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Chapter 1

Introduction

One of the crucial issues in modern particle physics is to discover the Higgs boson, and
understand the origin of particle masses. In the Standard Model [1] there is only one Higgs
particle, whereas in more general theories there are typically several, including also charged
Higgs particles.

The existence of the Standard Model Higgs boson is not confirmed experimentally yet,
but those gauge theorists never give up. Different ‘theories’ and models have been pro-
posed as extensions beyond the Standard Model. In models with two Higgs doublet fields,
there are three electrically neutral and a pair of charged Higgs particles. In the Minimal
Supersymmetric Standard Model (MSSM) the neutral Higgs particles are eigenstates of
charge-parity symmetry, C P. Two of them (h° and H?) are even, whereas one (A°) is odd
under C'P.

In more general theories, the Higgs particles need not be eigenstates of C'P. In the
present thesis, we consider the decay to two photons of a Higgs particle which is not a
CP eigenstate. Thus, we allow it to have an additional coupling to fermions, involving
vs, which distinguishes between left- and right-handed fields. Our aim is to determine
whether such a coupling contributes to the vy decay rate at the one-loop level, and how
this contribution depends on the Higgs mass.
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Chapter 2

Theoretical framework

2.1 Gauge invariance

By a gauge field theory we mean a field theory which is invariant under a group of local
gauge transformations. Current theories of particle interactions are based on local symme-
tries: the theory is invariant under phase transformations of certain fields, provided there
is a coupling to a vector (gauge) field, and provided the vector field also is transformed in
a certain way. A familiar example of a gauge theory is Quantum Electrodynamics (QED),
where the free Dirac ‘matter field’ is transformed as

(r) — P(z) = e @ep(x)
P(z) — P (z) = PDY(z) (2.1)

The Lagrangian for the free Dirac field

Lo = ¢()(17"0, — m)i(z) (2.2)

is not invariant under the local gauge transformations (2.1) since it picks up an extra term
from the derivative of #(x). To deal with this extra term, a so-called covariant derivative
of the form

Dy = 0u+1qAu(x) (2.3)

is introduced. The covariant derivative involves the ‘gauge field” A,(z) which transforms
as

A,(@) — Ay(2) = A,(2) + 9,0() (2.4)

By replacing the ordinary derivative 0,1 (z) in the Lagrangian density Ly by D,y (x) we
get the transformed Lagrangian density

L = E(x)(iq/“Du—m)w(x) (2.5)

7
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= Lo+ qp(z)y"(z)A,(z) (2.6)

which is invariant under the gauge transformation since the covariant derivative undergoes
the transformation

D(z) — e @D () (2.7)

the same as the field () itself.

To summarize: if we demand the invariance of a theory —which is described by a
Lagrangian that does not contain derivatives higher than the first— with respect to local
phase transformations of the matter field, we should introduce a gauge field coupled to
the matter field through the replacement of the ordinary derivative 0,1 (x) by the covari-
ant derivative D, (z). This structure is imitated in other, more complex theories, like
Quantum Chromodynamics and the SU(2) x U(1) Electroweak Theory.

2.2 Spontaneous symmetry breaking

Not all the symmetries in nature that we believe in are manifest, some are hidden. These
symmetries are hidden due to so-called spontaneous symmetry breaking. Physically speak-
ing, in this spontaneous symmetry breaking, the Lagrangian respects the symmetry, but
the vacuum state (lowest energy state) of the system does not. To treat this case we will
consider a Lagrangian which has a particular symmetry. If the vacuum state would respect
the symmetry of the Lagrangian, then the vacuum should be degenerate, i.e., there is no
unique solution for the Lagrangian equations of motion with the same energy.

According to Richard Feynman: In theoretical physics we discover that all our laws
can be written in mathematical form; and that this has a certain simplicity and beauty
about it. So, ultimately, in order to understand nature it may be necessary to have a
deeper understanding of mathematical relationships. Seeking that simplicity and beauty
which Feynman was talking about, let us — in order to understand the idea of spontaneous
symmetry breaking— flavor it with some mathematical expressions in the next two sections.
In section 2.3 we will consider spontaneous symmetry breaking for a Lagrangian which is
invariant under global gauge transformations [the Goldstone Model], while in section 2.4
we will consider spontaneous symmetry breaking for a Lagrangian which is invariant under
local gauge transformations [the Higgs Model].

2.3 Goldstone model

Let us consider the complex scalar field ¢(x) of the form

¢(z) = (z) + i¢(z)] (2-8)

1
ﬁ[fbl
with mass m and a Lagrangian density given by

L(g(x) = 0u¢’(2)0"(x) — m’[¢"(x)d(z)] — A[$" (2)8(2)]" (2.9)
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where the positive real constant A is the self-interaction coupling strength and the subscript
s denotes ‘scalar’. The complex field ¢(z) has no direct physical interpretation.

The above Lagrangian is invariant under global U(1) phase transformations of the form
Uy = e " with

¢(z) — Upd(z)
¢"(z) — Ujd'(x) (2.10)

The Hamiltonian density corresponding to this Lagrangian is

H(p(x)) = [0"¢"(2)][00d(2)] + [Vo™ ()] - [Vo(@)] + V(e(2)) (2.11)

Ho + V(p(x)) (2.12)

where
V(p(x) = m?o(x)]* + Alo(x)[* (2.13)
= m?[¢7(x) + B5()] + A[¢i(z) + ¢3(z))? (2.14)

We are interested in the case when m? < 0. The potential in this case has the shape of
a symmetric Mexican sombrero, with a local maximum at ¢(x) = 0 and a whole circle of
absolute minima satisfying the relation

—m?2

o (2.15)

%0(33) + ¢go($) =

or

—m? 1/2
o) = lntoll = (S ) (210

which is pure real and positive. The vacuum state ¢, is not invariant under the transfor-
mation Uy = e % since the transformed state is

¢y = o (2.17)

The energy of ¢ is the same as the energy of ¢y, moreover, since # can take on any value
between 0 and 27, the vacuum is infinitely degenerate.

In order to get a physical interpretation of the Lagrangian (2.9) in the quantized theory
we make the change of variables

[v+o(z) +in(z)] (2.18)

with v a constant given by

v =2¢y = <_m2> 1/2 (2.19)
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Thus,
—m? = (2.20)
Then, substituting (2.18) into (2.9), and using (2.20), we obtain
Li(o(z),n(x) = 3[0"0(2)][0u0(2)] — 5(2Av*)0*(2)
+310“n(2)][0un(z)]
—o(z)[o*(z) + n*(z)] — 1Al0°(@) + n*(2)]? (2.21)

where we have dropped the constant \v*/4.

We see that the £ of eq. (2.9) is the Lagrangian for two real scalar fields o(z) and
n(z) including interactions. Furthermore, on quantization, both fields lead to neutral spin
0 particles: the field o(x) has mass m2 = 2)\v, while the field n(z) has massless quanta.
Thus, although the complex field ¢(x) seems to have no obvious physical interpretation (it
appears to correspond to particles of imaginary mass), the real fields o(z) and n(x) can be
interpreted physically: the first has mass and the other is massless. From eqgs. (2.18) and
(2.19) we find

< 0[(2)[0 >= ¢o (2.22)

which is the condition for the spontaneous symmetry breaking in the quantized theory,
and it is fulfilled in our case, so the symmetry of £ is spontaneously broken. We see that
the spontaneous symmetry breaking gives rise to a field n(z) whose quanta are massless
scalar particles. These particles are known as Goldstone bosons (after Jeffrey Goldstone).

2.4 Higgs Model

The Lagrangian given in eq. (2.9) is not invariant under local gauge transformations given
as

Uy = e @) (2.23)

since it contains derivatives with respect to the fields. We need to find a way to overcome
that by replacing the derivative d, by a covariant derivative D, defined as

Duo(z) = [0u +igAu(2)]o(2) (2.24)

This covariant derivative in eq. (2.24) involves a new vector gauge field A,(z), whose
Lagrangian density is given as

L, = —%iF,(z)F"™(z) (2.25)
where F, (x) is defined by

Fu(x) = 0,Au(x)—0,A,(z) (2.26)
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Now we can obtain the Lagrangian for a complex scalar field ¢(z) and a massless vector
field A(z) [eq. (13.15) in [2]]

L(z) = [D"¢(x)]" [Dug(x)] — m*[¢"(x)p(x)] — A[¢" (x)p(x)]”
—L1F,,(x)F"(z) (2.27)

which is invariant under the U(1) gauge transformations

b)) — @)= ()
¢*(x) — ¢" () = D" (2)
Au(r) — Al(x) = Au(z) + 0,0(x) (2.28)

Using eq. (2.20) and substituting eq. (2.18) into (2.27) we get

L(z) = %[5"0( 0o ()] = 3(2X0?)0?(z)
Fu(2) " (z) + 5(qu)?Au(z) A (2)
+2[5“77( 2)][0um(x)]
+quAH(z)0un(z) + L (2.29)

with £ representing terms which are cubic and quartic in the fields and some ‘insignificant’
constants.

