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Abstract. Can extreme waves on the open ocean, away from bottom influence
and current refraction, be explained by state-of-the-art wave statistics, or are
there exceptions deserving the names “freak” or “rogue” waves? We believe that
some findings from the large scale numerical simulations of Socquet-Juglardet
al. (2004) are relevant for answering these questions. The 3D simulations use a
computational domain containing typically 104 waves, starting from a truncated
JONSWAP spectrum with various angular distributions giving both long-crested
and short-crested waves. For short-crested waves, the probability distributions of
surface elevation and crest height are seen to fit the theoretical distributions found
by Tayfun (1980)very well up to 5 standard deviations. After giving a short review
of the simulation results, we try to relate them to storm wave data from the Central
North Sea.

Introduction

The occurrences of dangerous wave conditions in coastal
waters are well known. These “freak” or “rogue” waves may
often be explained by focussing (or caustics) due to refrac-
tion by bottom topography or current gradients, or even re-
flections from land. Well-documented in that respect are the
giant waves sometimes found in the Aguhlas current on the
eastern coast of South Africa (it Lavrenov, 1998).

On the open ocean, away from bottom influence and cur-
rent refraction, there does not seem to be any special geo-
physical reasons for extreme waves other than the wind forc-
ing. Extreme waves that are just rare events of a Gaussian or
nearly Gaussian population of waves on the sea surface, do
not count as “freaḱ’ or “ rogue” waves (seeHaver and An-
dersen, 2000)1. Are there waves out there that cannot plau-
sibly be explained by the state-of-the-art wave statistics?

Any indications that they exist?

First of all, there is indirect evidence in the form of dam-
age done to ships and off-shore installations. Then, there
also exists direct and reliable measurements showing excep-
tional waves. We could mention those described bySand
et al. (1990) andSkourup et al. (1996) of extreme events
that are not plausibly explained by the current state-of-the-

1In fact, these authors suggest as a definition of a freak wave event that
it is not plausibly explained by so-called second order models.

Figure 1. Wave record from the Gorm platform in the cen-
tral North Sea (17th of November 1984). Sandet al. (1990).

art wave statistics.Skourup et al. (1996) analyzed 12 years
of wave records from the Gorm field in the central North Sea
(depth about40 m) and found several events where the wave
crest height,a, exceeds2Hs (Hs is the significant wave
height). These are crest heights larger than 8 standard de-
viations of the sea surface! One of these wave records is
shown in Figure 1. The probability of occurrence by Gaus-
sian linear wave theory,∼ 10−14, and by second order wave
theory,∼ 10−11, are clearly much too small for several such
events to be recorded within a time span of 12 years.

Sand et al. (1990) also mention an episode from the
Ekofisk field where considerable wave induced damage was
reported on a deck more than 20 meters above the still water
level.

The much referred to “Draupner wave” that was recorded
in January 1995 had a crest height of 18.5 meters, while the
significant wave height was estimated to be 11–12 meters.
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Thus, the crest height was a little more than 6 standard devia-
tions. The probability of occurrence by Gaussian and second
order theory are∼ 10−8 and10−6, respectively. The wave
conditions lasted for approximately 6 hours so that roughly
2000 waves passed. Thus, the a priori chances (by second
order statistics) for the event to happen in that storm would
be roughly 1 in 500 (or 1 in 100 if the highest estimate of
Hs is chosen). Unless a number of such waves should occur
within a few years, the “Draupner wave” will probably not
be counted as a freak in the meaning ofHaver and Andersen
(2000).

Warren et al. (1998) analyzed some other North Sea data.
Comparisons were made with the modified Rayleigh distri-
bution ofTayfun (1980), which take into account second or-
der nonlinear effects. For the case of deep water waves (see
their figure 11) some of their data may not easily be recon-
ciled with the theoretical distribution.

Let us then consider what kind of physics that may be
invoked to produce them.

