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Abstract

In this work we present a model which is a hybrid of cellular automata and Monte Carlo to study the growth of CO2 hydrate from

aqueous solutions. We show that, depending on how large the driving forces are, the hydrate crystal may grow as compact structure or as

a highly branched structure. Furthermore we show that the diffusion of CO2 in the solution is the main limiting factor, unless the

solution has a large supersaturation. Temperature effects are shown only to be important at large supersaturations.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Gas hydrates are crystalline structures of water with
cavities filled by small molecules, e.g. CO2 or methane. The
presence of these guest molecules can stabilise the ice-like
structure at temperatures well above the melting point of
pure ice. Methane hydrate, or more generally hydrate from
hydrocarbon mixtures, has been a problem for the oil and
gas industry for decades. The degree of agglomeration of
individual hydrate particles into massive hydrate blocks
depends on the structure and surface properties of the
hydrate particles. The kinetics of hydrate formation
depends on the kinetics of mass transport, heat transport
and the free energy changes related to the phase transition.
The free energy change of the phase transition is the
dominating factor on the structural development of the
growing crystals. A crystal growing with small phase
transition free energy differences will typically lead to
crystals close to spherical while larger free energy
differences will give rise to different kinds of branching.
In this work we focus on CO2 hydrate due to it’s relevance
in reservoir storage of CO2. Many reservoirs that may be

relevant for storage of CO2 contain regions of temperature
and pressure inside the hydrate stability zone. A rising CO2

plume that enters these hydrate stability regions may form
hydrate at the interface between the groundwater and the
CO2 phase. The resulting hydrate film will assist in
reducing the leakage flux of CO2 to the seafloor. But even
if the examples presented in this work are for CO2 we
expect similar behaviour for other types of hydrate
formers, like for instance natural gas, but then correspond-
ingly shifted in temperature and pressure relative to the
hydrate stability region for those specific hydrate forms.

2. Thermodynamics

We describe the thermodynamics using the free energy
density f ðf;xCO2

;TÞ. Here f is the order parameter
describing the phase of the cell, xCO2

¼ nCO2
=ðnH2O þ

nCO2
Þ is the molar CO2 fraction, and T is the temperature.

In our model f can only take the values 0 (liquid) and 1
(solid).

2.1. Liquid thermodynamics

The free energy density of the liquid is obtained by
taking the contributions from pure water and from CO2 in
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infinite dilution, and adding to them a contribution to
account for the mixing.

We do our simulations with a pressure of 150 bars and
initial temperature in the liquid of 274K. Under these
conditions the aqueous solution is saturated at 3.3% CO2

(obtained by extrapolating relevant data by Teng and
Yamasaki [1]). Since we also want to do simulations with
supersaturated solutions the liquid free energy density is
extrapolated into the supersaturated region under the
approximation that the activity coefficients follow the same
concentration dependence as that fitted from saturated
solutions.

2.2. Hydrate thermodynamics

The hydrate thermodynamics is based on a model by
Kvamme and Tanaka [2] and van der Waals and Platteeuw
[3]. The free energy density is given by

vmf s ¼ xCO2
gCO2
þ ð1� xCO2

Þgw, (1)

where vm is the molar volume of the hydrate, and gw and
gCO2

are partial molar free energies for water and CO2 in
the hydrate, respectively, given by

gw ¼ g0
w þ RTn logð1� yÞ, ð2Þ

gCO2
¼ Dginc þ RT log

y
1� y

� �
. ð3Þ

Here g0
w is the free energy density of water in empty

hydrate, Dginc is the free energy of inclusion of gas
molecules in the hydrate, y ¼ xCO2

=nð1� xCO2
Þ is the filling

fraction of the cavities accessible to the CO2 molecules, and
n is the number of accessible cavities per water molecule.

3. Monte Carlo cellular automata

Cellular dynamical system models have been shown to
be an efficient approach to computer simulations of crystal
growth [4]. We propose a model which is a hybrid of Monte
Carlo and cellular automata which we apply to study
growth of CO2 hydrate.

We do our simulations on a two-dimensional, quadratic
grid. Each cell has a certain temperature, amount of H2O
and CO2, and a phase. The phase can be either liquid or
solid, but nothing in-between.

The ruling principle is free energy minimisation. We
denote the free energy of a cell by f ðf; xCO2

;TÞ. Here f is
the order parameter describing the phase of the cell, xCO2

¼

nCO2
=ðnH2O þ nCO2

Þ is the molar CO2 fraction, and T is the
temperature. The free energy minimisation is done through
time steps involving solidification, and diffusion of mass
and temperature.

