disjoint supports. Since we don’t know the
optimal sensor layout before we perform the optimization, we can not assume
the independence of the sensors needed to split the optimization problem.

If all possible sensor locations in the region to be monitored have monitoring
functions with small supports, the splitting of the optimization will typically be
close to unbiased.

Genetic Algorithm (GA)

We use the Genetic Algorithm ga in MATLAB to solve the optimization
problem of Eq. 2.29. A Genetic Algorithm (GA) is an evolutionary algorithm
which uses properties of evolution to solve optimization problems. GAs are
stochastic and are typically applied to hard optimization problems where it is
difficult to find an efficient probabilistic algorithm [11]. We have chosen to use
a GA to solve Eq. 2.29 because of the complex structure of the cost function
and previous successful use on Eq. 2.29 by Hvidevold et al. in [8] and [7].

A GA solves optimization problems by evolving solutions towards the optimal
solution. Some of the key words in this process are the evolutionary terms
generation, population, individual and mutation. A generation is a population
of solutions called individuals. Each individual is a complete solution of the
optimization problem. In our case, this implies that an individual consists of a
sensor location for all the sensors. The problem of finding the optimal solution
can be described by finding the fittest individual, i.e. the individual having
the best value of the cost function. A population consists of a fixed number of
individuals called the population size, usually 500 in our calculations.

The initial population, i.e. the first generation, must be created stochastically.
This should be done in a way such that a wide variety of potential solutions
in the solution space is represented. The fitness, i.e. the value of the cost
function, is calculated for each individual together with an average fitness value
of the population. Based on this, a new generation is created that hopefully
has better fitness than the previous. This is done by mutating individuals and
favouring individuals having better fitness. In addition, the fittest individuals
of a generation always survive to the next generation. We use a rate of 5%,
implying that the 25 fittest individuals always survive having a population size
of 500. However, it can also be beneficial to keep individuals with lower fitness
as the optimal solution may evolve from individuals with low fitness.

Following generations are then created until a termination condition is met.
Some possible conditions are a fitness limit, a maximum number of generations,
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a fitness change limit, or a combination. Since we are maximizing a probability,
we have a natural fitness limit of 1 implying that a solution reaching this value
per definition is optimal. We also apply a maximum of 100 generations, implying
that the optimization will terminate regardless of the fitness if the algorithm
reaches 100 generations. Finally, we terminate the process if the average relative
change of fitness of the fittest individual over 50 generations is below some limit,
usually between 10−6 and 10−3. In the optimizations run, it will typically be the
tolerance on the average relative change of fitness that terminates the process.

It is found that it is beneficial to apply a large rate of mutation when solving
Eq. 2.29, or the algorithm will typically converge to suboptimal solutions. This
is probably since the fittest solutions have a large ”distance” between them
and the solutions between them have low fitness. In other words, one has to
perform a large mutation (move the sensors far) to get from a good solution to
an even better solution. We use the option mutationuniform in MATLAB with
a mutation rate of 0.4. This performs the same mutation for later generations
as for the first, implying that the average fitness of the populations is lower, but
the ability to find optimal solutions is better.

To ensure the results and account for the stochastic element of the algorithm,
we usually run the optimization at least 10 times and use the best solution
obtained. The current implementation ga in MATLAB does not allow for
parallel computing when solving an optimization problem. However, we are
typically interested in solving Eq. 2.29 for different number of sensors, giving
a separate optimization problem for each. This allows for parallel computing,
solving each of the optimization problems on a separate core. Alternatively,
the same optimization problem can be solved independently on each of the
available cores, and then the best of the obtained solutions is chosen. We use this
approach since it instantaneously gives the desired verification of the solution.



Chapter 3

Monitoring design:
Approximation of an
average concentration
footprint

In this chapter, the average CO2 concentration resulting from a leakage is
used in the design of the monitoring program. We assume that there is a leakage
ongoing, and that we want to find the optimal layout of sensors. If the average
concentration over some given time at a sensor location is above a threshold
concentration ct, the sensor is assumed to always detect the leakage. If it is
below, the sensor is assumed to never detect the leakage. We will present the
previous work done in [8] based on an approximation of average concentration
footprint, mainly to compare and check later results. The approximation and
assumptions made are discussed and potential improvements suggested.

3.1 Detection function for average

Having a leakage at x0, the average concentration at x is denoted by C̄(x,x0).
If the concentration at x is above the threshold concentration ct, a sensor at x
is assumed to always detect the leakage. If the concentration is below ct, the
sensor is assumed to never detect the leakage. The detection function for this
approach is denoted DA(x;x0; ct) and fulfils Eq. 2.3:

DA(x;x0; ct) =

1 if C̄(x;x0) ≥ ct
0 if C̄(x;x0) < ct

. (3.1)

This will give one or several regions where the concentration is above ct and
the detection function is 1, meaning that any sensor in one of these regions is
assumed to detect the leakage. This will be called the detectable region:

Detectable region average =
{
x
∣∣C̄(x;x0) ≥ ct

}
. (3.2)

17
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3.2 Monitoring function for average

The monitoring function is implicitly defined by the detection function using

M(x;xs; ct) = D(xs;x; ct). (2.4)

We denote the monitoring function for the average concentration method
MA(x;xs; ct). Using Eq. 2.4 and Eq. 3.1, we obtain for a sensor at xs

MA(x;xs; ct) =

1 if C̄(xs;x) ≥ ct
0 if C̄(xs;x) < ct

(3.3)

where C̄(xs;x) is the average concentration at xs caused by a leakage at x.
We see that a sensor located at xs is assumed to always detect leakages

at all locations x resulting in an average concentration above ct at xs. The
sensor is assumed to never detect leakages at locations x resulting in an average
concentration below ct at xs. As for the detection function, we get one or several
regions where the monitoring function is 1 and leakages always will be detected.
This will be called the monitored region and is

Monitored region average =
{
x
∣∣C̄(xs;x) ≥ ct

}
. (3.4)

3.3 Previous work: Approximation of footprint

We will present the method used in Hvidevold et al. [8]. All leakages are
assumed to have the same average concentration footprint which is predicted
by simulating a leakage scenario. The simulated footprint is then approximated
by a family G of functions on the form

G(x;x0; z) = C̄0 exp
{
− (x− x0)

T
A(z) (x− x0)

}
(3.5)

with the matrix

A(z) =

 cos2 θ
2σ2

x
+ sin2 θ

2σ2
y

− sin 2θ
4σ2

x
+ sin 2θ

4σ2
y

− sin 2θ
4σ2

x
+ sin 2θ

4σ2
y

sin2 θ
2σ2

x
+ cos2 θ

2σ2
y

 , (3.6)

a parameter vector z = [θ, σx, σy], the maximum concentration C̄0 at the
leakage point x0 and the position x. Let C̄i be the average simulated CO2

concentration and Gi the approximated CO2 concentration in grid point i.
Further, let Σi be the empirical standard deviation of the time series of the CO2

concentration in grid point i. The parameters in z are obtained by applying the
Levenberg-Marquardt method to the non-linear least squares problem

z = argmin

{
I∑
i=1

(
C̄i −Gi

Σi

)2
}

(3.7)

where I is the number of grid points. Fig. 3.1 shows the approximation of the
footprint in Fig. 2.2 used in Hvidevold et al. [8]. The parameter vector obtained
by minimizing Eq. 3.7 is z = [θ, σx, σy] = [0.9125 rad, 1.6207 km, 2.6462 km].



3.4. DETECTION FUNCTION FOR APPROXIMATION 19

Figure 3.1: The approximation of the footprint in Fig. 2.2.

3.4 Detection function for approximation

Using the approximation G(x;x0; z) of Eq. 3.5 for the average concentration
footprint from a leakage at x0, the detection function of Eq. 3.1 becomes

DA
A(x;x0; ct) =

1 if G(x;x0; z) ≥ ct
0 if G(x;x0; z) < ct

. (3.8)

To determine the detectable region where the approximation is above ct, we
need to find the level contours of G(x;x0; z). For a given ct, we have

ct = G(x;x0; z) = C̄0 exp
{
− (x− x0)

T
A(z) (x− x0)

}
, (3.9)

such that the level contours of G(x; z) are given by

ln
C̄0

ct
= (x− x0)

T
A(z) (x− x0) (3.10)

giving rise to ellipses with semi axes of lengths σ̂x and σ̂y rotated a clockwise
angle θ (Eq. 3.6) with respect to the x-axis. The lengths of the semi axes can
be found by setting θ = 0. The level contours are then given by

ln
C̄0

ct
=

x2

2σ2
x

+
y2

2σ2
y

. (3.11)
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Figure 3.2: Detectable region (red) for the simulated and the approximated
leakage footprint used in [8]. Threshold concentration ct = 2.26 · 10−4 kg/m3.

σ̂x is obtained by setting y = 0, and σ̂y by setting x = 0 giving

σ̂x = σx

√
2 ln

C̄0

ct
and σ̂y = σy

√
2 ln

C̄0

ct
. (3.12)

Having a leakage at x0 and threshold concentration ct for the sensors, the
ellipse given by Eq. 3.10 defines the detectable region. All locations x inside
this ellipse will have an average concentration above ct, implying that sensors
at these locations will detect the leak. The detectable region is thus given by

Detectable region

approximated average
=

{
x

∣∣∣∣(x− x0)
T
A(z) (x− x0) ≤ ln

C̄0

ct

}
. (3.13)

Equivalently, the detection function for the approximation is given by

DA
A(x;x0; ct) =

1 if (x− x0)
T
A(z) (x− x0) ≤ ln C̄0

ct

0 if (x− x0)
T
A(z) (x− x0) > ln C̄0

ct

. (3.14)

Fig. 3.2 shows the detectable region of the simulated footprint used in
Hvidevold et al. [8] and its approximation for ct = 2.26 · 10−4 kg/m3. The
detection ellipse has semi axes σ̂x = 4.15 km and σ̂y = 6.78 km making a
detection area for the approximation of σ̂xσ̂yπ ≈ 88 km2.

3.5 Monitoring function for approximation

Using Eq. 3.8 for the detection function for approximated average, the
monitoring function will be given by

M(x;xs; ct) = D(xs;x; ct). (2.4)
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In terms of the approximation function (Eq. 3.5) for the concentration, the
monitoring function for the approximated average will then be

MA
A (x;xs; ct) =

1 if G(xs;x; z) ≥ ct
0 if G(xs;x; z) < ct

. (3.15)

Due to symmetry of the assumed approximation profile, we can interchange
the arguments x and xs of the approximation function (Eq. 3.5):

G(xs;x; z) = G(x;xs; z). (3.16)

This gives us the monitoring function for the approximated average:

MA
A (x;xs; ct) =

1 if G(x;xs; z) ≥ ct
0 if G(x;xs; z) < ct

. (3.17)

We see that the monitoring function is the same as the detection function of
Eq. 3.8, just with the sensor location xs taking the role of the leakage location
x0. The work done in Sec. 3.4 for the detection function will then be the same for
the monitoring function. For a given threshold concentration ct, the monitored
region will be the same ellipse as we obtained for the detectable region in Sec.
3.4. Leakages at all locations x inside this ellipse will give a concentration above
ct at xs and is assumed to be detected giving

Monitored region

approximated average
=

{
x

∣∣∣∣(x− xs)
T
A(z) (x− xs) ≤ ln

C̄0

ct

}
. (3.18)

Equivalently, the monitoring function for the approximation is given by

MA
A (x;xs; ct) =

1 if (x− xs)
T
A(z) (x− xs) ≤ ln C̄0

ct

0 if (x− xs)
T
A(z) (x− xs) > ln C̄0

ct

. (3.19)

3.6 Optimal design

We now want to maximize the detection probability to find the optimal
sensor layout using the approximation of this chapter.

Independently of the approximation, the formulas for the detection probability
in Sec. 2.2.4 for one sensor located at xs can be written

p(xs; f ; ct) =

∫ ∫
A

f(x)M(x;xs; ct)dxdy. (3.20)

Using the approximation of [8], this reduces to integrating the leakage location
probability density function over the monitored ellipse of the sensor:

p(xs; f ; ct) =

∫ ∫
ellipse

f(x)dxdy. (3.21)

Having one sensor, the detection probability is the probability contribution
inside the monitored ellipse. Having several sensors, the detection probability
is the total probability inside the monitored ellipses of all the sensors:
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Figure 3.3: Detection probability as function of number of sensors for the test
case in [8]. Concentration threshold ct = 2.26 · 10−4 kg/m3.

p(x1
s; . . . ;x

N
s ; f ; ct) =

∫ ∫
all ellipses

f(x)dxdy. (3.22)

Fig. 3.3 shows the detection probability for the optimal sensor layout as a
function of the number of sensors for the test case. Fig. 3.4 shows the optimal
layout of two sensors and Fig. 3.5 of four sensors. A threshold concentration of
ct = 2.26 · 10−4 kg/m3 is used.

3.7 Discussion of the method

In this chapter we have presented the method of an approximated average
concentration footprint from [8]. We will now look at the assumptions made,
and discuss their impact on the resulting sensor layout and detection probability.
Finally, improvements of the method are suggested.