The physics of “rogue” waves

Clearly extreme waves represent a very high concentra-
tion of wave energy compared to the average2. A number of
mechanisms are known that produce large waves from mod-
erately small ones by focusing the energy:

Focusing by current refraction
Far offshore on the open ocean with only very small cur-

rent velocities (less than 20 cm/s, say) it would seem that
these effects are negligible.White and Fornberg (1998) have
shown by refraction studies, however, that even small ran-
dom current fluctuations with RMS values of the order 10
cm/s and typical scales of the order of 10 km can give for-
mation of caustics provided the incoming wave field is uni-
directional and narrow banded.

From experience with similar refraction calculations
(Trulsen et al., 1990; Dysthe, 2000) we suggest that even
a small directional distribution of the incoming wave field
will “smear out” the caustics and thus reduce the effect of
weak refraction to minor fluctuations in energy density. An
analogous phenomenon can be observed on the bottom of a
swimming pool: With direct sunshine surface waves refract
the sun rays giving patterns of moving caustics on the bot-
tom. When a cloud diffuses the sun radiation, the caustic
pattern disappears.

Focusing by inverse dispersion
The effect is used in a well-known technique for produc-

ing a large wave at a given position in wave tanks. The
wave maker is programmed to make a long wave group with
steadily decreasing frequency. With proper design of this
frequency-chirped “signal” , dispersion contracts the group

2For a wave with crest heighta = 1.6Hs the concentration is roughly
a factor 20, if the energy density is estimated byρga2/2.

to a few wavelengths at a given position in the tank. This
type of focussing has been suggested as a possible mech-
anism for freak waves. It has been shown (see the review
article byKahrif et al., 2004) that if a given chirped “signal”
produces strong focusing in the absence of other waves, it
will still do so (although somewhat weaker) when a random
wave field is added. If the amplitude of the deterministic
“signal” is below the RMS value of the random waves it will
remain “invisible” until it focuses. The problem with this
idea in a geophysical setting is to find a source for the spon-
taneous occurrence of suitable “signals” .

Nonlinear focusing
The so-called Benjamin–Feir (B-F) instability of regular

wave trains is well-known.Henderson et al. (1999) have
investigated what they call “steepwave events” by simulat-
ing the evolution of a periodically perturbed regular wave
train. Due to the B-F instability the wave train breaks up
into periodic groups. Within each group a further focusing
takes place producing a very large wave having a crest height
roughly 3 times the initial amplitude of the wave train. They
point out that these steep wave events seems to have a strong
similarity to the so-called breather type solutions of the NLS
equation (see alsoDysthe and Trulsen, 1999). The problem
with this kind of B-F instability in a geophysical setting is
the initial condition: a slightly perturbedregular wave train.

It seems that all the above mechanisms for producing
large waves need some special preparation or coherence to
work. A spontaneous occurrence of such favorable condi-
tions seems rather unlikely.

Does this leave us with the old idea that the extreme
waves are simply very unlikely constructive interference
phenomena that can be explained by linear or slightly non-
linear (second order) theory? Not necessarily.

Spectral instability
A different idea is the conjecture (based on 2D theory

and fairly small scale simulations) that freak waves are as-
sociated with a B-F type spectral instability (Onorato et al.,
2000; Mori and Yasuda, 2000; Janssen, 2003). In the 2D
case, a recent experiment in a waveflume (Onorato et al.,
2004) has given results in support of this idea. Although
this effect may be feasible from a physical point of view the
geophysical implication is still problematic. The instability
evolves on the so-called Benjamin-Feir timescale which is
much shorter than the synoptic timescale (on which the wave
spectrum changes due to input from the wind). So how does
a spectrum slowly develop (by wind) into an unstable form
which is known to change rapidly towards a stable form as a
result of the instability?

It was also suggested byDysthe (2000) that 4-wave in-
teractions, even in the absence of spectral instability, might
influence the probability of constructive interference due to
the dependence that is introduced between the interacting
waves.
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To investigate these ideas, and also to look for the spon-
taneous occurrence of extreme waves,Socquet-Juglard et al.
(2004) carried out large scale 3D simulations with a compu-
tational domain containing roughly 104 waves. In the fol-
lowing we discuss some of these results and try to relate
them to the question of “freak” or “rogue” waves.

