Minimizing fill-in size and
elimination tree height in parallel

Cholesky factorization

Thesis for the degree of Cand. Scient.
by
Pinar Heggernes

Department of Informatics
University of Bergen, Norway
April, 1992

Acknowledgments

First of all, I thank my supervisor Professor Bengt Aspvall for all guidance
and encouragement he has given me throughout my work on this thesis. He
always supported my ideas, and had always new ideas when I did not know
what to do. His enthusiasm about my work has inspired and encouraged me,
and he was always optimistic and comforting whenever I wondered how this
work would end.

Special thanks to Fredrik Manne without whom I would never have started
working on elimination trees. He has been a second advisor for me as well
as a friend, and was helpful in many more ways than I can list here. He
listened to my ideas and read my results thoroughly, and his comments were
an important contribution to the final product.

I thank Trond-Henning Olesen for introducing me to sparse matrices and
elimination trees, and for answering patiently to my countless questions.

The results in Chapter 4 were presented at a workshop at the University
of Minnesota in Minneapolis in October, 1991. It was a great experience
to meet all the people whose names I had read many times on articles and
books. I was happy to be able to present my work, and it was inspiring to
hear about recent research on this area. I thank John Gilbert and Robert
Schreiber for useful discussions in Minneapolis, and I thank everybody who
made this trip possible.

I also thank the graduate students at the Department of Informatics for all
the joy and fun we have had together. Special thanks to Linda for being my
best friend and for making my graduate student days colorful and beautiful.

Finally, I thank my husband Frank for being there for me when I was
worried about my work and needed comforting. He has supported and en-
couraged me in everything I have done, and without him the work on this
thesis would have taken much longer time.

Bergen, April 7, 1992

Pinar Heggernes

Contents

1 Introduction
1.1 Graph terminology
1.2 Cholesky factorization
1.3 Parallel computing
1.4 NP-Complete problems

2 Graph elimination
2.1 Elimination trees
2.2 Elimination orderings

3 Nested Dissection
3.1 Separator theorems
3.2 High elimination trees

4 Reducing the fill-in size
41 Alocalproblem
4.2 Still NP-hard
4.3 Heuristics oL

5 Low elimination trees
5.1 An algorithm for chordal graphs
52 Theclass Lo
5.3 General graphs oL

6 Conclusion
6.1 Summary ofresultso L
6.2 Openproblems

13
15
17

23
24
25

29
30
37
38

47
49
93
65

CONTENTS

Chapter 1

Introduction

Many problems that frequently arise in science and engineering, re-
quire the solution of large, sparse systems of linear equations. These
systems are often in the form Ax = b, where A is a symmetric, pos-
itive definite matrix. One way to solve this kind of equation systems
is Cholesky factorization. In this thesis, we look at some approaches
towards minimizing the amount of time required in Cholesky factoriza-
tion.

Since the systems mentioned are often very large, it is quite time
consuming to solve them in a straight forward way by simply using
Cholesky factorization. In most cases, the matrix A is so large that the
available memory may not even be enough to store the whole matrix.
Therefore, we have to exploit the sparsity of A by only storing its non-
zero elements. We will see later that by changing the order of the
non-zero elements in A, it is also possible to reduce the amount of work
needed to be done in the Cholesky factorization. In addition, if some
of this work can be done in parallel, the time needed can be reduced
further.

In the rest of this chapter, we give an introduction to the graph
terminology that is used throughout this thesis. We give a description
of Cholesky factorization, and we mention a class of difficult problems
called the NP-complete problems. We end the chapter with a brief
section on parallel computing.

Chapter 2 gives further introduction to symbolic Cholesky factoriza-
tion on graphs. We introduce central terms like elimination trees and
fill-in, and explain how low elimination trees and less fill-in reduce the
computation time. The aim of this thesis is to find new algorithms for
achieving these goals.

6 CHAPTER 1. INTRODUCTION

In Chapter 3, we look closer at a method called Nested Dissection
which is known to usually produce low elimination trees. We show that
this method can indeed give good results for some classes of graphs, but
we also show that for some other classes of graphs, Nested Dissection
may produce very high elimination trees. Some existing results on this
method are also mentioned.

Chapters 4 and 5 contain new results on reducing fill-in size and
reducing elimination tree height. We introduce separator trees and
clique trees that are used to show these new results, and to develop new
algorithms. The approaches in these two chapters are quite different.
In Chapter 4, we start with a low elimination tree and try to reduce
the amount of fill-in while we preserve the elimination tree structure.
In Chapter 5, we find minimum height elimination trees for classes of
graphs for which there exist perfect elimination orderings.

Chapter 6 concludes this thesis, and we also mention some interesting
open problems.

1.1 Graph terminology

A graph G = (V, E) consists of a set V' of vertices, and a set E of
edges. Each edge corresponds to an unordered pair of distinct vertices
(v, w). (Sometimes self-loops, which are edges from a vertex to itself,
are allowed; they will not be allowed in this text.) Vertices v and w
are neighbors if (v,w) € E. The degree of a vertex v is the number
of neighbors of v and is denoted by d(v). The set of all the neighbors
of v in G is called adjg(v). Thus, d(v) = |adjg(v)|. If S C V, then
adjg(S) ={w | (v,w) € E,v e S,w ¢ S}.

A path from v, to v is a sequence of vertices vy, vs, ..., v; that are
connected by the edges (vy,vs), (ve,vs), ..., (Vk—1,vk) (these edges are
also usually considered to be a part of the path). In this text, we
assume that £ > 2, hence a path has at least one edge. A path is
simple if each vertex appears in it at most once. The length of a path
is the number of edges in it. An edge can be considered as a path
of length 1. A circuit is a path whose first and last vertices are the
same. A cycle is a circuit where, except for the first and last vertices,
no vertex appears more than once.

A subgraph of a graph G = (V, F) is a graph H = (U, F') such that
UCVand F C E. An induced subgraph of a graph G = (V, F) is a

1.1. GRAPH TERMINOLOGY 7

graph H = (U, F') such that U C V and F consists of all the edges in
E both of whose vertices belong to U.

A graph is connected if there is a path from every vertex to every
other vertex. If a graph G is not connected, then it can be partitioned
in a unique way into a set of connected subgraphs called the connected
components (or just components) of G. A connected component H of G
is a maximal connected subgraph; that is, no other connected subgraph
of G contains H.

A separator S C V is a set of vertices whose removal from G dis-
connects G into two or more connected components. A separator S is
minimal if and only if no proper subset of S is a separator in G. A
v-w separator S C V is a set of vertices whose removal from G cuts
every path between v and w in G, where v,w € V and (v,w) ¢ E.
A v-w separator S is minimal if and only if no proper subset of S is
a v-w separator. Every minimal separator in (G is also a minimal v-w
separator for some v and w € V.

A graph G = (V, E) is complete if there are edges between every pair
of vertices in V. A clique in GG is a complete subgraph of G. A clique
C' is mazimal if and only if no other clique in G contains C.

A bipartite graph G = (V1, Vs, E) is a graph whose vertices can be
divided into two sets V; and V5 such that all edges in E connect vertices
from V] to vertices in V5. Thus, there are no edges between vertices that
are both in V3, or that are both in V5. A bipartite graph G = (V1, Vs, E)
is complete if every vertex in Vi has edges to every vertex in V5. A
complete bipartite graph G is often denoted by K, ,, where r = |V;|
and s = |Vs|.

A directed graph G = (V, E) is a graph where each edge in E is an
ordered pair of distinct vertices <wv,w>. The order between the two
vertices an edge connects is important. The edge <v,w> is from v to
w. In a directed graph, we also distinguish between the indegree and
the outdegree of a vertex. The indegree of a vertex v is the number of
edges from other vertices to v, whereas the outdegree of v is the number
of vertices from v to other vertices.

A forestis a graph that does not contain a cycle. A treeis a connected
forest. A spanning tree of an undirected graph G is a subgraph of G
that is a tree and that contains all the vertices of G. A rooted tree

8 CHAPTER 1. INTRODUCTION

T = (V,E) is a directed tree with one distinguished vertex called the
root. In a rooted tree, the outdegree of the root is 0, and the outdegree
of every other vertex is 1. If the edge <v,w> € E, then w is the parent
of v, while v is a child of w. The vertices in V that do not have any
children, are called the leaves of T. If there is a directed path in T
from a vertex v to a vertex w, then w is an ancestor of v, while v is a
descendant of w.

This brief introduction to graphs is sufficient to get started. More
terms will be introduced later on as we proceed with new topics. We
will also introduce our own terms when there are no existing standard
names for the structures that we wish to express.

1.2 Cholesky factorization

In this section, we give a description of Cholesky factorization. We
do not go into details, and this section is meant to provide a brief
background for the problems that we will be working on in this thesis.
We assume a general knowledge of basic linear algebra, and therefore
we do not explain basic algebraic terms. More detailed information can
be found in [8].

In this thesis, we consider the solution of equation systems of the
form Ax = b, where A is a sparse, symmetric, positive definite matrix.
Thus A has many zero elements, but its diagonal consists only of non-
zero elements. One way to solve such a system is by using Cholesky
factorization. By the way we have defined A, there always exists a
lower triangular matrix L such that A = LLT. Matrices L and LT are
called the Cholesky factors of A.

Solving Ax = b by Cholesky factorization can be summerized in the
following way: Find L such that A = LLT. Then solve Ly = b for
y and LTx = y for x. Matrices L and LT are found by the following
recursive formula:

SIS P Ik

where w = (1/v/d)v and A = B—ww7. (The letters in boldface repre-
sent vectors, and the capital letters represent matrices). The QholAesAky
factors of A are found recursively by the same formula, and if A = LL7,

1.2. CHOLESKY FACTORIZATION 9

then Vi ot Vi W
_ d 0 d w' | _p
A—[w LHo ﬁT]—LL'

We will be concentrating on symbolic Cholesky factorization, there-
fore the numerical values of the elements in the matrix A are irrelevant
for our purposes. What is more important is the number of non-zero
elements in A and in its factors L and LT. We often exploit the sparsity
of A by storing only the non-zero elements. For the same reason, we
want L and LT to be as sparse as possible, too. In addition, since most
of the algorithms only consider the non-zero elements, computations
concerning L take less time if L is sparse.

The element of A in row ¢ and column j is denoted by a;;. We assume
that numerical cancellation does not occur, and by the factorization
formula, if the element a;; # 0, then l;; # 0 in L. Thus L + LT
has all the non-zero elements of A. In addition, the number of non-
zero elements in L + L7 is often greater than the number of non-zero
elements in A, and in the worst case, L+ L™ may be full. If a;; = 0 and
li; # 0, then [;; is called a fill-in element. The fill-in size is the number
of fill-in elements.

Our goal is to get the fill-in size as small as possible, and to be able
to perform the factorization in parallel. In order to reduce the fill-in
size and achieve parallelity, we perform a symmetric permutation of
A before the factorization. This is done by factorizing PAPT instead
of A, where P is a permutation matrix. Dependent of P, PAPT may
have a better structure regarding fill-in size and parallelity. For the
numerical solution, we must remember that the equation system is now

(PAPT)(Px) = (Pb), instead of Ax = b.

To summerize, solving Ax = b by symbolic Cholesky factorization is
done in the following two steps.

1. Perform a symmetric permutation of A in order to get better
parallelity and low fill-in.

2. Find the numerical solution.

This thesis concentrates on Step 1. Our aim is to find methods for
solving the problem described by this step. In Step 1, we work on the
non-zero structure of A. We must also be able to find the structure
of L in order to see if the permutation has the desired properties. In

10 CHAPTER 1. INTRODUCTION

our approach we use graph theory, and work directly on graphs when
trying to solve this problem.

We now connect matrices to graph theory, and show how a sym-
metric, positive definite matrix A can be expressed as a graph. Since
A is symmetric and has no zero elements in its diagonal, the non-
zero structure of A can be represented as a graph G = (V, E), where
V = {v1,vs,...,u,}, and (v;,v;) € E if and only if a;; = a;; # 0, and
i # j. Thus the edges in G represent the non-zero elements in A. We
write G(A) when we want to emphasize that G is the graph of A. An
example is shown in Figure 1.1.

Figure 1.1: A symmetric matrix and its graph representation

If A is reducible, then the graph of A is not connected. In this case,
A can be symmetricly permuted so that PAPT is block diagonal, and
each block can be factorized separately. In this thesis, we assume that
the matrices we are working with, are irreducible, and thus A always
has a connected graph.