Leakage location

When creating a monitoring program, the first thing that should be done
is to identify the potential locations for leakages to be monitored and use
this information to construct a leakage location probability density function
(Sec. 2.1.1). To do this, a careful study of the storage formation and the
overburden needs to be done to identify potential leakage pathways from the
storage formation to the seafloor. This is not done in [8] where a probability
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Figure 3.4: Optimal layout of two sensors (yellow circles) for the test case in
[8]. The monitored region is shown in grey. Red crosses are wells and blue lines
are faults. A threshold concentration of ct = 2.26 · 10−4 kg/m3 is used. The
detection probability is p = 0.17.

density field for the leakage location is made based only on information about
locations of faults and wells. There could be other pathways to the storage
formation than faults and wells. On the other hand, all faults and wells may
not reach the storage formation as discussed in [8]. In addition, it is natural
to assume that faults and wells further away from the storage formation should
have a lower probability of being the leakage location than those close to the
formation. In [8], all faults and wells are given the same probability.

A study to find the leakage location probability density function is completely
site dependent. We are not interested in site studies of specific storage sites,
as we are studying methods to find the optimal sensor layout for any given
leakage location probability density function. We will thus not study the leakage
location probability density function in the following. In the further work, we
will take the leakage location probability density functions as given and only
use them as a test cases.

Approximation and inversion of footprint

Instead of using the simulated footprint directly and do an exact inversion
of it, an approximation of the footprint is used for easy inversion. It is discussed
in [8] that this approximation does not capture the anisotropy of the simulated
footprint. Along the axes of the ellipses, the approximated concentration will
be Gaussian. This implies that the approximation will impose symmetry about
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Figure 3.5: Optimal layout of four sensors (yellow circles) for the test case in
[8]. The monitored region is shown in grey. Red crosses are wells and blue lines
are faults. A threshold concentration of ct = 2.26 · 10−4 kg/m3 is used. The
detection probability is p = 0.30.

both axes of the ellipses, which is a major simplification. For the test case, it
is found that the Gaussian approximation will be too large close to the leakage,
but too small further away. In Hvidevold et al. [8] it is suggested to try other
approximation functions with skewness and slower decay. This has been done,
but are not found to approximate the footprint significantly better.

For the method considered in [8], we are only interested in whether the
concentration is below or above the threshold concentration ct. The exact value
of the approximated footprint at all locations may then not be too important.
The most interesting question is how well the detectable region is approximated,
since this is what is actually used in the computations. The detectable region
for the footprint of Fig. 2.2 using the threshold concentration ct = 2.26 · 10−4

kg/m3 is shown in Fig. 3.2. We clearly see that the detectable region for the
simulated footprint is much larger than for the approximated. In fact, the
simulated footprint has a detectable region of 851 km2, while the approximated
has a detectable region of only 88 km2. This makes the detectable region for
the simulated footprint almost 10 times as large as for the approximated.

Having a detectable region so much larger for the simulated than for the
approximated footprint, the approximation will have great effect on the resulting
sensor layout and detection probability. A leakage is assumed detected in a
much larger area than the approximation indicates. This implies that we can
monitor the same area using fewer sensors than the approximation method
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used in Hvidevold et al. [8] indicates. To obtain plausible results, we should use
the simulated footprint directly without approximation. A method using exact
inversion of the footprint is presented in Ch. 4.

Spatial independence of footprint

The leakage footprint is assumed to be the same independently of the leakage
location. In real life, there will be spatial dependence on the leakage location in
the footprint due to topography and current variations. Since the shape of the
footprint is one of the main factors determining the sensor locations that will
detect leakages, the simplification of spatial independence could alter the result
much. However, including spatial dependence requires much more calculations.
First of all, we would need to do simulations for many leakage locations, not only
one as in [8]. Further, the inversion is much harder since the easy inversion used
in [8] is based on the assumption of no spatial variation. A method incorporating
spatial dependence is presented in Ch. 5.

Average concentration

The method presented in [8] uses average concentration, for the test case
over a period of two months. If the average concentration is above the threshold
concentration ct, we assume that there is a leakage. If it is below, we assume that
there is no leakage. This is a very conservative approach. In real life, we would
not wait until the average concentration over two months is above the threshold
before we assume there is a leakage. In addition, locations having an average
concentration below the threshold concentration may have periods of time where
the concentration is high enough that the leakage is detectable at that location.
To get a more realistic detectable region, we can use concentration time series
and extract other information than just the average. In Ch. 6, a method using
events suggested in [7] is presented and discussed.
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Chapter 4

Monitoring design:
Translation of an average
concentration footprint

Ch. 3 presented the work done in Hvidevold et al. [8] based on approximation
of the average concentration footprint of a leakage. The approximation was
discussed in Sec. 3.7 where it was argued that the exact footprint should be
used directly without approximations. In this chapter, we develop a method
based on an exact inversion of the footprint. We will test the method on the
same test case as in [8] and compare with the approximation of Ch. 3.

Chapter: 3
Inversion:

Approximation
Footprint:

Average
concentration

Spatial:
Independence

Chapter: 4
Inversion:

Exact
Footprint:

Average
concentration

Spatial:
Independence

Figure 4.1: Summary of the different methods for monitoring design, the red is
the one to be developed in this chapter.

4.1 Estimation of the leakage footprint

As in Ch. 3, we will use the average concentration footprint from a leakage.
Let C̄(x;x0) be the average concentration at x resulting from a leakage at x0.
We assume as before that the average concentration footprint is independent of
the leakage location. This implies that we only need one predicted footprint.
Let x∗ be the leakage location of the predicted footprint such that C̄(x;x∗) is
the average concentration footprint predicted from a simulation. An arbitrary
leakage location x0 is assumed to have the same footprint, only translated to

27
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Figure 4.2: The predicted concentration C̄(x;x∗) from a leakage at x∗ to the left.
The translated concentration field C̄(x;x0) from a leakage at x0 to the right.
Since the footprints are equal, we see that C̄(x;x0) = C̄(x∗ + (x− x0);x∗).

the correct leakage location. The translated average concentration field C̄(x;x0)
resulting from a leakage at x0 is then given by

C̄(x;x0) = C̄(x− (x0 − x∗);x∗) = C̄(x∗ + (x− x0);x∗). (4.1)

The translation property is illustrated in Fig. 4.2.

4.2 Detection function for translated average

We have the same detection function as in Sec. 3.1. Having a leakage at
x0, a sensor at x will experience the average concentration C̄(x;x0). If the
concentration is above the threshold concentration ct, the sensor is assumed to
always detect the leakage. If it is below, the sensor is assumed to never detect
the leakage. The detection function for a leakage at x0 is thus given by

DA(x;x0; ct) =

1 if C̄(x;x0) ≥ ct
0 if C̄(x;x0) < ct

. (3.1)

Using the translation relation of Eq. 4.1, we can express the detection function
DT
A(x;x0; ct) for the translated average concentration in terms of the detection

function for the predicted footprint:

DT
A(x;x0; ct) = DA(x∗ + (x− x0);x∗; ct), (4.2)

DT
A(x;x0; ct) =

1 if C̄(x∗ + (x− x0);x∗) ≥ ct
0 if C̄(x∗ + (x− x0);x∗) < ct

. (4.3)

The corresponding detectable region will be
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Figure 4.3: The average concentration footprint used in [8] to the left. Its
corresponding inverse to the right, illustrating the inversion by rotating 180◦.

Detectable region

translated average
=
{
x
∣∣C̄(x∗ + (x− x0);x∗) ≥ ct

}
(4.4)

4.3 Monitoring function for translated average

As earlier, the monitoring function is given by the detection function:

M(x;xs; ct) = D(xs;x; ct) (2.4)

This implies that the monitoring function will be the same as in Sec. 3.2:

MA(x;xs; ct) =

1 if C̄(xs;x) ≥ ct
0 if C̄(xs;x) < ct

. (3.3)

The monitoring function corresponds to the assumption that a sensor at xs
always will detect a leakage at a location giving an average concentration above
the threshold concentration ct at xs. Leakages at locations giving an average
concentration below ct at xs is assumed to never be detected.

As for the detection function, we express the monitoring function in terms
of the predicted footprint. Using Eq. 2.4, 4.2 and 4.3, we obtain

MT
A (x;xs; ct) = DA(x∗ + (xs − x);x∗; ct) = DA(x∗ − (x− xs);x

∗; ct) (4.5)

MT
A (x;xs; ct) =

1 if C̄(x∗ − (x− xs);x
∗) ≥ ct

0 if C̄(x∗ − (x− xs);x
∗) < ct

. (4.6)
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Figure 4.4: Detection function/detectable region for the footprint used in
[8] to the left (ct = 2.26 · 10−4 kg/m3). The corresponding monitoring
function/monitored region to the right. The leakage/sensor location is marked
with a black cross. It is easy to see that the monitoring function is obtained by
rotating the detection function 180◦ about the leakage/sensor location.

The corresponding monitored region will be

Monitored region

translated average
=
{
x
∣∣C̄(x∗ − (x− xs);x

∗) ≥ ct
}
. (4.7)

4.4 Inversion by rotation

Calculating the monitoring function can be looked at as inverting the detection
function. The inversion property can be seen by the much used relation

M(x;xs; ct) = D(xs;x; ct). (2.4)

In the calculations of the monitoring function, we are really inverting the
average concentration footprint. We know the average concentration C̄(x;x0) at
x from a leakage at x0 for all x and x0. Due to the assumption of all footprints
being equal, the average concentration field can be expressed in terms of the
predicted footprint having leakage location at x∗ as shown by Eq. 4.1:

C̄(x;x0) = C̄(x∗ + (x− x0);x∗) (4.8)

When calculating the monitoring function we need the average concentration
C̄(xs;x) at xs from a leakage at x for all xs and x. As used for the monitoring
function (Eq. 4.6), this is found by plugging xs and x into Eq. 4.8:

C̄(xs;x) = C̄(x∗ + (xs − x);x∗) = C̄(x∗ − (x− xs);x
∗). (4.9)

Similarly, the detection function for arbitrary x and x0 can be expressed

DT
A(x;x0; ct) = DA(x∗ + (x− x0);x∗; ct). (4.2)
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Figure 4.5: Showing the steps in obtaining the inverted footprint C̄(xs;x). The
predicted footprint C̄(x;x∗) is shown to the left. In the middle, the predicted
footprint is translated to xs to obtain the footprint C̄(x;xs). Finally, the
footprint is rotated 180◦ to obtain the inverted footprint C̄(xs;x) to the right.
We see that C̄(xs;x) = C̄(xs − (x− xs);xs) = C̄(x∗ − (x− xs);x

∗).

This gives the monitoring function

MT
A (x;xs; ct) = DA(x∗ − (x− xs);x

∗; ct) (4.10)

We now want to compare the concentration field C̄(x;x0) with the inverted
concentration field C̄(xs;x). Similarly, we want to compare the detection function
DT
A(x;x0; ct) with the monitoring function MT

A (x;xs; ct). To do this, we assume
that x0 = xs. We define the displacement vector r by

r = x− x0 = x− xs. (4.11)

We can then express the concentrations and the functions:

C̄(x;x0) = C̄(x∗ + r;x∗) (4.12)

C̄(xs;x) = C̄(x∗ − r;x∗) (4.13)

DT
A(x;x0; ct) = DA(x∗ + r;x∗; ct) (4.14)

MT
A (x;xs; ct) = DA(x∗ − r;x∗; ct). (4.15)

We see that the sign of r is the only difference between the concentration
field and the inverted concentration field. In the same way, the sign of r is the
only difference between the detection function and the monitoring function. The
concentration field can thus be inverted by changing the sign of the displacement
vector r, and the detection function can be inverted into the monitoring function
by the same sign change. Changing the sign of r corresponds to a reflection
about x∗, which can be expressed using a matrix R:

C̄(x;x0) = C̄(x∗ + r;x∗) (4.16)

C̄(xs;x) = C̄(x∗ +Rr;x∗) (4.17)

DT
A(x;x0; ct) = DA(x∗ + r;x∗; ct) (4.18)

MT
A (x;xs; ct) = DA(x∗ +Rr;x∗; ct). (4.19)
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Figure 4.6: Optimal layout of two sensors (green circles) for the test case in
[8]. The monitored region is shown in grey, darker areas are monitored by both
sensors. Red crosses are wells and blue lines are faults. Concentration threshold
ct = 2.26 · 10−4 kg/m3. The detection probability is p = 0.57.

Since the vectors are in R2, R is the negative 2x2 identity matrix

R =

(
−1 0

0 −1

)
. (4.20)

A counter-clockwise rotation of α degrees is given by the matrix(
cosα − sinα

sinα cosα

)
. (4.21)

We see that the matrix R is the rotation matrix for α = π = 180◦. The
concentration field and the detection function can thus be inverted by a rotation
of 180◦. It is important to note that this property is completely dependent
on the assumption of spatial independence of the footprint, and thus spatial
independence of the detection function. Fig. 4.3 and 4.4 shows the inverting by
rotating 180◦ property for the test test case of [8]. The steps of inverting the
footprint and the resulting coordinate mapping is illustrated in Fig. 4.5.

4.5 Extended application of the inversion

In this chapter, we have developed an exact inversion using an average
concentration footprint from a leakage. The method can of course be applied
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Figure 4.7: Optimal layout of four sensors (green circles) for the test case in [8].
The monitored region is shown in grey, darker areas are monitored by several
sensors. Red crosses are wells and blue lines are faults. Concentration threshold
ct = 2.26 · 10−4 kg/m3. The detection probability is p = 0.79.

to other input files, as will be done in later chapters where the theory of this
chapter is used to develop other methods for monitoring design.