A direct physical interpretation of the Lagrangian in eq. (2.29) leads to difficulties,
furthermore if we count the degrees of freedom in eq. (2.27) and eq. (2.29) we find that the
Lagrangian density in (2.27) has four degrees of freedom, while the transformed Lagrangian
in (2.29) appears to have five degrees of freedom. This leads to the conclusion that (2.29)
contains an unphysical field n(x) which corresponds to ‘ghost’ particles. We can eliminate
this field by finding a gauge transformation of the form (2.28) to transform the ¢(x) into
a real field as

p(z) = (z)] (2.30)

1
E[U +o
Substituting eq. (2.30) into eq. (2.27) we find
L(z) = Lo(z)+ Lr(z) (2.31)
where the quadratic terms are represented by

Lo(z) = 3[0"0(2))[0u0(2)] = 5(20?)0*(2)
—1Fu (@) F™ (z) + 3(qv)2 A, (z) A% (x) (2.32)

while the higher-order interaction terms are expressed in £;(z) which we are not interested
in at this point.

A physical interpretation can be given now to the Lagrangian density in eq. (2.32) as
the first two terms are the free Lagrangian for a real scalar field o(x) with mass v2\v?
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(which we will refer to as Higgs field). The next two terms are the free Lagrangian for a
neutral vector field with mass |qv|.

We started from the Lagrangian (2.27) with four independent degrees of freedom, two
for the complex scalar field ¢(z) and two for the massless vector field A, (z). We ended up
with a massive vector field A,(z), which has three degrees of freedom, and a massive real
scalar field o(x) which has one degree of freedom. The number of degrees of freedom is four
in both cases. This phenomenon by which a vector boson acquires mass without destroying
the gauge invariance of the Lagrangian density is known as the Higgs mechanism (after
Peter Higgs), and the massive spin 0 boson associated with the field o(z) is called a Higgs
boson.

When we considered a global gauge transformation, in section 2.3, we found a Goldstone
field n(z) associated with a massless boson in addition to the massive scalar field o(z).
Here the Goldstone boson has disappeared, but its degree of freedom has been transferred
to the vector field A,(z) to give it a mass. So by the Higgs mechanism the massless vector
field is transformed into a massive one.

The last two terms in eq. (2.32) are identical with the Lagrangian density of a massive
neutral vector boson field which leads to the propagator

i(—g*® + k°kP /m?)
k%2 — m?2 + ie

iD% (k,m) = (2.33)

where m = |qv|. The term k®k?/m? in the vector propagator (2.33) does not look nice; it
makes the theory non-renormalizable. A way should be found to get rid of it, by choosing
to work in another gauge, which was proposed by ’t Hooft in a way like QED. 't Hooft
imposed the gauge condition

0, A (x) —mn(z) = 0 (2.34)
and if it holds, a ‘gauge-fixing’ term of the form
—5[0,4%(z) — mn(z)]? (2.35)
can be added to the Lagrangian density (2.29) to get the modified Lagrangian density

L(z) = 3[0"0(2)][0uo(z)] — £(2M?)0o?(z)

(
— 1 Fu ()PP (2) + %mZA (z) Ak (z) — 3[04 ()]

+3(0#n(2)][0un(2)] — 3m*n*(z)
T (2.36)

We see from the first and the third lines in eq. (2.36) that o(z) and n(z) are real Klein-
Gordon fields which on quantization give the usual equations of motion and propagators
for such fields. Also from eq. (2.36) one obtains

(O+m*)Akz) = 0 (2.37)
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which is like the Klein-Gordon equation for a scalar field and leads to the propagator

—ig®h

D (km) = e

(2.38)

The undesirable term k®k?/m? disappeared from eq. (2.33). The propagator in (2.38)
is like the photon propagator in QED in the sense that it behaves like 1/k? for large k2.

It is worth to be mentioned here that working in the 't Hooft gauge reintroduces the n(x)
field as is obvious from eq. (2.35). As we pointed out previously, it does not correspond
to physical particles, but the Feynman propagator for this field can be interpreted as
representing the exchange of ‘ghost’ scalar bosons, which are analogous to those of the
longitudinal and scalar photons in QED. The detailed properties of these ghost are pretty
complicated and moreover, gauge-dependent.
A Few Words About Ghost Particles

As is implied by the name, the ‘ghost’ particles are not real physical states. The
ghost fields are originally introduced as a mathematical device to overcome some of the
troublesome terms appearing in the Lagrangian when working in particular gauges. In our
calculation we choose the Feynman-'t Hooft gauge in which there are two types of ghost
fields interacting with the Higgs, W= and photon fields; the charged Higgs ghosts (G¥,
G7) and the charged Faddeev-Popov ghosts (n*, n~) which are associated with the two
vector bosons (W™, W~) of the weak interactions. At the one-loop level, these ghosts

are included as internal lines in the corresponding Feynman diagrams (see as an example
fig. 4.7).

2.5 The Standard Model Higgs Boson

Since the time of Fermi’s theory of weak interactions, it was known that a charged weak
current exists, to include this fact in the framework of a gauge theory, the charged current
should be coupled to charged vector (gauge) bosons. Let us introduce the projection
operators

PR = (1 -+ ’)/5)
P, = ( Ys) (2.39)
1

In the Glashaw-Weinberg-Salam (GWS) model [1], the electroweak interactions are
described by a gauge theory based on the group SU(2) x U(1) with left-handed fermions
in doublet representations of SU(2) and right-handed fermions in singlet representations.
The Lagrangian density for the standard electroweak theory for purely leptonic processes
can be given as [2]

L = Lr+LB8 L 4 LM (2.40)

where L” is the leptonic Lagrangian density given by

£h = i [T @)D @) + B (@) DY) + Ty (@) Prti(@)] (2.41)
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LB is the gauge bosons Lagrangian density
L£P = -1B,(2)B"(z) — 1Gu ()G (z) (2.42)
Here B*(z) and G (x) are defined as

B"(z) = 0"B"(x)— 0*B"(x)
G (z) = F"(z)+ geijkWJ”(x)W,é’(x) (2.43)

with
F*(z) = 9'Wi(z) - WY (o) (2.44)

The Higgs part, which is similar to the lepton part, involves the isospinor scalar field

@@):_;< m@%Hm@)> (2.45)

V2 \ v+ o(z) +ins(z)

and can be written as
L7 = [D"o()]'[D,®(x)] — m*®' () ®(2) — A[@'(2)® ()] (2.46)

The covariant derivatives are defined as

DMUi(z) = [0" +igr;W/ (z)/2 — ig' B*(x)/2] ¥} (x) (2.47)
Diyi(z) = [0 —ig'B* ()Y (x) (2.48)
Dipli(z) = 0'pl(z) (2.49)
D'd(z) = [0*+ igTjI/V]“(x)/Q +1g' B*(z)/2]®(x) (2.50)

The ratio between the two couplings g and ¢’ is given by the weak mixing angle (Wein-
berg angle) as tanfy = ¢'/g.

The strategy of Higgs mechanism is applied to the electroweak sector of the Standard
Model, where, at least one complex scalar doublet is required to give masses to the gauge
bosons as well as the fermions.

Again, for m? < 0, the SU(2) x U(1) gauge symmetry is spontaneously broken. The
vacuum expectation value for the Higgs field is

1 0
<0[®(z)|0 > = |9 =—4 2.51
() o= () (251)
with v as defined in (2.19)
The upper component of ®(z), which is a charged field, leads to the Higgs ghosts G=.
In the unitary gauge one can parametrize ®(z) around its vacuum value as:

<0[B@)0> = |B = % ( . —i-Oo(x) ) (2.52)
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This field can be plugged into the Lagrangian (2.40), which can be simplified by straight-
forward but tedious transformation of the Lagrangian density (see [2]), and the masses of
the weak vector bosons can be read off:

myy = %vg, mz = my/cosby, mpg=(2Av?)!/?2 (2.53)

The masses myy and myz are predicted by the theory and their values are in good agree-
ment with the experimental values. The Higgs mass is arbitrary since the self-interaction
constant A is unknown. If A > 1, perturbation theory would break down; this will lead to
an upper limit on the Higgs mass. If A < 1, radiative corrections become important; these
will lead to a lower bound on the Higgs mass [3, 4].

Two-Higgs-doublet models (2HDM)

The 2HDM is one of the simplest extensions of the Standard Model, which is obtained,
simply, by the addition of a new scalar SU(2) doublet, which implies that we need at
least two Higgs doublet fields in order to break the symmetry spontaneously instead of one
Higgs doublet field as in the SM. There appears different versions of the 2HDM which are
referred to as: Model I, Model II, Model III,...etc., depending on whether up and down
quarks couple to the same or different scalar doublets. In model I the up and down quarks
acquire mass via vacuum expectation value (VEV) of only one Higgs field. In model II,
which is consistent with the Higgs sector of the MSSM, all up-type quarks couple to the
one doublet, while the down-type quarks couple to the other.

2.6 MSSM

In supersymmetric theories one can transform bosonic states into fermionic ones and vice
versa, which means there should be a bosonic (fermionic) superpartner for each fermion
(boson). These theories suggest the doubling of the spectrum of the fundamental particles,
which contradicts the observed spectrum of the particles. To overcome this difficulty, the
supersymmetry should be broken.

What we are interested in is the Higgs sector of these theories. In the minimal su-
persymmetric extension of the standard model which is referred to as the (MSSM), two
complex Higgs doublets are required

() = < Xi (x) ) @2($):<¢2( X3 (2) ) (2.54)

¢1(z) + ix1(2) ) + ix2(z)

to break the gauge symmetry spontaneously. The two complex doublets above (2.54)
contain eight real scalar fields xi(z), X3 (x), ¢1(x), ¢o(z), x1(x) and xo(z).

