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45067 Orléans Cedex 2, France
Ioan.Todinca@lifo.univ-orleans.fr

Yngve Villanger

Department of Informatics
University of Bergen
5020 Bergen, Norway

yngvev@ii.uib.no

Abstract

We show that there are O(1.8899n) time algorithms to compute the
treewidth and the minimum fill-in of each graph G on n vertices. Our
result is based on a combinatorial proof that each graph on n vertices
has at most n · 1.7087n minimal separators and that all potential maximal
cliques can be listed in O(1.8899n) time. For the class of AT-free graphs
we obtain O(1.4142n) time algorithms to compute treewidth and minimum
fill-in.

Keywords: Exact exponential algorithm, treewidth, fill-in, minimal separators,
potential maximal clique, minimal triangulation

∗A preliminary version [26] of this paper has been presented at the 31st International Col-
loquium on Automata, Languages and Programming, Turku, Finland, July 2004.

†Supported by The Aurora Programme Collaboration Research Project between Norway
and France.

‡Fedor Fomin acknowledges support of Norges forskningsr̊ad, project 160778/V30.



2 Exact algorithms for treewidth and minimum fill-in

1 Introduction

Exact exponential algorithms. The interest in exact (fast) exponential al-
gorithms dates back to Held and Karp’s paper [29] on the travelling salesman
problem in the early sixties. Mention just a few examples: time O∗(1.4422n) algo-
rithm for Knapsack (Horowitz and Sahni [30]); time O∗(1.2600n) and O∗(1.2109n)
algorithms for Independent Set (Tarjan and Trojanowski [44], Robson [40]); 3-
Coloring in time O∗(1.4422n) (Lawler [34]); 3-SAT in time O∗(1.6181n) (Monien
and Speckenmeyer [35]).

In this paper we use a modified big-Oh notation that suppresses all other
(polynomially bounded) terms. For functions f and g we write f(n) = O∗(g(n))
if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial. This modification may
be justified by the exponential growth of f(n).

Nowadays, it is common believe that NP-hard problems can not be solved
in polynomial time. For a number of NP-hard problems, we even have strong
evidence that they cannot be solved in sub-exponential time. In order to obtain
exact solutions to these problems, the only hope is to design exact algorithms
with good exponential running times. How good can these exponential running
times be? Can we reach 2n2

for instances of size n? Can we reach 10n? Or even
2n? Or can we reach cn for some constant c that is very close to 1? The last
years have seen an emerging interest in attacking these questions for concrete
combinatorial problems: There is an O∗(2.4150n) time algorithm for Coloring
(Byskov [15]); an O∗(1.3289n) time algorithm for 3-Coloring (Beigel and Eppstein
[3]); an O∗(1.7325n) time algorithm for Max-Cut (Williams [47]); an algorithms
for 3-SAT in time O∗(1.4726n) (Brueggemann and Kern [14]); an O∗(1.5129n)
time algorithm for Dominating Set (Fomin et al. [25]).

There can be several explanations why now the algorithmic community wit-
nesses the revival of the interest in fast exponential algorithms:

• The design and analysis of exact algorithms leads to a better understand-
ing of NP-hard problems and initiates interesting new combinatorial and
algorithmic challenges.

• For certain applications it is important to find exact solutions. With the
increased speed of modern computers, fast algorithms, even though they
have exponential running times in the worst case, may actually lead to
practical algorithms for certain NP-hard problems, at least for moderate
instance sizes.

• Approximation, randomized algorithms and different heuristics are not al-
ways satisfactory. Each of these approaches has weak points like necessity
of exact solutions, difficulty of approximation, limited power of the method
itself and many others.
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• A reduction of the base of the exponential running time, say from O(2n) to
O(1.8n), increases the size of the instances solvable within a given amount
of time by a constant multiplicative factor. However running a given expo-
nential algorithm on a faster computer can enlarge the mentioned size only
by a constant additive factor.

For overviews and introductions to the field see the recent surveys by Iwama
[31], Schöning [42], and Woeginger [48, 49].

Treewidth and minimum fill-in. Treewidth is one of the most basic parame-
ters in Graph Algorithms [6] and it plays an important role in structural Graph
Theory. It serves as one of the main tools in Robertson and Seymour’s Graph
Minors project [39]. Treewidth also plays a crucial role in parameterized complex-
ity theory [21]. The minimum fill-in problem (also known as minimum chordal
graph completion) has important applications in sparse matrix computations and
computational biology.

The problems to compute the treewidth and minimum fill-in of a graph are
known to be NP-hard even when the input is restricted to complements of bi-
partite graphs (so called cobipartite graphs) [2, 50]. Despite of the importance
of treewidth almost nothing is known on how to cope with its intractability. For
a long time the best known approximation algorithm for treewidth had a fac-
tor log OPT [1, 11] (see also [7]). Recently, Feige et al. [23] obtained factor√

log OPT approximation algorithm for treewidth. Furthermore it is an old open
question whether the treewidth can be approximated within a constant factor.

Treewidth is known to be fixed parameter tractable. Moreover, for any fixed
k, there is a linear time algorithm to compute the treewidth of graphs of treewidth
at most k (unfortunately there is a huge hidden constant in the running time) [5].
There is a number of algorithms that for a given graph G and integer k, either
report that the treewidth of G is at least k, or produce a tree decomposition of
width at most c1 ·k in time c2

k ·nO(1), where c1, c2 are some constants (see e.g.
[1]). Fixed parameter algorithms are known for the minimum fill-in problem as
well [17, 32].

We are not aware about any previous work on exact algorithms for the treewidth
or minimum fill-in problem. There are three relatively simple approaches result-
ing in time O∗(2n) algorithms:

• One can reformulate the problems as problems of finding special vertex elim-
ination orderings and then find an optimal permutation by using the dy-
namic programming based technique like in the article of Held & Karp [29]
for the travelling salesman problem;

• With some modifications, the algorithm of Arnborg et al. [2] for a given k
deciding in time O(nk+1) if the treewidth of a graph is at most k, can be
used to compute the treewidth (and similarly fill-in) in time O∗(2n);
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• Both problems can be solved by making use of game theoretic approach, by
finding a specific path in the graph of possible states of Cop and Robber
game [24].

However it is not clear if any of the mentioned approaches can bring us to
time O∗(cn) algorithm for some c < 2.

Our results. In this paper we obtain the first exact algorithm computing the
treewidth in time O∗(cn) for c < 2. Additionally it can be adapted to solve a
number of other minimal triangulation problems like minimum fill-in.

Our main result is an O∗(1.8899n) algorithm computing the treewidth and
minimum fill-in of a graph on n vertices. The algorithm can be regarded as
dynamic programming across partial solutions and is based on results of Bouchitté
& Todinca [9, 10]. The analysis of the running time is difficult and is based
on combinatorial properties of special structures in a graph, namely, potential
maximal clique, i.e. vertex subsets in a graph that can be maximal cliques in some
minimal triangulation of this graph. (See the next section for the definition.)

More precisely, first we modify the algorithm of Bouchitté & Todinca [9] which
computes the treewidth and minimum fill-in of a graph G with the given set ΠG

of all potential maximal cliques of G and then improve the analysis of its running
time to obtain an O∗(|ΠG|) time complexity. The most technical and difficult
part of the paper is the proof that all potential maximal cliques can be listed in
time O∗(1.8899n). Very roughly, our listing algorithms is based on the following
combinatorial result: every “large” potential maximal clique is either “almost”
a minimal separator, or can be represented by a “small” vertex subset. The
technique developed to prove this combinatorial result can be interesting on its
own.

For several special graph classes, for which both problems remain NP-com-
plete, we are able to prove that our approach guarantees significantly better
bounds. To exemplify this we show that for the class of AT-free graphs the
number of minimal separators and the number of potential maximal cliques, and
thus the running time of our algorithm, is O∗(2n/2).