The inversion by rotation developed in this chapter can be applied to any
kind of footprint, concentration or not. The detection function used in this
chapter is an example that the method is applied to. The only assumption that
must be made is that the footprint is independent of the leakage location and
is given by a single predicted footprint.

Let g(x;x0) be the value at x of an arbitrary footprint having leakage
location x0. Further, let x∗ be the leakage location of the predicted footprint
giving g(x;x∗). Due to the assumption of spatial independence, we can express
g(x;x0) in terms of the predicted footprint as we did for the average concentration
footprint in Eq. 4.1:

g(x;x0) = g(x∗ + (x− x0);x∗). (4.22)

Here, we think of x0 as a fixed variable such that we get the footprint value
g(x;x0) at all locations x for a given leakage location. When inverting the
footprint, we are only changing the fixed and the independent variable. Having
a sensor at xs, we are interested in g(xs;x). This is the footprint value at xs
for all leakage locations x. As indicated, xs is now a fixed variable. Using Eq.
4.22, we obtain the inverted footprint similarly to Eq. 4.9:
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Figure 4.8: Detection probability for the optimal layout as function of number
of sensors for the test case in [8] comparing the approximation of Ch. 3 and the
exact inversion of this chapter. Concentration threshold ct = 2.26 · 10−4 kg/m3.

g(xs;x) = g(x∗ − (x− xs);x
∗). (4.23)

As seen from Eq. 4.22 and 4.23, the footprint and the inverted footprint have
the same form as what we obtained for the average concentration footprints. In
these calculations however, average concentration was never used. This implies
that the average concentration is just a special case where the inversion method
can be used. As stated before, we will in the next chapters use the inversion
with other inputs than in this chapter. For numerical implementations of the
methods developed, the interpretation of inverting a footprint by rotating 180◦

is extremely useful.

4.6 Optimal design

We test the method of this chapter on the same test case as in Ch. 3. This is
the test case used in Hvidevold et al. [8] and presented in Sec. 2.1.3. The average
concentration footprint and its inverse are shown in Fig. 4.3. The corresponding
detection and monitoring function using ct = 2.26 · 10−4 kg/m3 are shown in
Fig. 4.4. We see that the shape of the monitored region is far from the ellipse
approximation used in Ch. 3.

Optimal placements and monitored regions for two and four sensors using
the approximation of [8] are shown in Fig. 3.4 and 3.5. The corresponding
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Figure 4.9: Optimal layout of four sensors for the test case in [8] using the
approximation (yellow) and the exact (green) inversion. Red crosses are wells
and blue lines are faults. Threshold concentration of ct = 2.26 · 10−4 kg/m3.

optimal placements and monitored regions for two and four sensors using the
exact inversion are shown in Fig. 4.6 and 4.7. Fig. 4.9 shows the placement
of four sensors for both methods for comparison. Fig. 4.8 shows the detection
probability for the optimal layout as a function of the number of sensors for
both methods.

4.7 Discussion of the method

The purpose of this chapter has been to develop a method inverting the
average concentration footprint exactly instead of using the approximation of
Ch. 3. The exact inversion can be used for other footprints too, which will be
done in later chapters. We will now do a short discussion of the assumptions
addressed in Sec. 3.7 for the method of this chapter.

Leakage location

As discussed in Sec. 3.7, we think of the leakage location probability density
function only as a test case. We are not interested in special site studies,
implying that when developing the method we can think of the leakage location
probability density function as given.
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Spatial independence of footprint

The method developed in this chapter is only using one concentration footprint
as in Ch. 3. This leads to the assumption of spatial independence of the
leakage location in the footprint, which the method of this chapter is based
on. As discussed in Sec. 3.7, we would like to include spatial dependence in the
footprint. A method for this is presented in Ch. 5.

Approximation and inversion of footprint

The method developed in this chapter enables us to use the predicted footprint
directly without the approximation of Ch. 3. In addition, the method is just
as easy to implement as the approximation method. This is mainly due to the
easy inversion of a footprint by rotating it 180◦. We see from Fig. 4.9 that the
optimal sensor layout for the test case becomes significantly different using the
exact footprint instead of the approximation. At the same time, Fig. 4.8 shows
that we get a much higher detection probability using the exact method of this
chapter. In the following work, we will only use the exact inversion.

Average concentration

We are still using an average concentration footprint as in Ch. 3, only without
the approximation. The discussion on average concentration and alternative
approaches of Sec. 3.7 is then still valid for the method of this chapter. An
alternative approach using events will be presented in Ch. 6.



Chapter 5

Monitoring design:
Interpolation of average
concentration footprints

This far we have assumed the average concentration footprint of a leakage to
be independent of the leakage location. Due to the topography of the seafloor
and current variations, there will in real life be variations in the footprint for
different leakage locations as discussed in Sec. 3.7.

We now want to include spatial dependence in our calculations such that
all leakage locations have different footprints. Ideally we would like to do
simulations for every grid point as leakage location, but this is not possible
due to calculation and memory limitations. Instead we use a smaller number of
simulated footprints and interpolate. This leads to the red method in Fig. 5.1.

Chapter: 3
Inversion:

Approximation
Footprint:

Average
concentration

Spatial:
Independence

Chapter: 4
Inversion:

Exact
Footprint:

Average
concentration

Spatial:
Independence

Chapter: 5
Inversion:

Exact
Footprint:

Average
concentration

Spatial:
Dependence

Figure 5.1: Summary of the different methods for monitoring design, the red is
the one to be developed in this chapter.

5.1 Estimation of the leakage footprint

As before, let C̄(x;x0) be the average concentration at x resulting from
a leakage at x0. Assume that we have K predicted footprints. For each
footprint k, let x∗

k be the leakage location such that C̄(x;x∗
k) is predicted from a

simulation. We want to interpolate between these predicted footprints to obtain

37
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Figure 5.2: The four test case footprints showing the spatial dependence. The
leakage locations of the other footprints are marked with green circles.

a footprint for an arbitrary leakage location x0. The first thing we need to do
is to translate the footprints to have leakage location in x0 as in Ch. 4. The
average concentration at x for a leakage at x0 with footprint k is given by

C̄(x;x0) = C̄(x∗
k + (x− x0);x∗

k). (5.1)

For each possible leakage position x0, we use a weighted sum of these
translated footprints to obtain a concentration field:

C̄(x;x0) =

K∑
k=1

wk(x0)C̄(x∗
k + (x− x0);x∗

k) (5.2)

where wk(x0) is the weight used for footprint k when approximating the footprint
of a leakage in x0. For consistency, the weights must satisfy the normalization

K∑
k=1

wk(x0) = 1 ∀x0. (5.3)

We assume that the weight functions only depend on the distances from x0

to the leakage locations {x∗
k} of the predicted footprints. Let dk(x0) be the
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distance from x0 to the leakage point x∗
k of the predicted footprint k:

dk(x0) = ||x0 − x∗
k||2 =

√
(x0 − x∗k)

2
+ (y0 − y∗k)

2
. (5.4)

Further, assume that the weights are inversely proportional to the distances:

wk(x0) =
B(x0)

dk(x0)
(5.5)

where B(x0) is used for normalization to satisfy Eq. 5.3. This gives us

B(x0) =
1∑K

k=1
1

dk(x0)

. (5.6)

If one of the distances is zero, we are located in the leakage point of one of the
predicted footprints. The weights are then set such that only the corresponding
footprint is used, avoiding division by zero. This gives us

wk(x0) =


0 if dk(x0) > 0 and min(d1(x0), . . . , dK(x0)) = 0

1 if dk(x0) = 0
B(x0)
dk(x0) if min(d1(x0), . . . , dK(x0)) > 0

. (5.7)

Fig. 5.2 shows the simulated average concentration footprint for four different
leakage locations at the test site Sleipner, showing the great spatial variation
between the four locations. For the test case of this chapter, the footprint of
any location will be estimated by interpolation between these four footprints.
The resulting interpolation weights from Eq. 5.7 are shown in Fig. 5.3. The
resulting footprint for an arbitrary leakage location is shown in Fig. 5.4. Note
that the footprints of Fig. 5.2 are from a different leakage scenario (Tab. C.1)
than the footprint in Fig. 2.2 used in Ch. 3 and 4.

5.2 Detection function for interpolation

Using the average concentration resulting from leakages, we have the same
detection function and corresponding detectable region as before:

DA(x;x0; ct) =

1 if C̄(x;x0) ≥ ct
0 if C̄(x;x0) < ct

(3.1)

Detectable region average =
{
x
∣∣C̄(x;x0) ≥ ct

}
. (3.2)

By using the interpolated concentration of Eq. 5.2 and Eq. 3.1, we obtain

DI
A(x;x0; ct) =

1 if
∑K
k=1 wk(x0)C̄(x∗

k + (x− x0);x∗
k) ≥ ct

0 if
∑K
k=1 wk(x0)C̄(x∗

k + (x− x0);x∗
k) < ct

(5.8)

Detectable region

interpolated average
=

{
x

∣∣∣∣∣
K∑
k=1

wk(x0)C̄(x∗
k + (x− x0);x∗

k) ≥ ct

}
. (5.9)
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Figure 5.3: The interpolation weights (Eq. 5.7) when predicting the footprint of
an arbitrary leakage location using the four footprints in Fig. 5.2.

Due to the spatial dependence in the footprint, the detectable region will
have different shape and size for different leakage locations. This implies that
we don’t have the simple translation property of Eq. 4.2 where the detection
function is expressed using the detection function for the predicted footprint.
Fig. 5.5 shows the detectable regions of the footprints in Fig. 5.2 for concentration
thresholds ct = 2.26 · 10−4 kg/m3 and ct = 9 · 10−5 kg/m3.

5.3 Monitoring function for interpolation

Since the monitoring function is implicitly defined by the detection function
using Eq. 2.4, we also have the same monitoring function and monitored region
as before for the average concentration:

MA(x;xs; ct) =

1 if C̄(xs;x) ≥ ct
0 if C̄(xs;x) < ct

(3.3)

Monitored region average =
{
x
∣∣C̄(xs;x) ≥ ct

}
. (3.4)
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Figure 5.4: Footprint of an arbitrary leakage location using the footprints in
Fig. 5.2 and the weights in Fig. 5.3. The leakage locations of the predicted
footprints are marked with green circles. The black contour is the level curve for
ct = 9 · 10−5 kg/m3 and the red contour for ct = 2.26 · 10−4 kg/m3, giving the
boundary of the detectable regions.

Using the interpolated concentration of Eq. 5.2, we obtain the following
expression for the inverted concentration field C̄(xs;x):

C̄(xs;x) =

K∑
k=1

wk(x)C̄(x∗
k − (x− xs);x

∗
k). (5.10)

By comparing with Eq. 4.9, we see that this is a weighted sum of footprints
inverted the same way as in Ch. 4. Note that while the weight functions had the
fixed values wk(x0) for the interpolated concentration of Eq. 5.2, this is not the
case here. The independent variable x is present in both the weight functions
and the predicted footprints, making the calculation of the inverted footprint
more complicated. The monitoring function and its corresponding monitored
region using Eq. 5.10 become

M I
A(x;xs; ct) =

1 if
∑K
k=1 wk(x)C̄(x∗

k − (x− xs);x
∗
k) ≥ ct

0 if
∑K
k=1 wk(x)C̄(x∗

k − (x− xs);x
∗
k) < ct

(5.11)

Monitored region

interpolated average
=

{
x

∣∣∣∣∣
K∑
k=1

wk(x)C̄(x∗
k − (x− xs);x

∗
k) ≥ ct

}
. (5.12)
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Figure 5.5: Detectable regions for the four footprints in Fig. 5.2. The leakage
location is marked with a yellow circle and the leakage points of the other
footprints with green circles. The black (including the red) is for ct = 9 ·
10−5 kg/m3 and the red for ct = 2.26 · 10−4 kg/m3. Note the large spatial
variation.

As for the detectable region, the spatial dependence in the footprint will
cause the monitored region to have different shape and size for different sensor
locations. Fig. 5.6 shows the monitored region for an arbitrary sensor location
using the footprints of Fig. 5.2.

5.4 Extended application of the spatial variation

The spatial dependence can be applied to any footprint, just as the inversion
of Ch. 4. We will now briefly show how to do this for other inputs than average
concentration, as we did for the inversion in Sec. 4.5. This method will be used
for a different footprint in Ch. 7.

Assume as in Sec. 4.5 that g(x;x0) is the value at x of some arbitrary
footprint having leakage location x0. We want to estimate the footprint of an
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Figure 5.6: Monitored regions for an arbitrary sensor location (yellow circle)
using the footprint in Fig. 5.2. The green circles show the leakage location of the
four predicted footprints. The black (including the red) is for ct = 9 ·10−5 kg/m3

and the red for ct = 2.26 · 10−4 kg/m3.

arbitrary leakage location based on interpolation betweenK predicted footprints
g(x;x∗

k) having leakage locations x∗
1; . . . ;x∗

K . The footprint of an arbitrary
leakage location will then be given by the weighted sum equivalent to Eq. 5.2:

g(x;x0) =

K∑
k=1

wk(x0)g(x∗
k + (x− x0);x∗

k) (5.13)

where the weight functions wk are given by Eq. 5.7. The inverted footprint
g(xs;x) for a fixed sensor at xs will be given by the equivalent of Eq. 5.10:

g(xs;x) =

K∑
k=1

wk(x)g(x∗
k − (x− xs);x

∗
k). (5.14)

We see that Eq. 5.13 and 5.14 are completely equivalent to Eq. 5.2 and 5.10
for the average concentration footprint, implying that the average concentration
footprint of this chapter only is an example of a footprint with spatial dependence.