There are five physical Higgs bosons; two neutral C' P-even scalars (h°, H’—by con-
vention, h° is the lightest), one C' P-odd neutral pseudoscalar (A°), and a pair of charged
scalars (Ht, H™). At tree level, the mass of the lightest scalar Higgs should be lighter
than the Z boson mass, and the charged Higgs boson mass has to be heavier than the W=+
boson mass. There are radiative corrections to these relations. Besides the four masses,
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two additional parameters are needed to describe the Higgs sector at tree level: the ratio
of the two vacuum expectation values tan § = vy/v; and a mixing angle o between the
neutral A° and H®. Only two of these parameters are independent; choosing them to be
the mass of the pseudoscalar A° and tan 3, the structure of the MSSM Higgs sector can

be determined entirely.



Chapter 3

Decay Rate of H — v

General results for decay rates are given by Mandl and Shaw [2], p. 246. Consider a Higgs
boson, with four-momentum p = (my, 0), decaying into two photons with four-momenta
k1 = (w1, k1) and ks = (wo, ko). The differential decay rate dI' for such a process in terms
of the corresponding Feynman amplitude, M, can be expressed as:

d*k, d*k,
(27)32w; (27)32wy

1
U = o—(2m)"0 (p — k1 — ko) | M|?
mpg

(3.1)

Here, M = ) Mj;, where M; is the Feynman amplitude of each Feynman diagram con-
tributing to the H — =y decay mode.
We integrate over ks to get

ir — ﬁ(;wa(mf[ - w2)|M|222i12{;2 (3.2)
In the center-of-mass frame the total three-momentum is zero, i.e.

ki+ky=0 = k;=-ko (3.3)

while
W =Wy =W (3.4)

and the differential three-momentum can be expressed as

P’k = |k [2d|k;|dQ = wdwd (3.5)

Thus,
dl' = SN 1(S(mH — 2w) | M |*dwd (3.6)

2my (2m)%4

17
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For | M|? independent of orientation (angular independent), we can integrate over {2 to get
a factor of 47. Thus,

1 ™
dlr = —— M|%5 — 2w)d
2mH(27T)2‘ “0(m — 2w)dw
and
r = ! | M |2 (3.7)
 16mmpy ’

By dimensional analysis, since I' has dimension of [mass|, the amplitude M must have
dimension of [mass].
We shall extract some factors from the amplitude, and define M, by the relation

1 .
M = (27r)462m’;w(z7r2)m%M0 (3.8)
Thus,
7T4 g2
|M|? = (%)Se‘*%m‘gwo? (3.9)

Substituting the Fermi coupling constant Gr = v/2¢?/8m?%, and e = 4ma, with o the
fine-structure constant in QFE D, we find

7 8G
‘MP = (271_)8(471'0’)272Fm§q|M0|2

= s Mo (3.10)

and, from (3.6)
OJQGF
I'H — =—" m3|M,? 3.11
(H =) = oMl (3.11)

Here, G has dimension of [mass|™2, so M, should be dimensionless.

Expressions for the decay rate of H — vy are given in other articles, for example, see
[5, 6, 7]. In comparison to the expression given in [5], our result in eq. (3.11) differs from
it in the definition of the amplitude factor as:

I=+1M, (3.12)
while the expression given in [6] will be equivalent to ours in eq. (3.11) if we take

F = +2M, (3.13)



Chapter 4

Decay of the SM Higgs boson (H)
into two photons

The Standard Model Higgs boson does not couple directly to the photon; this is in accor-
dance with the fact that the physical Higgs boson couples to other particles proportionally
to their masses, while the physical photon is massless. Moreover, the photon couples di-
rectly to electrically charged particles while it is known that the SM Higgs boson is a neu-
tral particle, consequently we conclude that there will be no tree-level Feynman diagrams
associated with the decaying mode of the SM Higgs boson into two photons H — ~.

An induced coupling is possible starting at the one-loop level Feynman diagrams. These
loops may contain all the electrically charged particles whose masses are generated in the
Standard Model by the interaction with the Higgs field. First we will consider the H — vy
decay mode through fermion loops, specifically the top quark loops. Next, we will study
the Hvy~ coupling through the charged gauge bosons W* and related ghost fields.

In order to calculate the total decay rate of H — <7, which is proportional to the
square of the modulus of the decay amplitude as given in eq. (3.11), we should take into
consideration all the contributions from these diagrams; the fermion-loop diagrams and
the W-loop diagrams.

4.1 Fermion loop contributions

The standard model Higgs boson couples to the fermions proportional to their masses,
which leads to the conclusion that the contribution of light fermions to the decay amplitude
is ‘negligible’. A considerable contribution can be received from those ‘heavy’ fermions,
consequently we will only consider the top-quark, which is the ‘heaviest’ fermion in the
standard model, as an effective mediator of the H — 7+ decay mode.

For a Higgs boson decaying via a fermion loop, there are two diagrams, as shown in
fig. 4.1. We shall label them (0a) and (0b)'. The analytical expression for the amplitude

1This kind of labeling for the diagrams is just chosen for our convention, since it has to do with the
notation used in our REDUCE program, e.g. the contribution to the total amplitude My from the diagram

19
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"\/\/\Z\/]{Q/T/'\/
H P
q—k
A VNS VANV VANV
(0a) A
"\/\/\Z\/k\l/?/»\/
H_ P
—q+k
A VNS VANV VANV
(00) AP

Figure 4.1: Feynman diagrams for Higgs boson decaying into two photons through a
fermion loop, m denotes the mass of the fermion (charge carrier) in the loop.

corresponding to diagram (Oa) is given by

oF = _Tr ﬂam i(d — 57 +m) ieQyy?
M;" = -T /(2#)4( t)(q—%p)Q—m (ieQy”)
) i bem)

(q_k)—Q_Tn% (q+ %p)z —m? (4.1)

where the minus sign appearing in the expression above is characteristic of closed fermion
loops. We used the subscript ¢ to denote the top quark (with charge @;) as a charge carrier
in the intermediate fermion loop, o = —ig/(2myw ), and —m? represents —m? + ie, with

labeled as (0a) is equivalent to ‘term0a’ in the REDUCE program.
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€ — 0+. Thus, the Higgs-quark coupling is
ig
2mW

my (4.2)

where g is the weak gauge coupling.
In our REDUCE program — which is used to calculate all the contributions from different
Feynman diagrams to the H — vy mode— M{w is translated into that REDUCE code as:

termOa:=-qqh(11l,mt)*prq(1ll,q-p/2,mt)*qqga(1l,Qt ,mu2)
*prq(1l,q-k,mt)*qqga(1l,Qt,mul) *prq(1ll,q+p/2,mt)$
where we used the definitions for the operators appearing in ‘termQa’ above, as given in

Appendix C.
For the crossed diagram (0b), also shown in fig. 4.1, the amplitude is

of  _  _my d'q am i(—¢ — 3P +my) i
M=t /(27T)4( t)(—q— D)’ —mf( 97")
i(— + F + me) i(—df + 5P+ mi)
(=g +k)? —m} (—q+ 4p)* — m?

(ieQy”) (4.3)

The corresponding REDUCE code is

termOb:=-qqh(11,mt)*prq(1l,-q-p/2,mt) *qqga(1l,Qt,mul)
*prq(1l,-q+k,mt) *qqga(1l,Qt ,mu2) *prq(1l,-q+p/2,mt) $

Adding M{lﬂ and M;‘ﬁ to get the total contribution to H — 77 from the top quark
loop, we have

pos = g / tq N7 (4.4)
2 my J (2m)*didads
with the denominator factors defined as
d = (¢—3zp)°—m’
dy = (¢+3p)" —m’
ds = (¢—k)?—m’ (4.5)
while the numerator is
NP = N 4 N9# (4.6)
with, (from egs. (4.1) and (4.3), and employing the cyclic property of the trace)
NP = Te{y(d+ 59+ mo)(d — 56+ m)r*(d — F+mi)} (4.7)
N? = Ty (= + 5B+ ) (—d — 5B+ ma)y* (—d + F +me)} (4-8)

In what follows we will show our result for the traces in N® in detail. But, first
we should list some of the algebraic identities about y-matrices and their traces (see [2]
appendix A), which we will need in order to simplify the traces:
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1. For a product of any odd number of y-matrices:

Tr(y*yP..4*) =0 (4.9)

2. For a product of two or four y-matrices

Tr(y*") = 4¢°° (4.10)

Tr(’ya’)’ﬁ’}’p’}/(s) — 4(gaﬁgp<5 _ gaﬂgﬂ5 + ga‘sgﬁ/’) (4.11)

A first look at eq. (4.7) shows that we have a trace of 5 y-matrices at most, which is
trivial, according to the identity about the trace of an odd number of y-matrices given in
eq. (4.9). Thus we have at most a non-vanishing trace of 4 y-matrices. First, by pulling
out m from the first, the second and then the third factor inside the trace we get, at most,
a trace of 4 y-matrices, as follows

N = mTedyo(d - 2+ m)r (- 4 m)
7+ 37— o)
1+ 1) - 197 (412)

The third term in eq. (4.12) represents a trace of 4 y-matrices, so we will keep it as it
is. But the first two terms in eq. (4.12) need more simplification, since we still have the
chance to get rid of the vanishing traces when 3 ~-matrices are involved:

N{Xﬂ = mtrn"{mg’)/a’Yﬁ

(= 97 (d — B)
1 + 3 (4~ B)
1+ 3D~ 197} (4.13)
which will be simplified as
N = m T {miyy® + 29 (f — )
7 + 3 - 197} (4.14)
Similarly, for N;‘ﬁ (it differs from Nf‘ﬂ by: a < 3, q <> —q and k > —k), we get
Ng? = mTe{miy e + 20— )

(4 + 39 (4~ 3" (4.15)
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Adding egs. (4.13) and (4.15), we get
Ne? = mtTr{2(mf +¢* = 7’
4y 4y’ (4 — )
Py’ — 1y |
Using eqs. (4.10) and (4.11) to evaluate the traces we get
Ne? = mt{S(mf + ¢ — ) gf
+16[¢°(¢ — k)’ + ¢’ (¢ — k)* — ¢ - (¢ — k)g*’]
+8(0°" — ¢°p") }
We combine the similar terms and re-arrange the equation to get
N = Smt{(mf — ¢’ = P> +2q- k)g*’
+4q%¢° — ¢%(p + 2k)° + (p — 2k)*¢° }
More simplifications yield
Nes = —8mt{[(q — k)2 = m2 + 1p? — k2]gof
+¢%(p +2k)° — (p - 2k)*¢° — 4¢°¢° }
= —8mt{(d3 + 1p? — k?)g*?
+4°(p+ 26) — (0 — 2k)°¢" — 444"}

where dj is defined in egs. (4.5).

