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Numerical simulations of the evolution of gravity wave spectra of fairly narrow
bandwidth have been performed both for two and three dimensions. Simulations
using the nonlinear Schrödinger (NLS) equation approximately verify the stability
criteria of Alber (1978) in the two-dimensional but not in the three-dimensional case.
Using a modified NLS equation (Trulsen et al. 2000) the spectra ‘relax’ towards a
quasi-stationary state on a timescale (ε2ω0)

−1. In this state the low-frequency face is
steepened and the spectral peak is downshifted. The three-dimensional simulations
show a power-law behaviour ω−4 on the high-frequency side of the (angularly
integrated) spectrum.

1. Introduction
It is well-known that a uniform train of surface gravity waves is unstable to the

so-called modulational instability or Benjamin–Feir (BF) instability (Lighthill 1965,
1967; Whitham 1967; Benjamin & Feir 1967; Zakharov 1968).

The stability of nearly Gaussian random wave fields of narrow bandwidth was
considered by Alber & Saffman (1978), Alber (1978) and Crawford, Saffman & Yuen
(1980). For waves on deep water they found that the modulational instability occurs
provided that the relative spectral width, σ , is less than twice the average steepness,
ε ≡ k0a, where k0 is the central wavenumber, and ā = (2η2)1/2 is the r.m.s. value of
the amplitude.

For deep water waves the results of Alber & Saffman (1978) and Alber (1978) are
based on the nonlinear Schrödinger (NLS) equation, which is the lowest-order model
equation in the relative spectral width and wave steepness that takes into account
both dispersion and nonlinearity. It can be written
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where the surface elevation η is given by

η = 1
2
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where B and B2 are slowly varying functions of x = (x, y) and t .
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Alber (1978) considers the case where B is a slowly varying, nearly Gaussian
random function of x and t . He develops a nonlinear transport equation for the
ensemble-averaged envelope spectrum F (K , x, t) (where

∫
FdK = 2η2 = a2) centred

around k0 = (k0, 0), where the wave vector is k = k0 + k0 K and K = (Kx, Ky). The
stability of a random homogeneous and stationary wave field with spectrum F0(K ) is
then investigated, where F0(K ) is taken to have the Gaussian shape
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and where σx and σy are the relative bandwidths in the x- and y-directions,
respectively. Alber’s result for three dimensions is unfortunately somewhat difficult
to interpret except for the case when the spectrum is symmetric around k0 (i.e.
σx = σy ≡ σ ). In that case, a necessary and sufficient condition for stability is found
to be

σ > 2ε, (4)

which is formally identical to the two-dimensional condition of Alber & Saffman
(1978) and Alber (1978).

Crawford et al. (1980) extended the work of Alber. Their starting point is the
so-called Zakharov integral equation, which does not have any spectral limitations.
They derive the corresponding transport equation governing the evolution of a
non-homogeneous random wave field, assuming the zero-fourth-order cumulant
hypotheses. By further taking the narrow-band limit, i.e. evaluating the coupling
coefficients in their integro-differential equation at the central wave vector, they arrive
at the same transport equation as Alber. To investigate the stability of narrow-band
random wavetrains, they choose a different initial spectrum, namely

F0(K ) =
2η2σxσy

π2
(
K2

x + σ 2
x

)(
K2
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y

) , (5)

where σx and σy are the ‘half-widths’ in the x- and y-directions, respectively. They
find that the spectrum in (5) is stable provided that

σx > 2ε. (6)

For the symmetric case σx = σy , the condition (6) is formally the same as Alber’s
condition (4) although the definitions of the σ , as well as the shape of the spectra,
are quite different. Note also that the relative spectral width transversal to the main
wave direction, σy , does not enter the condition (6).

These results suggest that narrow-band spectra do not change on the timescale
(ε2ω0)

−1, which is the typical timescale for the BF instability and henceforth referred
to as the BF timescale, provided that the relative spectral width exceeds a certain
threshold. If this is the case, the spectral change should only occur on the much
longer timescale (ε4ω0)

−1, i.e. the Hasselmann timescale (Hasselmann 1962; Crawford
et al. 1980).

To our knowledge these important results, though more than 20 years old, have
not been compared to experiments or numerical simulations.

Previous simulations using the NLS equation have to some extent concentrated
on the stability of Stokes waves, or the evolution of a few Fourier modes. Here the
phenomena of recurrence or near recurrence appear, as thoroughly discussed by Yuen
& Ferguson (1978) for the two-dimensional case. As the number of Fourier modes
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increases (although they may be very small initially – see Trulsen & Dysthe 1997),
the recurrence phenomenon disappears from the computational time horizon. In the
three-dimensional simulations to be presented here with more than 104 modes, the
probability of seeing a near recurrence becomes vanishingly small.