The Simulation Model

The simulations referred to in the following are published
elsewhere in more detail (Socquet-Juglard et al., 2004).The
higher order NLS-type equations used in the numerical model
have been discussed inDysthe (1979),Trulsen and Dysthe
(1996), andTrulsen et al. (2000), and are not reproduced
here. The wave field is assumed to have a moderately narrow
spectral width, so that the surface elevation,η, is represented
as

η = η̄ +
1
2
(Beiθ + B2e

2iθ + B3e
3iθ + · · ·+ c.c.), (1)

where θ = kp · x − ωpt. Herekp = (kp, 0), with kp

corresponding to the peak of the initial wave spectrum, and
ωp =

√
gkp. The coefficientsB, B2, andB3, of first, sec-

ond and third order in wave steepness, respectively, have
small rates of variation in time and space. The higher or-
der coefficients can be expressed byB and its derivatives,
so that we end up with an evolution equation for the first
harmonic coefficientB. When the complex variable,B, has
been computed, the surface can be constructed to third order
in the wave steepness.

Length and time are scaled byk−1
p andω−1

p , respectively.
Also, kpη → η andk/kp → k. The initial wave spectrum
has the formF (k) = F (k, φ) = S(k)D(φ), wherek, φ are
polar coordinates in thek-plane. ForS(k) we use a trun-
cated form of the JONSWAP spectrum,

S(k) =
α

k4
exp

[
−5

4
k−2

]
γ

exp − (
√

k−1)2

2σ2
A (2)

Hereγ is the so-called peak enhancement coefficient and
the parameterσA has the standard values;0.07 for k < 1
and0.09 for k > 1. The dimensionless parameterα in (2) is
chosen such that the steepness,s, gets a desired value. In the
scaled variables, the steepnesss is defined as

√
2σ, where

σ =
(∫

k

F (k) kdkdφ

)1/2

(3)

is the scaled standard deviation of the surface.

The angular distributionD(φ) is taken to be of the form

D(φ) =
{

1
β

cos2(πφ
2β

), |φ| ≤ β,

0, elsewhere,
(4)

whereβ is a measure of the directional spreading.

Table 1. Initial directional and JONSWAP parameters for
three simulation cases used to demonstrate the temporal
evolution of the spectra. All spectra are normalised to an

initial steepness,s = 0.1.

Case β γ
A 0.7 3.3
B 0.35 5
C 0.14 5

Figure 2. The surfaces of small sections of the computa-
tional domain for the cases A, B and C

The JONSWAP spectrum (2) is truncated3 such that for
γ > 3, less than 15% of the total energy is left out.

To solve the modified NLS equation forB we use the nu-
merical method described byLo and Mei (1985, 1987) with
periodic boundary conditions. Moreover, the model is based
on a perturbation expansion (e.g.,Trulsen and Dysthe, 1996)
that only allows for a limited time horizon,τ , for the calcu-
lations of the order of(ωps

3)−1. Quantitative comparisons
with wave tank experiments and other numerical wave mod-
els (Lo and Mei, 1985;Trulsen and Stansberg, 2001;Shemer
et al., 2001, 2002;Stocker and Peregrine, 1999; Clamond
and Grue, 2002) have indicated that a reasonable time hori-
zon is indeedτ ≈ (ωps3)−1, which for the present simula-
tions (withs = 0.1) givesτ ≈ 150Tp.

Within these limitations, our model appears to be in very
good agreement with the physical- and numerical experi-
ments mentioned. Due to its very high efficiency it is well
suited for large computational domains and repeated simu-
lations.

In the simulations referred to here the steepnesss is
taken to be 0.1. This seems to be nearly an extreme value
as demonstrated bySocquet-Juglard et al. (2004) using a
(Tp, Hs) scatter diagram of data from the Northern North
Sea (Pooled data 1973–2001, from the Brent, Statfjord,
Gullfaks and Troll platforms).

Three different simulation cases, ranging from a broad
to a very narrow directional spread, are listed in Table 1.
See also Figure 2, where 2% of the computational area is
displayed for each of the three cases.