23

(4.16)

(4.17)

(4.18)

(4.19)

We can now compare the above result to that obtained from the REDUCE program.

From the REDUCE program, the result of N#'#2 for the quark loop is:

ampl := (mt**x2xqt**2%( - 4*k.k*mul.mu2 + 8xk.mul*mu2.q + 8*k.mu2*mul.q

+ mul.mu2*p.p + 4*mul.mu2*d3 - 4*mul.p*mu2.q

+ 4xmul.q*mu2.p - 16*mul.q*mu2.q))/mh**2$

which in BTEX form can be written as:

m;Qf
mi

+p2gulu2 + 4d3g“1“2 _ 4pu1qu2
+4qN1pN2 _ 16qu1quz)

N H1p2 (_41;29“1”2 + Sk“lq‘“ + Sk“zq’“

Now, if we:

(4.20)
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1. Interchange the dummy indices (u1, po) +— (o, B3).

2. Multiply eq. (4.19) with the factor (—1/2)m;Q?, which is already implied in the
original equation (4.4), and then

3. Compare egs. (4.19) and (4.20), we find that the two results completely fit each other.

We should remark here that in our REDUCE program —for brevity— we exclude the factor
ge? /myy from eq. (4.4).

4.2 W+ loop contributions

In the 't Hooft-Feynman gauge, the contribution to Higgs decay via W loops is represented
by W loops, G (Higgs ghost) loops, mixed WG loops, and Faddeev-Popov loops. These
will be discussed in the present and following sections. The Feynman rules are taken from
Bailin and Love [8], and given in Appendix A.

The diagrams with W loops are given in fig. 4.2.

The Feynman amplitude for the diagram (1a) shown in fig. 4.2 is:

124 d4 -
M* = / (QWq)4ze[g”ﬂ(q + 3P+ q— k) — gt (q+ 5p+ k1)? + gPH(ky — g + k)7

—iaqP™ —iaP
o+ %pl)g:— miy fome™ (a- %pl)g2 ”_ miy
xie[g™ (q — gp +a — k)" = g*(q¢ — k + k2)? + ¢” (k2 — ¢ + 5p)°]
N i (4.21)
(g —k)* —mjy,
The corresponding REDUCE code for all the diagrams when only W bosons are involved
is

termla:=hWW(alpha,beta) % W™+ clockwise
*prW(q+p/2,alpha,alphal)
*WWga (q+p/2,-q+k,-k1,alphal,alpha2,mul)
*prW(q-k,alpha2,beta?2)
*WWga (q-k,-q+p/2,-k2,beta2,betal,mu2)
*prW(q-p/2,betal,beta)$
termlb:=hWW(alpha,beta) % W™ - clockwise
*prW(q+p/2,alpha,alphal)
*WWga (-q+k,q+p/2,-k1,alpha2,alphal,mul)
*prW(q-k,alpha2,beta?2)
*WWga(-q+p/2,9-k,-k2,betal,beta2,mu2)
*prW(q-p/2,betal,beta) $
termic:=hWW(alpha,beta) % with quartic coupling
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Figure 4.2: Feynman diagrams for H — 7y, through loops consisting of W boson lines
only. There is also a contribution from the crossed diagram of (1a) which is equivalent to
(la) but with minus charge flowing clockwise in the loop. The diagram with the quartic
coupling WWr+ is represented in (1c).

*prW(q+p/2,alpha,alphal)

*WWgaga (mul,mu2,alphal,betal)

*d3 % cancel absent propagator of J(1,1,1)

*prW(q-p/2,betal,beta)$
terml:=termla+termib+termic$

The contributions from termla and termib are identical. The symmetry factor of 1/2 asso-
ciated with diagram (1c) is compensated for by the fact that there are two such diagrams,
one with W+ and one with W~
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4.3 G loop contributions

The diagrams with G loops are given in fig. 4.3.

kl -
) B VAV VA VAV AN
o
¢,
i
p |
H « /B G
N :
N |
S
G N :
\\:
U U U U U
(2a) o

Figure 4.3: Feynman diagrams for H — v+, through loops consisting of Higgs ghost G
lines only. There is also a contribution from the crossed diagram of (2a) which is equivalent
to (2a) but with minus charge flowing clockwise in the loop. The diagram with the quartic
coupling GGy is represented in (2c).

The corresponding REDUCE code is

term2a:=hGG % positive charge clockwise
*prG(q+p/2)
*GGga (q+p/2,-q+k,mul)
*prG(q-k)

*GGga (q-k,-q+p/2,mu2)
*prG(q-p/2)$
term2b:=hGG % negative charge clockwise
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*prG(q+p/2)
*GGga (-q+k,q+p/2,mul)
*prG(q-k)
*GGga (-q+p/2,q-k,mu2)
*prG(q-p/2)$
term2c:=hGG % quartic G-G-gamma-gamma vertex
*prG(q+p/2)
*GGgaga (mul,mu2)
*d3 % cancel absent propagator of J(1,1,1)
*prG(q-p/2)$
term2:=term2a+term2b+term2c$

The contributions from term2a and term2b are identical. The symmetry factor of 1/2 asso-
ciated with diagram (2c) is compensated for by the fact that there are two such diagrams,
one with G* and one with G~.

4.4 Mixed WWG and GGW loop contributions

The diagrams with mixed WW G and GGW loops are given in figs. 4.4-4.6.
We consider first terms with two W propagators and one G propagator, see Fig. 4.4.
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Figure 4.4: Feynman diagrams for H — v, with two W lines and one G line. There are
also contributions from crossed diagrams, (3b), (3d) and (3f).
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The corresponding REDUCE code is

%Clockwise W-W-G (positive charge):
term3a:=hWW(alpha,beta)
*prW(q+p/2,alpha,alphal)
*GWplga (alphal,mul)
*prG(q-k)
*GWmiga (betal,mu2)
*prW(q-p/2,betal,beta)$
%Clockwise W-W-G (negative charge) = crossed 3a:
term3b:=hWW(alpha,beta)
*prW(q+p/2,alpha,alphal)
*GWmiga (alphal,mul)
*prG(q-k)
*GWplga(betal,mu2)
*prW(q-p/2,betal,beta) $
%Clockwise W-G-W (positive charge):
term3c:=hGWpl(p,-q-p/2,beta)
*prG(q+p/2)
*GWmiga (alpha2,mul)
*prW(q-k,alpha2,beta2)
*WWga (q-k,-q+p/2,-k2,beta2,betal,mu2)
*prW(q-p/2,betal,beta) $
%Clockwise G-W-W (negative charge) = crossed 3c:
term3d:=hGWpl(p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*WWga (-q+k,q+p/2,-k1,alpha2,alphal,mul)
*prW(q-k,alpha2,beta)
*GWmiga (beta,mu?2)
*prG(q-p/2)$
#Clockwise G-W-W (positive charge):
term3e:=hGWmi(p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*WWga (q+p/2,-q+k,-k1,alphal,alpha2,mul)
*prW(q-k,alpha2,beta)
*GWplga (beta,mu2)
*prG(q-p/2)$
%Clockwise W-G-W (negative charge) = crossed 3e:
term3f : =hGWmi (p,-q-p/2,beta)
*prG(q+p/2)
*GWplga(alpha2,mul)
*prW(q-k,alpha2,beta?2)
*WWga (-q+p/2,9-k,-k2,betal,beta2,mu2)

29
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*prW(q-p/2,betal,beta) $
term3:=term3a+term3b+term3c+term3d+term3e+term3f$

The first two terms are identical, since the HWW and W Gy vertices are given in terms
of the metric tensor only.
We consider next terms with two G propagators and one W propagator, see Fig. 4.5.

ki —

Figure 4.5: Feynman diagrams for H — 7+, with two G lines and one W line. There are
also contributions from crossed diagrams, (4b), (4d) and (4f).
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The corresponding REDUCE code is

% Clockwise: G-G-W (positive charge):

term4a:=hGG
*prG(q+p/2)
*GWmiga (alpha2,mul)
*prW(q-k,alpha2,beta?2)
*GWplga(beta2,mu2)
*prG(q-p/2)$

% Clockwise: G-G-W (negative charge)

term4b:=hGG
*prG(q+p/2)
*GWplga (alpha2,mui)
*prW(q-k,alpha2,beta2)
*GWmiga (beta2,mu2)
*prG(q-p/2)$

% Clockwise: G-W-G (positive charge):

terméc:=hGWni(p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*GWplga (alphal,mul)
*prG(q-k)
*GGga (q-k,-q+p/2,mu2)
*xprG(q-p/2)$

% Clockwise: W-G-G (negative charge)

term4d:=hGWmi (p,-q-p/2,beta)
*prG(q+p/2)
*GGga (-q+k,q+p/2,mul)
*prG(q-k)
*GWplga (beta2,mu2)
*prW(q-p/2,beta2,beta) $

% Clockwise: W-G-G (positive charge):

termée:=hGWpl(p,-q-p/2,beta)
*prG(q+p/2)
*GGga (q+p/2,-q+k,mul)
*prG(q-k)
*GWmiga (beta2,mu2)
*prW(q-p/2,beta2,beta) $

% Clockwise: G-W-G (negative charge)

term4f :=hGWpl(p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*GWmiga (alphal,mul)
*prG(q-k)
*GGga (-q+p/2,9-k,mu2)

= crossed 4a:

= crossed 4c:

= crossed 4e:

31
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*prG(q-p/2)$
terméd :=term4a+termdb+termdc+termdd+termde+termdf$

The first two terms, term4a and term4b, are identical, since the vertices depend only
on the metric tensor.