3.1. Solidification

At each step a liquid cell with solid neighbours can
change its phase with a certain probability depending on its

temperature and CO2 concentration. Let Df ðxCO2
;TÞ be

the change in free energy density if a cell with molar CO2

fraction xCO2
and temperature T changes its phase from

liquid to solid. Let r be a random number, 0prp1, then
the cell solidifies if

roe�bDf ðxCO2
;TÞ½1�lðFn�6Þ�, (4)

where Fn ¼
P

nonfn is a weighted sum over solid
neighbours which is included to approximate the local
interface curvature. We take on ¼ 2 for nearest neigh-
bours, on ¼ 1 for next nearest neighbours and on ¼ 0
otherwise. Since f ¼ 1 for solid cells and f ¼ 0 for liquid
cells, the sum counts only solid neighbours. b is the
characteristic energy scale for the solidification process.

3.2. Diffusion

Diffusion is done using a Monte Carlo implementation
of Fick’s law. At each time step one of the nearest
neighbours is drawn randomly for each cell. The current

jc ¼ �DcðDnCO2
ð1þ dcÞÞ, (5)

where dc is a random number with a Gaussian distribution
centred at 0, runs if

poe�bDf ðjÞ, (6)

where p is a random number, 0opo1, Df ðjÞ is the change
in free energy for the two cells involved if the current j is
allowed to run, and b�1 is the characteristic energy for the
process.
The temperature diffusion is done in a similar fashion,

but with b ¼ 0. The current running is

jT ¼ �DT ðDTð1þ dT ÞÞ, (7)

where again dT is a random number with a Gaussian
distribution centred at 0.
In our system DTbDc. Eqs. (5) and (7) requires both DT

and Dc to be less then 1 to work numerically. But to
increase the computational efficiency we would like to have
Dc close to 1. To be able to do this we modify Eq. (7) to
read

jT ¼ �
DT

m
ðDT þ dT Þ, (8)

such that DT=mo1 and run m temperature diffusion steps
for each time step.

3.3. Length and time scale

To be able to extract some quantitative data we have to
fix the length and time scale in the simulation. They are
connected through the diffusion, but separately the scales
are not explicitly given. Since a cell can be either solid or
liquid, but noting in-between, we interpret the cell size to
be of the same order as the thickness of the solid–liquid
interface. For CO2 hydrate this interface thickness is about
1 nm. The diffusion coefficient of CO2 in water is
Dc ¼ 10�9m2=s. Thus by choosing the time scale to be
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t ¼ 1
9
� 10�9 s, the diffusion coefficient in dimensionless

units is Dc ¼
1
9
.

4. Results

Since the mass transport is two orders of magnitude
slower than the heat transport, the access to CO2 from the
aqueous solution is the main limiting factor on the hydrate
growth. This is strongly reflected in both the growth rate,
and in the morphology of the crystal. At low CO2

concentrations the driving force is small, and the resulting
crystal is compact. At higher CO2 concentrations the
driving force is larger, resulting in dendritic growth. The
difference is shown in Fig. 1.

In Figs. 2 and 3 the linear size, measured as the maximal
distance from the nucleation point, is plotted as a function
of time. In addition there is square root fit to the data (for
the supersaturated case only the first 2:5ms is included in
the fit). The growth from saturated solution shows
excellent agreement with the fit, indicating that the growth
is diffusion controlled. Also in the supersaturated solution
the growth is in good agreement with a square root fit at
early times, but at late times the linear size appears to
approach a constant size. This is probably due to finite size
effects in the simulation.

For growth from saturated solution, or with small
supersaturation, both the growth rate and morphology of
the resulting crystal is dominated by the mass transport,
whereas the temperature has a minor effect. In Fig. 4 is the

fraction of the system which is converted to hydrate shown
for growth from a 4.5% CO2 solution. The growing
difference at late times is partly due to finite size effects in
the simulation. Going to larger supersaturations the
availability of CO2 is sufficiently high such that the
temperature then becomes the main limiting factor.

5. Discussion

We have shown that using a model which is a hybrid of
Monte Carlo and cellular automata we can simulate the

ARTICLE IN PRESS

Fig. 1. Comparison of growth from a aqueous solution with different CO2

concentrations, (a) 3.3% solution (saturated), snapshot after 61:1ms, (b)
4% solution, snapshot after 11:1ms, (c) 4.5% solution, snapshot after

11:1ms, (d) 5% solution, snapshot after 2:2ms. All simulations windows

are 0:512mm across.
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Fig. 2. Linear size of a crystal growing from a saturated solution (3.3%

CO2Þ plotted as a function of time. The dashed line is a square root fit to

the data.
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Fig. 3. Linear size of a crystal growing from a supersaturated solution

(5% CO2Þ plotted as a funciton of time. The dashed line is a square root fit

to the data for times o2:5ms.
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growth of CO2 hydrate giving qualitatively reasonable
results. However, there are presently few experimental

results on details of hydrate growth on such short time and
length scales, so extrapolations of the results will probably
be necessary to make quantitative comparisons with
experiments.
Since the model only models growth, and not melting, it

cannot be applied to systems in, or close to, equilibrium.
However, if the system is far from equilibrium with
conditions to provide steady growth, melting will be
negligible and the model is expected to work.
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Fig. 4. Fraction of the system converted into hydrate with (solid line) and

without (dashed line) temperature effects included.
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