5.5 Optimal design

Footprints are simulated for four different leakage positions. The footprints
are shown in Fig. 5.2 and the corresponding detectable regions in Fig. 5.5.
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Figure 5.7: Storage site to be monitored, part of the site in Fig. 2.3. The green
circles are the leakage locations of the predicted footprints used. Red crosses are
wells and blue lines faults.

We want to use the same test case as in the previous chapters. However, the
detectable regions (Fig. 5.5) of the footprints in Fig. 5.2 are much smaller than
the detectable region of the previous used footprint of Fig. 2.2. For this reason,
we choose to use a smaller part of the test site in Fig. 2.3. The part to be used
is shown in Fig. 5.7 together with the leakage location of the four predicted
footprints of Fig. 5.2.

The detection probability for the optimal sensor layout as function of the
number of sensors is shown in Fig. 5.8. The optimal layout for four sensors is
shown in Fig. 5.9 together with the monitored regions of the sensors.

5.6 Discussion of the method

The purpose of this chapter has been to incorporate spatial dependence in
the average concentration footprint instead of using the same footprint for all
leakage locations as in Ch. 4. The method for spatial dependence can also be
applied to other footprints than average concentration footprints, which will be
done in Ch. 7. We will now do a short discussion on the assumptions of the
method as we have done in the previous chapters.
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Figure 5.8: Detection probability for the optimal layout as function of the number
of sensors. Detection threshold ct = 2.26 · 10−4 kg/m3.

Leakage location

As in the previous chapters, we have only used the leakage location probability
density function as test case. The discussion of Sec. 3.7 on the leakage location
then still applies.

Spatial dependence of footprint

The previous chapters have used the same footprint for all leakage locations.
As discussed in Sec. 3.7, the average concentration footprint will in the real world
not be the same for all leakage locations. The method of this chapter solves this
problem by using an unique footprint for each possible leakage location. Ideally,
we should have simulations for all possible locations. However, as mentioned
before this requires too much computation and memory to be a reasonable
option. The interpolation approach of this chapter requires a relatively small
number of simulations, but will still give a good estimation for most leakage
locations if the predicted footprints are wisely placed.

For the test case, only four predicted footprints are used, but the ideal
number is probably a bit larger than that. This discussion on spatial variation
applies also to other footprints when applying Sec. 5.4 to them.
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Figure 5.9: Sensor placements (green circles) and corresponding monitored
regions (grey) for four sensors. Red crosses are wells and blue lines faults.
Detection threshold ct = 2.26 · 10−4 kg/m3. Detection probability p = 0.28.

Approximation of footprint

Ch. 4 presented a method to invert a footprint exactly given that all leakage
locations have the same footprint. The techniques of that chapter has been
applied to the predicted footprints that are used for interpolation to predict the
leakage footprint. This implies that even though we have introduced spatial
dependence in the footprint, the inversion of the footprint will be exact once
the footprint is estimated.

Average concentration

The method of this chapter is based on the average concentration from a
leakage the same way as the methods of the previous chapters. The discussion
on the use of average concentration in Sec. 3.7 then still applies. The next
chapter will introduce a method that is not using the average concentration.



Chapter 6

Monitoring design:
Translation of a probability
footprint

This far we have only used the average concentration footprint from a
leakage. As discussed in Sec. 3.7, the use of average concentration may be too
conservative. Even though the average concentration over some time always
is below the concentration threshold value ct, the concentration may be above
ct a significant amount of the time, making the leakage possible to detect. A
method based on the fraction of time the concentration is above ct is suggested
by Hvidevold et al. [7]. We will present and further develop this method. In
this work we will use theory of Sec. 4.5 giving the red method in Fig. 6.1.

Chapter: 3
Inversion:

Approximation
Footprint:

Average
concentration

Spatial:
Independence

Chapter: 4
Inversion:

Exact
Footprint:

Average
concentration

Spatial:
Independence

Chapter: 5
Inversion:

Exact
Footprint:

Average
concentration

Spatial:
Dependence

Chapter: 6
Inversion:

Exact
Footprint:
Probability
Spatial:

Independence

Figure 6.1: Summary of the different methods for monitoring design, the red is
the one to be developed in this chapter.
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Figure 6.2: Time series (blue) for seafloor CO2 concentration in the leakage
point (center) and the eight surrounding grid points. The red lines show the
threshold concentration ct = 2.26 · 10−4 kg/m3.

6.1 Probability footprint

Instead of using the average concentration footprint of a leakage, [7] suggests
to use a probability footprint. The value of this footprint is the probability that
the concentration at a single randomly chosen time is above the threshold value
ct. E.g. if the concentration is above ct 20% of the time at a given location, the
probability footprint will have a value of 0.2 there.

We can also think of the probability footprint as a detection function. If
we perform a single measurement at a location, the value of the probability
footprint is the probability that the concentration is above ct. We assume that
a leakage always is detected if we measure a concentration above ct and never
detected if we measure a concentration below ct. The probability footprint will
then be the detection function for a single measurement. For this reason, we
will denote the value of the probability footprint at x when having a leakage
at x0 by the detection function notation DS(x;x0; ct). The single measurement
method will however only be used in the development of the event method. This
is because we are interested in fixed sensors, not surveys.

To calculate the probability footprint, we need the concentration time series
of the grid points surrounding the leakage. In Hvidevold et al. [7], the time series
used are from a leakage scenario at Sleipner similar to the test cases used in the
previous chapters. Fig. 6.2 shows the concentration time series for the leakage
location and its surrounding grid points. The time series are plotted together
with the standard threshold concentration ct = 2.26·10−4 kg/m3, showing when
the concentration is above the threshold value.

Let now Cl(x;x0) be the value at time step l of the concentration time series
at x when having a leakage at x0. Further, let L be the number of time steps
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Figure 6.3: Probability footprint DS(x;x∗; ct) for ct = 2.26 · 10−4 kg/m3 used
in [7] and as a test case in this chapter.

such that l ∈ {1, 2, . . . , L}. The probability footprint, or the single measurement
detection function, is then given by

DS(x;x0; ct) =

∑L
l=1 ID(Cl(x;x0); ct)

L
(6.1)

where ID(Cl(x;x0; ct) is the detection indicator function

ID(Cl(x;x0); ct) =

{
1 if Cl(x;x0) ≥ ct
0 if Cl(x;x0) < ct

. (6.2)

We assume that the probability footprint is independent of the leakage
location. This makes it possible to apply the theory of Sec. 4.5. Let as before x∗

be the leakage location of the footprintDS(x;x∗; ct) predicted from a simulation.
We then have a translation property equivalent to Eq. 4.2 for the footprint of
an arbitrary leakage location x0:

DT
S (x;x0; ct) = DS(x∗ + (x− x0);x∗; ct) (6.3)

DT
S (x;x0; ct) =

∑L
l=1 ID(Cl(x

∗ + (x− x0);x∗); ct)

L
. (6.4)

The footprint for ct = 2.26 ·10−4 kg/m3 used in Hvidevold et al. [7] is shown
in Fig. 6.3. We will adopt this footprint as a test case in this chapter.
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6.2 Detection function for event

We are now ready to introduce the event method of [7]. Instead of performing
a survey with single measurements, we now assume that we have fixed sensors as
in the previous chapters. The relative period of time a sensor will experience a
concentration above ct from the leakage is the value of the probability footprint.
If this value is above some probability threshold pt, we assume that the sensor
always detects the leakage. If it is below pt, we assume that the sensor never
detects the leakage. This gives the detection function for the event method:

DE(x;x0; ct; pt) =

{
1 if DS(x;x0; ct) ≥ pt
0 if DS(x;x0; ct) < pt

. (6.5)

A way to explain this method is that if the concentration is above the
threshold concentration ct sufficiently often, there will within reasonable time be
an event where the concentration is large enough that the leakage is detected. Of
course, we have no guarantee that these events are spread and not clustered in
time. Time series analysis could be used to quantify the risk of this happening,
but will not be performed here. Since we use the same predicted probability
footprint for all leakage locations, the event detection function will be the same
for all leakage locations. This implies that we have the same translation property
for an arbitrary leakage location as Eq. 6.3 for the probability footprint:

DT
E(x;x0; ct; pt) = DE(x∗ + (x− x0);x∗; ct; pt) (6.6)

DT
E(x;x0; ct; pt) =

{
1 if DS(x∗ + (x− x0);x∗; ct) ≥ pt
0 if DS(x∗ + (x− x0);x∗; ct) < pt

. (6.7)

As mentioned before, the event method is similar to the average method of
Ch. 4. The probability footprint takes the role of the average concentration
footprint and the application of a probability threshold pt is equivalent to the
use of the concentration threshold ct in Ch. 4. Note that ct is used also in the
event method of this chapter, but in a different way than in Ch. 4. Due to the
equivalence of the event and average method, we obtain a detectable region for
the event method the same way as Eq. 4.4 for the average method:

Detectable region

translated event
= {x |DS(x∗ + (x− x0);x∗; ct) ≥ pt } (6.8)

All sensors within this region is assumed to always detect the leakage, while
all sensors outside of this region is assumed to never will detect the leakage. Fig.
6.4, shows some level contours DS(x;x0; ct) = pt of the probability footprint in
Fig. 6.3 for ct = 2.26 · 10−4 kg/m3. These level contours give the boundaries of
the detectable regions for the different values of pt. The typical value of pt used
in Hvidevold et al. [7] is pt = 0.10, implying that the area within the blue line
in Fig. 6.4 will be the detectable region.
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Figure 6.4: Level contours of the probability footprint in Fig. 6.3. The level
contours define the boundaries of the detectable regions for the different values
of pt. The contours are plotted together with the depth. The leakage location is
marked with a cross. Threshold concentration ct = 2.26 · 10−4 kg/m3.

6.3 Monitoring function for event

The monitoring function for a sensor at xs is as before given implicitly by
the detection function and Eq. 2.4 with the extra parameter pt:

ME(x;xs; ct; pt) = DE(xs;x; ct; pt). (6.9)

Since we have assumed the probability footprint to be equal everywhere, we
have seen that we have the same translation properties for the footprint and
the detection function as in Ch. 4. This implies that the inversion to obtain the
monitoring function is the same as in Ch. 4. We first express the monitoring
function in terms of the detection function for the predicted leakage:

MT
E (x;xs; ct; pt) = DE(x∗ − (x− xs);x

∗; ct; pt). (6.10)

In terms of the probability footprint, the monitoring function becomes

MT
E (x;xs; ct; pt) =

{
1 if DS(x∗ − (x− xs);x

∗; ct) ≥ pt
0 if DS(x∗ − (x− xs);x

∗; ct) < pt
. (6.11)

We see that these equations are equivalent to the ones obtained for the
monitoring function of Ch. 4. This enables us to apply Sec. 4.5 to invert the
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Figure 6.5: Monitored regions for different values of pt. The sensor location is
marked with a cross. Note that the monitored regions are obtained by a 180◦

rotation of the detectable regions in Fig. 6.4. ct = 2.26 · 10−4 kg/m3

footprint and the detection function by the 180◦ rotation described in Sec. 4.4.
The monitored region for the event method will be

Monitored region

translated event
= {x |DS(x∗ − (x− xs);x

∗; ct) ≥ pt } . (6.12)

6.4 Optimal design

We will now apply the method to the same test case (Sec. 2.1.3) as previously.
This implies to find the optimal sensor layout for different numbers of sensors
for the Sleipner leakage location probability density function of Fig. 2.3. We
will use the probability footprint of Fig. 6.3, which is from a simulation at
Sleipner. However, this is a different simulation (Tab. C.1) than the one giving
the average concentration footprint of Fig. 2.2 used in Ch. 3 and 4. This implies
that we can’t compare the detection probabilities and sensor locations of Ch. 4
with what we obtain here.

Fig. 6.6 shows the detection probability for the optimal sensor layout as a
function of the number of sensors for different probability thresholds pt. The
great difference in the detection probabilities shows that the choice of pt is
of great importance. The optimal placements of four sensors for the different
values of pt are plotted in Fig. 6.7 together with the monitored regions of the
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Figure 6.6: Detection probability for the optimal layout as function of the
number of sensors for different values of the threshold probability pt. Threshold
concentration ct = 2.26 · 10−4 kg/m3.

sensors. The placement of the sensors for the different values of pt are plotted
together in Fig. 6.9 for comparison of the layouts. Fig. 6.8 shows the optimal
sensor layout for eight sensors having pt = 0.1.

6.5 Discussion of the method

In this chapter we have presented the event method from [7] and applied
the inversion of Ch. 4 to it. We will now do a short discussion on some of the
aspects of the event method.

Leakage location

As before, we think of the leakage location probability density function as
given while developing the method. This implies that the previous discussion
on the leakage location in Sec. 3.7 still applies.

