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Abstract

For a chordal graph G = (V,E), we study the problem of whether a
new vertex u 6∈ V and a given set of edges between u and vertices in V can
be added to G so that the resulting graph remains chordal. We show how
to resolve this efficiently, and at the same time, if the answer is no, specify
a maximal subset of the proposed edges that can be added along with u,
or conversely, a minimal set of extra edges that can be added in addition
to the given set, so that the resulting graph is chordal. In order to do this,
we give a new characterization of chordal graphs and, for each potential
new edge uv, a characterization of the set of edges incident to u that also
must be added to G along with uv. We propose a data structure that
can compute and add each such set in O(n) time. Based on these results,
we present an algorithm that computes both a minimal triangulation and
a maximal chordal subgraph of an arbitrary input graph in O(nm) time,
using a totally new vertex incremental approach. In contrast to previous
algorithms, our process is on-line in that each new vertex is added without
reconsidering any choice made at previous steps, and without requiring any
knowledge of the vertices that might be added subsequently.

1 Introduction

Chordal graphs (also called triangulated graphs) are a well-studied class of graphs,
with applications in many fields. Some applications require that chordality be
maintained incrementally, that is, as edges and/or vertices are added or deleted
from the graph, they desire to maintain chordality. Ibarra [28] gives a dynamic
algorithm for adding or removing a given edge in O(n) time in a chordal graph
if this does not destroy chordality, where n is the number of vertices of the input
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2 A Vertex Incremental Approach for Maintaining Chordality

graph. More recently, a 2-pair [10] has been defined as a pair of non-adjacent
vertices in a chordal graph, such that the graph remains chordal when the edge
between these vertices is added to the graph.

A chordal graph can be obtained from any non chordal graph by: adding edges
until the graph becomes chordal, a process called triangulation, or by remov-
ing edges until the graph becomes chordal, thus computing a chordal subgraph.
Adding or removing a minimum number of edges has been shown to be NP-hard
[30, 36]. However, adding or removing an inclusion minimal set of edges can be
accomplished in polynomial time. Given an arbitrary chordal subgraph, e.g., an
independent set on the vertices of the graph (resp. supergraph, e.g., a complete
graph on the same vertex set) of the input graph, edges can be added (resp. re-
moved) one by one after testing that the resulting graph remains chordal, until no
further candidate edge can be found. This ensures that maximality (resp. mini-
mality) is achieved, by the results of [32]. The problem of maintaining a chordal
graph by edge addition or deletion and the problem of computing a maximal
chordal subgraph or a minimal chordal supergraph are thus strongly related.

The problem of adding an inclusion minimal set of fill edges, called minimal

triangulation, has many applications in various fields such as sparse matrix com-
putation [31] and database management [3]. The problem has been well studied
since 1976, and several O(nm) time algorithms exist for solving it [4, 5, 6, 16, 32],
where m is the number of edges in the input graph. None of these algorithms
use an edge incremental approach as described above. However, the algorithm
proposed by Blair, Heggernes, and Telle [11], which requires even less time when
the fill is small, does use an edge deletion approach.

The reverse problem of computing a maximal chordal subgraph has also been
studied, with applications to sparse matrix computation, computing a large clique
or a large independent set, and improving phylogenetic data [2, 10, 15, 17, 20,
35]. There exist several algorithms that compute a maximal chordal subgraph in
O(∆m) time, where ∆ is the maximum degree in the graph [2, 17, 35].

In this paper, we present a new process for adding a vertex with a given
set of incident edges to a chordal graph while maintaining chordality, which we
are able to implement more efficiently than if we were to add the corresponding
edges one by one. Our process is based on two new characterizations. The first
is a characterization of a chordal graph by its edges, which can be regarded as a
specialization of the edge characterization for weakly chordal graphs introduced
by Berry, Bordat, and Heggernes [8]. The second is a characterization of a unique
set of edges R(G, u, v) incident to a vertex u that must be added to a chordal
graph G along with edge uv to ensure that chordality is preserved, given that
we are only allowed to add edges incident to u. We show that we can compute
this set R(G, u, v) of edges in O(n) time, by proposing a data structure that
corresponds to a clique tree of the current chordal subgraph. A similar data
structure was used by the authors to prove an O(nm) time bound for one of
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their minimal triangulation algorithms [4, 6, 26]; however, here we present a new
implementation of clique trees that allows a more efficient data structure for our
purposes.

We use our results to compute both a minimal triangulation and a maximal
chordal subgraph of a given arbitrary graph in O(nm) time. This is done by
an incremental process that repeatedly adds a new vertex u to the already con-
structed chordal graph H along with a maximal set of edges between u and H,
or a minimal set of extra edges between u and H in addition to the originally
specified edges.

Some of the existing algorithms that compute a maximal chordal subgraph or
a minimal triangulation also use a vertex incremental process [2, 5, 6, 17, 32, 35],
though none of them compute both chordal graphs at the same time. In addition,
all these previous algorithms require knowing the whole graph in advance, as
either vertices that are not yet processed are marked in some way to define the
next vertex in the process, or edges are added between pairs of vertices that
are not yet processed. Furthermore, these algorithms require the added vertex
to be a simplicial vertex of the transitory chordal graph. One exception from
this requirement is the algorithm of [6], but it does add edges between pairs of
neighbors of the added vertex that are not yet processed.

Our approach here is completely different from the previous ones, as it is
more general: at each vertex addition step, we do not require the added vertex to
be or to become simplicial, thereby enabling processing of vertices in any order.
Moreover, we add only edges incident to the new vertex, so that we never need
to reconsider or change the chordal graph that has been computed thus far.

As a result, our process can add any vertex with any proposed neighborhood,
and efficiently give a correction if the resulting graph fails to be chordal, either by
computing a maximal subset of the edges to be added, or a minimal set of extra
edges along with the proposed ones. In addition, the transitory chordal graph is
maintained in a dynamic fashion, as making the desired or necessary additions
to the graph does not require a recomputation.

This paper is organized as follows: in the next section we give the neces-
sary graph theoretic background and terminology. Section 3 contains our new
characterizations. The algorithms are presented and proved correct in Section
4, whereas the data structure details and time complexity analysis are given in
Section 5. We conclude in Section 6.

2 Graph theoretic background and notation

A graph is denoted G = (V, E), with n = |V |, and m = |E|. A vertex sequence
v1 − v2 − ...− vk describes a path if vivi+1 is an edge for 1 ≤ i < k. The length of
a path is the number of edges in it. A cycle is a path that starts and ends with
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the same vertex, and the length of the cycle is the number of vertices or edges
it contains. A chord of a cycle (path) is an edge connecting two non-consecutive
vertices of the cycle (path). A clique is a set of vertices that are pairwise adjacent.

For the following definitions, we will omit subscript G when the graph is
clear from the context. The neighborhood of a vertex v in G is NG(v) = {u 6=
v | uv ∈ E}, and for a set of vertices A, NG(A) = ∪x∈ANG(x) \ A. A simplicial

vertex is one whose neighborhood induces a clique. G(A) is the subgraph induced
by a vertex set A ⊆ V , but we often denote it simply by A when there is no
ambiguity. We would like to stress that we distinguish between subgraphs and
induced subgraphs.

For any vertex set S ⊆ V and any vertex x ∈ V \S, Cx
S denotes the connected

component of G(V \ S) containing x. A subset S of V is called a separator if
G(V \ S) is disconnected. S is a u, v-separator if vertices u and v are in different
connected components of G(V \ S), and a minimal u, v-separator if no subset of
S is a u, v-separator. S is a minimal separator of G if there is some pair {u, v} of
vertices in G such that S is a minimal u, v-separator. Equivalently, S is a minimal
separator if there exist two connected components C1 and C2 of G(V \ S) such
that NG(C1) = NG(C2) = S.

A pair of non-adjacent vertices {u, v} is a 2-pair in G if there is no chordless
path of length 3 or more between u and v [24]. If G is not connected, then
two vertices that belong to different connected components constitute a 2-pair by
definition. If G is connected, it has been shown that {u, v} is a 2-pair if and only
if N(u) ∩N(v) is a minimal u, v-separator of G [1, 33].

A graph is chordal if it contains no chordless cycle of length≥ 4. Consequently,
all induced subgraphs of a chordal graph are also chordal. G is chordal if and
only if every minimal separator of G is a clique [19]. Chordal graphs are the
intersection graphs of subtrees of a tree [14, 22, 34], and the following result gives
a very useful tool which we will use as a data structure in our algorithm.

Theorem 2.1 (Buneman [14], Gavril [22], Walter[34]) A graph G is chordal if

and only if there exists a tree T , whose vertex set is the set of maximal cliques

of G, that satisfies the following property: for every vertex v in G, the set of

maximal cliques containing v induces a connected subtree of T .

Such a tree is called a clique tree [12], and we will refer to the vertices of T
as tree nodes to distinguish them from the vertices of G, and sometimes also as
bags since these contain several graph vertices. Each tree node of T is thus a
vertex set of G corresponding to a maximal clique of G. We will not distinguish
between maximal cliques of G and their corresponding tree nodes. In addition,
it is customary to let each edge KiKj of T hold the vertices of Ki∩Kj, where Ki

and Kj are maximal cliques of G. Thus, edges of T are also vertex sets. Although
a chordal graph can have many different clique trees, all chordal graphs share the
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following important properties that are related to an efficient implementation of
our algorithm.

Theorem 2.2 (Buneman [14], Ho and Lee[27], Lundquist [29]) Let T be a clique

tree of a chordal graph G. A set S is a minimal separator of G if and only if

S = Ki ∩Kj for an edge KiKj in T , and if S = Ki ∩Kj for an edge KiKj in T ,

then S is a minimal u, v-separator for any u ∈ Ki \ S and v ∈ Kj \ S.