In Chapter 2, we will see how we can find the non-zero structure of L
by only working on the graph of A. We will therefore only be working
on graphs further on. Chapter 2 also contains an explanation of how
a symmetric permutation of a matrix affects the corresponding graph.
In the rest of this thesis, whenever we mention a matrix A, we mean a
sparse, symmetric, positive definite matrix A.

1.3. PARALLEL COMPUTING 11

1.3 Parallel computing

As computers have become more and more powerful, the demand for
even more powerful computers has increased. Parallelism represents the
most feasible way to achieve faster computers, and parallel computers
are now commercially available throughout the world.

Parallel computing is a kind of information processing that empha-
sizes the concurrent manipulation of data elements belonging to one
or more processes solving a single problem. A parallel computer is a
computer for the purpose of parallel computing. Parallel computers
have many processors that can work on different parts of a problem
simultaneously. Parallel algorithms are designed especially for parallel
computers, and aim to get as much of the work as possible done in par-
allel. Most problems have parts that must be done sequentially, and it
is important to find out what can be done in parallel.

In parallel Cholesky factorization, we can perform the factorization
simultaneously on different parts of the matrix that are not dependent
of each other. If a matrix does not allow much parallelism in factor-
ization, then it can be symmetricly permuted as we have seen in the
previous section, and the resulting matrix may allow more parallelism.
In Chapter 2, we will see what this means in graph representation, and
we will introduce a structure called an elimination tree that expresses
the dependencies among the elements.

1.4 NP-Complete problems

Some important problems connected to parallel Cholesky factoriza-
tion are NP-complete. The class of NP-complete problems contains de-
cision problems for which no polynomial-time algorithm is known. The
existence of a polynomial-time algorithm for one NP-complete problem
implies the existence of a polynomial-time algorithm for every NP-
complete problem.

A decision problem with a given input is a question to which the
answer is either ‘yes’; or ‘no’, dependent of the input. A decision prob-
lem I is polynomially reducible to another decision problem A if there
exists a polynomial-time algorithm that converts each input x for I" to
another input y for A, such that the answer to A given y is ‘yes’ if and
only if the answer to I" given z is ‘yes’. The class of decision problems
for which there exists a nondeterministic algorithm whose running time

12 CHAPTER 1. INTRODUCTION

is a polynomial in the size of input is called NP. A problem I' is NP-
hard if and only if every problem in NP is polynomially reducible to I'.
A problem I' is NP-complete if and only if I' € NP and I' is NP-hard.

In order to show that a decision problem I' is NP-complete, we must
show that I' € NP and that another NP-complete problem A is polyno-
mially reducible to I'. To show that a problem I' is NP-hard, it is enough
to show that an NP-complete problem A is polynomially reducible to
I'. If a decision problem is NP-complete, then the corresponding search
or optimization problem is NP-hard. More detailed information about
NP-completeness can be found in [5].

It has been conjectured that no polynomial-time algorithm can solve
NP-complete and NP-hard problems. However, this has not yet been
shown. In order to approach a solution, we can use heuristics. A heuris-
tic is a polynomial-time algorithm that exploits some properties of the
specific problem in order to avoid exhaustive search. Some heuristics
guarantee to return a solution that is near the optimal, whereas others
do not. Although heuristics may return the optimal solution sometimes,
we cannot know if the returned answer is optimal.

Chapter 2

Graph elimination

In this chapter, we introduce some more terms concerning symbolic
Cholesky factorization of an nxn matrix A = (a;;). We have previously
seen how to perform the symbolic factorization on A, and will now see
how to do this directly on the graph of A.

Let G = (V, E) be the graph of A, and let L = (I;;) be the Cholesky
factor of A. The graph of L+ L7 is called the filled graph G* = (V, E*),
where F C E*. It should be clear that G* has all the edges of GG, since
L + L7 has all the elements of A. As L + LT can have more non-zero
elements than A, the filled graph G* can have more edges than G, but
it has the same vertex set.

The following algorithm from Parter [17] shows how the filled graph
G* = (V, E*) of a given graph G = (V, E) is found. We assume that
V ={v1,vs, ..., v}

Algorithm Eliminate (G, G* : Graph);

begin
G* =G;
fori=1tondo
mark v;;
F = {(u,w) | v and w are unmarked neighbors of v; in E*};
E* = E*UF;
end-for;
end;

What is done in one step of the loop is called eliminating v;. We see
that when v; is eliminated, the neighbors v; of v;, where j > ¢, induce

13

14 CHAPTER 2. GRAPH ELIMINATION

a clique in G*. The edges in (E* — F) are called the fill-in edges of G*.
The following ‘path theorem’ from Rose, Tarjan and Lueker [19], shows
where the fill-in edges occur. We quote it without giving the proof.

Theorem 2.1 Let G = (V, E) be a graph, and let G* = (V, E*) be the
filled graph of G. Then (v;,v;) € E* if and only if there exists a path
Vi, Upy,s o, Upy, U 10 G such that all subscripts in {p1, ..., p:} < min(i, j).

An elimination ordering o on a graph G is an ordering of the ver-
tices in G, where o : V' — {1,2,...,n} is a one-to-one function. The
new graph which we get by renumbering the vertices in G is called G,.
Running the algorithm Eliminate on G, will return the filled graph G?,.
Whereas G, has the same number of edges as GG, G, does not neces-
sarily have the same number of edges as G*. Thus different elimination
orderings on a graph can result in different amount of fill-in. If G is the
graph of a matrix A, reordering GG is equivalent to performing a sym-
metric permutation on A. Then G, is the graph of PAPT, where P is
a permutation matrix with each column j having its non-zero element
in row a(v;). An elimination ordering « is called a perfect elimination
ordering if G7, is isomorphic to Gy; i.e., the elimination of G, results
in no fill-in edges. An example showing different elimination orderings
on a graph is shown in Figure 2.1

An edge in G is called a chord of a cycle if it joins two nonconsecutive
vertices on the cycle. A graph is chordal if every cycle of length at least
four has a chord. Fulkerson and Gross show in [4] that chordal graphs
are exactly those graphs with perfect elimination orderings. All filled
graphs are chordal. Thus the chordality of a graph G can be established
by finding a perfect elimination ordering for G. A simplicial verter in
a chordal graph G, is a vertex whose neighbors induce a clique in G.
Eliminating a simplicial vertex in G' does not cause any fill-in edges.
Dirac shows in [3] that a chordal graph is either a complete graph, or
has at least two non-adjacent simplicial vertices.

2.1. ELIMINATION TREES 15

Figure 2.1: a) A graph G and its filled graph G*. b) G, and G%,. ¢) Gg
and G} where j is a perfect elimination ordering on G.

2.1 Elimination trees

The elimination tree is a structure that plays an important role in
sparse, parallel Cholesky factorization. We can view the elimination
tree as providing the minimal amount of information on column depen-
dencies in the Cholesky factor. This structure was first introduced by
Schreiber [20].

The elimination tree of A is a rooted tree T with the vertex set
{v1,v2,...,v,}. An edge <v;,v;> is in T if and only if j = min{k |
lyi # 0 and k > i}. Thus v; is the parent of v; in T if the first non-zero
element under the diagonal in column ¢ in L is in row j.

16 CHAPTER 2. GRAPH ELIMINATION

The elimination tree T can also be found directly from G, where GG
is the graph of A. Then T is called the elimination tree of G and is
denoted by T(G). The edges in T are determined by the edges in the
filled graph G*. A vertex v; is the parent of another vertex v; in 7" if
and only if j = min{k | (vi,vx) € E* and k > i}. An example is shown
in Figure 2.2. The dashed line in the graph represents a fill-in edge.

Figure 2.2: A matrix, its filled graph and elimination tree.

Let v be a vertex in 7. We let T'(v) denote the subtree of T' with
root at v. Thus T'(v) is the subgraph of 7" induced by v and all of its
descendants. If v is the root of 7', then T' = T'(v).

We will now take a closer look at the relationship between elimination
trees and Cholesky factorization. In the following results, we let G =
(V,E) = G(A), where A= LLT, and T = T(G). Theorems 2.2 and 2.4
- 2.7 are from Liu [13], and Theorem 2.3 is from Schreiber [20].

Theorem 2.2 For i < j, the numerical values of column j depend on
column i in L if and only if (v, v;) € E*.

Theorem 2.3 If (v;,v;) € E*, where i < j, then v; is an ancestor of
v; mnT.

We see from these two theorems, that the elimination tree alone,
gives enough information about column dependencies in L. If v; is
an ancestor of v; in T, then column j may depend on column i in
L. Therefore, for each descendant v; of v; in T, column 7 must be
computed before column j in L. We can thus view the elimination tree
as a precedence graph, where each vertex must be eliminated before its
parent. The computation begins with the leaves and continues upward
to the root.

2.2. ELIMINATION ORDERINGS 17

The following Corollary follows directly from Theorem 2.3.

Corollary 2.1 IfG has a clique of size k, then T cannot be lower than
k—1.

We will see now that the height of the elimination tree is important
for parallel Cholesky factorization. The following two theorems show
which parts of the problem can be solved in parallel.

Theorem 2.4 Let T'(v;) and T (v;) be two disjoint subtrees of T. Then
for each vy € T'(v;) and each v, € T'(v;), the edge (vs,v:) & E*.

Theorem 2.5 IfT(v;) and T (v;) are disjoint subtrees of T, then columns
© and j of L can be computed in parallel.

As we can see from these theorems, low elimination trees are nec-
essary in order to achieve parallelity in Cholesky factorization. Low
elimination trees imply branching, and this gives more parallelity since
disjoint branches can be computed in parallel.

Theorem 2.6 Let k < i < j. The edge (v;,v;) € E* if and only if
(vi,vj) € E, or the vertex v; is the ancestor of some vertex vy in T,
where (vj,v;) € E.

From Theorem 2.6, it follows that if a vertex v; is an ancestor of another
vertex vy in T', where (v, v) € E, then for every vertex v; on the path
from vy to v; in T, the edge (v;,v;) € E*. For the next theorem, note
that adjq(H) for a subgraph H of G, is the same as adjg(U), where U
is the vertex set of H.

Theorem 2.7 The subgraph of G* induced by adjc(T (v;)) U {vi} is a
clique.

It should be clear by now that the height of the elimination tree
represents a measure for the amount of work in parallel elimination.
Therefore, two of our main goals in this thesis, are to find low elimina-
tion trees and to show new results on elimination tree height. Liu gives
more detailed information and results on elimination trees in [13].

2.2 Elimination orderings

For a sequential factorizing algorithm, only the fill-in size is impor-
tant for time complexity. Since every element must be accessed se-
quentially, there is less work to be done if there are few fill-in elements.

18 CHAPTER 2. GRAPH ELIMINATION

Whereas for efficient parallel Cholesky factorization, we have to find
orderings that result in both low fill-in size and low elimination trees.
For the time complexity of parallel algorithms, elimination tree height
is decisive, but the fill-in size still plays an important role. Hafsteinsson
shows in [9] that, if we are working with an n x n matrix, and we have
a parallel computer with n? processors, then the fill-in size does not
affect time complexity, and the computation time depends only on the
elimination tree height. But, if n is large, it is not realistic to assume
n? processors, and with less processors, the fill-in size also affects the
computation time.

As we can see, we have two problems: low fill-in and low elimination
trees. Unfortunately, both the problem of finding an ordering that
results in minimum fill-in size, and the problem of finding an ordering
that produces an elimination tree of minimum height, are NP-hard
problems. Thus it is highly unlikely that a polynomial time algorithm
can solve these problems for general graphs. Therefore we have to use
heuristics. We now mention two well known algorithms called Minimum
Degree and Nested Dissection. Minimum Degree was introduced by
Rose in [18] in order to find orderings that result in low fill-in size.
Nested Dissection aims to produce low elimination trees, and was first
used by George in 1973 on grid graphs. An example of these two
algorithms applied on the same graph is shown in Figure 2.3.

Algorithm Minimum Degree (G : Graph);

begin
while there are unmarked vertices in G do
let v be an unmarked vertex with minimum degree;
eliminate v;
mark v;
end-while;
end;

2.2. ELIMINATION ORDERINGS 19

Figure 2.3: a) A chordal graph G. b) G% and T(G,), where « is a
Minimum Degree ordering. c) Gj and T(Gg), where 3 is a Nested
Dissection ordering.