Probability footprint and threshold

The first step in the event method is the calculation of the probability
footprint. We originally have full time series for the concentration in all grid
points surrounding the leakage. These time series are then reduced to a single
probability value in each grid point, just as the time series are reduced to
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Figure 6.7: Optimal sensor locations (green) and monitored area (gray) using
four sensors for different values of the threshold probability pt: 0.01 (top left),
0.05 (top right), 0.1 (bottom left) and 0.2 (bottom right). Corresponding
detection probabilities are p = 0.59, p = 0.38, p = 0.29 and p = 0.19. Red
crosses are wells and blue lines are faults. ct = 2.26 · 10−4 kg/m3

the average concentration value in the previous chapters. Since we want to
estimate the ability of the monitoring program to detect a leakage at an arbitrary
time, it is reasonable to reduce the time series to a typical value. It is also
computationally much easier to work with a single value in each grid point than
with the large data amount a complete time series in each grid point is.

The probability footprint is a more realistic approach than the average
concentration footprint. As discussed in Sec. 3.7, a leakage may be detectable
even though the average concentration is below the concentration threshold ct.
However, locations having a concentration above ct much of the time, and thus
a high average concentration, will be a more likely place to detect the leakage.
The probability footprint takes this into account by using not only the values 0
and 1, but the full range between 0 and 1.

It can be useful to use the probability footprint as detection function directly,
as is done in [7] as the single measurement method. The smooth transition in
the detection function between 0 (never detect) and 1 (always detect) is realistic.
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Figure 6.8: Optimal sensor locations (green) and monitored area (gray) using
eight sensors for pt = 0.1. The detection probability is p = 0.47. Red crosses
are wells and blue lines are faults. ct = 2.26 · 10−4 kg/m3

However, the event detection function of this chapter is also reasonable. A grid
point having a certain probability of the concentration exceeding the threshold
concentration ct, will experience a concentration above ct at a regular basis.

The biggest challenge of the event method is to set the threshold probability
pt correctly. Different values of pt give completely different detectable regions
and detection probabilities as is easily seen by Fig. 6.4 and Fig. 6.6. These
different values of pt then give quite different sensor layouts as seen in Fig. 6.9.

Two of the questions to consider when determining pt is for how long time
it is acceptable that the concentration stays below ct, and for how long time the
concentration has to stay above ct for it to be significant.

The answer to the first question depends on what is an acceptable detection
time. This may depend on several factors determining the severity of a leakage.
The answer to the second question depends on how sure we want to be that an
alarm really is a leakage. This may also depend on the severity of a potential
leakage, together with the cost of investigating an alarm.

After answering the two questions, statistical time series analysis should be
applied to find a proper value for pt. This is not done here, and the values of
pt used are to be considered test values. To do a complete time series analysis
would be a thoroughly process, and may also give different values of pt for
different locations. Having a larger pt gives a smaller detectable region and
requires the concentration to be above ct a larger amount of the time for a
leakage to be considered detectable. In the absence of a complete time series
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Figure 6.9: Optimal sensor locations using four sensors for different threshold
probabilities pt. Red crosses are wells and blue lines are faults. Threshold
concentration ct = 2.26 · 10−4 kg/m3.

analysis, it is possible to do a conservative approach and choose a larger pt to
be on the safe side.

Spatial independence of footprint

Even though we use a probability footprint instead of an average concentration
footprint, the discussion of Sec. 3.7 still applies. The footprint should vary
between the different leakage locations due to spatial variations in topography
and currents. This calls for a method taking these variations into account. Such
a method was developed in Ch. 5 for the average concentration footprint. We
will in the next chapter apply this method to the probability footprint.



Chapter 7

Monitoring design:
Interpolation of probability
footprints

Ch. 6 presented the event based method from [7]. This method uses the
probability footprint presented in Sec. 6.1. In Ch. 6, this footprint was assumed
to be independent of the leakage location. The further calculations of the event
method in the chapter were then similar to the calculations in Ch. 4 for the
average concentration footprint with spatial independence.

Chapter: 3
Inversion:

Approximation
Footprint:

Average
concentration

Spatial:
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Chapter: 4
Inversion:

Exact
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Average
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Chapter: 5
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Chapter: 6
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Chapter: 7
Inversion:

Exact
Footprint:
Probability
Spatial:
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Figure 7.1: Summary of the different methods for monitoring design, the red is
the one to be developed in this chapter.

After discussing the need of incorporating spatial dependence in the average
concentration footprint, a method including spatial dependence was developed
in Ch. 5. The necessity of developing a similar method with spatial dependence

57
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in the probability footprint for the event method is addressed in Sec. 6.5. We
will develop such a method in this chapter giving the red method of Fig. 7.1.

This chapter will be an extension of Ch. 6 similar to how Ch. 5 is an extension
of Ch. 4. Since much of the calculations of Ch. 4 and Ch. 6 are the same, the
method of this chapter is obtained by applying the theory of Ch. 5 to Ch. 6 as
is explained in Sec. 5.4 for an arbitrary footprint.

7.1 Estimation of the probability footprint

The first thing we need to do is to estimate the probability footprint for
an arbitrary leakage location including spatial dependence. We assume as in
Ch. 5 that we have simulations of leakages from K different leakage locations
x∗

1, . . . ,x
∗
K . To calculate the predicted probability footprints DS(x;x∗

k; ct), we
need the concentration time series for leakages at each of theK leakage locations.
As in Ch. 6, we let Cl(x;x0) be the concentration value at location x at time
step l when having a leakage at x0. The predicted footprints DS(x;x∗

k; ct) are
then calculated using Eq. 6.1 for each predicted leakage location x0 = x∗

k:

DS(x;x0; ct) =

∑L
l=1 ID(Cl(x;x0); ct)

L
. (6.1)

As in Ch. 6, L is the total number of time steps in the time series and
ID(Cl(x;x0); ct) is the detection indicator function

ID(Cl(x;x0); ct) =

{
1 if Cl(x;x0) ≥ ct
0 if Cl(x;x0) < ct

. (6.2)

We now have K predicted probability footprints DS(x;x∗
k; ct) and want to

use them to estimate the footprint of an arbitrary leakage location including
spatial dependence. We can apply the theory of Ch. 5 as described in Sec. 5.4
for an arbitrary footprint. The first we do is to translate the footprints to x0.
A leakage located at x0 having probability footprint k will be given by

DT
S (x;x0; ct) = DS(x∗

k + (x− x0);x∗
k; ct). (7.1)

We will interpolate between these footprints, giving the following expression
for the footprint of an arbitrary leakage location:

DI
S(x;x0; ct) =

K∑
k=1

wk(x0)DS(x∗
k + (x− x0);x∗

k; ct). (7.2)

The interpolation weights wk(x) are the same as in Ch. 5, and given by Eq.
5.7 using the leakage locations x∗

1, . . . ,x
∗
K of the predicted footprints. Fig. 7.2

shows four of the nine probability footprints used in Sec. 7.4. The resulting
footprint given by Eq. 7.2 for an arbitrary leakage location is shown in Fig. 7.3.

7.2 Detection function for interpolated event

The only difference between Ch. 6 and this chapter is the estimation of
the probability footprint. Once the footprint is estimated, we have the same
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Figure 7.2: Four of the nine probability footprints used as test case in Sec. 7.4.
The leakage locations of the other footprints are marked with green circles. We
can clearly see the spatial dependence in the footprint. ct = 2.26 · 10−4 kg/m3

detection function as in Ch. 6:

DE(x;x0; ct; pt) =

{
1 if DS(x;x0; ct) ≥ pt
0 if DS(x;x0; ct) < pt

. (6.5)

Using Eq. 7.2 for the probability footprint, we get the detection function for
the event method with spatial dependence:

DI
E(x;x0; ct; pt) =

{
1 if

∑K
k=1 wk(x0)DS(x∗

k + (x− x0);x∗
k; ct) ≥ pt

0 if
∑K
k=1 wk(x0)DS(x∗

k + (x− x0);x∗
k; ct) < pt

. (7.3)

We see that the detection function obtained is equivalent to Eq. 5.8 for the
average method with spatial dependence. As before, the detection function gives
rise to a detectable region where a sensor inside this region is assumed to detect
a potential leakage at x0:

Detectable region

interpolated event
=

{
x

∣∣∣∣∣
K∑
k=1

wk(x0)DS(x∗
k + (x− x0);x∗

k; ct) ≥ pt

}
. (7.4)
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Figure 7.3: Probability footprint for an arbitrary leakage location using nine
predicted footprints, whose locations are marked with a green circle. Comparing
with four of the predicted footprints shown in Fig. 7.2, we can see the spatial
dependence. The black contour line is the level curve for pt = 0.05 and the red
contour for pt = 0.1, giving the boundaries of the detectable regions.

The detectable regions for the footprints in Fig. 7.2 are shown in Fig. 7.4.

7.3 Monitoring function for interpolated event

The monitoring function will as before be given implicitly by the detection
function by the relation

ME(x;xs; ct; pt) = DE(xs;x; ct; pt). (6.9)

By using Eq. 7.3 for the detection function, we obtain the monitoring function
for the event method with spatial dependence:

M I
E(x;xs; ct; pt) =

{
1 if

∑K
k=1 wk(x)DS(x∗

k − (x− xs);x
∗
k; ct) ≥ pt

0 if
∑K
k=1 wk(x)DS(x∗

k − (x− xs);x
∗
k; ct) < pt

. (7.5)

Similarly as for the detection function, the monitoring function is equivalent
to Eq. 5.11 for the average method with spatial dependence. We see that the
inverted probability footprint is given by

DI
S(xs;x; ct) =

K∑
k=1

wk(x)DS(x∗
k − (x− xs);x

∗
k; ct). (7.6)
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Figure 7.4: The detectable regions for the four footprints in Fig. 7.2. The leakage
location of the leakage is marked with a yellow circle, and the leakage locations
of the other footprints with green circles. The black region (including the red) is
for pt = 0.05 and the red for pt = 0.1.

This inversion is the equivalent of Eq. 5.10 for the average method with
spatial dependence. Note again that the argument of the weight functions wk
is the independent variable x, while for the footprint Eq. 7.2 the argument x0

of the weight functions is fixed. The monitored region will be

Monitored region

interpolated event
=

{
x

∣∣∣∣∣
K∑
k=1

wk(x)DS(x∗
k − (x− xs);x

∗
k; ct) ≥ pt

}
. (7.7)

Fig. 7.5 shows the monitored regions for an arbitrary sensor location using
the test case footprints of Sec. 7.4.
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Figure 7.5: Monitored regions for an arbitrary sensor location (yellow circle)
using the predicted footprints of Sec. 7.4 The green circles show the location of
the nine predicted footprints, where four of them are plotted in Fig. 7.2. The
black region (including the red) is for pt = 0.05, and red is for pt = 0.1.

7.4 Optimal design

We now want to apply the event method with spatial dependence to a test
case. Simulations for nine different leakage locations at the Sleipner storage site
are preformed. The relative location of the leakage locations are shown in Fig.
7.2 together with the probability footprint for four of the locations.

It is possible to use the leakage location probability density function of
Sec. 2.1.3 as in previous chapters. However, we will instead use a completely
synthetic leakage location probability density function shown in Fig. 7.6.

The main reason for this is that parts of the work in this chapter was
used in Ali et al. [4], where the synthetic leakage location probability density
function was desirable. As mentioned before we are not interested in site studies,
implying that the test case of Sec. 2.1.3 is not of specific interest. Since the
footprints used to test the different methods are from different simulations
(Tab. C.1), we can not compare the optimal layouts and detection probabilities
obtained for the different methods independently of the leakage location probability
density function used. For this reason, changing test case for is no problem.

The leakage location probability density function f(x) is created similarly
to in Hvidevold et al. [7]. Every location x0 that is assumed to be a potential
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Figure 7.6: Leakage location probability density function used as test case in Sec.
7.4. The leakage locations of the predicted footprints are the mode of a Gaussian
distribution. In addition, a small background probability is added everywhere to
account for unknown leakage pathways.

leakage location is the mode of an Gaussian distribution on the form

exp

(
− (x− x0)

T
(x− x0)

σ2

)
x ∈ A. (7.8)

To create the function in Fig. 7.6, a shape parameter of σ = 0.8 km was
used. We assume that the locations x∗

1, . . . ,x
∗
K of the predicted footprints are

the only possible leakage locations that are given a Gaussian distribution. All
of these locations are assumed to have the same probability of being the leakage
location. In addition, a constant background probability is added everywhere
to account for potential unknown leakage pathways. The leakage location
probability density function f(x) is then given by:

f(x) = fNorm

(
K∑
k=1

exp

(
− (x− x∗

k)
T

(x− x∗
k)

σ2

)
+ fBack

)
(7.9)

The constant fBack gives the ratio between the total background probability
and the probability of the leakage locations x∗

1, . . . ,x
∗
K . We have chosen fBack

such that the total background probability is approximately 1/10 of the total
probability of the leakage locations, i.e.∫

A

K∑
k=1

exp

(
− (x− x∗

k)
T

(x− x∗
k)

σ2

)
dxdy ≈ 10

∫
A

fBackdxdy. (7.10)
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Figure 7.7: Detection probability for the optimal sensor layout as a function
of the number of sensors. The leakage location probability density function is
shown in Fig. 7.6. A probability threshold of pt = 0.1 is used.