Theorem 2.3 (Blair and Peyton [12]) T is a clique tree of G if and only if T is

a tree whose nodes are the maximal cliques of G, and for every pair of distinct

maximal cliques Ki and Kj in G the intersection Ki ∩Kj is contained in every

node of T (maximal clique of G) appearing on the path between Ki and Kj in T .

Note that as a consequence, the intersection Ki∩Kj is also contained in every
edge of T (i.e., in every minimal separator of G) appearing on the path between
Ki and Kj in T . A chordal graph has at most n maximal cliques [19] and hence
the number of nodes and edges in a clique tree is O(n) [21].

From any given non-chordal graph, one can obtain a chordal graph on the
same vertex set by either adding (the added edges are called fill edges) or removing
edges. M = (V, F ) is called a triangulation of an arbitrary graph G = (V, E) if
E ⊆ F and M is chordal. M is a minimal triangulation of G if no proper
subgraph of M is a triangulation of G. Similarly, H = (V, D) is called a chordal

subgraph, or equivalently a subtriangulation, of G if D ⊆ E and H is chordal. H
is a maximal chordal subgraph, or a maximal subtriangulation, if (V, D′) is non-
chordal for every set D′ that satisfies D ⊂ D′ ⊆ E. By the results of [32], a given
triangulation (subtriangulation) is minimal (maximal) if and only if no single
fill edge can be removed (no single removed edge can be added back) without
destroying chordality.

3 A new characterization of chordal graphs

In this section we present a new characterization of chordal graphs that will be
the basis of our algorithm.

Definition 3.1 An edge uv is mono-saturating in G = (V, E) if {u, v} is a 2-pair

in G′ = (V, E \ {uv}).

Theorem 3.2 A graph is chordal if and only if every edge is mono-saturating.

Proof. Let G = (V, E) be chordal, and assume on the contrary that there is an
edge uv ∈ E that is not mono-saturating. Then there is a chordless path P of
length more than 2 between u and v in G′ = (V, E\{uv}), and thus the following
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is a chordless cycle of length at least 4 in G: u − P − v − u, which contradicts
our assumption that G is chordal.

For the other direction, let every edge in G be mono-saturating, and assume
on the contrary that G is not chordal. Thus, there exists a chordless cycle C of
length at least 4 in G. No edge of C is mono-saturating, a contradiction.

As a corollary of Theorem 3.2, we can deduce the following characterization
by 2-pairs by [10], a result that was also observed with a different formulation in
[18].

Corollary 3.3 (Berry et al. [10]) Given a chordal graph G = (V, E), where uv 6∈
E, the graph H = (V, E ∪ {uv}) is chordal if and only if {u, v} is a 2-pair in G.

Proof. Let us on the contrary assume that H is not chordal, and that {u, v} is a
2-pair in G. The edge uv is mono-saturating in H since {u, v} is a 2-pair of G. By
Theorem 3.2 there exists an edge xy in G that is not mono-saturating in H, and
by Definition 3.1 there exists a chordless path P in H ′ = (V, (E \ {xy}) ∪ {uv})
preventing xy from being mono-saturated in H. One of the edges in P is uv, since
G is chordal and by Theorem 3.2 xy is mono-saturating in G, and by Definition
3.1 P do not exists in G′ = (V, E \ {xy}). By removing the edge uv from P
and inserting xy we obtain a chordless path P ′ in G, which prevents {u, v} from
being a 2-pair in G, and thus we have a contradiction.

For the other direction, we know that {u, v} is not a 2-pair in G, and thus the
edge uv in H is not mono-saturating, and by Theorem 3.2 H is not chordal.

As a consequence, while maintaining a chordal graph by adding edges, we
could check every edge of the input graph to see if the endpoints constitute a 2-
pair in the transitory chordal subgraph. However, this approach requires that we
check every edge several times, as pairs of vertices can become 2-pairs only after
the addition of some other edges. Our main result, to be presented as Theorem
3.8, gives a more powerful tool that allows examining each edge of the input graph
only once during such a process.

Assume the following scenario: given a chordal graph G, we want to add an
edge uv to G. Since we want the resulting graph to remain chordal, it may be
necessary to add other edges to achieve this. However, we allow addition of edges
only incident to u.1 Naturally, if we add every edge between u and the other
vertices of G, the resulting graph is chordal. Our main goal is to add as few
edges as possible.

Definition 3.4 Given a chordal graph G = (V, E) and any pair of non-adjacent

vertices u and v in G, R(G, u, v) = {ux | x belongs to a minimal u, v-separator
of G}. We will call R(G, u, v) the incident-to-u set of required edges for uv.

1Note that in the incremental approach described in the next section, vertex u is the most
recently added vertex.
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Lemma 3.5 Let G = (V, E) be a chordal graph and let u and v be non-adjacent

vertices of G. Then R(G, u, v) = {ux | x is an intermediate vertex of a chordless

path in G between u and v}.

Proof. Let ux ∈ R(G, u, v), S be a minimal u, v-separator of G containing x, P1

be a chordless path in G between u and x with all intermediate vertices belonging
to Cu

S , and P2 be a chordless path in G between x and v with all intermediate
vertices belonging to Cv

S. The path obtained by concatenating P1 and P2 is a
chordless path in G between u and v having x as an intermediate vertex.

Conversely, let x be an intermediate vertex of a chordless path P in G between
u and v. Vertex set S ′ obtained from V by removing all vertices of P except x
is a u, v-separator of G. Let S be a minimal u, v-separator of G included in S ′.
Vertex x belongs to S because otherwise P would be a path in G(V \S) between
u and v. Therefore ux ∈ R(G, u, v).

Lemma 3.6 Let G = (V, E) be a chordal graph, let u and v be non-adjacent

vertices of G, let S be a minimal u, v-separator of G, and let graph M = (V, E ∪
{uv}∪R(G, u, v)). Then any chordless cycle in M of length at least 4 containing

u contains at most one vertex of S.

Proof. Suppose on the contrary that some chordless cycle C in M of length at
least 4 contains u and distinct vertices x and x′ of S. As a minimal separator
of a chordal graph, S is a clique in G, so xx′ is an edge of M , and by defini-
tion of R(G, u, v), ux and ux′ are also edges of M . So C has a chord in M , a
contradiction.

Lemma 3.7 Let G = (V, E) be a chordal graph, let u and v be non-adjacent

vertices of G, and let S and S ′ be minimal u, v-separators of G. Then (S ′ ⊆ S∪Cu
S

and S ⊆ S ′ ∪ Cv
S′) or (S ′ ⊆ S ∪ Cv

S and S ⊆ S ′ ∪ Cu
S′).

Proof. We may assume without loss of generality that S and S ′ are distinct.
As minimal separators of a chordal graph, S and S ′ are cliques, and since S
and S ′ are distinct minimal u, v-separators of G, S \ S ′ 6= ∅. Let x ∈ S \ S ′.
Observe that S ′ ∩ (Cu

S ∪ Cv
S) 6= ∅, because otherwise Cu

S ∪ {x} ∪ Cv
S would be a

connected subset of V \ S ′, which would contradict S ′ being a u, v-separator of
G. Let x′ ∈ S ′ ∩ (Cu

S ∪ Cv
S). We first study the case when x′ ∈ Cu

S : Since S ′ is a
clique containing x′, S ′ ⊆ {x′} ∪ N(x′) ⊆ S ∪ Cu

S . It follows that {x} ∪ Cv
S is a

connected subset of V \ S ′, and therefore x ∈ Cv
S′ . Since S is a clique containing

x, S ⊆ {x} ∪N(x) ⊆ S ′ ∪ Cv
S′ . For the case when x′ ∈ Cv

S, we prove in a similar
way that S ′ ⊆ S ∪ Cv

S and S ⊆ S ′ ∪ Cu
S′ .
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Theorem 3.8 Let G = (V, E) be a chordal graph, let u and v be non-adjacent

vertices of G, and let graph M = (V, E ∪ {uv} ∪R(G, u, v)). Then M is chordal

and M is a subgraph of any triangulation of G′ = (V, E ∪ {uv}) obtained from

G′ by adding edges incident to u only.

Proof. Let us first show that M is chordal. Assume on the contrary that M is not
chordal, and let C be a chordless cycle of length at least 4 in M . Since G is chordal,
C contains an edge ux ∈ {uv}∪R(G, u, v). Let C = u−x′−y1−y2−...−yk−x−u
with k ≥ 1, and P1 = x′ − y1 − y2 − ...− yk − x, which is a chordless path in G.
It is sufficient to show that P1 is a subpath of a chordless path P in G between
u and v, since then by Lemma 3.5 uy1 would belong to R(G, u, v) and therefore
would be a chord of C in M , giving a contradiction. In the following Q1 · Q2

denotes the path obtained by concatenating paths Q1 and Q2.

First case : x = v or x′ = v. Say, x = v. If ux′ ∈ E then we are done with
P = u − x′ · P1. Otherwise ux′ ∈ R(G, u, v), let S be a minimal u, v-separator
of G containing x′, and let P0 be a chordless path in G between u and x′ with
all intermediate vertices belonging to Cu

S . By Lemma 3.6, x′ is the only vertex
of S in P1, so all intermediate vertices of P1 belong to Cv

S. It follows that path
P = P0 · P1 is a chordless path in G between u and v.

Second case : x 6= v and x′ 6= v. In this case, ux ∈ R(G, u, v). Let S be
a minimal u, v-separator of G containing x and let P2 be a chordless path in
G between x and v with all intermediate vertices belonging to Cv

S. If ux′ ∈ E
then by Lemma 3.6, all intermediate vertices of u − x′ · P1 belong to Cu

S , so
path P = u − x′ · P1 · P2 is a chordless path in G between u and v. Otherwise
ux′ ∈ R(G, u, v). Let S ′ be a minimal u, v-separator of G containing x′ and let P0

be a chordless path in G between u and x′ with all intermediate vertices belonging
to Cu

S′ . By Lemma 3.7, (S ′ ⊆ S ∪ Cu
S and S ⊆ S ′ ∪ Cv

S′) or (S ′ ⊆ S ∪ Cv
S and

S ⊆ S ′ ∪ Cu
S′). We may assume without loss of generality that S ′ ⊆ S ∪ Cu

S and
S ⊆ S ′ ∪ Cv

S′ . By Lemma 3.6, x′ 6∈ S and x 6∈ S ′, so x′ ∈ Cu
S and x ∈ Cv

S′ . Hence
by Lemma 3.6, all intermediate vertices of P1 belong to Cv

S′ and Cu
S . Since P0 and

P1 are chordless and all vertices of P0 other than x′ belong to Cu
S′ , and those of

P1 other than x′ belong to Cv
S′ , path Q = P0 ·P1 is chordless. Since S ⊆ S ′ ∪Cv

S′ ,
Cu

S′ ⊆ Cu
S , so all vertices of P0 belong to Cu

S . Since Q and P2 are chordless and all
vertices of Q other than x belong to Cu

S , and those of P2 other than x belong to
Cv

S, path P = Q · P2 is a chordless path in G between u and v, which completes
the proof of chordality of M .