20 CHAPTER 2. GRAPH ELIMINATION

Algorithm Nested Dissection (G : Graph);

begin
if G is complete then
eliminate the vertices in GG in an arbitrary order
else
let S be a separator in G}
for each component C of (G — S) do
Nested Dissection (C);
eliminate the vertices in S in an arbitrary order;
end-if;
end;

George and Liu give a detailed study of these algorithms in [6]. In
Nested Dissection, the choice of separators is essential for the height of
the elimination tree that the algorithm produces. For general graphs, it
is NP-hard to find separators for Nested Dissection that give minimum
elimination tree height. In the next chapter, we talk more about Nested
Dissection, and look at different ways of choosing separators. We also
show that the relative numbering of vertices belonging to the same
separator can affect the fill-in size.

In Parallel Cholesky factorization, we aim to minimize both the elim-
ination tree height and the fill-in size. Unfortunately, these two goals
may be contradictory. There are many examples of graphs for which it
is easy to show that one single ordering cannot produce both minimum
fill-in size and minimum elimination tree height. Thus, there do not
exist orderings that result in both minimum fill-in size and minimum
elimination tree height for all graphs. Therefore, the aim has to be to
find elimination orderings that produce low elimination trees and that
result in low fill-in size. There are two possible methods for achieving
this:

1. Find an elimination ordering o that results in low fill-in size. Then
find an ordering 3 that produces a low elimination tree while it
preserves the size of the fill-in produced by «.

2. Find an elimination ordering o« that produces a low elimination
tree. Then find an ordering (3 that results in low fill-in size while
it preserves the elimination tree produced by a.

The usual approach has been to use Method 1. Several algorithms
that use this method already exist, like the algorithm that Jess and

2.2. ELIMINATION ORDERINGS 21

Kees present in [11]. Little is done though, regarding algorithms that
use Method 2. In this thesis, we present two different approaches for
achieving low fill-in and low elimination trees. In Chapter 4, we present
a new algorithm that uses method Method 2, and in Chapter 5 we
concentrate on a variant of Method 1.

22

CHAPTER 2. GRAPH ELIMINATION

Chapter 3

Nested Dissection

Nested Dissection plays a central role in this thesis, and is used as a
background for the algorithms that will be presented in the following
chapters. In this chapter, we examine Nested Dissection more closely
and show some new results on this method. We concentrate mainly
on the height of the elimination trees produced by different Nested
Dissection orderings.

In a Nested Dissection ordering, the choice of separators is decisive
for the height of the elimination tree produced. If the separators are
chosen arbitrarily, the height of the resulting elimination tree can be
much higher than minimum. An interesting result is that there ex-
ist Nested Dissection orderings for all graphs that result in minimum
height elimination trees. The following theorem from Manne [15] shows
what kind of separators should be chosen in order to achieve minimum
elimination tree height.

Theorem 3.1 For every graph G, there exists a Nested Dissection or-
dering with minimal separators that produces an elimination tree of
minimum height.

By a Nested Dissection ordering with minimal separators, we mean
that the separators chosen at each step of the algorithm, are minimal.
This theorem provides a basis for the algorithms and results that will
be presented later in the thesis.

It should be clear that the problem of finding a Nested Dissection or-
dering with minimal separators that produces a minimum height elim-
ination tree, is also NP-hard. However, it is also shown in [15] that, for
any Nested Dissection ordering, we can always make the chosen sep-
arators minimal without increasing the elimination tree height. Thus

23

24 CHAPTER 3. NESTED DISSECTION

requiring the separators to be minimal can lead to lower elimination
trees. In the rest of this thesis, we assume that the separators chosen
by Nested Dissection orderings we are working with are minimal.

It has also been suggested to choose separators according to the way
they divide the graph into components. George and Liu [6] require the
remaining components after removing a separator, to be nearly equal
in size. Gilbert [7] suggests choosing separators in such a way that,
none of the new components has more than n/2 vertices, where n is the
number of vertices in the original component. Although this suggestion
usually leads to low elimination trees, we show that for some classes
of graphs, it results in elimination trees that are exponentially higher
than minimum.

In this chapter, we consider both sides of the problem of the height
of the elimination trees produced by Nested Dissection. First we show
that for some non-trivial classes of graphs it is easy to find low elimina-
tion trees with Nested Dissection. Then we show that for some other
classes of graphs, Nested Dissection can produce very high elimination
trees although the separators are minimal and divide the graph into
components of size < n/2. In the rest of the chapter, when we are
working on a graph G, we let n be the number of vertices in G unless
specified otherwise.

3.1 Separator theorems

A class S of graphs satisfies an f(n)-separator theorem if there are
constants @« < 1 and B > 0 such that every n-vertex graph G € §
has a set of at most Sf(n) vertices whose removal leaves no connected
component with more than an vertices.

It is shown in [2] that if a graph G satisfies an f(n)-separator theorem,
where f(n) = c for a constant ¢, then there exists a Nested Dissection
ordering on G that results in an elimination tree of height O(clogn).

In this section, we show that if a graph G and all of its subgraphs
satisfy an n°-separator theorem, where € > 0, then an elimination tree
of height O(n¢) can be produced by a Nested Dissection Ordering on
G.

Theorem 3.2 Let G be a graph such that, G and all its subgraphs
satisfy an ne-separator theorem, where € > 0. Then there exists a Nested

3.2. HIGH ELIMINATION TREES 25

Dissection ordering on G that results in an elimination tree of height

O(n9).

Proof: By the separator theorem, we know that G has a separator S
that contains at most #n° vertices, and that divides G into components
of at most an vertices. We choose S to be the top separator. For each
remaining component, we can repeat this process recursively. Since the
components also satisfy the same separator theorem, the height of the
elimination tree produced this way, can be expressed by the following
recursive function h(n):

h(n) = pn + h(an)
We let h(1) = 0, since this is the height of an elimination tree that
consists of a single vertex. The constants a < 1 and 3 > 0 are given
by the separator theorem. We now find an upper bound for h(n).

h(n) < Bn° + B(an) + B(a?n)* + ... + B(alBr/amn)

logl/a n

=5 3 () < ﬁi(ainr = pn* f%(af)i.

Since a° < 1, we have by the ‘Geometric Series Theorem’, that

Thus,
h(n) < b n® = O(n°).

aE

1—
We have shown that h(n) = O(nf) is the height of the elimination tree
found by the described Nested Dissection ordering, and this completes
the proof. O

3.2 High elimination trees

In this section, we show that Nested Dissection orderings, although
they use minimal separators that divide the graph into components of
size < n/2, can result in elimination trees that are exponentially higher
than the minimum elimination tree height.

26 CHAPTER 3. NESTED DISSECTION

In order to show our result, we define a special type of graph on
which we use Nested Dissection. In our definition, we use star graphs.
A star graph is a complete bipartite graph of the form Kj,, and has
s + 1 vertices and s edges. One of the vertices has degree s, while all
the others have degree 1.

Definition: For a fixed constant m, a star path is a graph S,,(k) =
(Vin(k), Epm(k)), that is constructed by the following rules:

Sm(1) is a star graph with m vertices, which is the same as K1 1.
Sm (k) is made by joining S,,(k—1) and a star graph G with |V,,,(k—1)|
vertices with an edge between a vertex in S,,(k— 1) with highest degree
and the vertex in G with the highest degree. Ties can be broken arbi-
trarily. (e.g. in S,,(2), there are two vertices with the highest degree.)

Note that |V;,(k)| = 2¥~'m. This can be easily shown by induction
since |V;,(1)| = m and |V, (k)| = 2|V,.(k — 1)|, as the construction of
the star path is defined. Any constant m > 3 may be chosen, since the
results in the following text are independent of m.

Lemma 3.1 There ezists a Nested Dissection ordering on S,,(k) that
chooses minimal separators such that the remaining components have
< n/2 vertices, and that produces an elimination tree of height k.

Proof: The proof is by induction, and our induction hypothesis is iden-
tical to Lemma 3.1.

Induction hypothesis: There exists a Nested Dissection ordering of
Sm (k) that chooses separators as described above, and that produces
an elimination tree of height k.

We show this by induction on k. The base case is when & = 1. This
means that we have S,,(1) which is a star graph with m vertices. We
choose the vertex with the highest degree as the separator and thus get
an elimination tree of height 1.

We assume now that the induction hypothesis is true for S, (k), and we
will show that the vertices in S,,,(k + 1) can be eliminated to produce
an elimination tree of height £ 4+ 1. We choose the vertex z with the
highest degree to be eliminated last. This is shown in Figure 3.1. Thus
x is the first separator. We are allowed to do this since the remaining
components all have < |n/2| vertices. Now we choose to eliminate
the vertices in S, (k) first. We know by the induction hypothesis, that
there exists a Nested Dissection ordering of S,,(k) such that the height

3.2. HIGH ELIMINATION TREES 27

Figure 3.1: Choosing the first separator in S,,(k + 1).

Figure 3.2: An elimination tree for S,,(k + 1).

of T'(Sy,(k)) is k. We then eliminate the leaves that are neighbors of
z, and z is eliminated last. This produces one more level on top of
T(Sm(k)), and T(S,,(k)) will hang from z. (See Figure 3.2). Thus this
Nested Dissection ordering of S, (k + 1) produces an elimination tree
of height £ + 1 as claimed. O

Note that a Nested Dissection ordering as described in Lemma 3.1,
could also have chosen the root of the second largest star graph as
the separator in each step. This would produce an elimination tree
of height £/2. But since we are showing that there exists a Nested
Dissection ordering as required that produces an elimination tree of
height k, this causes no problems for the proof. In addition, we will see
that an elimination tree of height k/2 is still exponentially higher than
minimum.

Lemma 3.2 Minimum elimination tree height for Sy, (k) is |log, k| +1.

Proof: We use the following elimination ordering on S, (k): Eliminate
all the vertices with degree 1 first, and then eliminate the remaining
path by using a Nested Dissection ordering. When all the vertices of
degree 1 are eliminated, the remaining graph is a path of &k vertices. We

28 CHAPTER 3. NESTED DISSECTION

Figure 3.3: Finding the elimination tree of minimum height.

know from Manne [14], that the minimum elimination tree height for
such a path is |log, k|, and that this can be achieved by a Nested Dissec-
tion ordering with minimal separators. When we have the elimination
tree for the path, it is enough to hang the leaves on the appropriate
vertices. This is shown in Figure 3.3. A leaf that hangs from a vertex
v in S,,(k), hangs from v in the elimination tree also. This gives an
elimination tree of height |log, k| + 1. O

Note that the minimum elimination tree height for S,,(k) is then
O(loglogn), when |V,,(k)| = n. This is because n = 2¥"'m, and thus
k = O(logyn).

Theorem 3.3 A Nested Dissection ordering with minimal separators
and remaining components of size < n/2 on a star path, produces an
elimination tree that is exponentially higher than minimum.

Proof: Let h; be the height of an elimination tree for a star path,
produced in the same way as described in the proof of Lemma 3.1.
Let hs be the height of an elimination tree for the same star path,
produced as described in the proof of Lemma 3.2. It is easy to see that
hl = @(2h2) O

Chapter 4

Reducing the fill-in size

We will in this chapter, look at how we can further reduce the fill-in
size when a low elimination tree ordering is already given. We show
how to reduce the fill-in size for a given elimination tree without chang-
ing its structure. We have seen in Chapter 3 that there always exists a
Nested Dissection ordering with minimal separators on a graph G that
results in an elimination tree of minimum height. This type of Nested
Dissection does not have any requirements on the size of the remain-
ing components. Throughout this chapter, we use Nested Dissection
orderings that choose minimal separators in each step, and there are
no requirements on the size of the components. We show that for such
orderings, the problem of computing minimum fill-in decomposes into
subproblems for each separator. These subproblems are shown to be
also NP-hard. However, for small separators, they can be solved opti-
mally in reasonable time. We also compare several heuristics for these
subproblems.

We now give a brief discussion on why we think it might be better to
start with low elimination trees and try to reduce the fill-in size, instead
of starting with low fill-in and trying to reduce the elimination tree
height. If two vertices v; and v; of a graph G are numbered respectively
s and j where ¢ > j, then v; might be an ancestor of v; in the resulting
elimination tree although /;; = 0. This case is shown in Figure 4.1 a).
Thus, low fill-in does not imply a low elimination tree. But if ¢ > j and
v; is not an ancestor of v; in the elimination tree, as shown in Figure 4.1
b), then [;; must be zero. Reducing the elimination tree height might
therefore also result in low fill-in.

29

30 CHAPTER 4. REDUCING THE FILL-IN SIZE

Figure 4.1: a) l;; might or might not be 0. b) /;; must be 0.

4.1 A local problem

We first give a formal description of the problem mentioned in the
previous section. We will call this problem I'.

[': Given a graph G, a Nested Dissection ordering of G with mini-
mal separators, and the resulting elimination tree 7, find an ordering
that gives minimum fill-in while preserving the structure of 7.