This paper is organized as follows. In Section 2 we give basic definitions. In
Section 3 we show how Bouchitté & Todinca’s approach can be used to compute
the treewidth and fill-in in time linear in the number of potential maximal cliques.
In Section 4 we prove that every graph on n vertices has O(n · 1.7087n) minimal
separators. The results of Section 4 are used in Section 5, where we derive the
most difficult and important combinatorial result of this paper, namely, that all
potential maximal cliques of a graph can be listed in time O∗(1.8899n). Com-
bining with the results from Section 3, this yields the main result of the paper,
that the treewidth and minimum fill-in can be computed in time O∗(1.8899n). In
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Section 6 we design faster O∗(2n/2) algorithm on AT-free graphs. We conclude
with open problems and final remarks in Section 7.

2 Basic definitions

We denote by G = (V, E) a finite, undirected and simple graph with |V | = n
vertices and |E| = m edges. For any non-empty subset W ⊆ V , the subgraph of
G induced by W is denoted by G[W ]. For S ⊆ V we often use G \ S to denote
G[V \ S]. The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E} and
for a vertex set S ⊆ V we set N(S) =

⋃
v∈S N(v) \S. A clique C of a graph G is

a subset of V such that all the vertices of C are pairwise adjacent. By ω(G) we
denote the maximum clique-size of a graph G.

Treewidth and minimum fill-in of graphs. The notion of treewidth is due to
Robertson & Seymour [38]. A tree decomposition of a graph G = (V, E), denoted
by TD(G), is a pair (X, T ) in which T = (VT , ET ) is a tree and X = {Xi|i ∈ VT}
is a family of subsets of V such that:

(i)
⋃

i∈VT
Xi = V ;

(ii) for each edge e = {u, v} ∈ E there exists an i ∈ VT such that both u and v
belong to Xi; and

(iii) for all v ∈ V , the set of nodes {i ∈ VT |v ∈ Xi} induces a connected subtree
of T .

The maximum of |Xi| − 1, i ∈ VT , is called the width of the tree decomposition.
The treewidth of a graph G, denoted by tw(G), is the minimum width taken over
all tree decompositions of G.

A graph H is chordal (or triangulated) if every cycle of length at least four
has a chord, i.e. an edge between two non-consecutive vertices of the cycle.
A triangulation of a graph G = (V, E) is a chordal graph H = (V, E ′) such
that E ⊆ E ′. H is a minimal triangulation if for any intermediate set E ′′ with
E ⊆ E ′′ ⊂ E ′, the graph F = (V, E ′′) is not chordal.

The following result is very useful for our algorithms.

Theorem 1 (Folklore). For any graph G, tw(G) ≤ k if and only if there is a

triangulation H of G such that ω(H) ≤ k + 1.

Thus the treewidth of a graph G can be defined as the minimum of ω(H)− 1
taken over all triangulations H of G, of ω(H)− 1.

The minimum fill-in of a graph G = (V, E), denoted by mfi(G), is the smallest
value of |EH−E|, where the minimum is taken over all triangulations H = (V, EH)
of G.
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In other words, computing the treewidth of G means finding a (minimal) tri-
angulation with the smallest maximum clique-size, while computing the minimum
fill-in means finding a (minimal) triangulation with the smallest number of edges.
Clearly, in both cases it is sufficient to consider only minimal triangulations of G,
which makes minimal separators and potential maximal cliques important tools
of our algorithmic approach.

Minimal separators. Minimal separators and potential maximal cliques are
the most important tools used in our proofs. Let a and b be two non adjacent
vertices of a graph G = (V, E). A set of vertices S ⊆ V is an a, b-separator if
a and b are in different connected components of the graph G \ S. A connected
component C of G \ S is a full component (associated to S) if N(C) = S. S is
a minimal a, b-separator of G if no proper subset of S is an a, b-separator. We
say that S is a minimal separator of G if there are two vertices a and b such that
S is a minimal a, b-separator. Notice that a minimal separator can be strictly
included in another one. We denote by ∆G the set of all minimal separators of G.
A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if there
is a minimal triangulation H of G such that Ω is a maximal clique of H. We
denote by ΠG the set of all potential maximal cliques of G. Clearly, |∆G| ≤ 2n

and |ΠG| ≤ 2n for every graph G on n vertices, and no better upper bounds had
been known prior to our work.

The following result will be used to list all minimal separators of a graph.

Theorem 2 ([4]). There is an algorithm listing all minimal separators of an

input graph G in O(n3|∆G|) time.

There is a very useful relationship between the minimal separators of a graph
and its minimal triangulations. Two minimal separators S and T of a graph
G are said to be crossing if S is a minimal u, v-separator for a pair of vertices
u, v ∈ T , in which case T is a minimal x, y-separator for a pair x, y ∈ S.

Theorem 3 ([37]). The graph H is a minimal triangulation of the graph G if

and only if there is a maximal set of pairwise non-crossing minimal separators

{S1, S2, . . . , Sp} of G such that H can be obtained from G by completing each Si,

i ∈ {1, 2, . . . , p}, into a clique.

Although we do not use this characterization explicitly it is fundamental for
our paper.

Potential maximal cliques. The following structural characterization of po-
tential maximal cliques is extremely useful for our purposes.

For a set K ⊆ V , a connected component C of G \ K is a full component

associated to K if N(C) = K.
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Theorem 4 ([9]). Let K ⊆ V be a set of vertices of the graph G = (V, E). Let

C(K) = {C1(K), . . . , Cp(K)} be the set of the connected components of G\K and

let S(K) = {S1(K), S2(K), . . . , Sp(K)} where Si(K), i ∈ {1, 2, . . . , p}, is the set

of those vertices of K which are adjacent to at least one vertex of the component

Ci(K). Then K is a potential maximal clique of G if and only if :

1. G \K has no full component associated to K, and

2. the graph on the vertex set K obtained from G[K] by completing each Si ∈
S(K) into a clique, is a complete graph.

Moreover, if K is a potential maximal clique, then S(K) is the set of the minimal

separators of G contained in K.

Remark. By Theorem 4, for every potential maximal clique Ω of G, the sets Si(Ω)
are exactly the minimal separators of G contained in Ω. Let us point out that
for each minimal separator Si = Si(Ω), all vertices of Ω \ Si are contained in the
same component of G \ Si.

The following result is an easy consequence of Theorem 4.

Theorem 5 ([9]). There is an algorithm that, given a graph G = (V, E) and a

set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The time

complexity of the algorithm is O(nm).

According to [10], the number of potential maximal cliques of a graph G is at
least |∆G|/n and at most n|∆G|

2+n|∆G|+1. We will show later that a graph on n
vertices has O∗(1.7087n) minimal separators and O∗(1.8899n) potential maximal
cliques.

Let us emphasize that it is an open question whether there is an algorithm
listing all potential maximal cliques of any graph with a running time O(poly(n) ·
|ΠG|) for some polynomial poly(n).

3 Computing treewidth and minimum fill-in

We describe a modification of the algorithm of [9] that, given a graph, all its
minimal separators and all its potential maximal cliques, computes the treewidth
and the minimum fill-in of the graph. The running time stated in [9] could be re-
formulated as O(n2 |∆G| · |ΠG|). We show how the algorithm can be implemented
to run in time O(n3 · |ΠG|).

For a minimal separator S and a component C ∈ C(S) of G \ S, we say
that (S, C) is a block associated to S. We sometimes use the notation (S, C) to
denote the set of vertices S ∪ C of the block. It is easy to notice that if X ⊆ V
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corresponds the set of vertices of a block, then this block (S, C) is unique: indeed
S = N(V \X) and C = X \ S.