Finally, there are terms with one W and one G propagator, and a four-point vertex.
A representative case is given in fig. 4.6. There are four diagrams of this kind. The

Figure 4.6: Feynman diagram for H — ~~ involving the quartic H GW ~ vertex. There are
two diagrams with the ko line attached to the HGW+ vertex (G* out or G~ out), and two
diagrams with k; and ks interchanged.

corresponding REDUCE code is

%Clockwise W-G (positive charge, quartic coupling):
termba:=hGWplga(mul,beta)
*d2 % cancel absent propagator of J(1,1,1)
*prG(gq-k)
*GWmiga (betal,mu2)
*prW(q-p/2,betal,beta) $
%Clockwise W-G (negative charge, quartic coupling):
term5b:=hGWmiga (mul,beta)
*d2 % cancel absent propagator of J(1,1,1)
*prW(q-k,beta,betal)
*GWplga(betal,mu2)
*prG(q-p/2)$
%Clockwise W-G (positive charge, quartic coupling) = crossed b5a:
termbc:=hGWplga (mu2,beta)
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*prG(q+p/2)

*GWmiga (betal,mul)

*prW(q-k,betal,beta)

*d1$ % cancel absent propagator of J(1,1,1)
%Clockwise W-G (negative charge, quartic coupling) = crossed 5b:
termbd:=hGWmiga (mu2,beta)

*prW(q+p/2,beta,betal)

*GWplga(betal,mul)

*prG(q-k)

*d1$ % cancel absent propagator of J(1,1,1)
termb:=termba+termbb+termbc+term5d$

4.5 Faddeev-Popov loop contributions

For the decay mode H — ~vy mediated by Faddeev-Popov ghosts (which are denoted by
n™ and 1), we should point out that the n* field has nothing to do with the 7~ field.
Consequently, in addition to the crossed diagrams, there will be two n-diagrams; one with
an 7T and one with an 7. So, in total we have four Feynman diagrams for H — v
through Faddeev-Popov ghosts; one corresponds to n* which is labeled by (6a) in fig. 4.7
and its crossed diagram whose contribution is given in ‘terméb’ in the REDUCE program,
and one corresponds to 7~ which is labeled by (6¢) in fig. 4.7 and its crossed diagram
whose contribution is given in ‘term6d’ in the REDUCE program. We should also point out
that the Faddeev-Popov ghosts behave like fermions in the sense that a direction must be
assigned and an extra minus sign should be given for each closed loop of these ghost fields.

The corresponding REDUCE code is

term6a:=-hghgh % positive FP ghost clockwise
*prgh(q+p/2)
*xghghplga (-q+k,mul)
*prgh (q-k)

*ghghplga (-q+p/2,mu2)
*prgh(q-p/2)$
term6b:=-hghgh % crossed diagram (positive FP ghost anticlockwise)
*xprgh (q-p/2)
*xghghplga (q-k,mu2)

*prgh (q-k)
*xghghplga(q+p/2,mul)
*prgh(q+p/2)$
term6c:=-hghgh % negative FP ghost clockwise
*prgh(q+p/2)

*xghghmiga (-q+k,mul)
*prgh (q-k)
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Figure 4.7: Feynman diagrams for H — ~v involving the Faddeev-Popov ghosts ™ and
n~. There are also crossed diagrams (6b) and (6d).

*ghghmiga (-q+p/2,mu2)
*prgh(q-p/2)$
term6d:=-hghgh % crossed diagram (negative FP ghost anticlockwise)
*prgh(q-p/2)
*ghghmiga (q-k ,mu2)
*prgh (q-k)
*xghghmiga (q+p/2,mul)
*prgh(q+p/2) $
term6:=termb6a+term6b+term6c+term6ds$



Chapter 5

The Feynman amplitude

In general, for any process involving external photons, the Feynman amplitude M is of the
form

M = €14 (k1)62u2(kz)...M“luz'"(kl,k2, ) (51)

There is thus one polarization vector e(k) for each photon, and the tensor amplitude
M (ky, ks, ...) is independent of these polarization vectors.

Since our interest is the H — ~7y process, then the Feynman amplitude for this process
will take the form

My = e, (ki)egy, (ko) Mg (ky, k2) (5.2)

5.1 The tensor amplitude Mj"?*(ky,k2)

As a second rank tensor, the tensor amplitude, M{***(k1, ko), can be decomposed in terms
of its arguments, k; and k,, as follows:!

M(';“NQ (kl, k}Q) = Aog’““? =+ Alki“kfz —+ Agki“ kém —+ Agkgl k,itz + A4l€gl kgz (53)

We shall here discuss how these scalar coefficient functions Ay, A;, Ay, Az, Ay are
extracted. Alternatively, the tensor integrals could be reduced to scalar integrals by the
method given in Appendix B.

5.2 The two-photon case

Let us study the tensor amplitude (5.3) when the two external momenta, k; and ko, repre-
sent the momenta of two photons, v; and 7, respectively. The gauge invariance condition
for the real photon case where k? = k2 = 0, requires that:

1 Jeyy, MEY2 (y, k) = 0 (5.4)

"When a 75 coupling is introduced, there will also be a more general term, as discussed in Chapter 8.
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2. ko, M§ (k1 ky) =0 (5.5)
The first requirement above can be fulfilled iff :
(k1-ko)Ay=0 = A;=0 (5.6)
and
Ao+ (k1 - k2)As = 0 (5.7)
while the second condition requires that:
(k1 - ko)A =0, = A, =0 (5.8)
and
Ao+ (k1 - k2)Ay = 0 (5.9)
From egs. (5.7) and (5.9) we find that

—1

Ay = A, =
2 3 (kle)

Ao (5.10)

So, only one independent coefficient is required which we may take to be Aj.
Then:

(5.11)

S |
M#IMQ(kl,kg) — Ao{guluz_ 1 "2 _ 2 1 }

(ki ko) (ki - ko)

In eq. (5.11), the second term is unphysical, it is orthogonal to the photon polarization
vectors. Thus, the form we shall consider, is

kul k,m
MHFH2 (L ,k = A pape V2 M }

In particular, we note that

A3 = —(kl - ]{32)140 = —%m%{AO (512)
Thus,
2Kk4" kA
M = g {ge - ZEE (5.13)
H

An explicit calculation of A3 provides a check on gauge invariance.
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Photon Polarization sums.
We shall sum over photon polarizations. Using

Y. alk)melk)wat)ne k) = G (5.14)
€1(k1),e2(k2)

the polarization sum for two free photons with external momenta k1, &y is

D ek mea(ka), MY (ky, k) P=2 | Ay |2 (5.15)
e1(k1),e2(k2)

Extracting Ay, Ay, Ay, A3, Ay

Now we are going to evaluate the coefficients of the tensor decomposition Ay, A, As,
Az, A4 in terms of new quantities by, bo, b3, by, b5, to be defined below.

In order to be able to use the results also for H — Z+, we shall not set k? and k32 equal
to zero.