The constant fNorm is used for normalization such that f integrates to 1
over the area A to be monitored, i.e. satisfying Eq. 2.2:

fNorm =

(∫
A

(
K∑
k=1

exp

(
− (x− x∗

k)
T

(x− x∗
k)

σ2

)
+ fBack

)
dxdy

)−1

. (7.11)

Using the nine footprints and the leakage location probability density function
in Fig. 7.6, optimal sensor layouts for different number of sensors are obtained.
Fig. 7.7 shows the detection probability for the optimal sensor layouts as a
function of the number of sensors. The optimal sensor layouts for two and four
sensors are shown in Fig. 7.8 and Fig. 7.9 together with the monitored regions.

7.5 Discussion of the method

In this chapter we have introduced the event method with spatial dependence,
combining Ch. 5 and 6. We will now do a short discussion on the method.

Leakage location

As in all of the previous chapters, we are not interested in specific site
studies. We are interested in developing methods for finding the optimal sensor
layout and estimating the detection probability. For this reason, we take the
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Figure 7.8: Residual leakage location probability density function for the optimal
sensor layout of two sensors (white crosses). The monitored regions of the
sensors are zeroed out and the boundaries of the monitored regions are marked
with white lines. Compare with the original leakage location probability density
function in Fig. 7.6 to see the monitored (zeroed) probability. A probability
threshold of pt = 0.1 is used. The detection probability is p = 0.36.

leakage location probability density function as given and use it as a test case.
In this chapter, we have used the synthetic leakage location probability density
function of Fig. 7.6 instead of the test case of Sec. 2.1.3 used in the previous
chapters. A complete study necessary to create a realistic leakage location
probability density function was not performed in Sec. 2.1.3. In addition, we
can not compare the method output of the different chapters since the footprints
used are from different simulations. For this reason, the synthetic function can
equally well be used as described in Sec. 7.4.

Probability footprint and threshold

The only difference of the method of this chapter and the on of Ch. 6, is the
estimation of the footprint for the leakage locations we don’t have simulations
for. The probability footprints of the predicted leakage locations x∗

1, . . . ,x
∗
K are

calculated exactly as in Ch. 6. This implies that the discussion of Sec. 6.5 on
the probability footprint and the choice of probability threshold pt is the same.

Spatial dependence of footprint

Ch. 6 presented the event method originally introduced in Hvidevold et al.
[7]. This method used the same footprint for all leakage locations, similarly to
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Figure 7.9: Residual leakage location probability density function for the optimal
sensor layout of four sensors (white crosses). The monitored regions of the
sensors are zeroed out and the boundaries of the monitored regions are marked
with white lines. Compare with the original leakage location probability density
function in Fig. 7.6 to see the monitored (zeroed) probability. A probability
threshold of pt = 0.1 is used. The detection probability is p = 0.66.

how the same average concentration footprint was used for all leakage locations
in Ch. 4. Just as the need to introduce spatial dependence in the average
concentration footprint was addressed in Sec. 4.7, Sec. 6.5 suggests that spatial
dependence is incorporated in the probability footprint for the event method.
This has successfully been done in this chapter using the theory of Ch. 5. Since
this chapter is to Ch. 6 as Ch. 5 is to Ch. 4, the discussion on spatial dependence
in Sec. 5.6 also applies to this chapter.



Chapter 8

Discussion and further work

8.1 Developed methods for monitoring design

Fig. 8.1 shows a summary of the methods for monitoring design presented
in Ch. 3 to Ch. 7. The methods are constructed using different combinations
of footprints, inversion and spatial dependency on the leakage location in the
footprint estimation. Each of these features are discussed later in this chapter.

Chapter: 3
Inversion:

Approximation
Footprint:

Average
concentration

Spatial:
Independence

Chapter: 4
Inversion:

Exact
Footprint:

Average
concentration

Spatial:
Independence

Chapter: 5
Inversion:

Exact
Footprint:

Average
concentration

Spatial:
Dependence

Chapter: 6
Inversion:

Exact
Footprint:
Probability
Spatial:

Independence

Chapter: 7
Inversion:

Exact
Footprint:
Probability
Spatial:

Dependence

Figure 8.1: Methods for monitoring design.

First of all, we have shown that the footprint should be inverted exactly
as discussed in Sec. 8.4. This was the motivation for Ch. 4 where the first
improvement of the original method from [8] is developed. After having developed
the exact inversion of Ch. 4, there is no reason to pursue other approximations
as the one of Ch. 3.

The next thing developed in Ch. 5 was spatial dependence on the leakage
location in the average concentration footprint using interpolation. As discussed
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in Sec. 8.3, this is a simple way to introduce spatial dependence in the footprint,
but will be computationally more expensive than the method of Ch. 4.

We note that the method of Ch. 5 reduces to the method of Ch. 4 if only
one footprint is used in the interpolation. For this reason, Ch. 4 can be viewed
as a special case of Ch. 5.

As discussed in Sec. 8.2, the use of the probability footprint and the event
method is a more realistic approach than the use of the average concentration
footprint. For this reason, the method of Ch. 6 where the exact inversion of Ch.
4 is applied to the probability footprint, was a natural next step.

The final method of Ch. 7 extends Ch. 6 similarly as Ch. 5 extends Ch. 4.
The direct connection between Ch. 5 and 7 in Fig. 8.1 also emphasises that
those two methods are the same except for the type of footprint used.

Due to the use of different test cases, we can not compare the output of all
the methods directly. The use of different test cases has been necessary due to
limited available test data. Some of the test data was made available to us after
we had completed the testing of some methods. Ideally, we would of course
have liked to perform optimal design with all the methods using the same test
data. However, we have obtained good insight in how the different methods
work without doing so.

If desirable, one or several of the suggestions for further work in the following
sections can be combined to create new methods for monitoring design.

8.2 Footprint prediction and detection function

To estimate the leakage footprint for an arbitrary leakage location, we need
one or several predicted footprints to base the estimation on. It is expensive
to obtain such predictions experimentally, limiting the number of leak scenarios
that can be predicted experimentally. For this reason, we must rely on simulations
from numerical models to predict footprints. In our case the test data is from
simulations with Bergen Ocean Model (BOM). The leakage locations of the
predicted footprints should ideally be chosen based on the leakage location
probability density function as is further discussed in Sec. 8.3 and 8.5.

The prediction of the footprint can be divided into two parts. The first
is the simulation where a tool like BOM is used to obtain time series of the
concentration originating from the leakage, e.g. Fig. 6.2. For some methods, it
may also be interesting with information such as the time series for currents.

The second part of the prediction is to calculate the footprint from the data
obtained from the simulation. In our work, we have a statistical and stationary
footprint independent of time. This implies that the time series are reduced to
only one value for each grid point. We have used two different methods for this,
the average concentration footprint of Ch. 3 to 5 and the probability footprint
of Ch. 6 and 7. The data sets used are listed in Tab. C.1.

Average concentration footprint

A leakage is modelled in Hvidevold et al. [8] by the time average concentration
footprint resulting from the leakage. This approach is adopted in Ch. 3 to 5.
Fig. 2.2 shows the average concentration footprint used in [8] and also in Ch. 3
and 4. For our test data, the average is taken over approximately two months.
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The detection function for the average concentration is given by Eq. 3.1. It
has a sharp boundary between where the leakage is detectable and not. The
detectable region of the footprint in Fig. 2.2 can be seen to the left in Fig. 3.2.

As discussed in Sec. 3.7, the approach of using average concentration is too
conservative. Even though the long term average concentration at a location is
below ct, the concentration may be above ct for statistically significant periods
of time. This implies that the leakage will in real life be detectable in a larger
region than the average concentration approach indicates.

An other problem with the average concentration approach is the sharp
boundary of the detectable region. It is not realistic that all sensors within a
region always will detect the leakage while all sensors outside this region never
will detect the leakage. However, this is a necessary consequence of applying
the concentration threshold ct directly to the average concentration footprint.
In addition, it gives easy calculations for the average concentration method.

Probability footprint

Having discussed the insufficiency of the average concentration footprint, Ch.
6 and 7 use a different footprint presented in Hvidevold et al. [7]. The probability
footprint given by Eq. 6.1 is the fraction of time where the concentration is above
the detection threshold ct. The footprint used in [7] and Ch. 6 can be seen in
Fig. 6.3.

The event method assumes that a leakage is detected if the concentration is
above ct a sufficient amount of the time. Or, in other words, if the probability
footprint is above a threshold probability pt. This gives the detection function
of Eq. 6.5 for the event method. As discussed in Ch. 6, this detection function
is similar to Eq. 3.1 for the average concentration, only with a different type of
footprint as input.

The event method is considered more realistic than the method using the
average concentration. For the test data used, the event method estimates a
larger detectable region than the average concentration method. However, we
still have a sharp boundary between where the leakage is detectable and not.

It should also be noted that for the calculation of the probability footprint,
the complete time series of the concentration in the grid points surrounding the
leakage are needed. However, only one value at each grid point is extracted from
the time series. Having the complete time series available, it could be beneficial
to use this opportunity to do more calculations or construct more complicated
methods. Especially the quantification of the correct threshold probability pt
could be improved by applying time series analysis.

Further work on footprint prediction

How to model a leakage and what footprint predictions to use is of great
importance for monitoring design. This is what determines where sensors are
assumed to be able to detect leakages and not. Based on this, which footprint
and detection function to use is the most important part to focus further
research on. If the footprint and detection function model a leakage poorly,
the importance of the estimation of spatial dependency and inversion of the
footprint become less important.
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One of the problems addressed for both the average concentration and event
method, is the sharp boundary of the detectable region. We have argued that
this should in real life be a smooth transition where the detection function varies
smoothly from 1 at the leakage to 0 far from the leakage.

There are several possibilities for constructing a more smooth detection
function. One could for instance apply two threshold values. The leakages could
be assumed to always be detected at all locations having a value above the higher
threshold value and never detected at all location having a value below the lower
threshold value. Between the two threshold values, the detection function could
vary smoothly between 0 and 1. For instance, assuming the detection function
to be linear in this region gives using average concentration

D(x;x0; ct) =


1 if C̄(x;x0) ≥ cht
C̄(x;x0)−clt
cht −clt

if clt ≤ C̄(x;x0) < cht

0 if C̄(x;x0) < clt

(8.1)

where clt is the lower and cht the higher concentration threshold value.
This is only one of endless possibilities, and even more complicated footprints

and detection functions should be investigated to model leakages better.
Another large drawback of the predicted footprints used, is that they are

without dependence of time. Throughout the year, there could be seasonal
variability in the footprint. In addition, the time series used for calculation of
the footprints are about two months long in this work. Reducing them to only
one footprint value in each grid point is a major simplification. One could also
use measurements to do live updates of the predicted footprints.

Even though seasonal variability is introduced in the footprint prediction,
it may be hard to design a monitoring program accounting for it. This would
require the sensors to be moved several times a year to account for the variability.
However, this is expensive, and calls for a fixed sensor layout.

8.3 Spatial dependency on leakage location in
footprint estimation

Independently of the type of footprint used, we are not able to predict it for
all leakage locations by doing simulations. As discussed in Ch. 5, this would be
computationally too demanding as we have a large number of possible leakage
locations. Instead, we need to estimate the footprint of an arbitrary leakage
location from the predicted footprints of fewer leakage locations. How to do
this is an important question when developing a monitoring program.

Spatial independence by approximation

The original method from [8] of Ch. 3 assumes that all leakage locations
have the same footprint predicted by a simulation. To enable easy inversion,
this footprint was approximated by a Gaussian function given by Eq. 3.5.

It is suggested in [8] to try other approximation functions. The main reason
of the approximation in [8] is to enable easy inversion. As discussed in Sec.
8.4, we have developed an exact inversion that can be applied to any footprint.
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Knowing this, there is no longer a reason for approximating the footprint when
we can use the simulated one directly. This is also the reason why the testing
of other approximation functions than Eq. 3.5 is not included in this work.

Spatial dependence by interpolation

A method based on interpolation is developed in Ch. 5. Interpolation is
the natural choice for introducing spatial dependence using a limited number of
predicted footprints. Using predicted footprints forK different leakage locations,
the interpolation is given by Eq. 5.13.

The weight functions given by Eq. 5.7 are only dependent on the distances
from the leakage location to the locations of the predicted footprints. However,
the weights are calculated before performing the optimization giving a possibility
to account for local effects that should influence the weights. A rough topography
could for instance cause two close locations to have completely different footprints.

Having a large area to be monitored, the need for proper spatial dependence
in the footprint increases. The test footprints of Ch. 5 shown in Fig. 5.2 and
5.5 illustrates this having large variation between them.

An important question when using Eq. 5.13 to estimate the footprint, is for
how many and what locations footprints should be predicted by simulations.
Using many footprints to interpolate increases the accuracy of the estimation,
but also increases the numerical cost when performing optimization. The extra
numerical cost of spatial dependence in the footprint compared with spatial
independence is discussed in Sec. 8.6.

The most important is that the footprints of the locations having a high
probability of leakage, are estimated well. For this reason, choosing the locations
of the predicted footprints should ideally be done after the calculation of the
leakage location probability density function such that the footprints in areas
of high leakage probability are estimated well.