A block (S, C) is called full if C is a full component associated to S. The
graph R(S, C) = GS[S∪C] obtained from G[S∪C] by completing S into a clique
is called the realization of the block B.

Theorem 6 ([33]). Let G be a non-complete graph. Then

tw(G) = min
S∈∆G

max
C∈C(S)

tw(R(S, C))

mfi(G) = min
S∈∆G

(fill(S) +
∑

C∈C(S)

mfi(R(S, C)))

where fill(S) is the number of non-edges of G[S].

Remark. In the equations of Theorem 6 we may take the minimum only over the
inclusion-minimal separators of G. Then all the blocks in the equations are full.

Unfortunately, Theorem 6 is not sufficient for computing the treewidth and
the minimum fill-in. Therefore we now express the treewidth and the minimum
fill-in of realizations of full blocks from realizations of smaller full blocks. Let Ω
be a potential maximal clique of G. We say that a block (S ′, C ′) is associated to

Ω if C ′ is a component of G \ Ω and S ′ = N(C ′).

Theorem 7 ([9]). Let (S, C) be a full block of G. Then

tw(R(S, C)) = min
S⊂Ω⊆(S,C)

max(|Ω| − 1, tw(R(Si, Ci)))

mfi(R(S, C)) = min
S⊂Ω⊆(S,C)

(
fill(Ω)− fill(S) +

∑
mfi(R(Si, Ci))

)

where the minimum is taken over all potential maximal cliques Ω such that S ⊂
Ω ⊆ (S, C) and (Si, Ci) are the blocks associated to Ω in G such that Si ∪ Ci ⊂
S ∪ C.

Theorem 8. There is an algorithm that, given a graph G together with the list

of its minimal separators ∆G and the list of its potential maximal cliques ΠG,

computes the treewidth and the minimum fill-in of G in O(n3 |ΠG|) time. More-

over, the algorithm constructs optimal triangulations for the treewidth and the

minimum fill-in.

Proof. W.l.o.g. we may assume that the input graph G is connected (otherwise
we can run the algorithm for each connected component of G).

The algorithm for computing the treewidth and the minimum fill-in of a graph,
using its minimal separators and its potential maximal cliques is given below. It
is a slightly different version of the algorithm given in [9].
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Input: G, all its potential maximal cliques and all its minimal separators
Output: tw(G) and mfi(G)
begin

compute all the full blocks (S, C) and sort them by the number of vertices
for each full block (S, C) taken in increasing order

tw(R(S, C)) := |S ∪ C| − 1 if (S, C) is inclusion-minimal
and tw(R(S, C)) :=∞ otherwise

mfi(R(S, C)) := fill(S ∪ C) if (S, C) is inclusion-minimal
and mfi(R(S, C)) :=∞ otherwise

for each p.m.c. Ω with S ⊂ Ω ⊆ (S, C)
compute the blocks (Si, Ci) associated to Ω s.t. Si ∪ Ci ⊂ S ∪ C

tw(R(S, C)) := min(tw(R(S, C)),
max

i
(|Ω| − 1, tw(R(Si, Ci))))

mfi(R(S, C)) := min(mfi(R(S, C)),

fill(Ω)− fill(S) +
∑

i

(mfi(R(Si, Ci))))

end for

end for

let ∆∗

G be the set of inclusion-minimal separators of G

tw(G) := min
S∈∆∗

G

max
C∈C(S)

tw(R(S, C))

mfi(G) := min
S∈∆∗

G

(fill(S) +
∑

C∈C(S)

mfi(R(S, C)))

end

For the sake of completeness we shortly discuss the correctness proof. Ac-
cording to Theorem 7, at the end of the outer for loop the values of tw(R(S, C))
and mfi(R(S, C)) are correctly computed, for each full block (S, C) of G. Then
the treewidth and the minimum fill-in of the graph are computed using Theo-
rem 6 and the fact that in Theorem 6 one can work only with inclusion-minimal
separators.

Let us show how the algorithm can be implemented in time O(n3 · |ΠG|).
To store and manipulate the minimal separators, potential maximal cliques

and blocks we use data structures that allow to search, to insert or to check
whether an element is inclusion-minimal in O(n) time.

During a preprocessing step, we realize the following operations.

• Compute the list of all full blocks and, for each minimal separator S, store
a pointer towards each full block of type (S, C). These operations are per-
formed as follows. For each minimal separator S, we compute the connected
components of G \ S. For each such component C, if N(C) = S then the
block (S, C) is full, so we add it to the list of full blocks and store the
pointer from S to (S, C). Note that this procedure will generate all the full
blocks, and each of them is encountered exactly once. For a given minimal
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separator S, there are at most n full blocks associated to it, so at most n
pointers to be stored. The insertion of these blocks into the list of full blocks
requires O(n) time for each block. Hence the whole step costs O(n2|∆G|)
time.

• For each potential maximal clique Ω, store a pointer to each full block
associated to it as follows: compute the components Ci of G \ Ω and then
(N(Ci), Ci) are precisely the blocks associated to Ω. In particular there are
at most n such blocks. This computation can be done in O(n2) time for
each potential maximal clique, so globally in O(n2|ΠG|) time.

• Compute all the good triples (S, C, Ω), where (S, C) is a full block and Ω is
a potential maximal clique such that S ⊂ Ω ⊆ S ∪ C. Moreover, for each
good triple we store a pointer from (S, C) to Ω. By Theorem 4, there are at
most n minimal separators S ⊂ Ω each of them being the neighborhood of
a component of G \ Ω and for each such S there is exactly one component
G \ S intersecting Ω (in particular there are at most n|ΠG| good triples).
For each component C ′ of G \ Ω we take S = N(C ′), find the component
C of G \ S intersecting Ω and store the pointer from (S, C) to Ω. Thus
this computation takes O(nm) time for each potential maximal clique, so
O(nm|ΠG|) globally.

Hence this preprocessing step costs O(n2|∆G| + nm|ΠG|). Sorting the blocks by
their size can be done in O(n|∆G|) time using a bucket sort.

Observe that the cost of one iteration of the inner for loop isO(n2), by the fact
that there are at most n blocks associated to a potential maximal clique. With
the data structures obtained during the preprocessing step, each full block (S, C)
keeps a pointer towards each potential maximal clique Ω such that (S, C, Ω) form
a good triple. Thus the number of iterations of the two nested loops is exactly
the number of good triples, that is at most n|ΠG|. It follows that the two loops
cost O(n3|ΠG|) time.

After the execution of the loops, computing the set ∆∗

G of inclusion-minimal
separators costs O(n|∆G|) time. Each inclusion-minimal separator S keeps the
list of its associated blocks, obtained during the preprocessing step. Computing
the maximum required by the two last instructions costs O(n) time for a given
S. This last step costs O(n|∆G|) time.

Altogether, the algorithm runs in time O(n2 · |∆G| + n3 · |ΠG|). It is known
[10] that each minimal separator is contained in at least one potential maximal
clique. According to Theorem 4, each potential maximal clique contains at most
n minimal separators. Therefore |ΠG| ≥ |∆G|/n. We conclude that the algorithm
runs in O(n3 · |ΠG|) time.

The algorithm can be easily transformed in order to output not only the
treewidth and the minimum fill-in of the graph, but also optimal triangulations
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with respect to these parameters. It is sufficient to keep, for each full block, the
set of potential maximal cliques realizing the minimum treewidth and fill-in of
its realization. At the end of the algorithm, the potential maximal cliques of the
chosen blocks will be the maximal cliques of the computed optimal triangulation:
optimal tree decomposition or minimum triangulation.