3All the included Fourier modes satisfy the condition|k − (0,1)| < 1
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Spectral development

The stability of nearly Gaussian random wave fields of
narrow bandwidth around a peak frequencyωp was con-
sidered byAlber and Saffman (1978), Alber (1978), and
Crawford et al., (1980) Their results were based on the NLS
equation and suggested that narrow band spectra may evolve
on the B-F timescale(s2ωp)−1, provided that the relative
spectral width∆ω/ωp does not exceed the steepness,s.
If that threshold is exceeded, change should only occur on
the much longer timescale(s4ωp)−1, i.e., the Hasselmann
timescale (Hasselmann, 1962;Crawford et al., 1980).

Dysthe et al. (2003) investigated the stability of mod-
erately narrow wave spectra by large scale 3D direct sim-
ulations. Starting from a bell-shaped initial spectrum, it is
found that regardless of whether the initial spectral width
satisfies the above mentioned condition for instability, the
spectra evolve on the B-F timescale from an initial symmet-
rical form into a skewed shape with a downshift of the peak
frequency. The angularly integrated spectrum shows an evo-
lution towards a power law behaviork−2.5(or ω−4) above
the peak frequency. It has recently been shown (Socquet-
Juglard et al., 2004) that a similar development takes place
when starting from a truncated JONSWAP spectrum. The
development becomes more pronounced as the initial spec-
tral width decreases. Examples of the temporal evolution for
the directional spectra of the cases A, B and C are shown in
Figure 3.

In 2D, similar results have been obtained byMori and
Yasuda (2000) using the full Euler equations, and byJanssen
(2003) using the Zakharov integral equation. In 3D,Onorato
et al. (2003) using the full Euler equations demonstrated a
spectral evolution and the power law behaviorω−4 to occur
for a wide spectral range.

As can be seen from the figures most of the action is tak-
ing place during the first 70 wave periods. The peak region is
broadened along with a downshift of the peak. As shown by
Soquet-Juglard et al. (2004) there is still a tendency towards
a power lawk−2.5 above the peak.

The probability distribution of the surface

In the following, it is convenient to scale the surface el-
evation,η, and the crest height,a, by the standard devia-
tion, σ, defined in equation (3).Soquet-Juglard et al. (2004)
investigate the probability distributions of the surface eleva-
tion and the crest height for the simulation model and param-
eters mentioned above. For the bulk of the waves, sayη < 3,
the simulated data are found to be in very good agreement
with the second order theoretical distributions due toTay-
fun (1980). Tayfun’s results assume that the first harmonic
in a narrow band development (Eqn. 1) is Gaussian. This
assumption is found to be in good agreement with the simu-
lations.

Figure 3. The spectral evolution of the truncated JONSWAP
spectra A, B and C (see table).

Using the fact thatσ2 � 1, Tayfun’s distribution (see
Socquet-Juglard et al., 2004) of the surface elevation can be
expanded asymptotically to give

pη(z) ∼
1 − 7σ2/8√

2π(1 + 3G + 2G2)
exp(− G2

2σ2
), (5)

where
G =

√
1 + 2σz − 1.

Note that the asymptotic form (5) has the mild restriction
η > −3/(8σ).

For the crest height,a, Tayfun found the distribution

pa (z) =
1
σ

(
1 − 1√

2σz + 1

)
exp

[
− 1

σ2
(σz + 1 −

√
2σz + 1)

]
.

(6)

It is readily verified that in the limitσ → 0, the expres-
sion (5) tends to the Gaussian distribution, and the expres-
sion (6) tends to the Rayleigh distribution. For comparisons
of (6) with data from storm waves, seeWarren et al. (1998).

As an example Figure 4 shows a comparison of (5) with
typical data from simulation case A. It is seen that the corre-
spondence is remarkable at least up to 4 standard deviations.
For the cases B and C the agreement was equally good up to
3 standard deviations.