In this section we show that in order to solve I', we need to change
the relative ordering of the vertices in each separator, and that this
local reordering for each separator can be done independently of the
other separators in the graph.

Definition: Let G be a graph ordered by a Nested Dissection order-
ing o with minimal separators, and let 7T be the resulting elimination
tree. We define a separator tree corresponding to T, to be a tree whose
vertices represent the separators of G chosen by «, and whose leaves
represent the components of G that cannot be separated further.

An example of a separator tree is given in Figure 4.2. The vertices
of a separator tree are called s-nodes. Every s-node consists of one or
more vertices of G, and corresponds to a separator. The s-nodes in
the separator tree are related to each other in the same way as the
separators are related in T i.e. the root s-node corresponds to the
separator in (G that is eliminated last. The leaf s-nodes correspond to
the components of G that cannot be separated further and that are
eliminated first.

4.1. A LOCAL PROBLEM 31

Figure 4.2: The elimination tree and the separator tree for a graph.

Lemma 4.1 Fach separator in G chosen by a Nested Dissection or-
dering with minimal separators is a clique in the filled graph G*.

Proof: Lemma 4.1 follows if we show that the s-nodes in a separator
tree ST are cliques in G*. It is easy to see that the leaf s-nodes are
cliques since they cannot be separated further by removal of any ver-
tices. We have to show that all the other s-nodes are also cliques. Let S
be any s-node in ST that is not a leaf. Let z be the vertex in § which is
eliminated first and let y be a child of zin T, where T is an elimination
tree that ST corresponds to. (See Figure 4.3). Since S is a minimal
separator, there must be an edge in G from each vertex in S to some
vertex in T'(y). Thus S C adjg(T'(y)). By Theorem 2.1, y has edges in
G* to all the vertices of adjg(T'(y)). Therefore when y is eliminated,
adjc(T(y)) becomes G*. Thus S must also be a clique in G*. O

Figure 4.3: Picturizing the proof of Lemma 4.1.

32 CHAPTER 4. REDUCING THE FILL-IN SIZE

Lemma 4.2 Changing the relative ordering of the vertices in an s-node
does not result in any changes in the elimination tree structure.

Proof: Since we choose the separators before we order the vertices in
them, a local reordering of vertices in a separator does not affect the
choice of separators. It follows from Lemma 4.1 that the vertices in
an s-node will induce a path in the elimination tree regardless of their
relative ordering, and thus the elimination tree will remain the same.
O

Lemma 4.2 shows that we can reorder the vertices in an s-node with-
out changing the elimination tree structure. In order to find a good
reordering of the vertices in an s-node, we have to know which portion
of the fill-in can be reduced by such a reordering. We divide the fill-in
that is caused by the elimination of vertices in S, into four disjoint
groups:

1. Fill-in that occurs within S
2. Fill-in that occurs within another s-node
3. Fill-in that occurs between other s-nodes

4. Fill-in that occurs between S and other s-nodes

Some of this fill-in occurs regardless of the local ordering of the ver-
tices in an s-node. The following lemmas show where this kind of fill-in
occurs. Lemmas 4.3 and 4.4 are stated without proofs, since they both
follow directly from Lemma 4.1.

Lemma 4.3 Changing the relative ordering of the vertices in an s-node
S does not result in any changes in the size of fill-in that occurs within

S.

Lemma 4.4 Changing the relative ordering of the vertices in an s-node
does not result in any changes in the size of fill-in that occurs within
another s-node.

Lemma 4.5 Changing the relative ordering of the vertices in an s-node
S does not result in any changes in the size of fill-in that occurs between
other s-nodes.

Proof: We need only to consider those s-nodes that lie on the path
between S and the root s-node. Whatever lies below S is eliminated
before S, and the s-nodes that lie elsewhere cannot be affected by the

4.1. A LOCAL PROBLEM 33

elimination of S. Let Sy, Sy and S be s-nodes as shown in Figure 4.4.
Let z; be a vertex in S; and z; be a vertex in Sy, where z; and z;
are numbered respectively i and j, where (i > j). By Theorem 2.1, we
know that l;; # 0 if and only if there exists a path z;,zp,, ..., zp,, 7;
in G such that all subscripts in {pi, ..., p;} are less than j. If no such
path exists then a reordering of the vertices in S cannot create such
a path, since all the vertices in S are numbered lower than j. By the
same argument, if such a path does exist, then it will exist also after a
reordering of the vertices in S. O

Figure 4.4: The s-nodes in the proof of Lemma 4.5.

The only vertices whose elimination may result in fill-in edges from S
to higher numbered vertices, are the vertices in S and the descendants
of S. It should be clear from the previous lemmas that, by reordering S,
we can only reduce the number of fill-in edges between S and its higher
numbered neighbors, that are caused by the elimination of vertices
within S. Thus we need only to consider the fill-in edges that belong to
Group 4.

Lemmas 4.1 - 4.5 and the discussion above suggest a bottom-up elim-
ination tree reordering that, beginning with leaf s-nodes, reorders one
s-node at a time. However, as we will see in the rest of this section,
each s-node can be reordered independently of the other s-nodes. Thus
the s-nodes can be reordered in an arbitrary order, or in parallel.

34 CHAPTER 4. REDUCING THE FILL-IN SIZE

Definition: Let G=(V,E) be a graph, S a set of vertices from V, and
let a be an ordering of the vertices in V. We define madjg(S) to be
the set {x ¢ S | (z,y) € E, y € S, = is higher numbered than all the
vertices in S}. We will call the set (madjg«(S) — madjg(S)) the fill-in
neighbors of S.

We will see in the next lemma that we do not have to consider the
fill-in neighbors of S when we reorder S, since these have edges in G*
to all the vertices in S regardless of the relative ordering of the vertices

in S.

Lemma 4.6 Let G be a graph ordered by a Nested Dissection ordering
with minimal separators, and let T and ST be the resulting elimination,
and separator trees. If there is a fill-in edge in G* from an s-node S to
a higher numbered vertex v in T that is caused by the elimination of a
descendant of S, then every verter in S has an edge in G* to v.

Proof: Let S be any s-node in ST that is not a leaf or the root. Since
there is a fill-in edge from S to v, by Theorem 2.6, there must be a
vertex w as shown in Figure 4.5 that has an edge to v in G. By the
same theorem, every vertex in S must also have edges to v. O

Figure 4.5: Picturizing the proof of Lemma 4.6.

We see by Lemma 4.6 that when we reorder S, it is enough to consider
the edges in @G, rather than G*. The fill-in neighbors of S caused by
the elimination of the descendants of S, have edges to all the vertices

4.1. A LOCAL PROBLEM 35

in S. Therefore, they cannot cause any new fill-in when we reorder S.
Hence we need only to consider edges between S and madjg(S). But
some of the vertices in madjg(S) might also be fill-in neighbors of S;
i.e. they might have fill-in edges to all the vertices in S, caused by the
elimination of the descendants of S. Hence we are allowed to exclude
such vertices from the neighborhood of S which we will work with, since
they cannot introduce any more fill-in to S.

The following algorithm Reorder describes how a graph G can be
reordered to reduce fill-in, given a separator tree for G. It also gives
a description of the local reordering problem for each s-node. We will
call this problem A.

Algorithm Reorder (ST: Separator tree; G: Graph);

begin
mark the root s-node in S7T;
while there are unmarked s-nodes in ST do
pick an unmarked s-node S in S7T;
adj'(S) = madjg(S) — U{madje(C)|C is a descendant of S};
A:Find a reordering of S that gives minimum fill-in
between S and adj’(S);
mark S;
end-while;
end;

Theorem 4.1 The algorithm Reorder solves the problem T'.

Proof: The proof follows from Lemmas 4.1 - 4.6 and the discussion
above. O

We have shown that the problem I' decomposes into smaller sub-
problems A, which can be solved independently for each s-node. For
parallel algorithms, this means that the s-nodes can be reordered in
parallel. This will reduce the time required to reorder a graph. In the
next section, we show that A, though more restricted and structured
than the general minimum fill-in problem, is still NP-hard.

Now we want to show that it is worth trying to reduce the fill-in size
in an elimination tree, and that in some cases considerable amount of
fill-in may be reduced. Let C' and S be s-nodes as shown in Figure 4.6

36 CHAPTER 4. REDUCING THE FILL-IN SIZE

a), where C is the parent of S. Let f be the number of edges in the
filled graph between the vertices in S U C. Then we have

p210001=D) IS0SI=0) oy
FlO0CI=D) 180S1-1) |y

Figure 4.6: Illustrating the discussion on the number of fill-in edges.

Thus the maximum number of edges that might be possible to reduce

is |C|(|S| — 1). Since for most values of C' and S we have that

cl=1 SldS[=1)
2 * 2

there are not as many edges that can be reduced as the ones that must
occur since C and S are cliques. But if C' has several children as shown
in Figure 4.6 b), then if all p children are of equal size, we have

cl|(|IC]—1 SIS —1
IC1(2|)+p| I 2\)

f< |C|(|62‘|—1) +p|5|(|5;|—1)

If p is large enough, and |C] is larger enough than |S|, then we can have

S10S1=1)
2

(s - 1) < 1 +iel

> +p|C],

+p|CIIS]-

cl(|C] -1
piol(s -1 > A=, 2[00
Thus in some cases we can potentially have at least as many unnecessary
fill-in edges as the ones that are bound to occur, and it is possible to
reduce the number of such fill-in edges.

4.2. STILL NP-HARD 37

4.2 Still NP-hard

In this section we are going to show that the problem A, described
in the previous section, is NP-hard. Let adj'(S) be as described by the
algorithm in the previous section. We can view S and its neighborhood
as a separate graph with the vertex set consisting of S and adj’(S). We
do not have to consider fill-in between two vertices that are both in S or
the fill-in between two vertices that are both in adj’(S). The only edges
we are interested in, are the ones between S and adj’(S). Therefore, we
can work on a graph that has only the vertices in S and adj'(S), and
only the edges that are between S and adj’(S). This observation leads
us to the following definition.

Definition: Let S be an s-node. We define Gs to be the bipartite
graph (S, adj'(S), E), where E contains only those edges between the
vertices in S and their neighbors in adj’(S). (See Figure 4.7 b).

In order to show that A is NP-hard, we need some results from Yan-
nakakis who shows in [22] that the general minimum fill-in problem
is NP-hard. Lemmas 4.7 and 4.8 are from his article and are quoted
without proofs.

Definition: A bipartite graph G = (P,Q, E) is a chain graph if the
neighborhoods of the vertices in P form a chain; i.e., there is a bijec-
tion 7 : {1,...,|P|} ¢ P such that adjg(n(1)) D adjg(n(2)) O ... D
adjg(m(|P])). Then the neighborhoods of the vertices in @) form also a
chain.

Definition: Let G=(P,Q,E) be a bipartite graph. We define C(G)
to be the graph (V, E'), where V = PUQ and E' = E U {(u,v)|u,v €
P} U {(u,v)|u,v € @}. Thus P and @ are cliques in C(G).

Lemma 4.7 Let G be a bipartite graph. C(G) is chordal if and only if
G is a chain graph.

Lemma 4.8 It is NP-hard to find the minimum number of edges whose
addition to a bipartite graph G=(P,Q,E) gives a chain graph.

These two lemmas show that a restriction of the general minimum
fill-in problem is NP-hard, implying that the general problem is also
NP-hard. We will see in the next lemma, that this restricted problem
is indeed equivalent to A.

38 CHAPTER 4. REDUCING THE FILL-IN SIZE

Lemma 4.9 C(Gy) is chordal if and only if we can eliminate the ver-
tices in S without introducing any fill-in between S and adj'(S).

Proof: (if) This is easy to see. We can first eliminate the vertices of S
in C(Gs) without introducing any fill-in between S and adj’(S). This
will not introduce any fill-in in C(Gy) since S and adj’(S) are cliques.
Then we can eliminate the vertices of adj’(S) and since they induce
a clique in C'(Gg), this can be done without introducing any fill-in in
C(Gs). Thus C(Ggs) has a perfect elimination ordering and must be
chordal.