Using Theorem 8, the only missing ingredient of our treewidth and minimum
fill-in algorithms is an algorithm listing all (minimal separators and) potential
maximal cliques of a graph in time O∗(cn) for some c < 2. This requires ex-
ponential upper bounds of the type O∗(cn) for some c < 2 for the number of
minimal separators and for the number of potential maximal cliques in a graph
on n vertices. In the next two sections we discuss this issue.

4 Upper bounding the number of minimal sep-

arators

In this section we show that any graph with n vertices has O(n ·1.7087n) minimal
separators. For the main algorithm of this paper the upper bound O∗(1.8899n)
would be sufficient. However, bounding the number of minimal separators in a
graph is a nice combinatorial problem and we prefer to give here the best upper
bound we were able to find.

Let S be a separator in a graph G = (V, E). For x ∈ V \ S, we denote by
Cx(S) the component of G \ S containing x. The following lemma is an exercise
in [28].

Lemma 9 (Folklore). A set S of vertices of G is a minimal a, b-separator if and

only if a and b are in different full components associated to S. In particular, S is

a minimal separator if and only if there are at least two distinct full components

associated to S.

Here is the main combinatorial result.

Theorem 10. For any graph G, |∆G| = O(n · 1.7087n).

Let us note, that by Theorem 2, Theorem 10 yields that all minimal separators
of a graph can be listed in time O(n4 · 1.7087n).

Proof. For a constant α, 0 < α < 1, we distinguish two types of minimal separa-
tors: small separators, of size at most αn, and big separators, of size more than
αn. We denote the cardinalities of these sets by #small sep and #big sep.
Notice that |∆G| = #small sep + #big sep.
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4.1 Upper bounding the number of big separators

Let S be a minimal separator. By Lemma 9, there are at least two full components
associated to S. Hence at least one of these full components has at most n(1−α)/2
vertices. For every S ∈ ∆G we choose one of these full components, and call it
the small component of S, denoted by s(S).

By the definition of a full component, S = N(s(S)). In particular, for distinct
minimal separators S and T , we have that s(S) 6= s(T ). Therefore the number
#big sep of big minimal separators is at most the number of small components
and we conclude that #big sep does not exceed the number of subsets of V of
cardinality at most n(1− α)/2, i.e.

#big sep ≤

dn(1−α)/2e∑

i=1

(
n

i

)

By making use of Stirling’s formula we deduce that:

#big sep ≤
n(1− α)

2
(πn(1− α)(1 + α)/2)−

1
2

[(
1− α

2

)
−

1−α
2

(
1 + α

2

)
−

1+α
2

]n

4.2 Upper bounding the number of small separators

To count small separators we use a different technique. Let S be a minimal
separator, let x be a vertex of a full component Cx(S) associated to S with
minimum number of vertices and let X ⊂ V be a vertex subset. We say that
(x, X) is a bad pair associated to S if Cx(S) ⊆ X ⊆ V \ S.

Claim 1. Let S 6= T be two minimal separators and let (x, X) and (y, Y ) be two

bad pairs associated to S and T respectively. Then (x, X) 6= (y, Y ).

Proof. Since Cx(S) ⊆ X and X∩S = ∅, we have that the connected component of
G[X] containing x is Cx(S). Similar, the connected component of G[Y ] containing
y is Cy(T ).

Thus if x = y and X = Y , then Cx(S) = Cy(T ). Since Cx(S) is a full
component associated to S in G, we have that S = N(Cx(S)) and T = N(Cy(T )).
Therefore S = T , which is a contradiction.

By Lemma 9, there are at least two full components associated to every small
separator S. For a full component Cx(S) associated to S with the minimum
number of vertices, |V \(S∪Cx(S))| ≥ n ·(1−α)/2. For any Z ⊆ V \(S∪Cx(S)),
the pair (x, Z ∪Cx(S)) is a bad pair associated to S. Therefore there are at least
2n·(1−α)/2 distinct bad pairs associated to S. Hence by Claim 1, the total number
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of bad pairs is at least #small sep · 2n·(1−α)/2. On the other hand, the number
of bad pairs is at most n · 2n. We conclude that

#small sep ≤ n2n·(1+α)/2

Finally, choosing α = 0.5456, we obtain

|∆G| = #small sep + #big sep = O(n · 1.7087n).

5 Upper bounding the number of potential max-

imal cliques

In this section the we prove the main technical result of this paper, namely that
there exists an algorithm to list all potential maximal cliques of any graph in
time O∗(1.8899n).

Roughly speaking, the idea is to show that each potential maximal clique of
a graph can be identified by a set of vertices of size at most n/3. The algorithm
for generating all the potential maximal cliques of a graph, lists all the sets of
vertices of size at most n/3 and then, by applying a polynomial time procedure
for each set, generates all the potential maximal cliques of the input graph.

Lemma 11. Let Ω be a potential maximal clique of G, S be a minimal separator

contained in Ω and C be the component of G \S intersecting Ω. Then one of the

following holds:

1. Ω = N(C \ Ω);

2. there is a ∈ Ω \ S such that Ω = N [a];

3. there is a ∈ S such that Ω = S ∪ (N(a) ∩ C).

Proof. Since C is a component of G \ S and S is contained in Ω, we have that
N(C \ Ω) ⊆ Ω. If every vertex of Ω is adjacent to a vertex of C \ Ω, then
Ω = N(C \ Ω).

Suppose that there is a vertex a ∈ Ω having no neighbor in C \ Ω. We
consider first the case a ∈ Ω \ S. We claim that in this case Ω = N [a]. Because
a ∈ Ω \ S ⊆ C we conclude that N [a] ⊆ Ω. Thus to prove the claim we need to
show that Ω ⊆ N [a]. For sake of contradiction, suppose that there is b ∈ Ω which
is not adjacent to a. By Theorem 4, every two non adjacent vertices of a potential
maximal clique are contained in some minimal separator Si(Ω). Thus both a and
b should have neighbors in a component Ci(Ω) of G \ Ω. Since a ∈ Ω \ S ⊆ C,
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we have that Ci(Ω) ⊆ C \ Ω. But this contradicts the assumption that a has no
neighbors in C \ Ω.

The case a ∈ S is similar. Suppose that Ω \ S 6= N(a) ∩ C, i.e. there is a
vertex b ∈ Ω \ S non adjacent to a. Then again, a and b are contained in some
minimal separator and thus should have neighbors in a component Ci(Ω) ⊆ C of
G \ Ω which is a contradiction.

Definition 12. Let Ω be a potential maximal clique of G. The triple (S, a, b) is
called a separator representation of Ω if S is a minimal separator of G, a ∈ S,
b ∈ V \ S and Ω = S ∪ (N(a) ∩ Cb(S)), where Cb(S) is the component of G \ S
containing b.

The number of all possible separator representations of a graph is at most
n2|∆G|. Unfortunately, not every potential maximal clique has a separator rep-
resentation. In the next subsection we introduce two different types of represen-
tations, the partial representation and the indirect representation, that allows us
to show that all the potential maximal cliques can be represented by small sets
of vertices.

5.1 Upper bounding the number of nice potential maxi-

mal cliques

Definition 13. Let Ω be a potential maximal clique of a graph G and let S ⊂ Ω
be a minimal separator of G. We say that S is an active separator for Ω if Ω is not
a clique in the graph GS(Ω)\{S}, obtained from G by completing all the minimal
separators contained in Ω, except S. If S is active, a pair of vertices x, y ∈ S non
adjacent in GS(Ω)\{S} is called an active pair. Otherwise, S is called inactive for

Ω.

Theorem 14 ([10]). Let Ω be a potential maximal clique of G and S ⊂ Ω a

minimal separator, active for Ω. Let (S, C) be the block associated to S containing

Ω and let x, y ∈ Ω be an active pair. Then Ω \ S is a minimal x, y-separator in

G[C ∪ {x, y}].