In the present paper we report numerical simulations on the evolution of narrow-
band spectra in two and three dimensions with four different numerical models:

(i) the NLS equation (1);
(ii) the modified nonlinear Schrödinger (MNLS) equation of Dysthe (1979) which

includes terms to the next order in nonlinearity and bandwidth, assuming the relative
spectral width to be of order ε;

(iii) the broader bandwidth equation of Trulsen & Dysthe (1996) which relaxes the
bandwidth in the MNLS equation to be of order ε1/2;

(iv) the equation of Trulsen et al. (2000) which extends the MNLS equation with
exact linear dispersion.

For the present applications we have found that the two extensions (iii) and (iv)
of the MNLS equation give practically the same results as the MNLS equation,
(ii), for the behaviour near the spectral peak, hence these results will collectively be
referred to as MNLS in the following. The MNLS has been compared with wave
tank experiments (Trulsen & Stansberg 2001) and shown to give excellent agreement
up to times one order of magnitude larger than the BF timescale.

The two-dimensional results using the NLS equation only approximately confirm
the stability conditions of Alber & Saffman (1978) and Alber (1978). They also
show that an unstable spectrum relaxes, on the timescale of the BF instability, to a
wider symmetrical spectrum that appears to be stable within the time horizon for the
equation.

The three-dimensional NLS simulations, however, do not agree with the theoretical
predictions. The initial spectral distributions spread out in both horizontal directions,
regardless of whether they satisfy the Alber stability criterion or not. Also, for the
three-dimensional case, the spectral evolution takes place on the BF timescale.

The MNLS simulations, on the other hand, show a somewhat different evolution
both in two and three dimensions. Regardless of the initial spectral width, the
spectra evolve on the BF timescale from an initial symmetrical form into a skewed
shape with a downshift of the peak frequency. In three dimensions, the angularly
integrated spectrum shows an evolution towards a power-law behaviour ω−4 on the
high-frequency side.

2. The numerical simulations
The NLS equation is given in (1), while the higher-order equations can be found

in Dysthe (1979), Trulsen & Dysthe (1996) and Trulsen et al. (2000), and are not
reproduced here. Length and time are normalized with the characteristic wavenumber
and frequency, k0 and ω0 =

√
gk0, respectively.

We use the numerical method described by Lo & Mei (1985, 1987) with periodic
boundary conditions in both horizontal directions. A uniform grid in the physical and
wave vector planes with Nx = Ny = 128 points is employed. With a computational
domain of 50 characteristic wavelengths in each horizontal direction, we set the
discretization of the wave vector plane to be �Kx = �Ky = 1/50. However, we only
employ the modes with relative bandwidth less than unity, |K | < 1. The physical
plane has dimensions Lx = 2π/�Kx and Ly = 2π/�Ky , and has the grid points
xj = Lxj/Nx , j = 0, 1, . . . , Nx − 1 and yl = Lyl/Ny , l = 0, 1, . . . , Ny − 1.
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In all simulations we start with the initial Gaussian bell-shaped spectrum (3) with
σx = σy = σ , or the corresponding one-dimensional form.

Note that in the three-dimensional simulations the spectrum has a small angular
spread around the main wave direction, with a half-angle spread θ � σ (approximately
6◦ and 12◦ for σ = 0.1 and 0.2, respectively).

For each sample simulation the Fourier components are initialized with random
phases and a modulus proportional to the square root of the spectrum

B̂mn(0) = ε

√
�Kx�Ky

2πσ 2
exp

(
− (m�Kx)

2 + (n�Ky)
2

4σ 2

)
exp iθmn, (7)

where the random variables θmn are uniformly distributed on the interval [0, 2π). The
physical amplitude B is obtained through the discrete Fourier transform

B(xj , yl, t) =
∑
m,n

B̂mn(t) exp(i(m�Kxxj + n�Kyyl)). (8)

In order to have a truly Gaussian initial condition, each Fourier coefficient should
be chosen as an independent complex Gaussian variable with a variance proportional
to the corresponding value of the spectrum. However, numerical experiments using
complex Gaussian Fourier coefficients, unlike when using a uniformly distributed
phase only, yielded virtually identical time evolutions of the spectrum.

The spectra shown below are obtained as the squared modulus of the Fourier
coefficients and, in addition, are ensemble averaged and smoothed. In the two-
dimensional simulations an ensemble of 50 independent simulations has been used,
whereas for the three-dimensional simulations only 20 are used due to the long
CPU-time involved. The averaged wavenumber spectra from the three-dimensional
simulations have therefore been smoothed with a moving average Gaussian bell with
standard deviation 1.7�Kx .