(only if) Since C(Gs) is chordal, it has a perfect elimination order-
ing. We need to show that there exists a perfect elimination order-
ing of C'(Gs) which eliminates the vertices of S before the vertices
of adj’(S). We know by Lemma 4.7 that Gg is a chain graph. Let
s = |S| and let a be an ordering of S such that adjg,(a(1)) 2 ... D
adjcg(c(s)). The neighborhood of a(s) in C(Gg) is adjccs)(a(s))
= adjgs(a(s)) U (S — a(s)). This is a clique in C(Gg), since S and
ady'(S) are cliques, and each vertex in S has edges to all the vertices
of adj'(S) that are neighbors of «(s). Thus «(s) is simplicial in C(Gg)
and can be eliminated first without introducing fill-in. When «(s) is
eliminated, we can find a new simplicial vertex in the same way, since
the chain property is hereditary. Thus we can eliminate the vertices in
S first without introducing any fill-in between S and adj’(S). O

Figure 4.7: a) An s-node S and adj’(S). b) Gs. ¢) C(Gs).

Theorem 4.2 A is NP-hard.
Proof: The proof follows from Lemmas 4.7 - 4.9. O

4.3 Heuristics

In this section we discuss how we can solve the problem A described
in the previous section. Since the problem is NP-hard, it is not likely

4.3. HEURISTICS 39
that one will find a polynomial time algorithm that solves it optimally.

Already existing heuristics like Minimum Degree or Nested Dissection
may be used in order to solve A. However, there are no guarantees
for how well these will perform when used for solving A. It is easy
to find examples which show that these heuristics may result in more
fill-in than optimal. On the other hand, since all the s-nodes can be
reordered simultaneously, it is possible to find an optimal solution in
reasonable time by simply trying all possibilities, if the s-nodes are
small enough. Also, both Minimum Degree and Nested Dissection try
to reduce the number of fill-in edges globally. Although we can run
these heuristics locally on a single s-node, they consider all four groups
of fill-in, whereas only fill-in edges that belong to Group 4 need to be
considered.

We now present a new heuristic for reordering the vertices in an s-
node to reduce fill-in. The algorithm is called MinimumFillFirst, and is
locally sensitive only to Group 4 of fill-in. The idea behind this heuristic
is to find how much fill-in each vertex in § will produce between S and
adj'(S) when eliminated first, and to eliminate the one that produces
the least number of such fill-in edges first. The following lemma shows
the size of the fill-in produced by the vertex that is eliminated first.

Lemma 4.10 Let G = (V,E) be a graph ordered by a Nested Dissection
ordering with minimal separators. Let S be an s-node, v be a vertezr in
S, and let Gg be as described in the previous section. If v is eliminated
first of all vertices in S then the number of fill-in edges between S and
adj'(S) in G* produced by the elimination of v is:

Y Hz:zeSA(z,w) ¢ E}.

weadjg4 (v)

Proof: Since §is a clique in G*, v has edges to all the other vertices
in S. Therefore, for each vertex z € S, if (z, w) ¢ F for a neighbor w of
vin Gg (w € adj'(S) and w € adjg(v)), then there will be a fill-in edge
(z,w) € E*. This situation is illustrated in Figure 4.8. O

We can now formally describe our heuristic by the following algo-
rithm. First the number of fill-in edges for each vertex in S is found
(FindSum). Then in each iteration a vertex with the least sum is chosen
and numbered. This vertex is taken away and the sums of the other
vertices are updated (Update).

40 CHAPTER 4. REDUCING THE FILL-IN SIZE

Figure 4.8: The proof of lemma 4.10.

Algorithm MinimumFillFirst (S: S-node; adj'(S): Set of vertices);

begin
FindSum;
while there is more than one vertex in S do
find the vertex v € S with the least sum;
number v;
Update(v);
end-while;
end;

Next we give the algorithm for finding the sums. This algorithm
uses Lemma 4.10 to compute the number of fill-in edges each vertex
produces when eliminated first.

Algorithm FindSum;

begin
for each vertex v € S do
v.sum = 0;
for each vertex w € adj'(S) do
if (v,w) € E then
for each vertex z € S do
if z # v and (w,z) ¢ F then
v.sum = v.sum + 1;
end-for;
end;

4.3. HEURISTICS 41

The time complexity of this algorithm is O(s?h), where s = |S| and
h is the height of the elimination tree. This is because |adj/(S)| < h
since we only look at the neighbors of S on the path from S to the root.

We will now look at the algorithm Update which has a vertex v as
input parameter. The vertex v is the vertex that is currently being
numbered. We look at each neighbor w of v (w € adj’(S)), and decide
if the elimination of v results in any fill-in between w and vertices in S.

For each vertex z € S, where z # v, there is either an edge (w,z) € E
or there will be a fill-in edge (w,z) € E* when v is eliminated. If
(w,z) € E then the elimination of z would have produced as many
fill-in edges from w to vertices in S as the elimination of v produces.
After v is eliminated, the elimination of z will not result in these fill-in
edges any more since they already exist. Therefore, the number of such
fill-in edges must be subtracted from z.sum. We update the sums for
all the vertices z in this way. We must also update z.sum for vertices z
that have neighbors which are not neighbors of v. After vis eliminated,
there will not be any fill-in edges between v and these neighbors of .

Note that if a vertex z does not have edges to any of v’s neighbors
then z will have edges to these when v is eliminated. This does not
change z.sum or the sum of any other vertex, since every vertex in S
has edges to every neighbor in adj’(S) of v after v’s elimination. Thus
there will not be any more fill-in between these neighbors and vertices
in S.

42 CHAPTER 4. REDUCING THE FILL-IN SIZE

Algorithm Update (v: Vertex);

begin
for each vertex w € adj'(S) do
if (v,w) € E then
fill = 0;
unmark all vertices in S
for each vertex z € S do
if (w,z) ¢ E then

fill =fil +1
else
mark z;

for each marked vertex z do
z.sum = z.sum - fill;
adj'(S) = adj'(S) - w;
end-if;
for each vertex z € S, where (z # v) do
for each vertex w € adj'(S) do
if (w,z) € E and (v,w) ¢ E then
r.sum = z.sum - 1;
S=95-wv
end;

It is easy to see that the time complexity of the algorithm Update is
O(sh). This gives a total time complexity of O(s?h) for the algorithm
MinimumFillFirst since the loop is executed s times.

We will now discuss the time complexity of reordering the whole
graph G = (V, E). This complexity depends on whether the reordering
is done sequentially or in parallel. The time complexity of finding
ady'(S) for each s-node must also be considered. We now give a recursive
algorithm FindAdj that finds adj'(S) for all the s-nodes in the separator
tree, when called with the root s-node as parameter.

4.3. HEURISTICS 43
Algorithm FindAdj (S: S-node);

begin
adj'(S) = {};
if S is a leaf s-node then
for each vertex v € S do
for each vertex x on the path to the root do
if (z,v) € E then

mark z by S;
adj'(S) = adj'(S) U {z};
end-if;
else
for each child S; of S do

for each vertex v € S do
for each vertex z on the path to the root do
if the last s-node that marked z is a child of S then
mark z by S
else
if (z,v) € E then
adj'(S) = adj'(S) U {z};
mark z by S;
end-if;
end-if;
end;

The time complexity of the algorithm FindAdjis 35, |Si|lh = O(nh),
where n = |V|. If the algorithm is implemented in parallel, it is possible
to achieve a time complexity of O(h?) by using one processor per s-node.
We now change the algorithm Reorder so that it uses all the algorithms
that we have given.

44 CHAPTER 4. REDUCING THE FILL-IN SIZE

Algorithm Reorder (ST: Separator tree; G: Graph);

begin
mark the root s-node in ST}
FindAdj (the root s-node);
while there are unmarked s-nodes in ST do
pick an unmarked s-node Sin ST}
MinimumFillFirst(S,adj'(S));
mark S;
end-while;
end;

If the algorithm Reorder is implemented sequentially, then the time
complexity is
O(nh) 4+ >_O(sih)
Si
where s; = |S;| for all s-nodes S; in ST. Since s; < h and Y g, s; = n,
we have

; O(sih) = ; O(s;h%) = O(h?) ; O(s;) = O(h?n).

The time complexity of the algorithm Reorder is then O(hn)+O(h?n) =
O(h*n). Note that this is a pessimistic worst case time complexity anal-
ysis, and we may expect the algorithm to perform better in practice. It
will indeed be difficult to perform this bad, since all the s-nodes cannot
be as large as O(h) and simultaneously have O(h) neighbors higher up
in the elimination tree.

Note that the time complexity analysis that we have given for the
algorithms in this chapter, assumes a space complexity of O(n?). We
must have that much space in order to be able to check if an edge
(v,w) € E in O(1) time. If n is very large, it might be difficult to store
O(n?) entries. It is possible to use other data structures for storing. As
an example, each vertex can have a balanced binary tree as its list of
neighbors. This way, testing if (v, w) € E takes O(logd) time, where
d is the largest degree in G. Note also that we have concentrated on
making the algorithms as simple and easy to understand as possible.
By coding the algorithms in a different way, it might be possible to
reduce the time complexity further.

We have shown in Section 2 that the s-nodes can be reordered in
parallel. In a parallel algorithm the loop is executed in parallel. Thus

4.3. HEURISTICS 45

the s-nodes are being reordered simultaneously. The complexity of
doing this will be bounded by the complexity of reordering the largest
s-node in the separator tree. If the s-nodes are small, we can solve
the problem of reordering all the s-nodes optimally in reasonable time
though this will mean trying every permutation of the vertices in every
s-node.

46

CHAPTER 4. REDUCING THE FILL-IN SIZE

Chapter 5

Low elimination trees

In this chapter, we give an algorithm for finding minimum height
elimination trees for chordal graphs. This algorithm is conceptionally
simple, and leads to a polynomial-time algorithm for finding minimum
height elimination trees for a non-trivial subclass of chordal graphs. A
brief discussion on how a variant of this polynomial-time algorithm can
be used on general graphs in order to reduce the elimination tree height
is also given.

The central terms in this chapter are cliques, separators and chordal
graphs. Cliques and separators were introduced in Chapter 1. Since
cliques are complete subgraphs, a clique can be identified by the vertices
in it. In this chapter, we treat cliques as sets of vertices. Thus a clique
C in a graph G is a set of vertices that induce a complete subgraph
of GG. The difference between a minimal separator and a minimal v-w
separator was also mentioned in Chapter 1. Recall that each minimal
separator is also a minimal v-w separator for some v and w. In Chapter
2, we gave a brief introduction to chordal graphs. We now give some
more results on chordal graphs. Lemma 5.1 is from [3], and Lemma 5.2
is from [21].

Lemma 5.1 G is a chordal graph if and only if every minimal v-w
separator in G s a clique.

Lemma 5.2 For every clique C' in a chordal graph, there exists a per-
fect elimination ordering that eliminates the vertices in C' last.

Let G = (V, E) be a chordal graph. The clique graph of G is a graph
G = (V,€&), where V = {C4, (s, ...,Cy,} is the set of all the maximal
cliques in G, and each edge (C;,C;) € £ is a subset of V. If the
cliques C; and C; have vertices in common in G, then (C;, C;) € €,

47

48 CHAPTER 5. LOW ELIMINATION TREES

and (C;, C;) = C;N C;. The weight of an edge (C;, C;) in G is equal to
|CiNC|. A clique tree T for G is a maximum weight spanning tree for
G. The clique graph of GG is unique whereas G may have several clique
trees. An example is shown in Figure 5.1. The number of maximal
cliques in a chordal graph G is less than or equal to the number of
vertices in G ([3]). Thus |V| < |V|]. More detailed information about
clique trees can be found in [1] and [10].

Figure 5.1: a) G. b) The clique graph of G. c¢) The clique tree of G
which, in this case, is unique.

Lemma 5.3 and Corollary 5.1 are from [10], and Lemma 5.4 is from
[1]; we quote them without proofs.

Lemma 5.3 Let G be a chordal graph and let T be a clique tree of G.
For every edge (C;,C;) in T, C;NCj is a minimal v-w separator in G,
and for every minimal v-w separator S in G there is at least one edge
(C;,C;) in T such that C;NC; = S.

Corollary 5.1 If a chordal graph G has m mazimal cliques, then the
number of minimal v-w separators in G is less than or equal to m — 1.

5.1. AN ALGORITHM FOR CHORDAL GRAPHS 49

Let G be a chordal graph with n vertices and m maximal cliques.
Since m < n, by Corollary 5.1, the number of minimal v-w separators
in GG is less than or equal to n — 1.

Lemma 5.4 Let T = (V,€) be a clique tree of a chordal graph G. For
every pair of distinct cliques C; and C; € V, the intersection C; N C) is
contained in every mazimal cliqgue on the path connecting C; and Cj; in

T.

Corollary 5.2 Let T = (V,€) be a clique tree of a chordal graph G.
For every pair of distinct cliqgues C; and C; € V, the intersection C;NC;
is contained in every edge on the path connecting C; and C; in T .