Let M ′ be a triangulation of G′ = (V, E ∪ {uv}) obtained from G′ by adding
edges incident to u only. Let us show that M is a subgraph of M ′, i.e., that
every edge of R(G, u, v) is an edge of M ′. Suppose on the contrary that there is
some edge ux ∈ R(G, u, v) which is not an edge of M ′. By Lemma 3.5, x is an
intermediate vertex of a chordless path u − y1 − y2 − ... − yi = x − ... − yk = v
in G. Thus C = u − y1 − y2 − ... − yk = v − u is a cycle in M ′ such that path
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y1−y2− ...−yk = v is chordless in M ′. Let r be the largest integer smaller than i
such that yr is adjacent to u in M ′ and s be the smallest integer larger than i such
that yr is adjacent to u in M ′. Then u−yr−yr+1− ...−yi = x− ...−ys−1−ys−u
is a chordless cycle in M ′ of length at least 4, which contradicts the chordality of
M ′.

The following corollary follows directly from Theorem 3.8.

Corollary 3.9 Let G = (V, E) be a chordal graph and let u and v be any pair of

non-adjacent vertices in G. Then M = (V, E ∪ {uv} ∪ R(G, u, v)) is the unique

minimal triangulation of G′ = (V, E ∪ {uv}) obtained from G′ by adding edges

incident to u only.

A significant consequence of our main theorem is that it is sufficient to deter-
mine R(G, u, v) and add it to the current graph G to obtain a new chordal graph.
This can be done efficiently, as will be explained in Section 5. This involves main-
taining the minimal separator structure of a chordal graph, a problem for which
we have a new and efficient data structure associated with a clique tree, which
we will describe in Section 5.

4 A vertex incremental algorithm for simulta-

neous maximal subtriangulation and minimal

triangulation

In this section we apply our results of Section 3 to the problem of computing a
maximal chordal subgraph H = (V, D) and a minimal triangulation M = (V, F )
of an arbitrary graph G = (V, E), where D ⊆ E ⊆ F .

Our algorithm is based on the following vertex incremental principle. Start
with an empty subset U of V , and a maximal chordal subgraph H of G(U) (re-
spectively a minimal triangulation M of G(U) if we want a minimal triangulation
algorithm). The incremental approach is to increase U with a vertex u from V \U
at each step. Observe that H (resp. M) is chordal and disconnected after the
introduction of u as long as |U | ≥ 1, since no edges are introduced along with
this vertex, and H (resp. M) was chordal before this step. Then for each edge of
G incident to u and some vertex v in U \ {u}, we do computations according to
Theorem 3.8 and obtain the set R(H, u, v) (resp. R(M, u, v)) of edges incident to
u that must be added along with uv in order to obtain a chordal supergraph of
H (resp. M).

In the case of the maximal subtriangulation algorithm, we will only add uv and
R(H, u, v) to E(H) if R(H, u, v) ⊂ E(G). In the case of the minimal triangulation
algorithm, the required edges R(M, u, v) and the edge uv are added to E(M). To
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prove that this approach actually produces a maximal chordal subgraph (resp.
minimal triangulation) we rely on the results in the following two lemmas.

Lemma 4.1 Given G = (V, E), let U ⊆ V , and let H and H ′ be graphs such that

H is a subgraph of H ′, H ′ is a chordal subgraph of G, and H(U) is a maximal

chordal subgraph of G(U). Then H(U) = H ′(U).

Proof. As an induced subgraph of a chordal graph H ′(U) is chordal, and there-
fore is a chordal subgraph of G(U) having H(U) as a subgraph. So, since H(U)
is a maximal chordal subgraph of G(U), H(U) = H ′(U).

For the computation of H, assume that H is a maximal chordal subgraph of
G(U) on vertex set U . At the first step, U contains a single vertex of G and
H = G(U). At each step, a vertex u ∈ V \ U is chosen and added to U and thus
to H. Now for each edge uv of G with v ∈ U , we add edge uv to H if and only if
every edge of R(H, u, v) is present in G. If uv is added to H, we also add every
edge of R(H, u, v) at the same time. After this, none of the edges that are added
need to be examined again for possible addition, since they already appear in
the transitory chordal subgraph. If some edge of R(H, u, v) is not an edge of G,
then we cannot add uv at this step by Theorem 3.8, since we only allow addition
of edges incident to u. When we prove the correctness of our algorithm, it will
be clear that uv never needs to be examined again for addition. 2 Thus, each
edge is examined for addition at most once, and in many cases several edges are
added at the same time and disappear from the list of edges that still need to be
examined, which is the strength of our algorithm with respect to time complexity.
In addition, our algorithm does not touch the unprocessed vertices. Thus, these
vertices need not be known in advance, and we can actually take a new vertex u
as input in an on-line fashion at each step.

Lemma 4.2 Given G = (V, E), let U ⊆ V , and let M and M ′ be graphs such

that M ′ is a subgraph of M , M ′ is a triangulation of G, and M(U) is a minimal

triangulation of G(U). Then M(U) = M ′(U).

Proof. As an induced subgraph of a chordal graph, M ′(U) is chordal, and
therefore is a triangulation of G(U) and a subgraph of M(U). So, since M(U) is
a minimal triangulation of G(U), M(U) = M ′(U).

For the computation of M , assume that M is a minimal triangulation of
G(U) on the vertex set U . The only difference from the discussion above in this
case is that, for each edge uv of G with v ∈ U , we add to M edge uv as well
as every edge belonging to R(M, u, v) regardless of whether or not these edges
belong to G. Thus, the difference between the two processes is merely a single if

2Note that considering R(H, v, u) does not help, since we have already concluded that adding
any edge between v and vertices in U \ {u} will create a chordless cycle.
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statement. Our algorithm can be changed by inserting or deleting this if line in
order to change between the processes of computing a minimal triangulation and
a maximal chordal subgraph, though of course both graphs can be computed by
a single algorithm within the same time bound.

With the data structure details given in the next section, we will show that
computing and adding the set R(H, u, v) can be done in O(n) time for each
examined edge uv. From our algorithm and its proof of correctness, it will be
clear that every edge needs to be examined at most once. We are now ready to
present our algorithm. We begin with the maximal chordal subgraph version.

Algorithm Incremental Maximal Subtriangulation (IMS)

Input: G = (V, E).
Output: A maximal chordal subgraph H = (V, D) of G.

01. Pick a vertex s of G;
02. U = {s};
03. D = ∅;
04. for i = 2 to n do

05. Pick a vertex u ∈ V \ U ;
06. U = U ∪ {u};
07. N = ∅;
08. for each vertex w ∈ NG(u)
09. if w ∈ U then

10. N = N ∪ {w};
11. end-if

12. end-for

13. while N is not empty do

14. Pick a vertex v ∈ N ;
15. N = N \ {v};
16. X = {x | x belongs to a minimal u, v-separator of H = (U,D)};
17. R = {ux | x ∈ X};
18. if R ⊆ E then

19. D = D ∪ {uv} ∪R;
20. N = N \X;
21. end-if

22. end-while

23. H = (U,D);
24. end-for

Let us call IMT (Incremental Minimal Triangulation) the algorithm that
results from removing lines 18 and 21 of Algorithm IMS. Thus, in IMT, edge
set {uv}∪R is always added to the transitory graph for every examined edge uv.
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Figure 1: The figure shows graph H in thick lines after steps 4, 5, 6, and 7 of (a)
Algorithm IMS when computing a maximal chordal subgraph and (b) Algorithm
IMT when computing a minimal triangulation.

In Example 4.3, executions of both of these algorithms are shown on the same
input graph. Figure 1 (a) shows IMS and (b) shows IMT.

Example 4.3 Consider Figure 1. The vertices of the input graph are processed

in the order shown by the numbers on the vertices. At step 1, only vertex 1 is

added to H. At step 2, vertex 2 and edge 21 are added, and similarly at steps

3 and 4, vertex 3 and edge 32, and vertex 4 and edge 41 are added, respectively.

The first column of the figure shows graph H with thick lines on the input graph

after these 4 steps. The chordal graph so far is the same for both the maximal

chordal subgraph (a), and the minimal triangulation (b). We will explain the rest

of the executions in more detail.

(a) At step 5, N = {3, 4}, and edge 53 is examined first. In this case, set X
is empty, and edge 53 is thus added. For the addition of edge 54, X = {1, 2, 3},
and since required edges 51 and 52 are not present in G, edge 54 is not added. At

step 6, N = {3, 4, 5}, and edge 63 is examined first and added since X is empty.

For the addition of edge 64, X = {1, 2, 3}, and since required edges 61 and 62 are

not present in G, edge 64 is not added. For the addition of edge 65, X = {3},
and 65 is added since edge 63 is present in G and in H.

(b) At step 5, edge 53 is added as in (a), and in addition, edge 54 is added

along with the required edges 51 and 52. At step 6, edge 63 is added as in (a).