In the simulations presented here we have taken the average steepness ε to be 0.1.
We have performed simulations with other values of the steepness and the results
were quite similar. In particular, the relevant timescale for the spectral evolution was
still found to be the BF scale, (ε2ω0)

−1.
Our computations conserve the total energy and momentum within the bandwidth

constraint with high accuracy. We do not account for coupling with free-wave Fourier
modes outside the bandwidth constraint.

In Trulsen & Stansberg (2001) quantitative comparisons were made between
simulations and wave tank experiments of long-crested bichromatic waves. It was
found that while the NLS equation gave good quantitative comparisons with the
experiments up to x ≈ (ε2k0)

−1, the corresponding range for the MNLS equation was
x ≈ 5(ε2k0)

−1. Translated to temporal, rather than spatial evolution, these numbers are
t ≈ 2(ε2ω0)

−1 and t ≈ 10(ε2ω0)
−1, respectively. This suggests that the NLS equation

can be reliably used up to the BF scale, while the MNLS equation can be reliably
used an order of magnitude longer. We have taken the present MNLS simulations
up to a maximum time t = 10(ε2ω0)

−1, which should be in the domain in which the
equations are reliable.

2.1. Two-dimensional simulations

In the NLS simulations the Alber criterion σ > 2ε for suppression of the modulational
instability is only approximately verified. Starting with the case σ < 2ε, we find that
the spectrum broadens symmetrically until it reaches a quasi steady width. This
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Figure 1. Spectral evolution of the two-dimensional NLS equation starting with an initial
Gaussian spectrum. (a) The spectrum at four different times with initial width σ = 0.1 and
steepness ε = 0.1. (b) The relation between initial and final spectral widths: —, prediction of
Alber; +, numerical result. Here ε = 0.05.
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Figure 2. Spectral evolution of solutions of the MNLS equation. Gaussian initial spectrum
with (a) σ = 0.1, ε = 0.1, and (b) σ = 0.3, ε = 0.1.

relaxation of the spectrum clearly takes place on the BF-timescale (ε2ω0)
−1. This

is illustrated in figure 1(a), where the initial parameters are ε = 0.1 and σ = 0.1.
Even for the case σ > 2ε there is still a small widening of the spectrum. This is
shown in figure 1(b) illustrating the relation between the final spectral width (after
the relaxation to a quasi-steady state) and the initial width.† The relative spectral
width is here defined as {

∫
K2F dK/

∫
F dK}1/2.

In the MNLS simulations, the initially symmetric Gaussian shape of the spectrum
does not persist regardless of the initial spectral width. The spectrum evolves, on
the timescale (ε2ω0)

−1, towards a quasi-steady state which has an asymmetrical shape
with a steepening of the low-frequency side and a widening of the high-frequency side
and, consequently, a downshift of the spectral peak. This is shown in figure 2 for the
initial widths σ = 0.1 and σ = 0.3.

† This was overlooked in the initial version of the paper, and brought to our attention by Dr P
Janssen.
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Figure 3. Evolution of an initially Gaussian spectrum for the three-dimensional NLS
equation. The contour interval is logarithmic (2.5 dB) covering −25 dB. The cross indicates the
directions of the most unstable BF modes, Ky = ±2−1/2Kx .

Mori & Yasuda (2001, 2002) have found results qualitatively similar to ours. They
use a numerical two-dimensional model based on the full Euler equations. Starting
from a Wallops-type spectrum they show that a widening takes place if the initial
width is small.

2.2. Three-dimensional simulations

In three dimensions the NLS simulations do not support the theoretical result of
Alber (1978). A considerable widening of the spectrum is seen in all our simulations
regardless of the initial spectral width σ . When σ < 2ε the spectrum flattens out
almost to a plateau shape. When σ � 2ε, the spectrum extends predominantly in
the directions Ky/Kx = ±2−1/2, coinciding with the directions for the most unstable
BF modulations (see also Longuet-Higgins 1976). This is shown in figure 3 where
σ = 0.2 and ε = 0.1. For large times, we see that energy accumulates near the unit
bandwidth constraint |K | = 1, and eventually renders the simulation invalid. Without
the bandwidth constraint, Martin & Yuen (1980) found that the NLS equation could
suffer energy leakage to arbitrarily large Fourier modes along the diagonal directions.

Figure 4 shows results of similar computations carried out using the MNLS
equation. The initial spectral widths are σ = 0.1 in the upper row, and σ = 0.2 in the
lower row. In this case we see an asymmetric development with a downshift of the
spectral peak, kp (i.e. kp < k0) and an angular widening, mainly for k > kp .