Definition 15. We say that a potential maximal clique Ω is nice if at least one
of the minimal separators contained in Ω is active for Ω.

We shall prove first that a graph with n vertices has O∗(
(

n

n/3

)
) nice potential

maximal cliques.

Lemma 16. Let Ω be a nice potential maximal clique, S be a minimal separator

active for Ω, x, y ∈ S be an active pair, and C be the component of G\S containing

Ω \ S. There is a partition (Dx, Dy, Dr) of C \ Ω such that N(Dx ∪ {x}) ∩ C =
N(Dy ∪ {y}) ∩ C = Ω \ S.
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Proof. By Theorem 14, Ω \ S is a minimal x, y-separator in G[C ∪ {x, y}]. Let
Cx be the full component associated to Ω \ S in G[C ∪ {x, y}] containing x,
Dx = Cx\{x}, and let Cy be the full component associated to Ω\S in G[C∪{x, y}]
containing y, Dy = Cy \ {y}, and Dr = C \ (Ω ∪ Dx ∪ Dy). Since Dx ∪ {x}
and Dy ∪ {y} are full components of Ω \ S, we have that N(Dx ∪ {x}) ∩ C =
N(Dy ∪ {y}) ∩ C = Ω \ S.

Definition 17. For a potential maximal clique Ω of G, we say that a pair (X, c),
where X ⊂ V and c ∈ X is a partial representation of Ω if Ω = N(Cc)∪ (X \Cc),
where Cc is the connected component of G[X] containing c.

Definition 18. For a potential maximal clique Ω of G, we say that a triple
(X, x, c), where X ⊂ V and x, c 6∈ X is an indirect representation of Ω if Ω =
N(Cc ∪Dx ∪ {x}) ∪ {x}, where

• Cc is the connected component of G \N [X] containing c;

• Dx is the vertex set of the union of all connected components C ′ of G[X]
such that x ∈ N(C ′).

Let us note that for a given vertex set X and two vertices x, c one can check in
polynomial time whether the pair (X, c) is a partial representation or if the triple
(X, x, c) is a separator representation or indirect representation of a (unique)
potential maximal clique Ω.

We state now the main tool for upper bounding the number of nice potential
maximal cliques.

Lemma 19. Let Ω be a nice potential maximal clique of G. Then one of the

following holds:

1. There is a vertex a such that Ω = N [a];

2. Ω has a separator representation;

3. Ω has a partial representation (X, c) such that |X| ≤ n/3;

4. Ω has a indirect representation (X, x, c) such that |X| ≤ n/3.

Proof. Let S be a minimal separator active for Ω, x, y ∈ S be an active pair, and
C be the component of G\S containing Ω\S. By Lemma 16, there is a partition
(Dx, Dy, Dr) of C \Ω such that N(Dx ∪ {x})∩C = N(Dy ∪ {y})∩C = Ω \ S. If
one of the sets Dx, Dy, say Dx, is equal the emptyset, then N(Dx ∪ {x}) ∩ C =
N(x)∩C = Ω \S, and thus the triple (S, x, z) is a separator representation of Ω.

Suppose that none of the first two conditions of the lemma holds. Then Dx

and Dy are nonempty. In order to argue that Ω has a partial representation (X, c)
or a indirect representation (X, x, c) such that |X| ≤ n/3, we partition the graph
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further. Let R = Ω \S and let DS be the union of all full components associated
to S in G \ Ω. The vertex set Dx is the union of vertex sets of all connected
components C ′ of G \ (Ω ∪DS) such that x is contained in the neighborhood of
C ′. Thus a connected component C ′ of G\(Ω∪DS) is contained in Dx if and only
if x ∈ N(C ′). Similarly, a connected component C ′ of G \ (Ω ∪DS) is contained
in Dy if and only if y ∈ N(C ′). We also define Dr = V \ (Ω ∪ DS ∪ Dx ∪ Dy),
which is the set of vertices of the components of G \ (Ω ∪DS) which are not in
Dx and Dy.

We partition S in the following sets

• Sx = (S \N(Dx)) ∩N(Dy);

• Sy = (S \N(Dy)) ∩N(Dx);

• Sxy = S \ (N(Dy) ∪N(Dx));

• Sxy = S ∩N(Dy) ∩N(Dx).

Thus Sx is the set of vertices in S with no neighbor in Dx and with at least one
neighbor in Dy, Sy is the set of vertices in S with no neighbor in Dy and with at
least one neighbor in Dx, Sxy is the set of vertices in S with neighbors neither in
Dx or Dy, and finally Sxy is the set of vertices in S with neighbors both in Dx

and Dy. Notice that the vertex sets DS, Dx, Dy, Dr, R,Sx, Sy, Sxy, and Sxy are
pairwise disjoint. The set Sxy is only mentioned to complete the partition of S,
and will not be used in the rest of the proof.

Both for size requirements and because of the definition of indirect representa-
tion we can not use the sets Sx, Sy, and Sxy directly, they have to be represented
by the sets Zx, Zy, and Zr, which are subsets of the vertex sets Dy, Dx, and Dr.
By the definition of Sx and Sy it follows that there exists two vertex sets Zx ⊆ Dy

and Zy ⊆ Dx such that Sx ⊆ N(Zx) and Sy ⊆ N(Zy), let Zx and Zy be the small-
est such sets. By Lemma 11, Ω = N(Dx ∪ Dy ∪ Dr), thus it follows that there
exists a vertex set Zr ⊆ Dr such that Sxy ⊆ N(Zr), let Zr be the smallest such
set. A sketch of how these vertex sets relates to each other is given in Figure 1.

Let C∗ be a connected component of G[DS], remember that N(C∗) = S. We
define the following sets

• X1 = C∗ ∪R;

• X2 = Dx ∪ Zx ∪ Zr;

• X3 = Dy ∪ Zy ∪ Zr.

First we claim that

• the pair (X1, c), where c ∈ C∗, is a partial representation of Ω;
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Figure 1: The figure shows a sketch of how the vertex sets
DS, Dx, Dy, Dr, R, Sx, Sy, Sxy, and Sxy partition the graph G, and how the
sets Zx, Zy, and Zr relates to this partition.

• the triple (X2, x, c), where c ∈ C∗ is an indirect representation of Ω;

• the triple (X3, x, c), where c ∈ C∗ is an indirect representation of Ω.

In fact, the pair (X1, c) = (C∗ ∪R, c) is a partial representation of Ω because
N(C∗)∩R = ∅, C∗ induces a connected graph, and Ω = N(C∗)∪R. Thus (X1, c)
is a partial representation of Ω.

To prove that (X2, x, c) = (Dx ∪ Zx ∪ Zr, x, c) is an indirect representation of
Ω, we have to show that Ω = N(Cc ∪D′

x ∪ {x}) ∪ {x} where Cc is the connected
component of G \ N [X2] containing c, and D′

x is the vertex set of the union
of all connected components C ′ of G[X2] such that x ∈ N(C ′). Notice that
(S ∪ C∗) ∩ X2 = ∅ and that S ⊆ N(X2) since S ⊆ N(Dx ∪ Zx ∪ Zr) and
X2 = Dx ∪Zx ∪Zr. Hence the connected component Cc of G \N [X2] containing
c is C∗.

Every connected component C ′ of G[X2] is contained in Dx, Zx, or Zr since
Ω ∩ (Dx ∪ Zx ∪ Zr) = ∅ and Ω separates Dx, Zx, and Zr. From the definition
of Dx it follows that x ∈ N(C ′) for every component C ′ of G[Dx], and from
the definition of Dy and Dr follows that x 6∈ N(C ′) for every component C ′ of
G[Zx ∪ Zr]. We can now conclude that Dx is the vertex set of the union of all
connected components C ′ of G[X2] such that x ∈ N(C ′). It remains to prove that
Ω = N(C∗ ∪Dx ∪ {x}) ∪ {x}. By Lemma 16, we have that Ω \ S = R is subset
of N(Dx ∪ {x}) and N(Dy ∪ {y}), and remember that N(C∗) = S. From this
observations it follows that Ω = N(C∗∪Dx∪{x})∪{x} since N(C∗∪Dx∪{x}) =
(S ∪R) \ {x}.