First, let us make the operations below on eq. (5.3):
L. Multiply by g, u,:

Gus MY = nAg+ Ak + Agky - ko + Asky - ky + Asks (5.16)
II. Multiply by k1, k1p,:
Ky ki MY = Agk? + Ay (kD)2 + AgkZhy - ko + Asklky - ky + Ag(ky - ko)® (5.17)
III. Multiply by ki, kou,:

Fvp ko METP2 = Ag(ky - k) + Ark2ky - kg + Aok?kS + Ag(ky - ko)? + Agk2ky - ko
(5.18)

IV. Multiply by ko, k14,:

ou b, M = Ag(ky - ko) + ArkTky - kg + Ag(ky - ko) + Askiks + Askak - ks
(5.19)

V. Multiply by kg, ko, :
Koy ko MY = Agks + Ay (ky - ko)? + Aokdky - ko + Askdky - ko + Ag(k3)? (5.20)
Let us introduce the new notation
=k, y=ks, z=k ko (5.21)
and define
K = k¥ki— (kiky)?
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= gy—2°

(5.22)

together with the following abbreviations for the left-hand sides of egs. (5.16)—(5.20):

— M1 2
b1 = GuwuMy
by = ik MY
2 = 1pa Plpe 440
_ K12
by = k1N1k2N2MO
_ B1p2
by = k2u1k1uzM0
— M1 2
bs = k2u1k2u2M0

Then, egs. (5.16) through (5.20) can be written as:

By solving the simultaneous equations, egs. (5.24) through (5.28), one gets:

Ay

1
K2(n —2)

K2(n —2)

bi = nAy+zA;+ 2A3 4+ zA3 + yAy

by zA + 22A) + £2A5 + 2245 + 22 A,
by = zAg+ x2A; + xyAy + 22 A5 + yz A,
by = zAg+azA; + 22 Ay + ayAs + yz A,
bs = yAg+ 22A; +yzAy +yzAs + 4 Ay

m{}Cbl —yba + 2(b3 + ba) — xbs}

m{—ﬁybl +y*(n = )by — yz(n — 1)(bs + ba)
+[K + 2%(n — 1)]bs}

m{ﬁzbl —yz(n—1)by — [K — zy(n —1)]bs

+2%(n — 1)by — x2(n — 1)bs}
{Kzb; — yz(n — 1)by + 2*(n — 1)bs
—[K —=zy(n —1)]by — xz(n — 1)bs}
L Kby 4K+ 22(n — V)]s — z2(n — 1) (bs + by)

+a22(n — 1)bs}

If we now take the two photons on the mass-shell, then

r=y=0 K=-2*

and the expressions simplify:

1
Ay = ——— — ba —
0 z(n — 2) [2b1 = b5 — ba]

(5.34)

(5.35)

(5.36)
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A

1

2%

m[_Zbl + b3 + (n—1)by]
1

m[—Zl)l + (TL — 1)63 + b4]

1
2
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(5.37)

(5.38)

(5.39)

(5.40)
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CHAPTER 5. THE FEYNMAN AMPLITUDE



Chapter 6

Scalar integrals

In this Chapter we are going to define some of the terms and symbols that frequently
appear in our work.

Figure 6.1: Schematic Feynman diagram illustrating H — vy and H — «Z at the triangle
one-loop level. All of the lines representing the particles involved are labeled by their
momenta. Notice that the loop lines represent any of these charged particles: W¥ boson,
G*, n*, top quark,... depending on which case is taken into consideration.

The triangle one loop-level Feynman diagram shown schematically in fig. 6.1 is going to
appear frequently in our work. Each line in the diagram is labeled by its four-momentum.
In all of the Feynman diagrams included we denote the fermions by solid lines with arrows
in the middle, vector bosons by wiggly lines and ghosts by dashed lines (we owe the Higgs
boson an apology since we denote it by a dashed line while it is not a ghost, but we have

41
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our excuse, since it is not observed yet), we also show the particle symbol next to each
line. The symbols used are defined as follows:

e k; = four momentum of the i-th photon
e p = ki + ko; Higgs boson momentum
o k= %(kl — kg)
e ¢ = loop momentum (integration variable)
Some mathematical operations on the above relations lead to the following new relations
q-k
qg-p =

L+ k? — dy —m?) (6.1)
$(dy — dy)
where dy, dy and dj are defined below in egs. (6.4).

According to the Feynman rules (see appendix A), each such nice diagram, as we will
see, is rigorously equivalent to a big messy integral over the loop momentum ¢q. This
integral, more or less, will take the general form

1
J(n1,n9,m3) = /d"q — 6.3
e (T e (Rt ) (o e
We are going to denote the denominators that will appear in the integrals (6.3) as:
d = (¢- %p)Q - m’
dy = (¢+3p)?—m?
ds = (¢—k)>—m? (6.4)

where the mass m stands for the top quark mass, m;, in the fermion-loop case, and for
myw in the others.

In our calculation, since we are dealing with Feynman diagrams at the one-loop level,
we will need these integrals with integers n;, = —1,0, 1. Initially, all n; are 1. However, the
numerators of the propagators and the vertex functions are in general dependent on the
momenta. Thus, the extraction of the different tensor structures, discussed in Chapter 5,
will introduce numerators which cancel some of the denominators. Terms with n; < 1 are
generated this way.

We note that in the UV region (¢ — o0), the integral—by counting the momenta in
the numerator and the denominator—is convergent if 2(n; + ne + n3) > n. For example,
in n = 4 dimensions, J(1,1,1) is convergent, whereas J(1,1,0) is not. Moreover, since
the mass is the same in the three factors of the denominator, one can conclude that:

J(1,0,0) = 7(0,1,0) = J(0,0,1) (6.5)

which can be verified easily by shifting the integration variable q.
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6.1 One index is —1

If one of the indices is —1 and the other two are non-zeros then this 7 can be written in
terms of the other J’s of two indices being zero or two indices being one. This may seem
like a mysterious statement, but to clarify, let us consider a specific case in details, and
see, for example, how we can express J(—1,1,1) in terms of 7(0,1,1) and (0,0, 1).

B A (¢ —3p)* —m’
ey = [ougte = [ o e s 69

Shift the integration variable q as § = q¢ — %p (notice that d"§ = d"q so ¢ and ¢ will be
interchanged again):

— n q2 _m2
J(-1L,1L1) = /d q[q2 —m?)[(qg — ip — k)2 — m?]
2 mn 1
e /dqw —mll(g — gp — K)? —m’
—qu/d C][q2 — m2][(q — %p _ k)2 _ mQ] (6.7)

The first term on the r.h.s. is J(0, 0, 1), the second term is p>7 (0, 1,1), while the third
term needs further work and simplification, let us work it out.
Define

uwoo_ n q*
= /dq[QQ—W][(q—%p—k)z—mQ]

= ¢f(2m?)
where ¢ = %p + k and
1 q-t
om?) = — [ d* 6.8
f( am) 02 q[q2_m2] (q_g)Z_mQ] ( )
. 7 - ~ o
do ds
Here, we have
dy—ds = [¢° —m’]—[(¢—0)° —m’]
= 2q-0— 1 (6.9)

or
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Substituting eq. (6.10) into eq. (6.8) we get

1 dy—dy + £

202 dods

= 262{j(0 0,1)— J(0,1,0) + 27(0,1,1)} (6.11)

Using the fact that J(0,0,1) = J(0,1,0) together with p,¢* =p,(5p+ k)" =p- (30 + k)
we get

fe,m?) =

f(?,m* = 17(0,1,1) (6.12)
Then, after straightforward simplifications we find
J(-1,1,1) = J(0,0,1) +p- (3p — k)T (0,1,1) (6.13)
Similar recipe can be followed to find
J(1,-1,1)=7(0,0,1) +p- (3p+ k)T (1,0,1) (6.14)
and

J(1,1,-1) = 7J(0,1,0) + (k* — 1p*) T (1,1,0) (6.15)

6.2 The two-point functions

By two-point functions we mean J(1,1,0), J(0,1,1) and J(1,0,1). The integrals have
only two propagators, and the result can be expressed in terms of one momentum squared
(and the mass squared). Let us first evaluate the function J(1,1,0)

1
1,1 = d"qg—-
71,0 = [

n 1
- [ i = (6.16)

First we will work it out in n-dimensional Minkowski space with one time-like dimension
and n—1 space-like dimensions, then we will approach the limit as n — 4, i.e. 4 dimensions.

Using the one-parameter Feynman formula (see [2], p. 224) for combining the denomi-
nators:

1 ! dz
5 = ), pra- o1

one obtains

n dz
J1,1,0) /d / (2 + 3% —m? + ¢ - p(1 — 22)] (6.18)
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Next, we change the integration variable ¢ into § = ¢+ %p(l —2z). This is chosen such that
the term in the denominator linear in the integration variable disappears, while d"¢q = d"y,
so ¢ and ¢ are interchangeable again (¢ is a dummy variable here):

1
" 1
7(1,1,0) Z/O dz/dq[QQ_m2+p22(1 T (6.19)

where we have re-introduced +ie. Using eq. (10.23) of [2], we find

J(1,1,0) = mn/Q(—1)2F(§(7;)%)/O dz[m? — p*2(1 — 2) — i€] 272 (6.20)

We are interested in the limit n — 4; and let n = 4 — 2¢ where ¢ is a small positive
parameter (¢ — 0). Using I'(2) = 1, eq. (6.20) becomes:

1
J(1,1,0) = inT(e) / do[m? — pa(1 — 2) — id] ¢ (6.21)
0
With the expansion
T =e """ =1—-¢clnz+0O(E*)~1—¢clnz, forsmalle (6.22)
and the relation

1
[e) = P + O(e), forsmalle (6.23)

where v = 0.5772... is the Euler constant, we can re-express eq. (6.21) in the limit n — 4
as:

J(1,1,0) = ir? (g — v+ O(s)> {1 — 5/01 dz In[m? — p*2(1 — 2) — ie]} (6.24)

where the integral is finite. We shall return to this integral below.
We note that

lim(n —4)7(1,1,0) = —2in” (6.25)

n—4

Next, we consider the integral
7(0,1,1) = / R S (6.26)
[(q + 5p)° —m?l(q — k)" — m”]

Similar to the Feynman parameterization of J(1,1,0), we write

1
7(0,1,1) dz 5
/ / Ha + 2akpz — k(1 - 2)] + K(1— 2) + 1Pz — m?]}
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(6.27)

Here, we shift the integration variable ¢ into § = ¢ + %pz — k(1 — z) which implies that
d"q = d"q, so,

1 ) 1
J(0,1,1) = /0 dz/d q[q2 e s g e e (6.28)

According to our definition of the four-momenta, £ and p:

(k+1p)? = [5(ki — ko) + L(k1 + ko))?
_ P (6.29)

Consequently,

1
1 1 ™ 6.30
I, 1, /dZ/d (@ + 2(1— )R —m2 1 ie] (6.:30)

where we have re-introduced the e term. We note the similarity to (6.19). With k% = 0,
i.e., the photon on the mass-shell, we get

J(0,1,1) / dz/d” 2]2 (6.31)

= m"/Q(—l)Qir(I%(;)%) /O dz[m?]3 2 (6.32)

Withn =4 —2¢, and € — 0,

J(0,1,1) = ir? e —7+(9(5)> {1 —5/01 dz 1n[m2]}

= i’ (1 - 7> (1 —elnm?) (6.33)

£

In analogy with eq. (6.25), we also have
lim(n — 4)7(0,1,1) = —2in?, (6.34)
n—

Finally, we will take a look at:

J(1,01) = /d”q

1
(g = 3p)” = m?][(q — k)* — m?]