For the addition of edge 64, X = {1, 2, 3, 5} since the minimal 6, 4-separators are

{1, 5}, {2, 5}, and {3}. Thus, edge 64 and required edges 61, 62, and 65 are added

to M .

Step 7 adds edges 71 and 72 in both (a) and (b) without requiring any addi-

tional edges in either case.
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Theorem 4.4 Algorithm IMT computes a minimal triangulation, and Algo-

rithm IMS computes a maximal chordal subgraph, of the input graph.

Proof. Let (u1, u2, ..., un) be the sequence of vertices of G successively added to
U in an execution of Algorithm IMT (resp. IMS), and let Ui = {u1, u2, ..., ui}
for any i from 1 to n.

Algorithm IMT : Let M = (V, F ) be the output graph. We show by induction
that M is a minimal triangulation of G.

Induction hypothesis: M(Ui) is a minimal triangulation of G(Ui), for 1 ≤ i ≤ n.

The base case i = 1 trivially holds. Assume that M(Ui−1) is a minimal triangu-
lation of G(Ui−1) for some i between 2 and n, and we will show that this implies
that M(Ui) is chordal and is equal to any triangulation M ′ of G(Ui) that is a
subgraph of M(Ui).

Let M ′ be a triangulation of G(Ui) that is a subgraph of M(Ui). By Lemma
4.2, M(Ui−1) is chordal and M(Ui−1) = M ′(Ui−1). Let u = ui, U = Ui, and
(v1, v2, ..., vk) be the sequence of neighbors of u in G successively picked out of N
after adding u to U . Let Mj = (U, Fj) be the transitory graph after processing
edge uvj, for 0 ≤ j ≤ k (M0 is the transitory graph after adding u to U). Let
us prove by induction that Mj is chordal and is a subgraph of M ′ for 0 ≤ j ≤ k.
The base case j = 0 holds since M0 is obtained from M(Ui−1) by adding vertex u,
M(Ui−1) is chordal and M(Ui−1) = M ′(Ui−1). Assume that Mj−1 is chordal and is
a subgraph of M ′, for some j between 1 and k. Let us show that this implies that
the same is true for Mj, too. Mj = (U, Fj−1 ∪ {uvj} ∪R(Mj−1, u, vj)). Thus M ′

is a triangulation of M ′′ = (U, Fj−1 ∪ {uvj}) obtained from M ′′ by adding edges
incident to u only, since M ′′(Ui−1) = M(Ui−1) = M ′(Ui−1). By Theorem 3.8, Mj

is chordal and is a subgraph of M ′, which completes this part of the proof by
induction on j.

As a consequence, M(Ui) = Mk is chordal and is a subgraph of M ′ and since
M ′ is a subgraph of M(Ui), M ′ = M(Ui). This completes the proof by induction
on i, and thus M is a minimal triangulation of G.

Algorithm IMS : Let H = (V, D) be the output graph. We show again by
induction that H is a maximal chordal subgraph of G.

Induction hypothesis: H(Ui) is a maximal chordal subgraph of G(Ui), for 1 ≤ i ≤
n.

The base case i = 1 trivially holds. Assume that H(Ui−1) is a maximal chordal
subgraph of G(Ui−1), for some i between 2 and n. Let us show that H(Ui) is
chordal and is equal to any chordal subgraph H ′ of G(Ui) having H(Ui) as a
subgraph.

Let H ′ be a chordal subgraph of G(Ui) having H(Ui) as a subgraph. By
Lemma 4.1, H(Ui−1) is chordal and H(Ui−1) = H ′(Ui−1). We define u, U ,
(v1, v2, ..., vk), and Hj = (U,Dj) for 0 ≤ j ≤ k as above. Let us prove by induction
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on j that Hj is chordal, and if j ≥ 1 and uvj is an edge of H ′, then uvj ∈ Dj. The
base case j = 0 holds since H0 is obtained from chordal graph H(Ui−1) by adding
vertex u. Suppose that Hj−1 is chordal, and if j−1 ≥ 1 and uvj−1 is an edge of H ′,
then uvj−1 ∈ Dj−1, for some j between 1 and k. We show that this implies that
the same is true for Hj, vj and Dj. Let K = (U, Dj−1 ∪ {uvj} ∪R(Hj−1, u, vj)).
Hj is either equal to Hj−1 or to K, and since Hj−1 is chordal, by Theorem 3.8, Hj

is chordal. Now we assume that uvj is an edge of H ′. Let us show that uvj ∈ Dj.
H ′ is a triangulation of H ′′ = (U, Fj−1∪{uvj}) obtained from H ′′ by adding edges
incident to u only (since H ′′(Ui−1) = H(Ui−1) = H ′(Ui−1)). By Theorem 3.8, K
is a subgraph of H ′, and therefore of G(U). It follows that R(Hj−1, u, vj) ⊆ E,
which is the condition for adding edge uvj, so uvj ∈ Dj. Thus we have completed
the part of the proof by induction on j.

As a consequence, H(Ui) = Hk is chordal and every edge of H ′ incident to
u which has been processed is an edge of H(Ui). Since moreover H(Ui−1) =
H ′(Ui−1), unprocessed edges of G are edges of H and H(Ui) is a subgraph of
H ′, H ′ = H(Ui). This completes the proof by induction on i, and thus H is a
maximal chordal subgraph of G.

5 Data structure details and time complexity

The input graph G is represented by adjacency list data structure, and we use
a clique tree T of H as an additional data structure to store and work on the
transitory graph H. Thus, after the first step, T has only one tree node, which
contains start vertex s. As H grows, T will grow maintaining a correct clique
tree of H at all steps. Note that T will not always be connected at intermediate
steps, as H is not necessarily connected. In this case, each connected component
of T will be a correct clique tree of the corresponding connected component of
H.3

In what follows we describe an implementation of each of the following oper-
ations.

1. Compute the union X of all minimal u, v-separators in H, which gives the
required edge set R(H, u, v).

2. If R(H, u, v)∪{uv} is to be added to H, update T to reflect this modification
of H.

Each of these operations will be shown to require only O(n) time for each exam-
ined edge uv of G. We will devote a subsection to each of the above mentioned
operations. Subsection 5.1 describes how T is modified to obtain a path Pu,v

3We could have picked the new vertex u such that u ∈ NG(U), but this would result in less
general algorithms unnecessarily, and we want our algorithms to have on-line implementations.
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Figure 2: A chordal graph H is given in (a), and (b),(c), and (d) shows a clique
tree of H, where Cu = C1, Cv = C5, and Pu,v is the path between C1 and C5.
After steps (c) and (d), path Pu,v between C1 and C5 is in the desired form, and
only this portion of the tree is shown after step (d). In step (e), u is placed in
every tree node on Pu,v, and in step (f) C4 is separated from the path since edge
uq is not intended. C1 is removed in (g) since it becomes non-maximal. The new
corresponding graph H of which the modified tree is a clique tree is shown in (h).

such that every tree edge on Pu,v is a distinct minimal u, v-separator (Figure
2(b)-(d)), and how the union X of all these minimal separators is computed from
Pu,v. Subsection 5.2 describes how T is further modified to reflect the addition
of new edges to H (Figure 2(e)-(g)), and how to ensure that every tree node in
T is a unique maximal clique of H after the modifications.

Since we examine each edge at most once, and there are m edges, the desired
time bound will then follow. An illustration of what happens for each examined
edge uv is summarized in Figure 2; we will refer to parts of this figure as we
explain the details in the coming subsections. The main idea is to use a path
Pu,v of the current clique tree T between a tree node Cu that contains u and a
tree node Cv that contains v, and compute the union of tree edges on this path
that correspond to minimal u, v-separators. Unfortunately, the sum of the sizes
of these edges can be larger than O(n); in fact each edge can be of size O(n).
Thus, if the tree nodes and tree edges of T are implemented simply as vertex lists
containing vertices of each tree node and edge, then Operation 1 described above
cannot be accomplished in O(n) time. For this reason, we present a special kind
of implementation of the clique tree, as described below.

Every edge CC ′ of T is implemented as two lists that we will call difference

lists (difflists for short). One list contains vertices belonging to C \ C ′. This
list has two names; it is called both add(C ′, C) and remove(C, C ′). The other
list contains vertices belonging to C ′ \ C. This list is called add(C, C ′) and also
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Figure 3: A chordal graph H and its maximal cliques are given in (a). A clique
tree of H is given in (b), where each tree node contains the vertices of a unique
maximal clique in H. The difference list representation of the same clique tree as
in (b) is presented in (c). Tree node Cr is an empty tree node, that is used when
we want to compute the set of vertices contained in a tree node. The arrows
represent the add and remove lists, and the vertices contained in each list are
given by the label attached to the arrow.

remove(C ′, C). Now, if every tree node C of T contains pointers to its add and
remove lists, add and remove lists are in edges of T and not in every clique C
of T then C actually does not need to store a list of vertices that it contains.
Vertices belonging to C can be computed by using the edges incident to C as
follows. For every edge CC ′, if we know the set of vertices belonging to C ′, then
we add add(C ′, C) to this set and remove remove(C ′, C) from this set to get the
set of vertices belonging to C. In order to have a starting tree node we need
to know the content of one tree node, this might be an empty tree node. Note
that the add and remove lists and the structure of the tree are the only stored
information in this data structure. In Figure 3 a chordal graph is given in (a),
while the regular clique tree of this graph is given in (b), and the clique tree
represented by difference lists is given in (c).

5.1 Finding the minimal u, v-separators and computing

X

Let Ku be any maximal clique of H that contains u, and let Kv be any maximal
clique that contains v. If Ku and Kv are contained in different connected com-
ponents of T , then X = ∅ and there is nothing to compute. Let us for the rest
of this subsection assume that Ku and Kv are contained in the same connected
component of T .