By similar arguments, (X3, x, c) is an indirect representation of Ω.

To conclude the proof of Lemma, we argue that at least one of the vertex sets
X1, X2, or X3 used to represent Ω, contains at most n/3 vertices.

We partition the graph in the following three sets:
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• V1 = DS ∪R;

• V2 = Dx ∪ Sx ∪ Sxy;

• V3 = Dy ∪ Sy ∪Dr.

These sets are pairwise disjoint and at least one of them is of size at most n/3
and to prove the Lemma we show that |X1| ≤ |V1|, |X2| ≤ |V2|, and |X3| ≤ |V3|.

|X1| ≤ |V1|. Since C∗ ⊆ DS, we have that X1 = C∗ ∪R ⊆ V1 = DS ∪R.

|X2| ≤ |V2|. To prove the inequality we need an additional result

|Zx| ≤ |Sx|, |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy|. (1)

In fact, since Zx is the smallest subset of Dy such that Sx ⊆ N(Zx), we have that
for any vertex u ∈ Zx, Sx 6⊆ N(Zx \ {u}). Thus u has a private neighbor in Sx,
or in other words there exists v ∈ Sx such that {u} = N(v) ∩ Zx. Therefore Sx

contains at least one vertex for every vertex in Zx, which yields |Zx| ≤ |Sx|. The
proof of inequalities |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy| is similar.

Now the proof of |X2| ≤ |V2|, which is equivalent to |Dx ∪ Zx ∪ Zr| ≤ |Dx ∪
Sx∪Sxy|, follows from (1) and the fact that all subsets on each side of inequality
are pairwise disjoint.

|X3| ≤ |V3|. This inequality is equivalent to |Dy ∪ Zy ∪ Zr| ≤ |Dy ∪ Sy ∪ Dr|.
Again, the sets on each side of inequality are pairwise disjoint. |Zr| ≤ |Dr|
because Zr ⊆ Dr, and |Zy| ≤ |Sy| by (1).

Thus min{|X1|, |X2|, |X3|} ≤ n/3 which concludes the proof of the lemma.

Lemma 20. Every graph on n vertices has at most 2n2
∑n/3

i=1

(
n

i

)
nice potential

maximal cliques which can be listed in O∗(
(

n

n/3

)
) time.

Proof. By Lemma 19, the number of the number of possible partial represen-
tations (X, c) and indirect representations (X, x, c) with |X| ≤ n/3 is at most

2n2
∑n/3

i=1

(
n

i

)
. By Theorem 10, the number of all possible separator represen-

tations is at most n2|∆G| ≤ n2
(

n

n/3

)
and we deduce that the number of nice

potential maximal cliques is at most 2n2
∑n/3

i=1

(
n

i

)
. Moreover, these potential

maximal cliques can be computed in O∗(
(

n

n/3

)
) time as follows. We enumerate

all the triples (S, a, b) where S is a minimal separator and a, b are vertices, and
check if the triple is the separator representation of a potential maximal clique
Ω; if so, we store this potential maximal clique. We also enumerate all the po-
tential maximal cliques of type N [a], a ∈ V (G) in polynomial time. Finally, by
listing all the sets X of at most n/3 vertices and all the couples of vertices (x, c),
we compute all the nice potential maximal cliques with a partial representation
(X, c) or a indirect representation (X, x, c).
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5.2 Upper bounding the number of potential maximal

cliques

Not all potential maximal cliques of a graph are necessarily nice (see [10] for
an example). For upper bounding and listing all potential maximal cliques of a
graph, we need the following theorem, used in [10] for showing that the number
of potential maximal cliques of G is O∗(|∆G|

2).

Theorem 21 ([10]). Let Ω be a potential maximal clique of G, let a be a vertex

of G and G′ = G \ {a}. Then one of the following cases holds:

1. either Ω or Ω \ {a} is a potential maximal clique of G′.

2. Ω = S ∪ {a}, where S is a minimal separator of G.

3. Ω is nice.

Theorem 22. A graph G on n vertices has at most 2n3
∑n/3

i=1

(
n

i

)
= O(n4·1.8899n)

potential maximal cliques. There is an algorithm to list all potential maximal

cliques of a graph in time O∗(1.8899n).

Proof. Let x1, x2, . . . , xn be the vertices of G and Gi = G[{x1, . . . , xi}], for all i ∈
{1, 2, . . . , n}. Theorem 21 and Lemma 20 imply that |ΠGi

| ≤ |ΠGi−1
|+ n|∆Gi

|+

2n2
∑n/3

i=1

(
n

i

)
, for all i ∈ {2, 3, . . . , n}. By Theorem 10, |ΠG| ≤ 2n3

∑n/3

i=1

(
n

i

)
.

Clearly, if we have the potential maximal cliques of Gi−1, the potential maxi-
mal cliques of Gi can be computed in O∗(|ΠGi−1

|+
(

n

n/3

)
) time by making use of

Theorems 21, 10, and Lemma 20. The graph G1 has a unique potential maximal
clique, namely {x1}. Therefore ΠG can be listed in time O∗(

(
n

n/3

)
) time which is

approximately O∗(1.8899n).

Theorems 8 and 22 imply the main result of this paper.

Theorem 23. For a graph G on n vertices, the treewidth and the minimum fill-in

of G can be computed in O∗(1.8899n) time.

6 AT-free graphs

In this section we establish exact algorithms to compute the treewidth and the
minimum fill-in of asteroidal-triple free graphs which are faster than the ones
obtained for general graphs in the previous section. Both algorithms are based
on new upper bounds on the number of minimal separators and the number of
potential maximal cliques in AT-free graphs.

Three pairwise non-adjacent vertices of a graph G form an asteroidal triple

(AT for short) if any two of them are connected by a path avoiding the neighbor-
hood of the third vertex. Graphs without asteroidal triples are called AT-free.
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Corneil, Olariu & Stewart studied structural properties of AT-free graphs in
their fundamental paper [18]. Among others they showed that every connected
AT-free graph has a dominating pair, where two vertices x and y of G form a
dominating pair (DP for short) if the vertex set of each x, y-path is a dominating
set of G.

AT-free graphs contain cocomparability graphs, permutation graphs, interval
graphs and cobipartite graphs. Thus the treewidth problem and the minimum
fill-in problem remain NP-hard when restricted to AT-free graphs [2, 50].

Remark. There is a well-known cobipartite (and thus AT-free) graph consisting of
two cliques of size n/2 and a perfect matching between them which has precisely
2n/2− 2 minimal separators. It is not hard to show that this is indeed the largest
number of minimal separators of a cobipartite graph on n vertices.

In a first part we show that |ΠG| = O
∗(|∆G|) for AT-free graphs, improving a

result in [9] (Corollary 5.2). This also establishes an algorithm to list the potential
maximal cliques of an AT-free graph in O∗(|∆G|) time. In a second part we prove
that an AT-free graph on n vertices has at most 2n/2+3 minimal separators.

First let us summarize some structural properties of potential maximal cliques
in AT-free graphs.

Lemma 24 (Proposition 5.1 [9]). Let Ω be a potential maximal clique of an

AT-free graph G. Then the set S(Ω) of minimal separators contained in Ω has at

most two inclusion-maximal elements.