Proof: Each edge S in 7 is the intersection between the two maximal
cliques that S is incident to. Thus, if every maximal clique on a path
in 7 contains C; N C;, then every edge on the same path must also
contain C; N C;. O

In the next section, we will use the results presented here to find
minimum height elimination trees for chordal graphs.

5.1 An algorithm for chordal graphs

In this section, we show that we can find a minimum height elim-
ination tree for a chordal graph G by using a clique tree of G. Our
approach is as follows: Let G be a chordal graph. Solve the following
two problems.

1. Find a clique tree T of G.

2. Using T, find a minimum height elimination tree for G.

An algorithm for solving Problem 1 can be found in [12]. In this
section, we show how Problem 2 can be solved and give an algorithm
for this. From Theorem 3.1, we know that there always exists a Nested
Dissection ordering with minimal separators, that results in a minimum
height elimination tree for G. As we have seen in the previous section,
the edges in a clique tree 7 of G are the minimal v-w separators in
(G. Since every minimal separator in GG is also a minimal v-w separator
for some v and w in G, T provides all the necessary information about
every possible minimal separator in G. The idea behind our algorithm
is to exploit this property of 7. A minimum height elimination tree
for G can then be found by trying out every ordering of the minimal
separators in G.

50 CHAPTER 5. LOW ELIMINATION TREES

Before we give the algorithm, we show in the next lemma that a clique
tree T of G provides information not only about the minimal separators
in GG, but also about the minimal separators in every induced subgraph
of G.

Lemma 5.5 Let G be any graph, and let H be an induced subgraph of
G. For each minimal v-w separator Sy in H, there exists a minimal
v-w separator Sg in G, where Sy C Sg.

Proof: Let v and w be two vertices in H, and Sy be a minimal

v-w separator in H. Since it is possible to separate v and w in H, it
is also possible to separate them in G. We now show how to choose
Sg such that Sg is a minimal v-w separator in G and Sy C Sg. Let
G' = G — Sg. If v is connected to w in G’, then let S be a minimal
v-w separator in G'. Otherwise, let S be empty. We set Sg = Sy U S.
It is easy to see that Sg separates v from w in G. We now show by
contradiction that Sg is minimal. Assume that Sg is not minimal and
let S,.;n be a subset of Sg that separates v from w in G. Then S,,;, can
be partitioned into two disjoint subsets A and B such that at least one
of the two following statements is true: 1) A C S, 2) B C Sy. But then
A and B separate v and w in respectively H and G'. This contradicts
the assumption that S and Sy are both minimal, and completes the
proof. O

Let G be a chordal graph. By Lemmas 5.3 and 5.5, every minimal
separator in an induced subgraph H of G is represented by an edge in
T. It is also easy to show that H cannot have several non-identical
minimal separators that are represented by one single edge in 7. This
is because each minimal v-w separator in G is a clique, and it is not
possible to disconnect such a separator by removing some of its vertices.
Therefore, it can never be the case that H has non-identical minimal
separators that are subsets of one unique edge S in the clique tree 7.
Thus, T provides all the information needed by each step of a Nested
Dissection ordering with minimal separators.

The next theorem shows that we can find minimum height elimina-
tion trees for chordal graphs, and an algorithm follows from the proof
of the theorem.

5.1. AN ALGORITHM FOR CHORDAL GRAPHS ol

Theorem 5.1 We can find a minimum height elimination tree for a
chordal graph G, given a clique tree T of G.

Proof: The proof is by induction on the number of maximal cliques.
Our induction hypothesis is the following.

Induction hypothesis: We can find a minimum height elimination tree
for G if T contains < m maximal cliques.

The base case is when m = 1. Then the clique tree contains one max-
imal clique C' which may be empty. Thus we cannot have branching,
and the minimum elimination tree height for G is 0 if C' is empty, and
|C| — 1 otherwise.

Assume that the induction hypothesis is true for m = k, where k > 1,
and we will now show that it is true for m = k + 1. Let 7 be a clique
tree with £+ 1 maximal cliques for a chordal graph G. Let S be an edge
in 7 that is a minimal separator in (G. Since S is a set of vertices, the
removal of S from 7T is not only the removal of an edge from 7T, but also
the removal of the vertices in S from every maximal clique and every
edge in 7. Thus 7 — S can have several components. By the induction
hypothesis, for each component 7" in 7 — S, we know how to find a
minimum height elimination tree for the subgraph of G' corresponding
to 7'. We find an elimination tree 7" for G in the following way: S is
the top separator in 7', and for each 77, S has a minimum height elimi-
nation tree of 77 as a child. In order to find the height of T, we add |S|
to the height of the highest child of S. However, T is not necessarily
a minimum height elimination tree for G. In order to find a minimum
height elimination tree, we repeat the process described above for each
edge S in T that is a minimal separator in G. O

An algorithm can now be designed directly from this proof. For sim-
plicity, we give an algorithm that computes only the minimum elimina-
tion tree height, but the actual elimination tree can also be computed in
the same way. Algorithm MinTree returns the minimum elimination
tree height for a chordal graph G, given a clique tree 7 of G.

52 CHAPTER 5. LOW ELIMINATION TREES
Algorithm MinTree (T: Clique tree):integer;

begin
if 7 is empty then
MinTree =0
else if 7 has only one maximal clique C' then
MinTree = |C| — 1
else
min = oo;
for each edge S in T do
max = 0;
for each component 7' in 7 — S do
height = MinTree(T");
if max < height then
max = height;
end-for;
if min > |S|+ max then
min = |S| + max;
end-for;
MinTree = min;
end-if;
end;

Note that in the proof of Theorem 5.1, we considered only the min-
imal separators of G. Since the edges in 7 represent all the minimal
v-w separators in GG, and every minimal separator is a minimal v-w
separator for some v and w in G, there is more information in 7 than
we need. As long as every minimal separator is considered, we see from
Theorem 3.1 that a minimum height elimination tree is found. So the
correct result is found although we consider the edges in T that are not
minimal separators.

The time complexity of the algorithm MinT'ree is exponential in the
number of maximal cliques in G. Thus, this algorithm is not practical
for large graphs. However, MinT'ree is useful for theoretical reasons. It
is simple and easy to understand and illustrates the idea of exploiting
the properties of clique trees to find minimum elimination tree height
for chordal graphs. The technique used to develop this algorithm will
help us to design a polynomial-time algorithm for a subclass of chordal
graphs. This polynomial-time algorithm is presented in the next sec-
tion.

5.2. THE CLASS Q2 93

5.2 The class 2

Our aim now is to find a class of graphs for which an algorithm similar
to MinTree finds the minimum elimination tree height in polynomial
time. Since MinTree is designed for chordal graphs, it is natural to
consider a subclass of chordal graphs. We now give a formal definition
of a subclass of chordal graphs which we call 2. We will see from the
results in this section that €2 fits our purposes.

Definition: A graph G € if and only if G is chordal and has at
most two maximal cliques that contain simplicial vertices.

Figure 5.2: Examples of graphs in €.

As we can see from this definition, a graph G € 2 is either a complete
graph, or a chordal graph with exactly two maximal cliques that contain
simplicial vertices. We consider the graphs in €2, and we show that we
can find minimum height elimination trees for these graphs by using
clique trees. Our approach is the same as in the previous section.
As we have seen, by trying out every ordering of the separators in a
graph G € (), we can find a minimum height elimination tree for G.
However, by exploiting some properties of the graphs in 2 and their
clique trees, we can restrict the amount of work, so that we can find a
minimum height elimination tree in polynomial time for the graphs in
2. Examples of graphs in) are shown in Figure 5.2.

54 CHAPTER 5. LOW ELIMINATION TREES

We now present some results about the graphs in 2 and their clique
trees, which we will use to develop an algorithm similar to MinTree.
First we define a special type of graph which will be used throughout
the rest of this chapter.

Definition: A trail is a tree T = (V, E), where V' = {v1,vs, ..., Up },
and E = {(v1,vs), (v2,03), .., (Vn_1,V5) }-

Lemma 5.6 A graph G € Q if and only if every perfect elimination
ordering on G results in an elimination tree that is either a trail or has
exactly two leaves.

Proof: Figure 5.3 shows examples of elimination trees are meant by
Lemma 5.6.

Figure 5.3: Elimination trees for the graphs in 2.

(if) Assume that every perfect elimination ordering on G results in an
elimination tree that has at most two leaves. If G has more than two
maximal cliques with simplicial vertices, then there are at least three
non-adjacent simplicial vertices in (G. Thus these non-adjacent simpli-
cial vertices can be eliminated simultaneously without introducing any
fill-in. This however, results in an elimination tree that has at least
three leaves, which contradicts our assumption.

(only if) Assume that G has at most two maximal cliques that contain
simplicial vertices. If a perfect elimination ordering on G results in an
elimination tree with more than two leaves, then there must exist at
least three vertices in G that can be eliminated simultaneously. This is
only possible when G has at least three non-adjacent simplicial vertices.
But then G must have at least three maximal cliques with simplicial
vertices. This contradicts the assumption that G € and completes
the proof. O

5.2. THE CLASS Q2 99

We continue by showing in Theorem 5.2 that a graph G € () has a
unique clique tree that is a trail. The following lemma will help us to
prove Theorem 5.2.

Lemma 5.7 Let G be a chordal graph, and let T be a clique tree of G.
Then every leaf clique in T contains at least one vertex v, where v is a
simplicial vertex in G.

Proof: Let C be a leaf clique in 7, and let C’ be the only neighbor
of C in T. Thus the edge C N C’ is the only edge incident to C' in T.
Let G be the clique graph of G. For every neighbor C; of C' in G, we
have from Corollary 5.2 that (C; N C) C (C'N C'). Thus, the vertices
in (C — (C'NC")) do not belong to any other maximal cliques than C,
and are simplicial vertices in G. Since C # C’, there must be at least
one vertex in (C — (CNC")). O

Theorem 5.2 Let G be a graph in). Then G has a unique clique tree
T that is a trail.

Proof: Let T be a clique tree of G. By the definition of {2 and Lemma
5.7, T has at most two leaf cliques. If G has only one maximal clique,
then this is the only leaf clique in 7 and 7T is therefore unique. If G
has two or more maximal cliques, then any clique tree of G must have
at least two leaf cliques. Since G € (), it follows that 7 has exactly
two leaf cliques, and the leaf cliques are the two maximal cliques in G
with simplicial vertices. Therefore 7 must be a trail. We now show by
induction that 7 must be unique.

Induction hypothesis: For every graph G € with < m maximal
cliques, there exists a unique clique tree 7.

The base case where m = 3 is the first interesting case since all trees
with two vertices are isomorphic. Let G have 3 maximal cliques C4, Cy
and C3, where C; and C5 are the ones with simplicial cliques. Then in
a clique tree 7, C; and C3 must be leaf cliques and C5 must have edges
to Cy and (5. This is the only possible clique tree of G and thus 7 is
unique.

Let the induction hypothesis be true for m = k, where k£ > 3, and
we show that it is true for m = k+ 1. Let G be a graph in Q2 with k+1
maximal cliques, and let C; and Cj; be the two maximal cliques in G
with simplicial vertices. As we have mentioned before, in every clique
tree of G, C; and Cy,1 must be leaf cliques. Let 7 be a clique tree of
G; we show that 7 is unique. Let C7,C5 and C3 be maximal cliques

96 CHAPTER 5. LOW ELIMINATION TREES

in T as shown in Figure 5.4 a). Let G’ be an induced subgraph of G
which we get by taking away the simplicial vertices in C7, and let T’
be the remaining clique tree when the same vertices are removed from
T. Then T' is a clique tree of G'. By Corollary 5.2, in 7, C; N Cy
must contain every vertex that C' has in common with other maximal
cliques. Thus when the simplicial vertices in C] are removed, the re-
maining vertices of C; make a subset of C5. Therefore, the remaining
clique tree 7' has k£ maximal cliques as shown in Figure 5.4 b). We
know that if G’ € 2, then by the induction hypothesis, 7 is unique.
Therefore, we now show that G’ € €. In order to show this, we need
to show the following two statements:

1. C; has simplicial vertices in G’

2. No other maximal clique C;, where 2 < ¢ < k 4+ 1 has simplicial
vertices in G’

In order to show Statement 1, we note that in 7, C;NCs must contain at
least one vertex v that is contained in no other maximal clique than Cf
and Cs. Otherwise, if every vertex in C; N Cy were contained in some
other maximal clique, then by Corollary 5.2 C5 N C'3 would contain
C1 N Cy. But since Cy has no simplicial vertices in 7, this would mean
that C'y C (5 and lead to a contradiction. Thus v becomes a simplicial
vertex in C5 in G'. We now show Statement 2. In order for a maximal
clique C; to have simplicial vertices in T’, C; must have vertices in
common with C; in 7. Otherwise, the removal of the simplicial vertices
in C7 would not affect C;. But since C; N Cs contains C; N Cj, every
vertex in C7 N C; is also contained in C5 and cannot be a simplicial
vertex. Thus, 7' is unique, and 7 must also be unique since C; and
Ch1 are the only leaf cliques in 7. O

Figure 5.4: T and T’ in the proof of Theorem 5.2.