On the path from Ku to Kv in T , do a search from Ku to Kv and let Cu be
the tree node closest to Kv containing u. Do a similar search from Kv to Ku and
let Cv be the tree node closest to Ku containing v. Let Pu,v denote the path of T
between Cu and Cv. An example graph H and Pu,v are given in Figure 2 (a) and
(b), respectively.
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Claim 5.1 Every minimal u, v-separator appears as an edge of Pu,v, and every

edge on Pu,v separates u and v.

Proof. By Theorem 2.1 we know that every internal node of Pu,v contains neither
u nor v. Theorem 2.3 ensures that every minimal separator S appearing as an
edge of Pu,v separates u and v, since removing S will separate Cu from Cv in the
clique tree, thus also separate u and v in the graph. Conversely, for any minimal
u, v-separator S of the graph, S contains as a subset some edge S ′ of Pu,v, since
removing S will separate u and v in the graph, thus also separate Cu from Cv in
the clique tree. Now, since S is a minimal u, v-separator containing S ′ and by
the first part of this proof, the edge S ′ of Pu,v separates u and v, S is equal to S ′.
Thus S appears as an edge of Pu,v.

However, some of the tree edges on Pu,v might be non-minimal u, v-separators,
and some minimal u, v-separators might appear several times as edges of Pu,v. We
will first modify T in O(n) time so that path Pu,v between Cu and Cv contains
only distinct minimal u, v-separators as its edges.

Observe first that, since every vertex can appear only once in an add list
and once in a remove list on the path Pu,v, the sum of the lengths of the add
and remove lists on the path Pu,v is at most 2n. We obtain our time bound
by reading every add and remove list in Pu,v at most a constant number of
times. The maximal cliques (tree nodes) on Pu,v are named C1, C2, ..., Ck, where
Cu = C1 is the tree node containing vertex u, and Cv = Ck is the tree node
containing v, and edge Si = Si,i+1 = CiCi+1 is an edge of Pu,v, for 1 ≤ i ≤ k − 1.
We will describe how unnecessary maximal cliques can be removed from Pu,v,
and after each removal, we will assume that the remaining maximal cliques and
minimal separators are resorted as C1, C2, ...Ck, so that before we explain each
new modification, we have a consecutive numbering of the maximal cliques on
Pu,v. When we must remove edges of Pu,v and insert edges between two non-
consecutive tree nodes of Pu,v, we will need a more general way of naming the
intersections between two maximal cliques that are not necessarily adjacent in T .
We let Si,j = Ci ∩ Cj denote the intersection between Ci and Cj.

Claim 5.2 Assume that there is a tree edge Sj on Pu,v, such that either Sj is not a

minimal u, v-separator in H or Sj is equal to another minimal separator appearing

on Pu,v. Then there exists a tree edge Si such that Si ⊆ Si+1 or Si ⊆ Si−1.

Proof. Observe first that, by Claim 5.1, every minimal u, v-separator appears
as an edge of Pu,v, and every edge on this path separates u from v. Thus, Sj is
a (not necessarily minimal) u, v-separator. Consequently, there exists a minimal
u, v-separator Si such that Si ⊆ Sj and i 6= j. Let Si+1 or Si−1 be the edge
adjacent to Si in Pu,v in the direction of Sj. Note that i + 1 or i− 1 and j might
be equal. It follows from Theorem 2.3 that Si ⊆ Si+1 or Si ⊆ Si−1 since Si ⊆ Sj.
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From Claim 5.2, we can conclude that, if no two adjacent tree edges are
comparable by subset relation, then Pu,v contains only distinct minimal u, v-
separators. We will test adjacent tree edges on Pu,v, and remove the ones that
include their neighbors as a subset. In order to obtain our time bound we have
to do this test in the difflist data structure.

Claim 5.3 Let the following path Ci, Si, Cj, Sj, Cl be a subpath of Pu,v. Then

Si ⊆ Sj if and only if remove(Cj, Cl) ⊆ add(Ci, Cj).

Proof. Assume that remove(Cj, Cl) ⊆ add(Ci, Cj). Observe that Si ∪ add(
Ci, Cj) = Sj ∪ remove(Cj, Cl) = Cj, since Si = Ci ∩ Cj and Sj = Cj ∩ Cl.
Remember that add and remove lists only contain the new vertices, and thus
Si ∩ add(Ci, Cj) = Sj ∩ remove(Cj, Cl) = ∅. We can now conclude that Si ⊆ Sj,
since remove(Cj, Cl) ⊆ add(Ci, Cj) and Si ∪ add(Ci, Cj) = Sj ∪ remove(Cj, Cl)
and Si ∩ add(Ci, Cj) = Sj ∩ remove(Cj, Cl) = ∅. For the other direction, assume
that Si ⊆ Sj. By the same arguments as in the opposite direction it follows that
remove(Cj, Cl) ⊆ add(Ci, Cj), since Si ∪ add(Ci, Cj) = Sj ∪ remove(Cj, Cl) and
Si ∩ add(Ci, Cj) = Sj ∩ remove(Cj, Cl) = ∅.

Claim 5.4 Let Si,i+1 and Sj,j+1 be tree edges on the path Pu,v in the clique tree

T , such that Si,i+1 ⊆ Sj,j+1 and i < j. Let T ′ be a clique tree obtained from T , by

deleting the tree edge Si,i+1 and inserting the tree edge Si,j+1. Then T ′ is a clique

tree of the chordal graph H represented by T .

Proof. The maximal cliques in the clique tree T , are untouched by this operation,
so there exists a maximal clique in T ′ containing the vertex pair u, v if and only
if uv ∈ E(H), and every vertex of H is contained in some maximal clique of T ′.
Since Si,i+1 ⊂ Ci and Si,i+1 ⊆ Sj,j+1 ⊂ Cj+1 then Si,j+1 = Ci ∩ Cj+1 = Si,i+1,
thus it follows that the set of maximal cliques containing a vertex of H induces
a connected tree in T ′ since this is true for T .

Given two tree edges Si,i+1 and Sj,j+1 of Pu,v then Claim 5.4 can be used to
reduce the length of the path Pu,v Thus, after this modification, the subpath of
Pu,v between Ci and Cj+1 is reduced to Ci, Si,j+1, Cj+1. This situation corresponds
to the change from (b) to (c) in Figure 2. The new add and remove lists for the
tree edge Si,j+1 can be computed in the following way:

add(Ci, Cj+1) =
⋃

i≤q<j+1

add(Cq, Cq+1) \
⋃

i<q<j+1

remove(Cq, Cq+1) (1)

remove(Ci, Cj+1) =
⋃

i≤q<j+1

remove(Cq, Cq+1) \
⋃

i<q<j+1

add(Cq−1, Cq). (2)
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The list add(Ci, Cj+1) can be computed in time O(|
⋃

i≤q<j+1 add(Cq, Cq+1)|+
|
⋃

i<q<j+1 remove(Cq, Cq+1)|) in the following way. Let A be a characteristic
vector of size n, where every element is 0. For every vertex u ∈

⋃
i≤q<j+1 add(

Cq, Cq+1), set A[u] = 1, and then for every vertex u ∈
⋃

i<q<j+1 remove(Cq, Cq+1),
set A[u] = 0. Now add(Ci, Cj+1) can be computed as follows. For every vertex
u ∈

⋃
i≤q<j+1 add(Cq, Cq+1) where A[u] = 1, add u to add(Ci, Cj+1). In order to

reuse the vector, we clean up: for every vertex u ∈
⋃

i≤q<j+1 add(Cq, Cq+1), set
A[u] = 0. The list remove(Ci, Cj+1) is computed in the same way.

Claim 5.5 Let Si,i+1 and Sj,j+1 be tree edges on the path Pu,v in the clique tree

T , such that i < j. Then Si,i+1 ⊆ Sj,j+1 if and only if remove(Cq, Cq+1) ⊆
add(Ci, Cq) for i < q ≤ j.

Proof. Let us first show that Si,i+1 ⊆ Sj,j+1 if remove(Cq, Cq+1) ⊆ add(Ci, Cq)
for i < q ≤ j. This is proved by induction on j, i < j.for any given i, where Claim
5.3 corresponds to j = i + 1, which we will use as the base case. Now for the
induction hypothesis, let us assume that Si,i+1 ⊆ Sj,j+1 if remove(Cq, Cq+1) ⊆
add(Ci, Cq) for i < q ≤ j, and let us prove that Si,i+1 ⊆ Sj+1,j+2 if moreover
remove(Cj+1, Cj+2) ⊆ add(Ci, Cj+1). Since Si,i+1 ⊆ Sj,j+1 then by Claim 5.4,
the path from Ci to Cj+1 can be reduced to Ci, Si,j+1, Cj+1, and from the proof
of Claim 5.4 we know that Si,j+1 = Si,i+1. Finally it follows by Claim 5.3 that
Si,i+1 = Si,j+1 ⊆ Sj+1,j+2 since remove(Cj+1, Cj+2) ⊆ add(Ci, Cj+1) in the new
path from Ci to Cj+2.

For the other direction, we want to show that remove(Cq, Cq+1) ⊆ add(Ci, Cq)
for i < q ≤ j if Si,i+1 ⊆ Sj,j+1. Let q such that i < q ≤ j. From Theorem 2.3 it
follows that Si,i+1 ⊆ Sq−1,q and Si,i+1 ⊆ Sq,q+1. Since Si,i+1 ⊆ Sq−1,q, from Claim
5.4 the tree edge Si,i+1 can be replaced with Si,q, where Si,i+1 = Si,q. Since Si,q =
Si,i+1 ⊆ Sq,q+1, it follows by Claim 5.3 that remove(Cq, Cq+1) ⊆ add(Ci, Cq).

If we do this reduction for every pair Si, Si+1 and Si+1, Si of edges on the
path Pu,v, then it follows from Claim 5.2 that every tree edge on Pu,v is a distinct
minimal u, v-separator. Thus, we are done with the part that is illustrated in
Figure 2(b)-(d). However, it remains to explain how to examine adjacent tree
edges in such a way that the total time bound O(n) is maintained.