Lemma 25 (Theorem 3.10 [9]). Let G be a graph and Ω be a potential maximal

clique of G such that S(Ω) has a unique inclusion-maximal element S. Then Ω\S
is a connected component of G \ S.

Let S and T be two non-crossing minimal separators of G, incomparable with
respect to inclusion. Thus S meets a unique component of G \ T say CS(T ), and
T meets a unique component of G \ S say CT (S). We define the piece between S
and T as P (S, T ) = S ∪ T ∪ (CT (S) ∩ CS(T )).

Lemma 26 (Theorem 3.11 [9]). Let G be a graph and Ω be a potential maximal

clique of G such that S(Ω) has exactly two inclusion-maximal elements S and T .

Then Ω = P (S, T ).

Lemma 27. Let G be an AT-free graph and Ω be a potential maximal clique of G
such that S(Ω) has two inclusion-maximal elements S and T . Choose s ∈ S \ T .

Then Ω = S ∪ (N(s) ∩ CT (S)).

Proof. By Lemma 26, Ω = P (S, T ). Clearly s is in the unique component CS(T )
of G\T meeting S, so N(s)∩CT (S) ⊆ P (S, T ). Consequently S∪(N(s)∩CT (S)) ⊆
Ω.
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Conversely, suppose there is a vertex t ∈ Ω, not contained in S ∪ (N(s) ∩
CT (S)). Let S ′ = (S \ {s}) ∪ (N(s) ∩ CT (S)). Clearly S ′ separates s and any
vertex of CT (S) \S ′ in G, in particular S ′ separates s and t. It follows that there
is a minimal separator S ′′ ⊆ S ′ of G, contained in Ω and separating two vertices
of Ω. According to Theorem 4, for each minimal separator U contained in Ω, Ω
intersects exactly one component of G \ U , which is a contradiction.

Theorem 28. An AT-free graph G has at most n2|∆G| + n|∆G| + 1 potential

maximal cliques. Furthermore, there is an algorithm to list the potential maximal

cliques of an AT-free graph in O∗(|∆G|) time.

Proof. If G has no minimal separator, then G is a complete graph and its vertex
set is the unique potential maximal clique of G.

Suppose now that G is not complete. Fix a minimal separator S of G. By
Lemma 25, the number of potential maximal cliques Ω such that S is the unique
inclusion-maximal element of S(Ω) is bounded by the number of connected com-
ponents of G \ S. Hence, there are at most n such potential maximal cliques.

Now let us consider the potential maximal cliques Ω for which S is one of
the two inclusion-maximal separators contained in S(Ω). For any component C
of G \ S, there are, by Lemma 27, at most |S| such potential maximal cliques
contained in S∪C. It follows that there are at most n2 potential maximal cliques
of this type.

Therefore, G contains at most (n2 + n)|∆G| + 1 potential maximal cliques.
These combinatorial arguments can easily be transformed into an algorithm list-
ing the potential maximal cliques of an AT-free graph in time O∗(|∆G|).

Hence Theorem 8 implies that to construct an O∗(1.4142n) algorithm com-
puting the tree-width and the minimum fill-in of an AT-free graph it is enough to
prove that the number of minimal separators in an AT-free graph is O∗(1.4142n).

Our proof that the number of minimal separators in an AT-free graph is at
most 2n/2+3 relies on properties of 2LexBFS, i.e. a combination of two runs
of lexicographic breadth-first-search (also called 2-sweep LexBFS), on AT-free
graphs established by Corneil, Olariu & Stewart in [19].

Definition 29. A vertex ordering xn, xn−1, . . . , x1 is said to be a 2LexBFS order-

ing of G if some 2LexBFS(G) returns the vertices in this order (starting with
xn) during the second sweep of LexBFS on G where xn is supposed to be the last
vertex of the first sweep of LexBFS on G.

We shall write u ≺ v if u = xi, v = xj and i < j. A 2LexBFS ordering and the
levels L0 = {xn}, L1 = N(xn), . . . , Li = {xj : d(xj, xn) = i}, . . . , Lr are called a
2LexBFS scheme of G. Consider any 2LexBFS scheme. Clearly all neighbors of
a vertex v ∈ Li are contained in Li−1 ∪ Li ∪ Li+1. For a vertex v ∈ Li we denote
N(v) ∩ Li−1 by N↑(v), and we denote N(v) ∩ Li+1 by N↓(v).
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Theorem 30 ([19]). Every 2LexBFS ordering xn, xn−1, . . . , x1 of a connected

AT-free graph has the dominating pair-property (DP-property for short), i.e., for

all i ∈ {1, 2, . . . , n}, (xn, xi) is a dominating pair of the graph G[{xi, xi+1, . . . , xn}].

The following easy consequence of Theorem 30 is useful.

Lemma 31. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering of an AT-free graph G
and let L0, L1, . . . , Lr be the corresponding 2LexBFS scheme. Let s > r, xs, xr ∈
Li and {xr, xs} /∈ E. Then N↑(xr) ⊆ N↑(xs).

Proof. Let w ∈ N↑(xr) \ N↑(xs). Then the path xr, w, ui−2, . . . , u1, xn with
uj ∈ Lj and uj−1 ∈ N↑(uj) for all j = i − 2, . . . , 1 contains no neighbor of
xs contradicting the DP-property of a 2LexBFS scheme of an AT-free graph.

Theorem 32. An AT-free graph on n vertices has at most 2n/2+3 minimal sepa-

rators.

Proof. Let G be an AT-free graph. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering
of G and let L0, L1, . . . , Lr be the levels of the corresponding 2LexBFS scheme.

Let S be any minimal separator of G. Let C and C ′ be two (not necessarily
full) components of G \ S. We claim that at most one level of the 2LexBFS
scheme may contain vertices of C and C ′. Suppose not. Let Li and Li+1 be levels
containing vertices of C and C ′. Then there are edges {u, v} in C and {w, x} in
C ′ such that u, w ∈ Li and v, x ∈ Li+1. W.l.o.g. assume u ≺ w. Then Lemma 31
implies that w and v are adjacent, a contradiction.

Let C and C ′ be two (not necessarily full) components of G \ S such that
both contain vertices of some level of the 2LexBFS scheme, say Li. Furthermore
assume C ∩Li−1 6= ∅ and C ′ ∩Li−1 = ∅. Hence there is an edge {u, v} in C such
that u ∈ Li and v ∈ Li−1. Then for each w ∈ C ′ holds w ≺ u. Otherwise u ≺ w,
w ∈ Li and Lemma 31 would imply that w and v are adjacent, a contradiction.

Finally we claim that in this case c′ ≺ c for each vertex c ∈ C and each vertex
c′ ∈ C ′. This is obviously true if one of c and c′ is not in Li. It remains to consider
the case c ∈ Li, c′ ∈ Li. To the contrary assume c ≺ c′. Since C contains vertices
of Li and Li−1 there is a path in C starting in c passing through vertices of C∩Li

only until it passes through an edge {u, v} in C with u ∈ Li and v ∈ Li−1. This
path can be extended to a path from c to xn that does not contain a neighbor of
c′ although c ≺ c′, a contradiction to the DP-property.

Now we are able to upper bound the number of those minimal separators in
an AT-free graph in which no full component contains only vertices of one level.
Simply divide the vertex set into two halves: A = {xn, xn−1, . . . , xdn/2e+1} and
B = {xbn/2c, . . . , x1}. Now consider two full components C and C ′ of a minimal
separator S of G, i.e. S = N(C) = N(C ′). Then either C or C ′ is a subset of
either A or B, and surely each of them C and C ′ uniquely determines S. Hence we
simply consider all subsets of A and all subsets of B as possible full components
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of a minimal separator of G. Consequently there are at most 2n/2+1 minimal
separators of this type.