5.2. THE CLASS Q2 o7

Note that one of the possible clique trees for a chordal graph G may
be a trail although G' does not belong to 2. The example in Figure 5.5
shows this. Also, every clique tree of a chordal graph G may be a trail
although G is not in 2. This is shown in Figure 5.6.

Figure 5.5: a) G. b) An elimination tree produced by a perfect elimi-
nation ordering on G. c) One of the possible clique trees of G which is
a trail.

98 CHAPTER 5. LOW ELIMINATION TREES

£

Figure 5.6: A chordal graph G which is not in €2, and all the clique
trees of G.

Let G be a graph in (2. Theorem 5.2 states that G has a unique clique
tree T that is a trail. Any perfect elimination ordering on G must start
by eliminating simplicial vertices. Since the leaf cliques in 7 are the
only maximal cliques in G with simplicial vertices, a perfect elimination
ordering can first eliminate the simplicial vertices in the leaf cliques.
Let the maximal cliques in 7 be numbered from 1 to m consecutively
beginning from a leaf clique. A perfect elimination ordering o on G can
be found in the following way: Eliminate first the simplicial vertices in
C:. As we have seen in the proof of Theorem 5.2, when the simplicial
vertices in C are eliminated, C5 becomes a leaf clique with simplicial
vertices. We continue by eliminating the simplicial vertices in Cs. It is
easy to see that whenever a leaf clique Cj is eliminated, C;,; becomes a
leaf clique with simplicial vertices in the remaining clique tree. Thus we
can continue by eliminating the simplicial vertices in C;,;. We repeat
this process until the remaining clique tree is empty. This elimination
ordering « results in an elimination tree that is a trail, and implies an

5.2. THE CLASS Q2 99

ordering of the maximal cliques in GG. In the rest of this chapter, we
assume that the maximal cliques of G are numbered from 1 to m as
described above.

Note that the argument above can be applied to both ends of the
clique tree, thus any perfect elimination ordering must proceed from
the ends of the clique tree to the interior. We now continue with some
more results that will help us to show how 7 can be used to find
a minimum height elimination tree for G. The number of maximal
cliques in G will always be denoted by m, unless specified otherwise.

Lemma 5.8 Let G be a graph in 2. Then every minimal v-w separator
in G divides G into exactly two components.

Proof: The proof is by contradiction. Assume that there exists a
minimal v-w separator S in G that divides GG into at least three com-
ponents. By Lemma 5.1, S is a clique, and by Lemma 5.2, there exists
a perfect elimination ordering o that eliminates S last. Then in each of
the three components, there must be simplicial vertices such that each
component can be eliminated without introducing fill-in. This implies
the existence of at least three maximal cliques in G with simplicial
vertices, and thus contradicts the fact that G € Q. O

Lemma 5.9 Let G be a graph in 2 and let T be a clique tree of G.
Then there do not exist two distinct edges S and S" in T, such that
S'CS.

Proof: Assume that S and S’ are two distinct edges in 7, such that
S’ € S. The removal of S implies the removal of S’. By Lemma
5.8, the removal of S divides G and therefore 7 into two components.
Thus, the removal of S must also imply the removal of every maximal
clique between S and S’. This means that, for every maximal clique C;
between S and S’, C; C S. Let C be a maximal clique in 7 as shown
in Figure 5.7. Since S C C, for every maximal clique C; between S and
S', C; C C. Then for each Cj, either C; = C or C; cannot be a maximal
clique. But this leads to a contradiction since 7 contains only distinct
maximal cliques of G. O

Figure 5.7: The proof of Lemma 5.9.

60 CHAPTER 5. LOW ELIMINATION TREES
The following corollary follows directly from Lemma 5.9.

Corollary 5.3 Let G be a graph in S, and let ‘T be the clique tree of
G. Then every separator represented by the edges in T, is a minimal
separator in G.

To be able to use Nested Dissection with minimal separators to find
a minimum height elimination tree, we must find the minimal separa-
tors in G. We know from Lemma 5.3 that a clique tree for any chordal
graph contains information about every minimal v-w separator in the
graph. We have mentioned before that every minimal separator is also
a minimal v-w separator for some v and w in G. Thus, clique trees
in general, give us more separators than we want, since we are only
interested in the minimal separators. For the graphs in {2 however, we
see by Corollary 5.3 that the separators provided by the clique trees,
are exactly the minimal separators that we need.

Definition: Let G be a graph in 2, and 7T the clique tree of G. For all
1,7, where i < j < m, we define H;; to be the subgraph of G' induced
by the vertices in the maximal cliques Cj, Cj11,...,Cj, excluding the
vertices that these cliques have in common with other maximal cliques.
In other words, H;; is the graph induced by the vertices in {v | v € C}
fori<k<jandv ¢ Cyfor k <iork>j}

Lemma 5.10 Let G be a graph in), and T the clique tree of G. For
all 4,7, where i < j <m, H;; € Q.

Proof: It is easy to see that H;; is chordal, since every induced sub-
graph of a chordal graph is also chordal. The rest of the proof is by
contradiction. Assume that there exist ¢ and 7, where ¢ < j < m such
that H;; € 2. Then H;; must have at least three maximal cliques with
simplicial vertices. Thus H;; has a perfect elimination ordering o that
results in an elimination tree with at least three leaves. Then a perfect
elimination ordering for G' can be found in the following way. Elimi-
nate the vertices in C4, ..., C;_1 beginning with the simplicial vertices
in C; as described in the discussion above. Eliminate the vertices in
Cm,Cm-1,...,Cj;1 starting from the simplicial vertices in Cy, and con-
tinuing backward. Eliminate the vertices in H;; as locally ordered by
«. This gives an elimination tree that has at least three leaves, and im-
plies the existence of at least three maximal cliques in G with simplicial
vertices. Since GG then cannot be in €2, we get the desired contradiction
and the proof is complete. O

5.2. THE CLASS Q2 61

By Lemma 5.10, the results that we have shown on G, where G is
a graph in (), are also true for H;;. This makes it easier to design a
recursive algorithm, since we know that the subgraphs that we work on
in each step have the same properties as the original graph G. We have
also mentioned in the previous section, that every minimal separator
that needs to be considered in each step is represented in the original
clique tree T of G. With this background we are now ready to design
an algorithm for finding minimum elimination tree height for graphs in

Q.

As we will see in the proof of the following theorem, an elimination
tree of minimum height for a graph G € (2 can be found without having
to try every permutation of the vertices in G. An algorithm for finding
a minimum height elimination tree follows directly from this proof.

Theorem 5.3 Let G be a graph in §2, and let T be the clique tree of
G. We can find a minimum height elimination tree for G by using only
the information provided by T .

Proof: The proof is by induction, and our induction hypothesis is as
follows.

Induction hypothesis: We know how to find an elimination tree of min-
imum height for H;;, where (j —i) < k.

We show this by induction on k. The base case is when k& = 0. This
means that H;; is either empty or a complete graph (Hyy and H,,
are complete graphs, whereas H;; for 1 < ¢ < m is empty). If H;; is
empty then the elimination tree height is 0. Otherwise, the elimination
tree height is one less than the number of the vertices in H;;, and the
elimination tree is a trail that consists of the vertices in H;;.

We assume now that the induction hypothesis is true, and show how
this enables us to find a minimum height elimination tree for H;;, where
(j—1%) = k+1. Let T’ be the subtree of 7 that corresponds to H;;. We
choose an edge in H;; to be the top separator in the elimination tree.
Let S = Cp,NCj be this edge, where Cp, and C, are two consecutive max-
imal cliques in 7'. By Lemma 5.8, the removal of S divides H;; into two
components H;, and Hy;. By the induction assumption, since (p—i) < k
and (j — ¢) < k, we can find minimum height elimination trees for H,
and H,;. Let Tmm(Hij) denote a minimum height elimination tree for
H;;. Further, let Ts(H;;) be the elimination tree of H;; with S as the top
separator, and Ty, (H;p) and T, (Hy;) as the two subtrees that hang

62 CHAPTER 5. LOW ELIMINATION TREES

from S. This is illustrated in Figure 5.8. Then Height(Ts(H;;)) = |S|+
max (Height(Tmin(Hip)), Height(Tmin(Hgy;)))- In order to find a mini-
mum height elimination tree for H;;, we find Ts(H,;) for every edge S
in H;;, as described above. Then we choose the elimination tree that
has the minimum height. This way, every minimal separator in H;; is
tried as the top separator, and the one that gives the minimum height,
is chosen. Hence a minimum height elimination tree is found for H;;,
since there always exists a Nested Dissection ordering with minimal
separators that results in a minimum height elimination tree. O

T

Figure 5.8: a) T'. b) Ts(H;;), where A = Tyin(Hip), and B =
Tmin(qu)-

We now give an algorithm that computes the minimum elimination
tree height for a graph in {2 as described in the proof of Theorem 5.3.
For simplicity, we only compute the height of the elimination tree and
not the tree itself. Let C, ..., Cy, be the maximal cliques in 7, and let
S1, .-y Sm—1 be the edges in T, where S; = C; N C;1. The algorithm
returns the height of a minimum height elimination tree for H ¢,ome toc,
where frome < toc < m.

5.2. THE CLASS Q 63
Algorithm Height (T: Clique tree; frome, toc: integer): integer;
begin

A={veC;|j< fromcorj>toc};
for i = fromc to toc - 1 do

Czl = Cz — A;
Sl =5; — A
end-for;
Ct,oc = Ctoc - A;

if fromc = toc then
Height = [Clpmel — 1
else
opt = o0;
for i = fromc to toc - 1 do
min = |S}| + maz (Height(frome,i), Height(i + 1, toc));
if min < opt then

opt = min;
end-for;
end-if;
Height = opt;
end;

Theorem 5.4 Let G be a graph in Q, and let T be the clique tree of
G. Then Height(T,1,m) is the minimum elimination tree height for
G.

Proof: Follows directly from the proof of Theorem 5.3 and Algorithm
Heught.

Although the algorithm Height produces the desired result, it is not
efficient. There are parts that are redundant and many subresults are
computed several times. In order to achieve polynomial time complex-
ity, we now present another algorithm that solves the same problem
by using dynamic programming. We use a two dimensional array Opt
[1..m,1..m] to store the optimal elimination tree heights of the sub-
graphs of G. The number Opt [i,j] contains the height of a lowest
elimination tree for H;;.

64 CHAPTER 5. LOW ELIMINATION TREES
Algorithm DynHeight (T: Clique tree; Opt: Array of integers);

begin
fori=1tomdo
for j=1to mdo
Opt [i,j] = oo;
for i = m downto 1 do
for j =1ito mdo
A={veCylk<iork>j}
fork=itoj-1do
Cr. = Cr — A,
S, = Sk — 4;
end-for;
Ci =Cj — A;
ifi = j then
if C] is empty then
Opt [i,j] =0
else
Opt [Lj] = [C{| = 1;
else
fork=itoj-1do
min = |S;| + maz (Opt [i,k] , Opt [k+1,j]);
if min < Opt [i,j] then
Opt [i,j] = min;
end-for;
end-for;
end;

As we can see in the algorithm, when we compute Opt [4, j] we need to
know Opt [i, k| and Opt [k+1, j] fori < k < j. We compute and use only
the upper triangular part of the matrix Opt, since we only consider H;;
where i < j. Thus before computing Opt [i, j], we must have computed
rows ¢ + 1,2 + 2,...,m, and elements 7,2 + 1,...,5 — 1 in row ¢. This
explains the structure of the loops in the algorithm. It is then easy to
see that the entry in Opt [1,m] computed by DynHeight(T,Opt) is
the same as the result returned by Height(T,1,m)

In order to find the time complexity of DynHeight, we note the fol-
lowing: computing A and updating the current maximal cliques can
be done in O(n) steps although we have chosen a less efficient way of
doing this in our algorithm in order to make it easier to understand.

5.3. GENERAL GRAPHS 65

Thus the total amount of work needed to be done is:

Om?)+3> 3 (Om)+0(j—i)) = O(m?)+0(nm?)+0(m?) = O(nm?).

i=1 j=i

This gives us a time complexity of O(nm?). Note that since n > m in
a chordal graph, this time complexity is better than O(n?).