Influence of spectral evolution

In 2D simulations it was also found byOnorato et al.
(2000) and byMori and Yasuda (2000) that large waves ap-
peared to be associated with rapid spectral development due
to the modulational instability. In 3D,Onorato et al. (2002)
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Figure 4. Typical simulated distribution (black) of the sur-
face elevation for the case A compared to the Tayfun distri-
bution (red). The Gaussian distribution is also shown in the
log-plot.

made small-scale simulations using the NLS equation. They
found that with increase of the angular spread, the occur-
rence of extreme events decreased.

RecentlyOnorato et al. (2004) have performed exper-
iments in a long wave flume. A wave maker generated
a modulationally unstable JONSWAP spectrum that devel-
oped along the flume. They demonstrated an increase in the
abundance of extreme waves especially during the early de-
velopment of the instability.

To test these indications that enhanced occurrence of
large waves is associated with rapid spectral development (or
instability) the more extreme part of the distributions must
be inspected. For this purpose it is convenient to exhibit
the simulated probability of exceedance for the crest height,
a, at different times. In Figure 6 this is compared with the
Rayleigh and Tayfun probabilities of exceedance given by

PR(a > x) = exp(−x2/2), (7)

PT (a > x) = exp
[
− 1

σ2
(σx + 1 −

√
2σx + 1)

]
, (8)

respectively.

The simulated data used in Figure 4 are from one “snap-
shot” (in time) of our computational domain, covering roughly
104 waves. Figure 5 shows such “snapshots” (henceforth re-
ferred to as a “scene”) are taken at the height of the evolution
process of the wave spectra (att = 25Tp) for the cases A, B
and C. A clear deviation from the Tayfun distribution (8) is
seen only for the case C. Early in the spectral development
there is an increased probability of crests higher than 3 stan-
dard deviations for this case. The same trend can be seen in
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Figure 5. Probability of exceedance of the scaled crest
height. Simulations (solid) at time25Tp compared to the
Rayleigh (solid with dots) and Tayfun (dashed) probabili-
ties.
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Figure 6. Development of the kurtosis for the cases A and
C.

the development of the kurtosis as shown in Figure 6.

The distribution of extremes

For the short-crested case, the simulated data fit the Tay-
fun distributions very well both for the surface elevation (5)
and the crest height (6) up to four times the standard devia-
tion of the surface (Socquet-Juglard et al., 2004). This does
not seem to change with time despite the fact that the spec-
trum is changing.

The simulated data of more extreme waves (say for crest
heights larger than 4 standard deviations) should be com-
pared with theoretical predictions of asymptotic extremal
distributions. Our starting point is a theorem due toPiter-
barg (1996) for asymptotic extremal distributions of homo-
geneous Gaussian fields. For applications to the sea surface,
the stochastic field is the surface elevationη(x, y).

Let S be a part of the computational domain. The surface
elevation (at any given instant of time) attains its maximum
ηm at some point inS. The theorem gives the distribution
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of ηm over independent realizations of the surface, assuming
the surface elevation to be Gaussian. Obviously, the distri-
bution of ηm depends on the size ofS. This size is con-
veniently measured in terms of the “number of waves”,N ,
that it contains. The size (or area) of one “wave” is taken
to beλ0λc/

√
2π, whereλ0 is the mean wavelength andλc

the mean crest length defined in terms of the wave spectrum
F (kx, ky) (see, e.g.,Krogstad et al., 2004). If the domain,
S, is rectangular with sidesNxλp andNyλp, the number of
“waves” is

N =
√

2π
NxNyλ2

p

λ0λc
.

In the present simulations the computational domain has
Nx = Ny = 128, giving N v 104 for the full domain
(varying somewhat with the angular distribution of the spec-
trum).