It remains to upper bound the number of all those minimal separators S of
an AT-free graph G for which each full component is neither a subset of A nor a
subset of B. Hence at least one full component of S contains only vertices from
one level of the 2LexBFS scheme.

Let S be such a minimal separator of G. Let C and C ′ be two full components
of G \ S. W.l.o.g. assume C ⊆ Li. Hence xbn/2c ∈ Li, and thus the level Li is
uniquely determined.

C ′ ∩
⋃i−1

j=0
Lj = ∅ since otherwise c ≺ c′ for all c ∈ C and all c′ ∈ C ′, and

either C or C ′ is a subset of A or B. Similarly C ′ must contain vertices of Li.
Consequently C ′ ⊆

⋃r

j=i Lj. It is easy to see that C ⊆ Li and S = N(C) imply

N(C ′) = S ⊆
⋃i+1

j=i−1
Lj. Furthermore N(C) = N(C ′) = S implies S ∩ Li−1 =

N↑(C ∩ Li) = N↑(C ′ ∩ Li).
Now let us consider the graph G′ = G \

⋃i−1

j=0
Lj. Then S ′ = S \

⋃i−1

j=0
Lj is a

separator of G′; C and C ′ are components of G′ \ S ′. Furthermore, every vertex
of S ′ ⊆ S has a neighbor in C and C ′, and thus S ′ is a minimal separator of G′.
Consequently every minimal separator S of G for which no full component is a
subset of A or B corresponds uniquely to a minimal separator of G′. Notice G′

has at most n− 1 vertices since we remove at least one vertex of Li−1 from G to
obtain G′.

Let f(n) be a function such that f(n) is an upper bound for the number
of minimal separators in an n-vertex AT-free graph. Then we established the
recurrence f(n) ≥ 2n/2+1 + f(n − 1) and conclude with f(n) = 4 · 2n/2+1 =
8 · 2n/2.

Combining Theorems 8, 28, and 32 we obtain algorithms for AT-free graphs
being faster than the corresponding ones for general graphs.

Theorem 33. There are algorithms to compute the treewidth and the minimum

fill-in of an AT-free graph in O∗(1.4142n) time.

7 Open problems and final remarks

Planar graphs. The computational complexity of treewidth restricted to planar
graphs is a long standing open problem in Graph Algorithms. The treewidth
of planar graphs can be approximated within a constant factor of 1.5. More
precisely, Seymour and Thomas [43] gave a polynomial algorithm for computing
the branchwidth of planar graphs, and the latter parameter differs by at most a
factor of 1.5 from the treewidth.

In the case of planar graphs with n vertices, the treewidth is at most O(
√

n).
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Theorem 34 ([27]). For any planar graph G on n vertices, tw(G) ≤ 3.182
√

n+
O(1).

Also given a graph G and a number k, one can decide if tw(G) ≤ k in O∗(nk)
time, either using the algorithm of Arnborg et al. [2] or using our technique,
restricted to potential maximal cliques of size at most k + 1.

Consequently the treewidth of planar graphs can be computed in time O∗(
n3.182

√
n) = 2O(

√
n log n).

Unfortunately, although the structure of potential maximal cliques in planar
graphs is very particular [12], our approach can not be used for obtaining algo-
rithms of running time 2O(

√
n) for planar treewidth. This is because the number

of ’large’ potential maximal cliques in planar graphs can be ’large’.

Claim 2. For any integer N , there is a planar graph on n > N vertices with at

least 20.49
√

n log n potential maximal cliques of size at least 2
√

n + 2.
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Figure 2: Planar graphs with many small potential maximal cliques

Proof. Consider the planar graph Gp depicted in Figure 2. It has n = p2 + p + 3
vertices. The set of vertices S = {a1, b1i1 , a2, b2i2 , . . . , ap, bpip , ap+1} forms a c, d-
minimal separator for any values i1, i2, . . . , ip between 1 and p. By making use
of Theorem 4, it is not hard to see that S ∪ {c} is a potential maximal clique
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of size p + 1 in Gp. Consequently, G has at least pp potential cliques. If p ≥ 2,
we have p >

√
n − 1, thus the number of potential maximal cliques is at least

(
√

n− 1)
√

n−1.

Since we do not know if the treewidth of a planar graph can be computed in
polynomial time, an interesting task is to design an algorithm of running time
2O(

√
n). As we mentioned, this will need new techniques.

Combinatorial bounds. The running time estimation of our algorithms is
based on combinatorial upper bounds on minimal separators and a bound for
listing all potential maximal cliques. To find better bounds on the number of
minimal separators and potential maximal cliques are interesting combinatorial
challenges.

How many potential maximal cliques can be in a graph? Recently Villanger [45]
proved that the number of potential maximal cliques in a graph on n vertices is
at most n3 ·1.8135n. Unfortunately, it is not clear if the proof of Villanger can be
turned into algorithm listing all potential maximal cliques in time O∗(1.8135n).
Of course, such an algorithm can be used to speed up our algorithm for treewidth
and fill-in. A related interesting question is if it is possible to list potential
maximal cliques with polynomial delay.

How many minimal separators can be in a graph? We are aware of the following
construction providing the lower bound 3n/3 ≈ 1.4422n on the number of minimal
separators: Let G be a graph on n = 3k + 2 vertices. G has two vertices a, b
that are connected by k vertex disjoint paths of length 4. Every minimal a, b-
separator in G contains exactly one inner vertex of each a, b-path. So the number
of minimal separators in G is at least 3n/3 ≈ 1.4422n. However the gap between
the lower bound and the upper bound O(n · 1.7087n) from Theorems 10 is still
big.

For some special graph classes, the use of minimal separators can imply faster
algorithms for triangulation problems. For example, we have shown that every
AT-free graph on n vertices has at most 2n/2+3 minimal separators and that
this upper bound is tight up to a multiplicative constant factor. The interesting
question here is whether similar techniques can be used for other graph classes,
like bipartite graphs and graphs of small degree.

More generally, it is a natural and challenging question to ask how many sub-
graphs satisfying a given property can be in a given graph. Surprisingly, despite
the question is so natural, there are not so many known results of this type. For
example, the number of perfect matchings in a simple k-regular bipartite graph
on 2n vertices is always between n!(k/n)n and (k!)n/k. (The first inequality was
known as van der Waerden Conjecture [46] and was proved in 1980 by Egorychev
[20] and the second is due to Bregman [13].) Another example is the famous Moon
and Moser [36] theorem stating that every graph on n vertices has at most 3n/3
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maximal cliques (independent sets). Byskov and Eppstein [16] obtain a 1.7724n

upper bound on the number of maximal bipartite subgraphs in a graph. Such
combinatorial bounds are of interests not only on their own but also because often
they are used for algorithm design as well.

Related problems. Our algorithms for treewidth and minimum fill-in can also
be used for solving other problems that can be expressed in terms of minimal
triangulations like finding a tree decomposition of minimum cost [8] or computing
treewidth of weighted graphs. However, there are two ’width’ parameters related
to treewidth, namely bandwidth and pathwidth and one parameter called profile,
related to minimum fill-in, that do not fit into this framework. Bandwidth can
be computed in time O∗(10n) [22] and reducing Feige’s bounds is a challenging
problem. Pathwidth (and profile) can be expressed as vertex ordering problems
and thus solved in O∗(2n) time by applying a dynamic programming approach
similar to Held and Karp’s approach [29] for TSP. Let us note that reaching
time complexity O∗(cn), for any constant c < 2 even for the Hamiltonian cycle
problem is a long standing problem. So it is unlikely that some modification of
Held & Karp’s approach provide us with a better exact algorithm for pathwidth
or profile. It is tempting to ask if one can reach time complexity O∗(cn), for any
constant c < 2 for these problems.
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