For the corresponding angularly integrated spectra shown in figure 5 some steep-
ening is seen on the low-frequency side, k < kp , while a power-law behaviour k−2.5

(corresponding to a power law ω−4 for the frequency spectrum) is seen on the high-
frequency side, k > kp . It is also interesting to note that the level of the k−2.5 line is
apparently the same for the two cases.

3. Discussion
The original intention of this work was to verify the theoretical results of Alber

(1978), that wave spectra broader than a certain threshold value (4) would not evolve
on the BF timescale (ε2ω0)

−1. We anticipated that these results based on the NLS
equation would also be valid for the MNLS equation.

The NLS simulations only approximately verified Alber’s result in two dimensions,
while in three dimensions a widening of the spectra was seen regardless of the initial
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Figure 4. Spectral evolution with the MNLS equation. The contour interval 2.5 dB down to
−25 dB. The steepness ε is equal to 0.1, and the spectral width is σ = 0.1 in the upper row,
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width, as explained above. The MNLS simulations were rather surprising. Regardless
of the initial spectral width, the simulations show that narrow Gaussian-shaped
spectra quickly evolve into a quasi-stationary state with a downshifted spectral peak.
In the three-dimensional case a power-law behaviour k−2.5 (or ω−4) above the peak is
observed for the angularly integrated spectrum. The relaxation takes place on the BF
timescale (ε2ω0)

−1. This timescale is much faster than the (ε4ω0)
−1 timescale implied

by the Hasselmann spectral evolution equation (Hasselmann 1962).
For a realistic ocean wave spectrum, the effects of wind input and dissipation by

wave breaking are of course important for its evolution. For young waves these effects
change the spectrum on a comparable or even faster timescale than the BF scale. Our
simulations are restricted to fairly narrow spectra corresponding to a region around
the spectral peak (carrying perhaps 80% or more of the total wave energy). For
these waves the ratio of the e-folding time, Te, due to wind input, to the peak period
Tp depends strongly on the wave age. From a semi-empirical formula for the wind
growth due to Hsiao & Shemdin (1983) we find that

Te

Tp

� 103

(0.85(U10/Cp) cos θ − 1)2
(9)

where θ is the angle between the phase velocity and the wind. Using (9) we find
that Te/Tp > 1000 when the wave age Cp/U10 > 0.42. For long storm waves on
the open ocean Te may thus be considerably longer than the ‘relaxation’ time of the
order of 100Tp that we find. Thus, the fact that the wind input is absent in our
simulations seems consistent provided that the wave age is not too small. The spectral
evolution also shows realistic features like the steepening of the low-frequency part
(ω < ωp) and the power-law behaviour for the high-frequency part (ω > ωp), with
a corresponding frequency downshift. For the long-term consistent downshift of a
realistic wave spectrum, however, we believe that the wind input and dissipation are
essential.

After the submission of our paper, our results were presented at the WISE
(Waves In Shallow-water Environments) meeting in Bergen, Norway, May 13–16,
2002. Interestingly, similar two-dimensional results were also presented by Peter
Janssen (see Janssen 2002) using the NLS and the Zakharov integral equations, and
by Miguel Onorato et al. (see Onorato et al. 2002) in three dimensions using the
full Euler equations (they demonstrated the power-law behaviour k5/2 to occur for a
much wider spectral range than shown in the present paper). As some of the same
conclusions have been reached through three independent efforts using three different
model equations, we believe that these results are important and not the consequence
of a particular choice of wave model.

It is not obvious how these results can be reconciled with the Hasselmann picture,
however. Janssen (1983) showed that the approximation to the Hasselmann equation
given by Dungey & Hui (1979) for narrow-band spectra can be derived from
the MNLS equations using the same statistical assumptions as Hasselmann. It is
perhaps worth noting that the zero-cumulant hypotheses implied by the approximate
multivariate complex Gaussian property of the Fourier coefficients, and necessary for
the derivation of Hasselmann’s equation, may not be realistic in the present case.
Even if the initial Fourier coefficients are chosen to be independent complex Gaussian
variables, the non-linear deterministic simulation will couple the Fourier coefficients
and destroy their Gaussian property. Also, the homogeneity in time and space assumed
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in the Hasselmann treatment may not be realistic. The two-dimensional theoretical
and simulation results by Janssen referred to above seem to indicate that the deviation
from the Gaussian property is more important than non-homogeneity.

We find, by making longer simulations than those shown above, that even after
the spectrum has relaxed to the new shape there is still a very slow change. It is
not possible for us to decide whether this indicates an evolution as predicted by the
Hasselmann equation, as the time horizon for our numerical model is too limited.

This research has been supported by the BeMatA program of the Research Council
of Norway (139177/431), by Norsk Hydro, by the European Union through the
EnviWave project (EVG1–CT–2001–00051) and by Statoil.
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