Spatial independence by translation

A method assuming spatial independence of the footprint is developed in Ch.
4. Assuming the footprint to be equal for leakage locations, the estimation of
the footprint from a leakage is only a translation of a predicted footprint known
from simulations. This translation is given by Eq. 4.22 and illustrated in Fig.
4.2. We note that Eq. 5.13 for the interpolation reduces to Eq. 4.22 when using
only K = 1 footprint. The method of Ch. 4 can thus be looked on as a special
case of the method in Ch. 5. However, computations are a lot faster assuming
spatial independence as is shown in App. B.

Further work on spatial variability

The spatial dependence of the leakage footprint is an important part of
monitoring design that should be studied further. Sufficient spatial dependence
should be included without making it computationally too demanding.

It is natural to base the estimation on interpolation between predicted
footprints as in Eq. 5.13, but there are many things that can be experimented
with. One of the most obvious things is where the predicted footprints we
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interpolate between are placed. Another is the calculation of the weight functions,
possibly including other information than the distances to the predicted footprints.

One could also make more advanced methods not only using interpolation. A
method tested, but not included in this work, rotates the footprint according to
the topography in addition to interpolation. It could also be a natural extension
to include methods of geostatistics, e.g. from [6].

A completely different approach, would be to divide the area to be monitored
into smaller regions and apply simpler estimation in each of these regions. For
instance, one could apply spatial independence within each of the regions. The
problem with this is how to couple the regions together, both when evaluating
the sensor layout optimization cost function and to avoid unwanted boundary
effects in the estimation. If this can be solved in a good way, it would probably
be computationally beneficial over the methods based on interpolation.

8.4 Inversion of the footprint

One of the most important calculations in the work done is the inversion of
the footprints obtained for the leakages. Let as in Sec. 4.5 g(x;x0) be the value
at x of any kind of footprint resulting from a leakage at x0. Our main goal in
this work is to find optimal sensor layouts and estimate the probability of the
layout to detect a leakage at an unknown location. To do this, we need to know
what potential leakage locations are monitored by sensors at given locations.
This leads to the inversion of the footprint. We now need to know the footprint
value g(xs;x) at the sensor location xs for all possible leakage locations x.

Approximated inversion

In Ch. 3, the inversion was done using an approximation of the footprint
from [8]. This inversion was based on the two assumptions that the footprint is
the same for all leakage locations and that the footprint can be approximated
by a Gaussian function. The approximation was discussed in Sec. 3.7 using the
average concentration footprint from Hvidevold et. al. [8] shown in Fig. 2.2 as
test case. In accordance with the discussion in [8], the approximation is not
found to be satisfactory. The anisotropy and area of the detectable region is
badly approximated, as can be seen in Fig. 3.2 for ct = 2.26 · 10−4 kg/m3.

It is suggested in Hvidevold et al. [8] that other approximation functions
with better abilities to approximate the anisotropy of the footprint are tested.
As noted in Sec. 3.7, but not included in the thesis, such other approximation
functions are tested without giving significantly better approximations. In
addition, the choice of the proper approximation function depends on the footprint
at hand. Since we want to develop a general method for any site and footprint,
it is impossible to find a suitable approximation function. Based on these
considerations, it is suggested in Sec. 3.7 that the footprint is inverted exactly.

Exact inversion

A method for exact inversion of the footprint is developed in Ch. 4 giving
the inverted footprint of Eq. 4.23. Just as the method of Ch. 3, this method is
based on the assumption that all leakage locations have the same footprint.
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The inverted footprint of Eq. 4.23 has a geometric interpretation of rotating
the original footprint 180◦ as explained in Sec. 4.4 and illustrated in Fig. 4.5.
This interpretation is useful for the calculation of the inverted footprint, as the
footprint can be rotated and saved beforehand leaving only the translation to
the sensor location to be done when the inverted footprint for a sensor location
is to be calculated. By doing this, it is actually just as easy to calculate the
exact inverted footprint as the approximate inverted footprint used in Ch. 3 and
[8]. Being able to calculate the exact inverted footprint without any extra cost,
the inversion procedure of Ch. 4 is a major result of this work. After the exact
inversion is developed in Ch. 4, we no longer use the approximation of Ch. 3 in
the further methods developed.

Exact inversion for spatial dependence

The inversion of Eq. 4.23 is based on the assumption that the footprint is
independent of the leakage location. This implies that the inversion can only be
applied directly to the method of Ch. 6 since this is the only other method with
spatial independence of the footprint. However, the footprints of Ch. 5 and 7
with spatial dependence can be inverted using Eq. 4.23 as basis.

The interpolated footprint given by Eq. 5.13 can be inverted by inverting
each of the footprints used in the interpolation to obtain the inverted footprint
given by Eq. 5.14. Just as before, the known footprints can be inverted (rotated)
and saved beforehand. When we want to calculate the inverted footprint of a
sensor location xs, all the known inverted footprints can be translated to the
sensor location and then interpolated between. Note, however, as mentioned
before, that the argument x of the weight functions is the independent spatial
variable. This makes the calculations slightly more costly, as the interpolation
can’t be done beforehand. However, to include spatial independence in the
footprint we must expect the calculations to be more costly. Without exact
inversion, one could also argue that the introduction of spatial independence
in the footprint is useless. For this reason, the exact inversion of footprints
including spatial independence is of great importance.

Further work on footprint inversion

Having obtained an exact inversion for the methods in Ch. 4 to 7, there is
not more mathematical work to be done on the inversion used in these methods.
Once the footprint is predicted, an exact inversion is the best we can ask for.
However, fast implementation of the inversion has not been discussed in this
work. An optimal algorithm for inversion can be extremely useful, allowing for
faster optimization of the sensor layout, especially when interpolating between
many footprint. If other methods than the ones of this work are developed, one
should use an exact inversion.

8.5 The leakage scenarios

We have stressed that we are not doing site studies in this work, only
developing methods for calculating the optimal sensor layout and detection
probability for a given leakage location probability density function. However,
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a proper calculation of the leakage location probability density field is of great
importance when performing monitoring design.

Test cases used

Ch. 3 to 6 use the test case introduced in Sec. 2.1.3. This test case is based
on a map of faults and wells from a public web page. The leakage location
probability density function is created by assuming that all wells and all faults
have the same probability of being the leakage location, with wells having a
higher probability than faults. It is further assumed that no other locations can
be the location of the leakage. This is a very simple approach only suitable for
test cases.

There is no distinction between wells and faults reaching and not reaching
the storage formation. In addition, the area close to the injection well would
most likely have a higher probability of being the leakage location than further
away from the injection well. It is also a simplification that the wells in the
test case of Sec. 2.1.3 are modelled as points, whereas they in real life give an
increased probability of leakage in a region around the well.

Since the test case of Sec. 2.1.3 is of no particular interest, we have used a
different leakage location probability density function in Ch. 7. This function
is completely synthetic and not based on a map like the one previously used.
The nine locations having predicted footprints in Ch. 7 are each assumed to be
the mode of an Gaussian distribution. In addition, a background probability is
added everywhere to obtain the leakage location probability density function as
described in Sec. 7.4.

The approach of a background probability and a distribution about each of
the wells being a possible leakage location is probably a much better approach
than the simplified use of a map in Sec. 2.1.3. However, the cumbersome part
of the process is still to identify the wells being a possible leakage location and
quantify the relative probability between them.

Further work on leakage scenarios

When doing monitoring design for a storage site, the identification of possible
leakage location is really important. If the leakage location probability density
function is inaccurate, sensors could be placed to monitor regions that in real
life have a low probability of a leakage. More critical than that, regions of
high probability of a leakage may end up not being monitored. In addition, the
leakage location probability density function should be a deciding factor when
choosing which locations to predict the footprint for as discussed in Sec. 8.3. For
these reasons, how to calculate the leakage location probability density function
should absolutely be studied further. This includes studies of the overburden
to identify leakage pathways and quantify their leakage probabilities.

8.6 Computational considerations

The work has been done with a mathematical approach, not focusing on
implementation of the methods developed. However, the implementation will
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of course be important when having a large optimization problem as Eq. 2.29.
Some computational considerations can be found in App. B.

Further work

As more complicated methods are developed and optimization should be
performed for a large number of sensors, the numerical implementation becomes
important. The simplest way to speed up the optimization is to minimize
the evaluation time of the cost function by smart implementation, includes
developing good data structures.

The Genetic Algorithm is probably a good choice of optimization algorithm,
but other algorithms should absolutely be assessed. It would be especially useful
if the chosen algorithm has a numerical toolbox allowing for parallel computing.
Finally, investigating when the recursive optimization procedure of Eq. 2.30 is
a good approximation could allow for improved optimization when it applies.

8.7 Closing remarks

Several possibilities for further work have been suggested in the previous
sections. Of the different features of monitoring design, the footprint prediction
and detection function should be the focus of further research. As discussed
in Sec. 8.2, having a wrong type of footprint or detection function disables the
whole method for monitoring design of performing well independently of the rest
of the method. Investigating new types of footprint, possibly with dependency
on time, should be a natural extension of this work.

Another subject, is the spatial dependence on the leakage location in the
estimation of the footprint as discussed in Sec. 8.3. More advanced methods for
this estimation of the footprint could give better results than the ones used in
the methods of this work. However, one should beware the extra computational
cost calling for longer optimization time and compare this with the gain of a
more advanced estimation.

The numerical improvements discussed briefly in Sec. 8.6 could speed-up
calculations and allow for more advanced methods or faster optimization. This
has not been studied in this work, allowing for a large possibility of topics to
be studied. Finally, the prediction of the footprint by simulation is the most
important numerical calculation, and should of course also be studied further.
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Appendix A

Symbols used

Symbol Explanation Reference

A Area to be monitored. Sec. 2.1

A(z)
Parameter matrix for approximation of average
concentration.

Sec. 3.3

AH Horizontal eddy diffusivity. App. C

B(x0) Normalization value at x0 for interpolation. Sec. 5.1

BOM Bergen Ocean Model. App. C

CCS Carbon Capture and Storage. Sec. 1.1

ct Concentration threshold of sensors. Sec. 2.2.1

cht Higher concentration threshold. Sec. 8.2

clt Lower concentration threshold. Sec. 8.2

C CO2 Concentration. App. C

C̄(x;x0)
Average concentration at x resulting from a
leakage at x0.

Ch. 3-5

C̄i Simulated average concentration in grid point i. Sec. 3.3

C̄0
Simulated average concentration at leakage
point.

Sec. 3.3

Cl(x;x0)
Concentration time series value at x at time step
l for a leakage at x0.

Sec. 6.1

dk(x0)
Distance from x0 to the leakage location x∗

k of
predicted footprint k.

Sec. 5.1

D(x;x0; ct)
Detection function, the probability that a
leakage at x0 is detected by a sensor at x with
a concentration threshold ct.

Sec. 2.2.2

DA(x;x0; ct) Detection function using average concentration. Sec. 3.1

DA
A(x;x0; ct)

Detection function using approximation of an
average concentration footprint.

Sec. 3.4

DT
A(x;x0; ct)

Detection function using translation of an
average concentration footprint.

Sec. 4.2
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DI
A(x;x0; ct)

Detection function using interpolation of
average concentration footprints.

Sec. 5.2

DS(x;x0; ct)
Probability footprint, detection function for a
single measurement.

Sec. 6.1

DE(x;x0; ct; pt)
Detection function for the event method using
the probability footprint DS(x;x0; ct) and
probability threshold pt.

Sec. 6.2

DT
S (x;x0; ct)

Probability footprint estimated using
translation of a predicted footprint.

Sec. 6.1

DT
E(x;x0; ct; pt)

Detection function for the event method
using the translated probability footprint
DT
S (x;x0; ct).

Sec. 6.2

DI
S(x;x0; ct)

Probability footprint estimated using
interpolation of predicted footprints.

Sec. 7.1

DI
E(x;x0; ct; pt)

Detection function for the event method
using the interpolated probability footprint
DI
S(x;x0; ct).

Sec. 7.2

f = f(x) Leakage location probability density function. Sec. 2.1.1

fn = fn(x)
Residual leakage location probability density
function of f(x) after placing n sensors.

Sec. 2.2.4

fBack Leakage background probability. Sec. 7.4

fNorm Probability normalization value. Sec. 7.4

GA Genetic Algorithm. Sec. 2.2.5

g(x;x0)
Value at x of an arbitrary footprint from a
leakage having leakage location x0.

Sec. 4.5

Sec. 5.4

G(x;x0; z)
Approximated average concentration at x from
a leakage at x0 using parameter vector z.

Sec. 3.3

Gi Approximated concentration in grid point i. Sec. 3.3

i Grid point index. Sec. 3.3

I Number of grid points. Sec. 3.3

ID(Cl(x;x0); ct) Detection indicator function. Sec. 6.1

k Index of predicted footprint.
Ch. 5

Ch. 7

K Number of predicted footprints.
Ch. 5

Ch. 7

KH Vertical eddy diffusivity. App. C

l Time step index. Sec. 6.1

L Number of time steps. Sec. 6.1

M = M(x;xs; ct)
Monitoring function, the probability that a
sensor at xs with a threshold concentration ct
detects a leakage at x.

Sec. 2.2.3

Mn = M(x;xns ; ct) Monitoring function for sensor n. Sec. 2.2.4
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MA(x;xs; ct)
Monitoring function using average
concentration.