Evaluating [J(1,0,1) will not be a big deal; since it is very similar to what we did to
J(0,1,1). The only difference occurs when shifting the integration variable ¢ into § =
q+ %pz + k(1 — 2), we get

n 1
7(1,0,1) /dz/d PR T (6.36)

(6.35)
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The factor in the denominator is

Gp=k? =[5k + k) = 3k — ko))’
_ (6.37)

If we put k2 = k?, and with the second photon on the mass-shell, k2 = 0, we get the same
result as for J(0,1,1):

J0,1,1) = J(1,0,1) = ir? (é — 7> (1 —elnm?) (6.38)

Also,
lim(n —4)J(1,0,1) = —2ir’ (6.39)

n—4
We note that J(1,1,0), J(0,1,1) and J(1,0,1) are all of the same form, given by
(6.24), if we for p? substitute the squared momentum corresponding to the line opposite
the propagator that is “missing” (indicated by the zero). We summarize the results for
n — 4

. _ — _9; 2

}lgx}l(n 4)7J(1,1,0) 2im*,

. _ — o 2

Tlllgll(n 4)7(1,0,1) 2im*,

lim(n —4)7(0,1,1) = —2im? (6.40)

For the HZ~ vertex, the functions J7(0,1,1) and J (1,0, 1) will be different, since then
one of the momenta squared will be equal to m%.

6.3 The integral in eq. (6.24)

Let us now study the integral appearing in eq. (6.24):
1
/ dz In[—p*2(1 — 2) + m? — i€
0
1
=Inm% +/ dz In [—2(1 — 2) + 3p® — i€ (6.41)
0

where we have used p? = m?,, and defined

4m?
2
= — 6.42
o m2 (6.42)

Let us now play with the argument of the logarithm

—2(1—2)+ 2 —de=(z— 5)2 — 1 + u* — i€ (6.43)
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Factorizing, we get

—z(l—z)+iu2—ie:((z—%)+% 1—u2+i6> ((z—%)—%m) (6.44)

By looking at the argument of the square root, we see that we have two cases:

. p<l = J1-p2+ie=+/1—p2+ie (6.45)
2. u>1 = 1 p2+ie=i\/p2 -1 (6.46)

Let us first concentrate on the first case, 4 < 1. Then

—z(l—z)—l—i;ﬁ—iez(z—%—%\/l—/ﬂ—ie> (z—%-{—% 1—u2+ie) (6.47)

Hence,

_(_%+% 1—M2) -1n<_%+% 1—u2+ie>—1- (6.48)

Extracting the phases of the arguments of the logarithms, we find

1
/ dz In[—z(1 — z) + T p® — i€
0

+(%+% 1—,u2) ln(%+% 1—,u2)—1—z7r
-l-(%-i—% 1—#2) ln(%—l—% 1—u2)—1}
+(%—%\/1—/L2> _ln(%—%\/l—,u?)—l%—m
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1,1 /7 2
== 1_/1'2 )
= In[; —;(01-p)]++1—p?n2 f\/1_2—2—z7r\/1—,u2
2 T 2VITH
2 14 /1— 122
= ln'u—+ 1 2 {In + H —iW]—2
4 — /1 —p2

We consider next the second case, y > 1. Then
—z2(1—z)+ 12 —ie = (z—%—% ,u2—1> (z—%-l—% ,uz—l)
and
1
/ dz In[—z(1 — z) + ;p® — i€
0

1
= / dz In[z — 3 — £\/pu? — 1] +c.c.
0

where c.c. denotes complex conjugation. Performing the integral over z we get

/01 dz In[—z(1 — z) + Tp® — i€
- - ) - 1) -
—(—%—% ,u2—1> [1n(—%—%\//ﬁ> —1}}—1—0.0.
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(6.49)

(6.50)

(6.51)

(6.52)

Actually, it turns out that we do not need the explicit result of this integral in our
calculations since it is related to J(1,1,0) and we always meet the J(1,1,0) multiplied

by a factor of (n — 4) but, what we need indeed is the result given in eq. (6.25).

6.4 J(1,1,1)

Since we are dealing with Feynman diagrams with triangle one loop and three external

momenta; ki, ko and p = ki + ko, expressions of the form

1

J(L,1,1) =

/ dnq[( — 3p)? —m® +ie][(q + $p)* — m* +i€][(q — k)* — m® + ie]

(6.53)
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will come in the way, where n = 4 — 2¢ is the space-time dimension. Let us first point out
that, in four dimensions (n = 4) and for large ¢ (the UV region), such an integral behaves

as.
1
d4q
/ (¢%)3

which is — by counting the momenta in the denominator and the numerator— convergent.

In order to evaluate the integral in eq. (6.53), we are going to use some of the ‘Feyn-
manology’; the two-parameter Feynman formula for combining denominators (see [2], p.
224)

1—z 1
d d 6.54
abc / x/ y[a +(b—a)r+ (c—a)y]? (6.54)
or
L 2/d /da2/ =1 — oz — )
abc 0 0 * lona + agb + ascl?
1
= 2 d 6.55
/0 y /o [ala +agb+ (1 — a3 —ag)cl? ( )
Define:
D = aa+ah+ (1 —a; —ag)c (6.56)
From eq. (6.53), we have
a = (q¢—4p)? —m?+ie
b = (¢+3p)* —m*+ie
c = (¢g—k)?—m?>+ie (6.57)
Then:
D(g,a1,09) = (g — 5p)* — m*| + (g + 5p)* — m?]
+(1 = o1 — ay)[(g — k)* — m?]
= ¢ +ql—aup+ap—2(1—ar — a)k]
+i(ar +a)p® + (1 — o — aw)k? — m? (6.58)
and

J(1,1,1) = /dm/ / m (6.59)

where the term z¢ has been dropped for a while.
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Define the new variables:

a = o1+ Qo
f = a1—a (6.60)
i = q-[p+(1—-a)k] = drg=dq (6.61)

then, in terms of the new variables,

D(G o, 8) = @+ia-)p*+a(l—a)k*-B1—-a)p-k—m? (6.62)

7(1,1,1) /da/ dﬁ/d” q’am (6.63)

Here, we should remark that when we moved from eq. (6.59) to eq. (6.63), the factor of 2
in eq. (6.59) disappeared, since it has been canceled by the factor of 2 from the Jacobian
due to the changing of variables in (6.60).

According to our definition for the four-momenta appearing in eq. (6.62), we have
(taking all the momenta on mass-shell, i.e. k? = k3 = 0):

and

p2 = (]{11 + kg)z = 2k1 - kQ = m%, (664)
= (ki —ko)? = —im¥ (6.65)
p-k = 3(kI-k3)=0 (6.66)
so,
D = ¢+ 1(a®-p3)m}y —m? (6.67)

and consequently

J(1,1,1) / da/ dﬂ/d” o )1m§{—m2+ie]3 (6.68)

This integral can be compared to the formula (10.23) in Mandl and Shaw [2]:

J(1,1,1) = in"?(—1 3__ /da/ 4p —— (6.69)

Oé —52) —16]3 2

Since it is convergent, we put n = 4 to get

JA1,1) = —/ da/ - 4p (6.70)

(@2 — B)ym —m? +ie
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To perform the integral over [, let:

Z()

Il
—
Q Q
FNT.

Q
N
|
=
N
=9
s
|
3
N
+
:.

with the constant

Then,

- 2 1
J(1,1,1) = —% da (o)
0

We introduce the new variable,
a=+/a?— p?+ e, Re a < «

and perform a partial fractioning

2 @ 1 1
I(“):m%a/_adﬂ{a—fmﬂ}

but note that we must distinguish two cases.

Case 1. py<a,Rea<a
In this case

/ ad—ﬁﬁ = «lsi%{/& ad—ﬂﬂ * a; ad—ﬂﬁ * /j

a—o o
= (-l pl| —mis el < b}

= (lsir%{—ln(S—i—ln(@—{—a) —In(e—a)+Ind+ I}
—

a+a

= In +_l()

a— o

The term I is non-vanishing, since the pole singularity is off the real axis,

Ima=e¢>0
We deform the contour into the complex plane, by taking

B=a-+de?, dp = i6e®dg,

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

(6.78)

(6.79)
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and find
0 i5e?de ,
Iy = /7r e (6.80)
Furthermore,
¢ dp _ o a+a
/;amzln‘ﬂ+ﬂ|_a+fézlnr+fé (6.81)
where

L —a+6 dﬂ
= /_ = (6.82)

With 3 = —a + de*®, we find I} = I = —ir.
Hence, for p < a, we have

I(a) = — [111 are m] (6.83)

= ——
mya | a—a

In this region, which contributes if u < 1, or 4m? < m%, Z(«) is complex, and J(1,1,1)
will be complex.