The idea is to do this in two scans. One from Cu to Cv, and one from Cv

to Cu. The same operation is done for both directions, so we will only explain
the scan from Cu to Cv. Consider the tree edges in the order given by Pu,v. For
a given tree edge Si (starting from S1) we will try to find the largest number t
such that the intersection Si,i+t = Ci ∩ Ci+t is equal to Si. Replace Si by Si,i+t

and continue by finding the next t using Si+t as the new Si, and repeat this until
Ci+t = Cv.

A consequence of Theorem 2.3 is that there exists no q > 0 such that Si =
Si,i+t ⊆ Si+t+q, since Si,i+t 6⊆ Si+t+1, which is the property we want for all tree
edges on Pu,v in both directions.



20 A Vertex Incremental Approach for Maintaining Chordality

Computing the add(Ci, Ci+t) and remove(Ci, Ci+t) lists can be done as pre-
viously described by only reading the add and remove lists on the path Pu,v

between Ci and Ci+t. The next search starts from Ci+t, and thus the total time
used to compute all such lists are O(n), since every add and remove list on the
path Pu,v is only used to compute the difflists for one new tree edge, and the new
tree edges are never used to create other tree edges.

It remains to efficiently compute the value t, given a path Pu,v and a tree edge
Si = Si,i+1. The basic idea is as follows. Start with t = 1. While Si,i+1 ⊆ Si,i+t+1,
increment t and repeat the test until Si+1 6⊆ Si,i+t+1 or i + t = k. From Claim
5.5 we know that this is equivalent to testing whether remove(Ci+q, Ci+q+1) ⊆
add(Ci, Ci+q), for 1 ≤ q ≤ t. It is important to notice that if Si+1 ⊆ Si,i+t, then
we can verify if Si+1 ⊆ Si,i+t+1 by testing if remove(Ci+t, Ci+t+1) ⊆ add(Ci, Ci+t),
since we already know that remove(Ci+q, Ci+q+1) ⊆ add(Ci, Ci+q), for 1 ≤ q < t.
The remove(Ci+t, Ci+t+1) is only read once for each time we increment t, and no-
tice that remove(Ci, Ci+1) is not used in this test. Let us now argue that we do not
read any of the remove lists over again when we continue to find the next t. Every
remove list we read is removed from the path Pu,v, except remove(Ci+t, Ci+t+1)
which we used to decide that Si,i+1 6⊆ Si,i+t+1. The remove(Ci+t, Ci+t+1) list
becomes the new remove(Ci, Ci+1) list since we use Ci+t as the new Ci when we
search for the next t. The newly created remove(Ci, Ci+t) will not be used to
find the next t since we use Ci+t as Ci. Thus it follows that every remove list on
the path Pu,v is only used once for testing.

So it remains to explain how the list add(Ci, Ci+t) is computed and checked
against remove(Ci+t, Ci+t+1) list within the time bound. This is done by using a
characteristic vector A of size n as an additional data structure. We will manipu-
late the vector A, such that A[u] = 1 if and only if u ∈ add(Ci, Ci+t), and then we
check in O(|remove(Ci+t, Ci+t+1)|) time if remove(Ci+t, Ci+t+1) ⊆ add(Ci, Ci+t).
These checks can be done within the time bound, given that the vector A con-
tains the add(Ci, Ci+t−1) list and that these add lists are provided in an increasing
order for the parameter t.

Equation 1 can be rewritten in the following way: add(Ci, Ci+t) = add(Ci,
Ci+t−1) ∪ add(Ci+t−1, Ci+t) \ remove(Ci+t−1, Ci+t). This enables us to obtain
add(Ci, Ci+t) by setting A[u] = 1 for every vertex u ∈ add(Ci+t−1, Ci+t), and
setting A[u] = 0 for every vertex u ∈ remove(Ci+t−1, Ci+t), given that A con-
tains add(Ci, Ci+t−1). Notice that add(Ci+t−1, Ci+t) and remove(Ci+t−1, Ci+t)
are not used to compute add(Ci, Ci+t−1). Therefore, by setting A[u] = 1 if
u ∈ add(Ci, Ci+1) when t = 1, then the sequence of lists add(Ci, Ci+q), for
q ≤ k + 1, can be created in A in increasing order by only reading the add
and remove lists on the path between Ci and Ci+t+1 once. We have to ensure
that every element of A is 0 before we start to compute the next t. This is done
within the time bound by reading the add lists between Ci and Ci+t+1 once more,
and setting A[u] = 0 for every vertex u contained in one of these add lists.
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We have now argued that every operation required to reduce the path Pu,v so
that every tree edge in Pu,v is a distinct minimal u, v-separator, can be executed by
only reading each add and remove list of Pu,v a constant number of times. Since
every vertex only can appear once in a add list of Pu,v and once in a remove list,
it follows that the reduction of Pu,v is an O(n) operation.

Now we will see how to compute X. A pair ux belongs to R(H, u, v) if there
exists a minimal u, v-separator containing x. Our goal is to compute the set X
of vertices, where x ∈ X if ux ∈ R(H, u, v). Observe that C1 ⊆ N(u) , and thus,
only the vertices not in S1 are of interest. The path Pu,v is already modified such
that every tree edge is a minimal u, v-separator, and every minimal u, v-separator
is a tree edge in this path. We can compute X in the following way: start in Cu

with an empty vertex set X. Then for 1 ≤ i < k−1 add the vertices contained in
add(Ci, Ci+1) \ remove(Ci+1, Ci+2) to X. There might be vertices that are only
contained in a single maximal clique Ci, and thus not contained in any tree edge.
These vertices will be contained in both add(Ci, Ci+1) and remove(Ci+1, Ci+2).
We obtain the desired set X using a characteristic vector A. For each vertex
u ∈ remove(Ci+1, Ci+2) set A[u] = 1, then for each vertex u ∈ add(Ci, Ci+1)
where A[u] = 0 add u to X. Finally for the clean up we set A[u] = 0 for each
vertex u ∈ remove(Ci+1, Ci+2). Thus, we obtain the desired set X in O(n) time
since the add and remove lists are read a constant number of times and the total
sum of these lists on the path Pu,v is O(n).

5.2 Modifying T to reflect the addition of uv and R(H, u, v)

to H

Let us now discuss how to the clique tree T of H is built and updated as we
decide to add edges and vertices to H. When a new vertex u is added to the set
U , then H gets a new vertex, and we update T by adding a new maximal clique
containing u.

Let H ′ denote the graph that results from adding uv and R(H, u, v) to H. We
will modify T to obtain a clique tree T ′ of H ′. If u and v are not contained in
the same connected component of H and T , then we update T in the following
way. Find a tree node Kv of T containing v, and a tree node Ku of T containing
u. If |Kv| > 1 and |Ku| > 1 then we create a new tree node Kuv containing the
vertices {u, v}, and insert the tree edges KvKuv and KuKuv. The add and remove
lists for KvKuv and KuvKu can be computed straightforwardly in O(n) time. If
|Kv| = 1 or |Ku| = 1, let us say |Ku| = 1, then Ku has no neighbor in T . The new
tree T ′ is created by adding vertex v to Ku to obtain tree node Kuv and either
deleting Kv (if |Kv| = 1) or inserting the tree edge KvKuv (otherwise). Adding
vertex v to Ku (resp. deleting Kv) is an O(n) operation since Ku (resp. Kv) has
no neighbors, and inserting the tree edge KvKuv takes O(n) time.

Let us assume that u and v are contained in the same connected component
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of T and H for the rest of this subsection. In order to update T to reflect that u
has now become a neighbor of v and of every vertex in X, we simply place u in
every tree edge and every tree node appearing on Pu,v in T . This is illustrated in
Figure 2(e). However, we must check the resulting tree T ′ after doing so, because
there might be a tree node C on this path containing a vertex q not appearing in
any minimal u, v-separator, and in this case u was not supposed to be a neighbor
of q. Detecting such a tree node C is easy because then q cannot appear in any
other tree node of the path, since X is already computed and q 6∈ X. For any
such C, we remove u from C, and we introduce a new tree node C ′ that contains
u and every vertex of C except the vertices that do not appear in any other tree
node of Pu,v. Tree edges incident to C on Pu,v are redirected to be incident to
C ′ instead, and tree edge C ′C is added to give a clique tree T ′ that reflects the
neighborhood relations of H ′ correctly. This is illustrated in Figure 2(f), where C4

corresponds to the mentioned C. If Cu has become a subset of another maximal
clique because of this operation, then we must correct T ′ accordingly. This is
shown in Figure 2(g).

Let us now discuss the practical implementation of this O(n) time. First
remove the vertex u from the remove(C1, C2) list. This ensures that u belongs
to every maximal clique (tree node) on Pu,v. Let us now consider each maximal
clique Ci, 2 ≤ i ≤ k, in the order given by Pu,v. The first step is to decide if
Ci contains any vertex q as described above. We know that no such vertex q
appears in a tree edge of Pu,v, and that X is the union of the tree edges in Pu,v.
Thus, Q = add(Ci−1, Ci) \ (X ∪ {v}) is exactly the set of such vertices q that are
only contained in Ci. If Q = ∅, then we add u to Ci. This is done by adding
u to every add(Cl, Ci) list, where l 6∈ {i − 1, i + 1} and Cl is a neighbor of Ci

outside of Pu,v. The value of i can now be incremented, such that the process
can continue from the next tree node. In the case where Q 6= ∅, we have to
create a new tree node Ci′ = Ci ∩ (X ∪ {v}) ∪ {u}, and a new tree edge Si′,i

between Ci′ and Ci. This is done by simply creating the new lists add(Ci, Ci′)
and remove(Ci, Ci′) as follows: add(Ci, Ci′) = {u}, since Ci′ \ Ci = {u}, and
remove(Ci, Ci′) = Q. The lists add(Ci−1, Ci′), remove(Ci−1, Ci′), add(Ci′ , Ci+1)
and remove(Ci′ , Ci+1) are not created, but obtained by altering add(Ci−1, Ci),
remove(Ci−1, Ci), add(Ci, Ci+1) and remove(Ci, Ci+1). This is done by moving
the pointers from Ci to Ci′ , and removing all the vertices in Q from these lists.