Piterbarg’s theorem states that the asymptotic cumulative
probability of ηm for realizations of such a Gaussian ocean
containingN waves is

P (ηm 0 x, N ) ∼ exp
[
−Nx exp(−1

2
x2)

]
. (9)

By computer simulations of Gaussian surfaces with ocean
wave-like spectra, (9) has turned out to be very accurate in-
deed (see, e.g.,Krogstad et al., 2004). Socquet-Juglard et
al. (2004) have shown how Piterbarg’s result can be mod-
ified to Tayfun distributed surfaces simply by applying the
transformation

x → 1
σ

(
√

1 + 2σx − 1) (10)

in (9). We shall refer to this as the Piterbarg-Tayfun distribu-
tion. The asymptotic Gumbel limit of the Piterbarg-Tayfun
distribution is easily found to be

exp
[
− exp

(
−hN − 1/hN

1 + σhN

[
x − (hN +

σ

2
h2

N )
])]

,

wherehN is a solution of the equationh exp(−h2/2) =
1/N , that is

hN =
√

2 lnN + ln(2 lnN + ln(2 lnN + · · · )).

The corresponding expectation value ofηm is then

E(ηm) ' hN +
σ

2
h2

N +
γ(1 + σhN )
hN − 1/hN

, (11)

whereγ ' 0.5772 is the Euler-Macheroni constant.

In Figure 7, data from the simulations (case A) are com-
pared to the theoretical prediction of equation 9 (11). Each
data point in the figure is the average value ofηm from
roughly 100 simulation scenes of the same size. The sizes
of the scenes in terms of the “number of waves” ranges from

3.5

4

4.5

5

5.5

4 5 6 7 8 9

logN

Figure 7. The average largest surface elevation of scenes
containingN waves. Simulations, case A, (crosses) are
compared with the expected value given by equation (11)
for σ = 0.071 used in the simulations (solid), andσ = 0
corresponding to the Gaussian case (dashed).

40 to 10.000.4 As can be seen from the figure there is a very
good correspondence up to five standard deviations.

On some observational data from the North Sea

Sand et al. (1989),Skourup et al. (1996)5, andWarren et
al. (1998) have analyzed storm wave data from the Central
North Sea. In the following we shall try to compare some of
their data with the Tayfun distributions that seems to work
so well with our simulated data. To do so, we have to make
simplifying assumptions. We shall assume that the average
steepness for the storm conditions they are considering is
generally high (in fact we takes to be 0.1 as in our simula-
tions)6.

We want to investigate how extreme value estimates based
on the Tayfun distributions compare to the measured data.
Since these are in the form of time series we cannot use
the Piterbarg distribution equation (9) which works for 2D.
Instead, we use the 1D version which reduces to the well-
known Poisson/Rice asymptotic formula. With the transfor-

4As a comparison, a 20 min. wave record of storm waves (Tp in the
range 8-12 seconds) contains 100-150 waves.

5Remark that the extreme cases considered bySand et al. (e.g. the
example shown in figure 1) are from the same collection of data as those of
Skourup et al.

6Warren et al. use a steepness corresponding tos ≈ 0.09 in their figures
9-11.
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Figure 8. Exceedance probabilities (equation 12) for the
Gorm case (green) and for the North Everest case (red).

mation (10) we find the probability that the maximum sur-
face elevation,ηm, (havingN waves) exceedsx, is given
by

P (ηm 1 x, N ) ∼ 1−exp
[
−N exp(−1 + σx −

√
1 + 2σx

σ2
)
]

.

(12)

Warren et al. used 2 years (1993–1995) of data from
the British sector (platforms Lomond and North Everest at
depths 90 meters). From these records they use roughly
2 ·105 waves. The maximum surface elevation,ηm, is found
to be≈ 6.4, and there are three cases exceeding 6. Using
equation (12) we find thatE(ηm) ' 6.0.

Skourup et al. had 12 years (1989–1991) of data from
the Danish sector (the Gorm platform at depth 40 meters).
From these they extracted more than 1600 hours of storm
wave records corresponding to roughly6 · 105 waves. The
maximum surface elevation in their data,ηm, is found to be
∼ 8.8, and there are nine cases exceeding 8. Using (12) we
find thatE(ηm) ' 6.3. In Figure 8 the exceedance probabil-
ities (12) are shown for the two cases.

While the North Everest/Lomond data are not far off what
could be expected, the Gorm data are obviously way off! In
the following we consider some of the other findings from
the Gorm field.