As with our previous algorithms in this thesis, when designing
DynHeight we have concentrated on simplicity and tried to make it
easy to understand. Our main goal was to achieve polynomial time com-
plexity and not designing an algorithm as efficient as possible. There-
fore, it might be possible to reduce the time bound on DynHeight
by implementing it in a different way than we have done here. The
algorithm may also be implemented in parallel to get a better time
complexity.

Note also that we can find the actual elimination tree by slightly
modifying this algorithm. This can be done by using another two di-
mensional array Root [1..m,1..m] to store the s-nodes in a separator tree
for G corresponding to a minimum height elimination tree. The root
separator in the separator tree for H;; is stored in Root [4, j]. This way,
the separator tree corresponding to a minimum height elimination tree
can be found. We have to initialize the array Root to be empty in the
beginning of the algorithm. The updating of the array Root which is

if min < Opt [i,j] then
Opt [1,j] = min;
must be changed to

if min < Opt [i,j] then

Opt [i,j] = min;
Root [i,j] = Sj;
end-if;

With this modification, the algorithm is able to provide the information
needed to construct a minimum height elimination tree for G.

5.3 General graphs

In this section, we give a brief discussion on how we might use the
Algorithm DynH eight, when the problem is to find a low elimination

66 CHAPTER 5. LOW ELIMINATION TREES

tree for a general graph GG. In some cases, DynHeight can potentially
give low elimination trees when used locally on subgraphs or globally
on G or G*. Some examples of how this can be done, are as follows:

1. Let G be a graph and let « be an elimination ordering on G. If
G} € Q, then we can use Algorithm DynHeight on the clique
tree of G,. This might result in a low elimination tree for G.

2. Let G be a graph and let H € 2 be an induced subgraph of G.
We can apply DynHeight locally on the clique tree of H. An
elimination ordering on G that orders the vertices in H locally as
suggested by DynHeight, might result in a low elimination tree
for G.

3. Let G be a graph and let o be an elimination ordering on G. If
G} has an induced subgraph H}, then we can apply DynHeight
locally on the clique tree of H. An elimination ordering 4 on G
that orders the vertices in H locally as suggested by DynHeight,
and the rest of G as suggested by a might result in a lower elim-
ination tree for G.

Consider the graphs in Case 1. Since G, is in 2, DynHeight finds a
minimum height elimination tree for G,. However, this elimination tree
is not necessarily a minimum height elimination tree for G. Parts of G
that could be separated before, may become cliques in G7, by addition
of fill-in edges. Thus the fill-in edges may destroy separators in G,
and therefore make it impossible for DynHeight to find the minimum
elimination tree height for G. The example in Figure 5.9 illustrates
this. Thus DynHeight does not guarantee finding a minimum height
elimination tree for the graphs in Case 1, but it may be useful in finding
low elimination trees.

For the graphs in Case 2, DynHeight finds a minimum height elim-
ination tree for H. However, this ordering is local for H, and a global
ordering for G that orders H locally by DynHeight does not necessar-
ily result in a minimum height elimination tree. Also, it is not easy to
know which subgraphs of G' we should check.

Case 3 is a combination of Cases 1 and 2, and although it is not likely
to find minimum height elimination trees this way, it may be possible
to find low elimination trees.

5.3. GENERAL GRAPHS 67

Bl

Figure 5.9: a) G. b) G?, € 1, where « is a minimum fill-in ordering on
G, and the resulting elimination tree which is a trail. ¢) A minimum
height elimination tree ordering on G? found by DynHeight. d) A
minimum height elimination tree ordering on G.

68 CHAPTER 5. LOW ELIMINATION TREES

As we can see, given a graph @, it is not easy to find every case
on which DynHeight can be applied. However, DynHeight can be
very useful to reduce the height of an elimination tree for G which is
already given. The elimination tree can also indicate which subgraphs
may be of interest with regard to reordering by DynHeight. We can
start with an arbitrary elimination ordering on G, and see if we can
reduce the height of the resulting elimination tree. If the elimination
tree has induced subtrees that are trails, then it is likely that the height
of these trails and possibly also the overall elimination tree height can
be reduced. Let a be an elimination ordering on G, and let T = T'(G,,)
be the resulting elimination tree. If T' has induced subgraphs that are
trails, then it might be possible to locally reorder the vertices in these
subgraphs to get a lower elimination tree for G. An example of this
situation is shown in Figure 5.10. In this example, a minimum fill-in
ordering @ on G given, and the resulting elimination tree has three
subtrees that are trails. When the subgraphs of G, corresponding to
these trails are examined, we find that one of these subgraphs both
belongs to €2 and has more than one maximal clique. Then the height
of this undergraph is reduced by DynH eight, and this results in a lower
elimination tree.

Our approach is as follows: Given an elimination ordering o on G,
do the following.
1. If G, € Q then apply DynHeight on the clique tree of G7,.

2. If T(G,) has an induced subtree 7" that is a trail, then check to
see if the subgraph H} of G}, induced by the vertices in 7" is in
Q. If H; € Q), apply DynHeight on on the clique tree of H}.

With these suggestions on how the Algorithm DynH eight can be used
on general graphs, we end this chapter.

5.3. GENERAL GRAPHS 69

=

Figure 5.10: a) G, and the resulting elimination tree. b) G, where the
marked vertices are locally ordered by DynHeight, and the resulting
elimination tree.

70

CHAPTER 5. LOW ELIMINATION TREES

Chapter 6

Conclusion

In this last chapter, we give a summary of the most central results
achieved in this thesis and mention some open problems connected to
our results.

6.1 Summary of results

Our own results were presented in Chapters 3, 4 and 5. We started in
Chapter 3 by examining Nested Dissection orderings. We showed that
for a subclass of graphs satisfying an nf-separator theorem, an elimina-
tion tree of height O(n€) can be found by using Nested Dissection. We
also described a class of graphs on which Nested Dissection orderings
produce elimination trees that are exponentially higher than optimal.
The Nested Dissection orderings used here, choose separators so that
none of the remaining components have more than n/2 vertices.

In Chapter 4, we worked on the problem of minimizing the fill-in
size when a Nested Dissection ordering with minimal separators were
given, without changing the elimination tree structure. We found out
what portion of the fill-in can be reduced and showed that the problem
decomposes into independent subproblems for each minimal separator.
These subproblems were also shown to be NP-hard. We also presented a
new heuristic for these subproblems and gave a time complexity analysis
for this heuristic.

In Chapter 5, we concentrated on chordal graphs and finding mini-
mum height elimination trees for chordal graphs by using clique trees.
We gave a conceptionally simple algorithm for finding minimum elimi-
nation tree height for chordal graphs. The ideas behind this algorithm
were used to develop a polynomial-time algorithm for a subclass of

71

72 CHAPTER 6. CONCLUSION

chordal graphs. We called this subclass €2, and showed some properties
on the graphs in 2 and their clique trees. We showed that the clique
tree for a graph G' € € is a trail and that it is unique. These results
were used to develop a polynomial-time algorithm that finds minimum
height elimination trees for the graphs in (2.

6.2 Open problems

We started Chapter 4 by giving a brief discussion on why we think
low elimination trees might imply low fill-in. It has been conjectured
that a minimum height elimination tree for a graph GG does not produce
more than linear amount of extra fill-in compared to minimum fill-in
size for G. Manne shows this in [16] when G is a tree. However, this
has not yet been shown for general graphs.

Algorithm MinimumF'ill First that was presented in Chapter 4 is
a heuristic. We did not give any guarantee on how good results can
be achieved by this algorithm. It might be interesting to compare this
heuristic to established heuristics like Minimum Degree and Nested
Dissection with regard to the amount of fill-in they produce.

In Chapter 5, we showed how minimum height elimination trees for
chordal graphs can be found. Since chordal graphs have perfect elim-
ination orderings, it is of interest to know how much fill-in can be
introduced when chordal graphs are ordered to get minimum height
elimination trees. The same question applies also to the graphs in 2.
It might be easier to show results about fill-in size on the graphs in (2,
since this is a more restricted class. We conjecture that the amount
of fill-in introduced in these cases is linear compared to the number of
already existing edges, but have not been able to give a proof for this.

It is also interesting to find subclasses €2’ of chordal graphs, where
Q C €V, for which there exist polynomial-time algorithms that com-
pute minimum height elimination trees. We have not been able to find
an extension of) for which the results of Section 5.2 are true. But
other approaches different from ours, might lead to larger subclasses
of chordal graphs for which minimum height elimination trees can be
found in polynomial time.

Algorithm MinTree in Chapter 5, finds minimum elimination tree
height for chordal graphs. A polynomial time algorithm for finding

6.2. OPEN PROBLEMS 73

minimum height elimination trees for chordal graphs is not yet known.
It is interesting to find such an algorithm, or to show that the problem of
minimizing elimination tree height for chordal graphs is NP-hard. Since
the number of minimal separators in a chordal graph G is bounded by
the number of vertices in G, it is likely that this problem is easier than
the problem of minimizing elimination tree height for general graphs.

74

CHAPTER 6. CONCLUSION

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

J. R. S. BLAIR AND B. W. PEYTON, On finding minimum-
diameter clique trees, Tech. Rep. ORNL/TM-11850, Oak Ridge
National Laboratory, Tennessee, 1991.

H. L. BODLAENDER, J. R. GILBERT, H. HAFSTEINSSON, AND
T. KLOKS, Approrimating treewidth, pathwidth, and minimum
elimination tree height, Tech. Rep. CSL-90-10, Xerox Palo Alto
Research Center, 1991.

G. A. DIrRAC, On rigid circuit graphs, Abh. Math. Sem. Univ.
Hamburg, 25 (1961), pp. 71-76.

D. R. FULKERSON AND O. A. GRoSS, Incidence matrices and
interval graphs, Pacific J. Math., 15 (1965), pp. 835-855.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractabil-
ity, Freeman, 1979.

A. GEORGE AND J. W. H. Liu, Computer Solutions of Large
Sparse Positive Definite Systems, Prentice-Hall, 1981.

J. R. GILBERT, Some nested dissection order is nearly optimal,
Information Processing Letters, 26 (1988), pp. 325-328.

G. H. GoruB AND C. F. V. LoAN, Matriz Computations, Johns
Hopkins, 1989.

H. HAFSTEINSSON, Parallel Sparse Cholesky Factorization, PhD
thesis, Cornell University, 1988.

C. W. Ho AnND R. C. T. LEE, Counting clique trees and comput-
ing perfect elimination schemes in parallel, Information Processing

Letters, 31 (1989), pp. 61-68.

J. A. G. JEss AND H. G. M. KEES, A data structure for parallel
LU decomposition, IEEE Transactions on Computers, C-31 (1982),
pp- 231-239.

75

76 BIBLIOGRAPHY

[12] J. G. LEwis, B. W. PEYTON, AND A. POTHEN, A fast algorithm

for reordering sparse matrices for parallel factorization, SIAM J.
Sci. Stat. Comput., 10 (1989), pp. 1146-1173.

[13] J. W. H. Liu, The role of elimination trees in sparse factorization,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 134-172.

[14] F. MANNE, Minimum height elimination trees for parallel
Cholesky factorization, Master’s thesis, University of Bergen, Nor-
way, 1989. In Norwegian.

[15] ——, Reducing the height of an elimination tree through local re-
orderings, Tech. Rep. 51, University of Bergen, Norway, 1991.

[16] ——, An algorithm for computing a minimum height elimination
tree for a tree, Tech. Rep. 59, University of Bergen, Norway, 1992.

[17] S. PARTER, The use of linear graphs in Gauss elimination, SITAM
Review, 3 (1961), pp. 119-130.

[18] D. J. ROSE, A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations, Graph Theory
and Computing, (1972).

[19] D. J. Rosg, R. E. TARJAN, AND G. S. LEUKER, Algorithmic

aspects of verter elimination on graphs, SIAM J. Computing, 5
(1976), pp. 266-283.

[20] R. SCHREIBER, A new implementation of sparse Gaussian elim-
ination, ACM Transactions on Mathematical Software, 8 (1982),
pp- 256-276.

[21] R. E. TARJAN AND M. YANNAKAKIS, Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs,
and selectively reduce acyclic hypergraphs, SIAM J. Computing, 8
(1984), pp. 566-579.

[22] M. YANNAKAKIS, Computing the minimum fill-in is NP-complete,
SIAM J. Alg. Disc. Meth., 2 (1981), pp. 77-79.