Sec. 3.2

MA
A (x;xs; ct)

Monitoring function using approximation of an
average concentration footprint.

Sec. 3.5

MT
A (x;xs; ct)

Monitoring function using translation of an
average concentration footprint.

Sec. 4.3

M I
A(x;xs; ct)

Monitoring function using interpolation of
average concentration footprints.

Sec. 5.3

ME(x;xs; ct; pt)
Monitoring function for the event method
using the probability footprint DS(x;x0; ct) and
probability threshold pt.

Sec. 6.3

MT
E (x;xs; ct; pt)

Monitoring function for the event method
using the translated probability footprint
DT
S (x;xs; ct).

Sec. 6.3

M I
E(x;xs; ct; pt)

Monitoring function for the event method
using the interpolated probability footprint
DI
S(x;x0; ct).

Sec. 7.3

n Sensor index

N Number of sensors in layout.

p = p(x1
s; . . . ;x

N
s ; ct)

Detection probability, the probability that a
leakage in an arbitrary location is detected by
the N sensors.

Sec. 2.2.4

pt Probability threshold used in the event method. Sec. 6.2

Q Source flux rate. App. C

r Displacement vector. Sec. 4.4

R Rotation matrix. Sec. 4.4

~U Velocity field. App. C

wk(x0)
Weight function for predicted footprint k when
estimating a leakage in x0.

Sec. 5.1

x Coordinate vector for independent variable.

x0 Coordinate vector for leakage location.

x∗ Coordinate vector for leakage location of
predicted footprint.

Ch. 4

Ch. 6

x∗
k

Coordinate vector for leakage location of
predicted footprint k.

Ch. 5

Ch. 7

xs Coordinate vector for location of sensor.

xns Coordinate vector for location of sensor n.

x x-coordinate for independent variable.

x0 x-coordinate for leakage location.

x∗k
x-coordinate for leakage location of predicted
footprint k.

Ch. 5

Ch. 7

y y-coordinate for independent variable.
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y0 y-coordinate for leakage location.

y∗k
y-coordinate for leakage location of predicted
footprint k.

Ch. 5

Ch. 7

z Parameter vector for approximation. Sec. 3.3

zn Optimization parameter vector for sensor n. Sec. 2.2.5

α Angle for rotation matrix R. Sec. 4.4

σ Shape parameter for Gaussian distribution. Sec. 7.4

σx
Length parameter for approximated average
concentration.

Sec. 3.3

σy
Length parameter for approximated average
concentration.

Sec. 3.3

σ̂x
Semi axis of detectable region using
approximated average concentration.

Sec. 3.4

σ̂y
Semi axis of detectable region using
approximated average concentration.

Sec. 3.4

Σi
Standard deviation of simulated concentration
in grid point i.

Sec. 3.3

θ
Angle parameter for approximated average
concentration.

Sec. 3.3



Appendix B

Computational
considerations

The work has been done with a mathematical approach, not focusing on
implementation of the methods developed. However, the implementation will
of course be important when having a large optimization problem as Eq. 2.29.
The simulations of the leakage scenarios used are assumed given, and are for
that reason not part of the discussion on the numerical implementation.

Evaluation of cost function

A numerical optimization routine such as the Genetic Algorithm used in this
work optimizes a function be evaluating the function a large number of times for
different parameters. The ability of the optimization to find the layout having
the highest detection probability, will thus highly depend on the time it takes
to evaluate the cost function. A faster evaluation of the cost function would
enable more function evaluations in the same time span, alternatively shorter
run time for the same number of evaluations.

The methods of Ch. 4 and 6 assumes spatial independence of the footprint,
leaving only one footprint to be used. This gives the same cost function for the
optimization for these methods, only with different input files. The methods of
Ch. 5 and 7 introduce spatial dependence, implying that several footprints are
used and interpolated between. This gives a more complicated cost function
for the two methods with spatial dependence. For this reason, the optimization
of the sensor layout will be computationally more demanding when applying
spatial dependence.

To compare the cost function with spatial independence and dependence,
we estimate the evaluation time of the cost functions. The two different cost
functions are evaluated 240000 times for each number of sensors from one to
twelve. We use the test case of Sec. 2.1.3 as leakage location density field. For
the spatial independence, we use the footprint of Fig. 2.2 as in Ch. 4. For the
spatial dependence, we use the four footprints of Ch. 5. The evaluation time of
the cost function for spatial dependence will of course increase if a large number
of footprints are used for interpolation.

The results are shown in Tab. B.1 and plotted in Fig. B.1. We see that the
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Time per evaluation [s]

N Spatial independence Spatial dependence Factor

1 5.45 · 10−3 5.23 · 10−2 9.60

2 8.99 · 10−3 1.02 · 10−1 11.37

3 1.22 · 10−2 1.53 · 10−1 12.51

4 1.63 · 10−2 2.04 · 10−1 12.52

5 1.92 · 10−2 2.57 · 10−1 13.35

6 2.34 · 10−2 3.09 · 10−1 13.18

7 2.65 · 10−2 3.57 · 10−1 13.45

8 3.05 · 10−2 4.08 · 10−1 13.41

9 3.37 · 10−2 4.60 · 10−1 13.66

10 3.75 · 10−2 5.14 · 10−1 13.70

11 4.05 · 10−2 5.58 · 10−1 13.78

12 4.50 · 10−2 6.21 · 10−1 13.82

Table B.1: Time per evaluation of the cost function used for optimization for
different number N of sensors. Each function is evaluated 240000 times. For
the spatial dependence, four footprints are used for interpolation.

current implementation is at least ten times faster for the spatial independence
than for the spatial dependence using four footprints. We also see that the
advantage is larger for a higher number of sensors. The extra computation time
needed for a more complicated method should be considered when choosing
what method to use.

Genetic Algorithm (GA)

We have used the Genetic Algorithm implementation ga in MATLAB as
numerical optimization toolbox. As described in Sec. 2.2.5, a Genetic Algorithm
is a stochastic optimization algorithm that uses properties of evolution. The
algorithm has previously been used by Hvidevold et al. in [8] and [7] for the same
optimization problem as in this work. This use was successful, and is the main
reason why we have used this algorithm. However, the stochastic optimization
algorithm including mutation seems to fit the optimization problem well as good
solution have ”large distance” between them in the solution space. As described
in Sec. 2.2.5, it is found beneficial to apply a large mutation rate to compensate
for this ”large distance” between the feasible solutions.

Even though applying a large mutation rate makes ga perform well, it
sometimes fail to find a good solution. For this reason, we have run the same
optimization problem several times to verify the obtained solution. This can
be neatly implemented using parallelization. There may be better optimization
algorithms for this problem. However, the Genetic Algorithm is found to be
sufficient for the test cases run and we have not studied other algorithms.
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Figure B.1: Time per evaluation of the cost function used for optimization. Each
function is evaluated 240000 times. For the spatial dependence, four footprints
are used for interpolation.

Parallel computing

When having a large optimization problem like the one of this work, parallel
computing can be an invaluable tool. Applying parallelization, the cost function
can be evaluated for several different arguments simultaneously. However, this
requires quite complicated communication between the different workers in order
to be beneficial. Many numerical optimization toolboxes use have such built-in
support for parallelization. This is not the case of the current implementation
ga of the Genetic Algorithm in MATLAB used in this work. For this reason,
we have not been able to apply parallelization directly.

As discussed in Sec. 2.2.5, we have been able to apply parallel computing
even though the optimization routine we are using does not support it. Since we
have found it necessary to run every optimization several times for verification,
this allows for a simple parallelization. Each optimization problem is run
independently on each of the workers. Having e.g. 12 workers, the optimization
problem will be solved 12 times simultaneously. We then choose the best of the
obtained solutions, and trust this to be close to the optimal solution.

Parallelization of the optimization is more important for complicated cost
functions and high numbers of sensors to be placed. This implies that as more
complicated methods are developed, parallelization will be of even greater value.
When choosing what numerical optimization toolbox to use, support for parallel
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computing may be a deciding factor.

Recursive placement of sensors

The optimization of the sensor layout is a large optimization problem having
2N degrees of freedom where N is the number of sensors:

[
x1
s; . . . ;x

N
s

]
= argmax (p(z1; . . . ; zN ; f ; ct)) f, ct fixed. (2.29)

This finds the optimal layout for all sensors at the same time. However, the
intuitive approach will be to place one sensor at the time, always choosing the
location having the highest detection probability. This breaks the problem into
N recursive optimization problems of two degrees of freedom:

xns = argmax (p(zn; fn−1; ct)) n = 1, . . . , N f, ct fixed. (2.30)

Not only is the recursive approach more intuitive, but it could also be
preferable numerically. However, it is found in Hvidevold et al. [8] that this
may not give the optimal sensor layout. This is also discussed in Sec. 2.2.5,
where it is found that the recursive method of Eq. 2.30 gives the same result
as Eq. 2.29 if the monitoring functions of the sensor in the optimal layout have
disjoint support.

Most of optimal sensor layouts obtained in Ch. 5 to 7 have sensors with
small monitored regions. This gives disjoint, or almost disjoint, support of the
monitoring functions of the sensors. Knowing this, we could have used the
recursive optimization of Eq. 2.30. To be sure that the supports are disjoint
for the optimal layout allowing for the recursive algorithm, we must however
know the optimal layout beforehand. As discussed in Sec. 2.2.5, this is the main
motivation why we always have used the full optimization problem of Eq. 2.29.

The time used per optimization of the test case of Ch. 5 for different number
N of sensors is shown in Tab. B.2. Each optimization is performed 60 times
using a population size of 400, a generation limit of 200, a relative tolerance of
10−3 and a mutation rate of 0.4. We see that the time used is almost the same,
leaving it to the fitness of the obtained solutions to decide algorithm.

The detection probabilities obtained by the best optimizations from Tab. B.2
are plotted in Fig. B.2. We see that the detection probabilities are almost the
same. Knowing from Tab. B.2 that the regular optimization of Eq. 2.29 actually
is a little bit faster, it is natural to use this since it is the mathematically correct.
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Time per optimization [s]

N Regular (Eq. 2.29) Recursive (Eq. 2.30) Factor

1 4.09 · 101 4.08 · 101 1.00

2 7.89 · 101 8.19 · 101 1.04

3 1.16 · 102 1.23 · 102 1.06

4 1.53 · 102 1.64 · 102 1.07

5 1.90 · 102 2.05 · 102 1.08

6 2.27 · 102 2.45 · 102 1.08

7 2.64 · 102 2.87 · 102 1.09

8 3.02 · 102 3.28 · 102 1.09

9 3.40 · 102 3.69 · 102 1.08

10 3.75 · 102 4.11 · 102 1.09

11 4.15 · 102 4.52 · 102 1.09

12 4.52 · 102 4.91 · 102 1.09

Table B.2: Time per optimization for different number N of sensors for the test
case of Ch. 5. Each optimization is performed 60 times using a population size
of 400, a generation limit of 200, a relative tolerance of 10−3 and a mutation
rate of 0.4.
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Figure B.2: Detection probabilities for the best sensor layouts obtained by the
optimizations in Tab. B.2 for the test case of Ch. 5. The regular optimization
(2.29) and the recursive optimization (2.30) give almost the same result.
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Appendix C

Prediction of leakage
scenarios

To design a monitoring program, we need to predict one or several leakage
scenarios. Such predictions are expensive and hard to perform experimentally.
For this reason, the predictions must be done by numerical simulations.

We have used data from simulations performed by Alfatih Ali [4] using the
General Circulation Model Bergen Ocean Model (BOM). The data sets used are
listed in Tab. C.1.

#
Number

of leakages
Available data

Used in

chapter

1 1 Average concentration 3, 4

2 4 Average concentration 5

3 1 Concentration time series 6

4 9 Probability footprint (Sec. 6.1) 7

Table C.1: Data sets used.

Bergen Ocean Model (BOM)

BOM is a three-dimensional terrain-following non-hydrostatic ocean model.
It has capabilities of resolving processes from mesoscale to large scale. BOM
is implemented in modern Fortran, and the source code is freely available from
http://www.mi.uib.no/BOM/. For further information, see the user’s guide [5].

For the data used in this work, the hydrostatic parallel version of BOM has
been used. The spatial resolution is 800 meters and the sampling rate of the
time series 1 min. CO2 is released from the injection well and is assumed to be
diluted enough to not influence the density of the sea water, implying that the
concentration of CO2 can be simulated as a passive tracer. This is modeled by
the advection-diffusion equation
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∂C
∂t + ~U · ∇C = ∂

∂z

(
KH

∂C
∂z

)
+ ∂

∂x

(
AH

∂C
∂x

)
+ ∂

∂y

(
AH

∂C
∂y

)
+Q (C.1)

where C is the CO2 concentration, Q the source flux rate, ~U the velocity field,
AH the horizontal eddy diffusivity and KH the vertical eddy diffusivity.

For further information on the BOM setup and forcing, see [4].

Leakage scenarios

The leakage scenarios used are from the ECO2 project [3] and the metocean
data used for forcing are from spring 2012. Each scenario is simulated for two
months using BOM as described in the previous section.

Most of the scenarios simulated have the chimney flux rate of Q ∼ 150
T/day. Some of the methods only need simulations for one leakage location,
whereas other need for several. For this reason, different data sets are used in
the different chapters. Tab. C.1 shows an overview of the different available
data sets used.