Let us show that the O(n) time bound is kept during the modifications ex-
plained above. The vertex set Q is computed by storing X in a characteristic
vector A of size n, such that A[u] = 1 if and only if u ∈ X. A vertex u is contained
in Q if u ∈ add(Ci−1, Ci) and A[u] = 0, thus it follows that Q can be computed
in O(|add(Ci−1, Ci)|) time.

Creating each new tree node Ci′ is a constant time operation. Every time
a new Ci′ is created, we also create a new tree edge Si,i′ . We first argue that
the sum of the sizes of all the add(Ci, Ci′) and remove(Ci, Ci′) lists for all such



A Vertex Incremental Approach for Maintaining Chordality 23

new tree edges is O(n). This immediately follows from the fact that Q ⊆
add(Ci−1, Ci), add(Ci−1, Ci) ∩ add(Cj−1, Cj) = ∅ for 1 ≤ i, j < k i 6= j, and
∑

1≤i<k |add(Ci−1, Ci)| ≤ n. Thus, the total cost of creating all such new tree
edges Si,i′ is O(n). In order to move the tree edges Si−1,i and Si,i+1 to Si−1,i′

and Si′,i+1 we must change some pointers, and read through the lists to remove
vertices in Ci \ Ci′ = Q. The total cost of all such operations is less or equal
to the sum of all add and remove lists in Pu,v, given that Q also is stored in a
characteristic vector. It follows that this altogether is an O(n) time operation.

We will now, through the next three claims, prove that tree T ′ that results
from the modifications explained above is a clique tree of H ′ = (U,D ∪ {uv} ∪
R(H, u, v)).

Claim 5.6 Given a chordal graph H = (V, D), a clique tree T of H, an edge

uv, and the required set of edges R(H, u, v), let H ′ be the graph (V, D ∪ {uv} ∪
R(H, u, v)) and let T ′ be the resulting clique tree after updating T as explained

above. Then for each pair of vertices x and y, there is a tree node in T ′ that

contains both x and y if and only if xy ∈ D ∪ {uv} ∪R(H, u, v).

Proof. Before any modifications to T at this step, there is a tree node C ∈ T ,
that contains both the vertices x and y if and only if xy ∈ D. A tree node Cd is
only deleted during the modification process if there exists a remaining tree node
C ′

d, such that Cd ⊆ C ′

d. Thus, for every edge xy ∈ D there exists a tree node in
T ′ that contains both x and y.

Before appropriate tree nodes of T are expanded to contain u, every newly
created tree node Ci′ is a subset of some other tree node Ci. At this point we
have the property that the vertex set of every tree node of T is either a maximal
clique in H or a subset of a maximal clique in H. Thus T has still the property
that there exists a tree node containing x and y if and only if xy ∈ D.

Then u is added to every tree node C of T on the modified path Pu,v, where
C ⊆ X ∪ {v}, and we obtain T ′. It follows that for every edge xy 6∈ E(H ′), there
is no tree node C of T ′ that contains both x and y, since u is only added to a
tree node C if C ⊆ X ∪ {v}.

For the other direction we have to show that for every edge ux ∈ R(H, u, v)∪
{uv} there exists a tree node C in T ′ containing u and x. By Claim 5.1 every
minimal u, v-separator is an edge of Pu,v, thus there exists a tree node C in T on
Pu,v containing x for every ux ∈ R(H, u, v). The tree node Cv in the end of Pu,v

contains v. If C 6⊆ X ∪ {v} for a tree node C in T on Pu,v, then a new tree node
C ′ = C ∩ (X ∪ {v}) is created and used in the path Pu,v. We can now conclude
that for every edge ux ∈ R(H, u, v) ∪ {uv} there exists a tree node of T ′ which
contains both u and x.

Claim 5.7 Subtree T ′

x induced by the tree nodes in T ′ that contain vertex x is

connected, for every vertex x ∈ U .
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Proof. We assume that all subtrees are connected in T before the last modifi-
cation. Let us now consider the operations one by one. First operation is when
Ci 6∈ (X ∪ {v}). A new tree node Ci′ is created, where Ci′ ⊂ Ci. A tree edge is
inserted between Ci and Ci′ , but all subtrees are connected since Ci′ ⊂ Ci. Next
step is to move the edges Si−1,i and Si,i+1 to become Si−1,i′ and Si′,i+1. This will
not create separated subtrees since Si−1,i ∪ Si,i+1 ⊆ Ci′ , thus Si−1,i′ = Si−1,i and
Si′,i+1 = Si,i+1. The second operation is adding the vertex u to Ci′ in the case
where a new tree node Ci′ is created, and to Ci if no new tree node is created.
This changes only the tree induced by the tree nodes containing the vertex u.
Since we consider the tree nodes in the order C2 to Cv, then it follows that the
tree Tu is always connected.

Claim 5.8 The tree nodes of T ′ are exactly the distinct maximal cliques of H ′,

except for Cu in case Cu ⊆ C2.

Proof. Let us first show that every maximal clique of H ′ is a tree node of T ′.
By Claims 5.6 and 5.7, T ′ defines what is called a tree decomposition of H ′. So,
by [13] every clique in H ′ is contained in some node of T ′. Since by Claim 5.6
every tree node of T ′ is a clique in H ′, a maximal clique in H ′ cannot be strictly
contained in some tree node of T ′ and therefore is equal to one of them.
Conversely, let us show that tree nodes of T ′ are distinct maximal cliques of H ′,
except for Cu in case Cu ⊆ C2. Suppose on the contrary that some tree node C
of T ′ is not a maximal clique of H ′ or is a maximal clique of H ′ equal to another
node of T ′. Since every maximal clique of H ′ is a tree node of T ′ and since by
Claim 5.6, C is a clique of H ′, there is a tree node C ′ different from C containing
C. Let C ′′ be the neighbor of C on the path in T ′ between C and C ′. By Claim
5.7, C = C ∩C ′ ⊆ C ′′. It follows that it is sufficient to show that no tree node of
T ′ is a subset of one of its neighbors, except for Cu in case Cu ⊆ C2.

We will now prove by induction that C 6⊆ C ′′ unless C = Cu and C ′′ = C2,
where C and C ′′ are tree nodes of T ′. This is clearly true in the base case, where
H ′ consist of only one vertex and T ′ consist of a single tree node. Let H = (V, D)
be the chordal graph such that H ′ = (V, D ∪ {uv} ∪R(H, u, v)) and let T be the
given maximal clique tree of H. There are two cases. The first is when the vertex
u is added to a tree node C. The expanded C cannot become a subset of another
tree node, but it can become a superset of a tree node Cj, if Cj \C = {u}. Since
Cu is the only tree node in the neighborhood of any tree node different from Cu

in Pu,v that contains u, then this can only happen to Cu. The second case is when
a new tree node Ci′ is created as a subset of Ci, where u 6∈ Ci and Ci \ Ci′ 6= ∅.
In this situation Ci′ is a tree node on the path Pu,v and Ci is not, u is added
to Ci′ and not to Ci, thus Ci and Ci′ are not subsets of each other. From the
construction of Ci′ we know that every neighbor of Ci′ different from Ci is on the
path Pu,v. Let us now on the contrary assume that Ci′ ⊆ Ci−1 or Ci′ ⊆ Ci+1. If
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Ci′ ⊆ Ci+1 then Si−1,i′ ⊆ Ci′ = Si′,i+1, which is a contradiction to the fact that
every edge of Pu,v is a unique minimal u, v-separator. If Ci′ ⊆ Ci−1 then i = k
since otherwise Si′,i+1 ⊆ Ci′ = Si−1,i′ which is a contradiction to the fact that
every edge of Pu,v is a unique minimal u, v-separator. The only remaining case is
that Ci′ = Cv on the path Pu,v with Ci′ ⊆ Ci−1. Then v ∈ Ci′ , so v ∈ Ci−1 6= Cv

which is a contradiction to the fact that only Cv in Pu,v contains v.

Let us re-sort the tree nodes of the modified path Pu,v of T ′ from Cu = C1 to
Ck = Cv. With the above three claims, if Cu 6⊆ C2, then we have proved that T ′

is a legal clique tree of H ′. If Cu ⊆ C2, then we will simply remove Cu, and again
we can conclude that T ′ with this final modification is a legal clique tree of H ′.

However, it remains to explain how this final update of removing Cu = C1 can
be done in O(n) time, which is challenging. It is easy to check if C1 ⊆ C2, since
remove(C1, C2) = ∅ in this case. Tree node C1 is deleted in the following way:
For every tree edge S1,j where Cj 6= C2, we delete the tree edge S1,j and insert
S2,j. Afterwards we delete tree edge S1,2 and tree node C1. In order to do this
efficiently we actually alter the add and remove lists and move the tree edges from
C1 to C2. Let us consider the new tree node Cj, and how to create the add and
remove lists from Cj to C2. From the previous described technique they can be
computed as follows: add(Cj, C2) = add(Cj, C1) ∪ add(C1, C2) \ remove(C1, C2)
and remove(Cj, C2) = remove(C1, C2)∪remove(Cj, C1)\add(Cj, C1). Remember
that remove(C1, C2) = ∅, since C1 ⊆ C2, and that remove(Cj, C1)∩add(Cj, C1) =
∅. Computing the lists can then be reduced to: add(Cj, C2) = add(Cj, C1) ∪
add(C1, C2) and remove(Cj, C2) = remove(Cj, C1). The obstacle regarding the
time complexity is that add(C1, C2) will be read once for each neighbor of C1.
Thus, we have to ensure that this work does not sum up to more than O(n). Let
us count the number of times this can happen.