The waves satisfying at least one of the following two
criteria

a > 1.1HsorH > 2Hs (13)

were collected as possible “freaks”. HereH is the wave

height andHs = 4σ is the significant wave height. The num-
ber of waves found to satisfy the first criterion was 446 while
only 51 satisfied the second one. The ratio446/51 ' 8.7 is
then a rough estimate of the probability ratio between the
two events in equation (13). To make a comparison we as-
sume thatH is distributed by

P (h > H) = exp(−H2/H2). (14)

For an extremely narrow spectrum,H2 = 8m0. When
compared to real data, this is known to give too high esti-
mates.Longuet-Higgins (1980), however, fitted the distribu-
tion (14) to observational data compiled byForristall (1978)
from storms in the Gulf of Mexico, and demonstrated a good
agreement if the variance was chosen asH2 ' 6.85m0.
Later, Næss (1985) generalized this result, relating the cor-
rection factor to the first minimum of the correlation func-
tion.

Now, using (14) forH (with H2 ' 6.85m0) and the two
distributions (7) and (8) fora, we get for the Rayleigh dis-
tribution PR(a > 1.1Hs)/P (H > 2Hs) ' 1.4, while for
the Tayfun distribution withσ = 0.071 (corresponding to
s = 0.1), the ratio isPT (a > 1.1Hs)/P (H > 2Hs) ' 6.5.

Both empirical data and simulations indicate that the
wave-group in which an extreme wave occurs is rather short,
containing on the average only one big wave. In a sense
this group is a more important object than the large wave
it contains because it has a longer lifetime than the individ-
ual large wave. Roughly one periodTp after the realization
of an extreme crest height, the characteristic feature of the
same group will be a deep trough (a “hole in the ocean”).

For a Gaussian surface, the average waveform in the
neighborhood of an extreme wave maximum is given by the
scaled auto-covariance function, see, e.g.,Lindgren (1972).
In Figure 9, cuts through averaged wave shapes over the
maximum in the wave- and crest directions are compared to
the auto-covariance function. This indicates, in accordance
with the above, that on the average, the extreme wave be-
longs to a very short group, with “room” only for one big
wave. Also, two other differences are obvious: The sim-
ulated large crest,a, is more narrow and the depth of the
following trough,at, is more shallow than indicated by the
covariance function. For their collection of “freaks”,Skou-
rup et al. found that the average ratioa/at was approxi-
mately' 2.2. For the cases shown in Figure 9 the covari-
ance function prediction is' 1.5 and the simulations give
' 2.3. Although this seems to fit the findings ofSkourup et
al. (1996) for this average value, the fact still remains that
their data have a number of extreme cases that cannot be ex-
plained as rare events from the Tayfun distribution. Remark
that the extreme case shown in Figure 1 we havea/at ∼ 5!
A possible reason for the occurrence of “freak” waves at the
Gorm field, is the modest depth (40 meters) and its prox-
imity to the Dogger Bank, so perhaps refraction effects are
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Figure 9. Cuts through the maximum of the average wave
profile in the main wave and crest directions (full curves),
compared with the the spatial covariance function (dashed
curve). Simulation A.

important even that far from coasts.

Conclusions

In our simulations (Socquet-Juglard et al., 2004) we
tested the idea that spectral instability increases the occur-
rence of extreme waves. A significant correspondence be-
tween the two was only seen for the case of very long crested
waves. For this case we found the same development as in
the experiment byOnorato et al. (2004).

For short-crested waves no such correspondence between
spectral change and the occurrence of extreme waves was
seen. Here we found that the distribution of extreme waves
are very well approximated by the Tayfun distributions at
least up to five standard deviations (i.e. a = 1.25Hs).

We have compared the prediction of the Tayfun distribu-
tion to some fairly long series of data from the Central North

Sea. For the northernmost fields (North Everest/Lomond at
90 meters) the maximum crest height is only slightly under-
predicted. For the southernmost field (Gorm), however, the
prediction is way too low. A reason for the occurrence of
“freak” waves at the Gorm field, could perhaps be related to
the modest depth (40 meters) and the proximity to the Dog-
ger Bank. Thus refraction effects might be important even
that far from the coasts.
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