Claim 5.9 Let Cu ⊆ C2 in T ′, and let H ′′ be the chordal graph right before the

first edge uv′ incident to u and the set R(H ′′, u, v′) was added to H ′′, and let T ′′

be the clique tree of H ′′. Then Cu \{u} is not a tree node of T ′′ or in other words

Cu \ {u} is not a maximal clique of H ′′.

Proof. The tree T ′ is obtained from T ′′ by adding new tree nodes which are
subsets of tree nodes in T ′′ and by adding u to tree nodes of this new tree, since
only edges incident to u are processed between T ′′ and T ′. Clearly Cu \{u} is not
a tree node in T ′′, since Cu \ {u} ⊆ C2 \ {u} and C2 \ {u} is contained in some
tree node of T ′′, and every tree node of T ′′ is a unique maximal clique in H ′′.

Claim 5.10 Reducing path Pu,v such that it contains only distinct minimal u, v-
separators, can increase the degree of Cu by at most 1.

Proof. Two different scans are done on Pu,v to reduce the number of tree nodes.
The first starts in Cu, and finds the maximal clique furthest from Cu that is a
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superset of Su,2. In this case one tree edge incident to Cu is deleted, and one
is created, and the degree of Cu remains the same. In the direction from Cv to
Cu, we may find a tree edge that is a subset of Su,2. In this case Cu gets a new
neighbor and the degree of Cu increases by 1.

Observe that the process of reducing the path Pu,v can increase the degree of
at most one tree node containing the vertex u. This follows from the fact that
Cu is the only tree node in Pu,v containing the vertex u.

Claim 5.11 Adding u to every tree node in Pu,v does not increase the degree of

Cu.

Proof. One of two things will happen. In one case vertex u is added to C2, which
is the neighbor of Cu in the path Pu,v. This will not change the degree of Cu in
the clique tree T . The second case is if C2 is not a subset of X ∪ {v}. Then a
new tree node C ′

2 is created, and the tree edge between Cu and C2 is removed,
and inserted between Cu and C ′

2. It follows that the degree of Cu is unchanged.

Claim 5.12 The degree of each newly created tree node Ci′ in T ′ is at most 3.

Proof. When a new tree node Ci′ is created, it is a subset of an existing tree
node Ci. Let d be the number of neighbors Ci has in Pu,v. Thus, d is either 1 or
2. A tree edge is introduced between Ci′ and Ci, and Ci′ replaces Ci in the path
Pu,v. The degree of Ci′ becomes d + 1, and thus the degree is at most 3.

Remember that the obstacle in obtaining the O(n) time bound was that
add(Cu, C2) is read once for each neighbor of Cu, when add(Cj, C2) = add(
Cj, Cu) ∪ add(Cu, C2) is computed. It remains to show that if Cu ⊆ C2 in T ′

then
∑

CjCu edge of T ′, j 6=2 |add(Cu, C2)| is O(n). We will use an amortized time
analysis. Let vertex u be given, and let d(u) denote the degree of u in G. For
any neighbor v of u in G such that edge uv is processed in the execution of the
algorithm, let T ′(v) denote the tree T ′ when processing edge uv, let Cu(v) denote
tree node Cu of this tree, and let Cj(v) denote tree node Cj of T ′(v). Let V1 be
the set of neighbors v of u in G such that edge uv is processed and Cu(v) ⊆ C2(v).
Let S =

∑
v∈V1

∑
Cj(v)Cu(v) edge of T ′(v) |add(Cu(v), C2(v))|. It is sufficient to show

that S is O(n · d(u)). For any v ∈ V1, let E(v) be the set of edges incident to
Cu(v) in T ′(v), and let E1(v), E2(v), E3(v), and E4(v) be the following subsets
of E(v):

• E1(v) is the set of edges of E(v) created at the same time as Cu(v);

• E2(v) is the set of edges of E(v) inserted when reducing path Pu,v′ , with
Cu(v

′) = Cu(v), for some edge uv′ processed before uv;
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• E3(v) is the set of edges of E(v) inserted when suppressing Cu(v
′) because

Cu(v
′) ⊆ C2(v

′), with C2(v
′) = Cu(v), for some edge uv′ processed before

uv;

• E4(v) is the set of edges of E(v) inserted as an edge KuKuv′ or KuKv′ with
Ku = Cu(v), when previously processing an edge uv′ such that u and v′ are
in different connected components of the current graph.

It follows from Claim 5.9 that Cu(v) is created when inserting some edge uv′

previous to uv. The set E2(v), contains the edge incident to Cu(v
′) that may

be inserted when reducing path Pu,v′ during the scan from Cv′(v′) to Cu(v
′), but

not the edge that may be inserted during the scan from Cu(v
′) to Cv′(v′) in

replacement of edge Cu(v
′)C2(v

′): these two edges (the replaced and replacing
ones) are identified in our counting process. In the same way, the edge of E(v)
that may be inserted in replacement of Cu(v

′)C2(v
′) when adding u to C2(v

′) is
identified with the replaced edge. So by Claim 5.11, no edge of E(v) has been
inserted when adding u to C2(v

′) for any edge uv′ processed before uv, and every
edge of E(v) belongs to one of the sets E1(v), E2(v), E3(v), and E4(v).

Let e = Cj(v)Cu(v) be an edge of E3(v), and let v′ be the previously processed
vertex such that e was inserted when suppressing Cu(v

′) because Cu(v
′) ⊆ C2(v

′),
with C2(v

′) = Cu(v). Then v′ ∈ V1 and e is obtained from some edge e′ =
Cj′(v

′)Cu(v
′) belonging to E1(v

′)∪E2(v
′)∪E3(v

′)∪E4(v
′). We say that e derives

from e′. If e′ ∈ E3(v
′) then e′ derives from some edge e′′. It follows that there

are sequences (v0, v1, ..., vp = v) of vertices of V1 and (e0, e1, ..., ep = e) of edges
such that e0 ∈ E1(v0) ∪ E2(v0) ∪ E4(v0) and for any i from 1 to p, ei ∈ E3(vi)
and ei derives from ei−1. Conversely, for any v ∈ V1 and e ∈ E1(v) ∪ E2(v) ∪
E4(v), there are unique such sequences seq(e) = (v = v0, v1, ..., vp) and (e =
e0, e1, ..., ep) such that no edge derives from ep. So S can be rewritten as follows:
S =

∑
v∈V1

∑
e∈E1(v)∪E2(v)∪E4(v)

∑
v′∈seq(e) |add(Cu(v

′), C2(v
′))|.

If seq(e) = (v = v0, v1, ..., vp), then since Cu(vi) ⊆ C2(vi) for any i from 0 to
p and C2(vi) = Cu(vi+1) for any i from 0 to p − 1, we have that

∑
v′∈seq(e) |add(

Cu(v
′), C2(v

′))| =
∑

0≤i<p(|Cu(vi+1)| − |Cu(vi)|) + (|C2(vp)| − |Cu(vp)|) = |C2(
vp)| − |Cu(v0)| ≤ n.

Moreover, for any v ∈ V1, if Cu(v) was created as a node {u, v′} (when
processing an edge uv′ such that u and v′ are in different connected compo-
nents of the current graph) then |E1(v)| ≤ 2, and otherwise, by Claims 5.9
and 5.12, |E1(v)| ≤ 3, and by Claim 5.10,

∑
v∈V1
|E2(v)| ≤ d(u), and finally

∑
v∈V1
|E4(v)| ≤ d(u) since only one tree edge is added for each edge uv′ such

that u and v′ are contained in different connected components of T ′. Hence S ≤
n(
∑

v∈V1
(|E1(v)|+ |E2(v)|+ |E4(v)|) ≤ n(3|V1|+ 2d(u)) ≤ n · 5d(u) = O(n · d(u)).
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6 Concluding remarks

In this paper, we contribute new theoretical results on chordality as well as an
efficient handling of the corresponding data structures. Not only do we have
a new O(nm) time on-line algorithm for minimal triangulation of a graph G,
but we are able to compute at the same time a maximal chordal subgraph, thus
“minimally sandwiching” the graph between two chordal graphs: H1 ⊆ G ⊆ H2.

This special feature of our algorithm enables the user, at no extra cost, to
choose at each vertex addition step whether he wants to add or delete edges, or
even to do so at each edge addition step. This may be interesting for applications
such as updating databases or for sampling techniques in the context of artificial
intelligence when maintaining a chordal graph is required or desirable.

Recent work has shown that minimal separation plays an important role in
the process of minimal triangulation. Our new characterization of chordal graphs,
which uses minimal separation, leads us to believe that there is a corresponding
relationship when computing a maximal chordal subgraph.

A continuation of this work would be to compare the running time of our al-
gorithm to other minimal triangulation algorithms with experimental tests. Since
often several edges are found and inserted at the time cost of one edge, we conjec-
ture that our algorithm may be very fast in practice. Another important issue to
inquire about would be how well our algorithm performs when used as a heuristic
for hard problems, such as computing a minimum triangulation or a maximum
subtriangulation. Standard ideas from existing heuristics, like picking a vertex of
minimum degree at each step, could be integrated into our algorithm and possibly
result in higher probability of less fill in minimal triangulations and more edges
in maximal subtriangulations.

It appears that chordal graphs are in many ways similar to weakly chordal
graphs [23, 8, 7]. It would be interesting to extend our results to define a process
which maintains a weakly chordal graph, thus enabling efficient computation of
a weak minimal super or maximal sub triangulation, which is an important issue
for recent applications to formal concept analysis and data mining [9]. As we
pointed out in Section 3, the required set of edges can be seen as a succession of
2-pairs which is computed efficiently. In view of the important role that 2-pairs
play in weakly chordal graph recognition [24, 33, 25], our results could possibly
be extended to efficiently handle such a succession of 2-pairs in a weakly chordal
graph, with the hope of improving the current O(m2) [25] time complexity for
this problem.
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