Case 2. u > «, @ imaginary, @ = ia

In this case
* d
/—a a _ﬂﬁ = _ln(ﬂ_ /[;a)|ga

= —In(a—ia)+In(—a —ia) (6.84)

and

*dg - \la
/_amﬁ — (3 +ia)”,

= In(a+ia) — In(—a + ia) (6.85)
Defining the logarithm with a cut along the negative real axis, we have

In(—a +ia) = In(a—ia)+ir
In(—a —ia) = In(a+ia) —ir (6.86)

and

/_Z <dd—ﬂﬂ * a?g) = —In(a—a)+[In(a+ @) — ir]

+In(a+ @) — [In(a — &) + in|
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= 2 {ln ot @ m} (6.87)
a—a
Hence, for p > «, we have
4 _
I(a) = —— [111 ara m} (6.88)
me a—a

We note that the logarithm is pure imaginary, and that Z(«) is real.

Thus, the contribution to J(1,1,1) for a < p will be real. In particular, for 1 < p,
J(1,1,1) will be real.

Substituting back into eq. (6.70), we obtain J(1,1,1). The remaining integration over
« can be performed in terms of dilogarithms [10]:

_ dt
Liy (2) = — / P in(1 —12) (6.89)
0
Using properties of the dilogarithm, in particular,
. (1 . 1 1 2
Lig (- )+ Liy { —— ) = —3[In(-y) — In(1 — y)] (6.90)
y l-y
one finds the result [11]

o | arcsin? y/1/p2, 1<p

2 . o[ 2
m°J(1,1,1) = —in*— /1 6.91
( ) 2 —l[ln1+ luz—iw} u<l1 (6.91)
1—+/1—pu2
Details can be found in [12].
It is convenient to define the function
arcsin? \/1/p2, 1<up
2 2
= _ 6.92
f(p”) _i |:1n1+w/1 u2—i7T:| p<1 ( )
1—4/1—pu2
We may then write
2 % 2
1,1,1)/(2 = —— .
J(1,1,1)/ (i) 5z 4 (1) (6.93)
2
= —— f(u?) (6.94)
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6.5 The ’t Hooft-Veltman functions

The integrals discussed above, have also been studied by ’t Hooft and Veltman [13]. We
shall here relate our functions to their functions.
't Hooft and Veltman define a general two-point function as (they use a different metric)
1
(@ +m? —ie)((q + k)% + m3 — ie)

B(k,mi,my) = /dnq (6.95)

Comparing with 7(0,1,1), J7(1,0,1) and J(1,1,0), we see that

J(0,1,1) = B(ky,m,m)

\7(17 07 1) = B(k27 m, m)

\7(1’1,0) = B(pama m) (696)

Furthermore, they define the three-point function as
C(pl; D2, My, My, m3)

/e :
= nq
(> +m3)((¢ +p1)* + m3)((g + p1 +p2)* + m3)

where the ie is omitted. This integral can be brought into the form (6.53) by the following
shift of the integration variable:

(6.97)

q—q—3p (6.98)
g+p1—=q+ip  =p=p (6.99)

Thus,
J(1,1,1) = =C(p, —k1,m, m,m) (6.101)

6.6 Numerical results

It is convenient to define the dimensionless quantity
~ m2

1,1,1)=-——J(1,1,1 6.102
F0,10) =~ 757 (01,1,1) (6.102)
The sign is chosen such that the real part is positive for ‘small’ Higgs mass. This function
is shown in fig. 6.2, for m = 175 GeV, corresponding to a top quark loop.

From fig. 6.2 we can read off that if the SM Higgs mass is below the ¢ pair threshold,
then the amplitude is real, above the threshold region the amplitude is complex. Further-
more, —m?J;(1,1,1)/(iw?) — 1/2 for light Higgs masses (compared to the quark mass)
which is seen to agree with what we get in eq. (6.105), where —m?J(1,1,1)/(in?) — 1/2
as my — 0, or, equivalently, m — oc.
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Figure 6.2: Plot of —m?J;(1,1,1)/(i7?) vs. mg, for m; = 175 GeV. The real part is
represented by the solid-line curve while the imaginary part is represented by the dashed

one.

In fig. 6.3 we show the analogous result for the W mass. The structure has now moved
down to lower values of my, corresponding to the fact that my << m;.

6.7 The low-mass limit: myg < my, my;

When the Higgs mass is small compared to the other masses, J(1,1,1) simplifies. From

eq. (6.71), we find

Thus, from eq. (6.70),

o dﬂ
A = _
(@) /a—mQ-i-ie
2a
- Tme
im? (1 =2«
1,1.1) = —
J(1,1,1) | do

(6.103)

(6.104)
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Figure 6.3: Plot of —m2, Jw(1,1,1)/(i7?) vs. my, for my = 80 GeV. The real part is
represented by the solid-line curve while the imaginary part is represented by the dashed

one.

im?
2m?2

(6.105)

which is seen to agree with figs. 6.2 and 6.3, where —m27(1,1,1)/(ir?) — 1/2 as mg — 0,

or, equivalently, m — oc.

We are interested in the approach to this limit. For

we have

For small z,

SO

my < 2my, or > 1 (6.106)

f(p?) = arcsin® 1/1/ 2

arcsin(z) =z + — +---

arcsin?(z) = 2? + % +---

(6.107)

(6.108)

(6.109)
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and
f( 2)~i+i+ for u>>1 (6.110)
W)= 5t ga : 7 :
Substituting this into eq. (6.93), we find

im? 1
T11) =~ (1+3—u2> (6.111)



Chapter 7

Results for H — vy

7.1 Quark loops

As an example we will show the result for A; in the form as we got it from the REDUCE
program. For the quark loop contribution, we find

a00 :=(2*kmt**2xqt**2*%(j(1,1,1)*mh**2*%n - 2%j(1,1,1)*mh**2
- 8%j(1,1,1)*mt**2 + 2%j(1,1,0)*n - 8*j(1,1,0)))/(mh**2*(nn - 2))$

Provided we multiply from the left by i7? which was extracted as an overall factor, then,
in BTEX form, Ay can be written as

2 _ 2miQ; n— 2\m2 — 8m2 N —
it Ay = (n—2)qu{[( 2)my — 8mi] Ji(1,1,1) 4 2( 4)%(1,1,0)} (7.1)
im? Ay = (;i";t)%%{[(n—%mz—ésmﬂ Ji(1,1,1) +2(n — 4)7(1,1,0)}  (7.2)

We note that the result is finite, and that also the gauge-invariance condition, eq. (5.12),
is satisfied.
With the abbreviation

4 2
i = m—”; (7.3)
we find
in? Ay = 2m?Q%{[(n—2)—2 7] (1,1 1)+MJ(1 1,0) (7.4)
0 (77,—2) ,ut t\Ly Ly m%[ t\Ly 4y .

We are interested in the limit n — 4, and use eq. (6.25), together with the abbreviation
(6.92) and eq. (6.93):

Ay = Qf{[2—2u§} <—%u?) Fui) = %}

H
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_ 4%{0—u3%ﬂ@%+%} (7.5)
Let us study the limit

mp K 2my, or py>1 (7.6)

Substituting (6.111) into (7.5), we obtain

1 1
i) o
0 i 9( £ Y t
2
= Q@ [1+o0/u)] (7.7)
Using eq. (3.12), we see that this result agrees with ref. [5]. This result was first obtained

in 1973 [9].
Also, introducing a factor N, = 3 for quark color, we have

2m2Q? N,
- (n—-2)

{ [(n—2) — 24%) 7(1,1,1) + 2(7:”7;4)‘%(1, 1, 0)} (7.8)

H

i7T2A0
or

Ao = —QFNepf {1+ (1 — ) f(17) } (7.9)

7.2 W (and related) loops

For the W and ghost loop contributions, we find

it? Ay = 712{4 [(2n — 5)m3 — 2(n — V)miy | miy Jw(1,1,1)

(n —2)m3,
} (7.10)

+ [(n — 4)my + 2(n* — 5n+ 49)my, ] Tw(1,1,0
1,1,1)

. 2
'L7T2A3 = W{Al [ 2n -9

+ [(n — 4)my; + 2(n® — Sn+ 49)my, ] Tw(1,1,0)} (7.11)

) (
( )
Jmiy = 2(n = D)myy | my, Jw (
( )

We note that this result is finite and gauge invariant, compare eq. (5.12).
With n — 4, the result for Ay can be re-expressed as

im’ Ay = —3{2[6 = 3pi ] miy Iw(1,1,1) + (n — 4) [1+ 5(n — )iy ] Tw(1,1,0)}
= —{32+3ud)(n—4)Tw(1,1,0) + 2(6 — 3u%,)mi, Tw(1,1,1)

The result can be expressed in terms of the function f(u?) of eq. (6.92) as

Ao = 5[2+ 3y + 35y (2 — i) f (1)) (7.13)
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where we have also used (6.40).
The result given by Spira et al. (eq. (3) of [7]) is:

Aw (1) = =[27° + 37 + 3(27 — 1) fs(7)] /7 (7.14)
with

m2 1

T

= = (7.15)
am, iy

and their fs(7) equal to our f(u?). Up to an over-all convention-dependent factor of —2

(their result is minus twice of ours), this result is in agreement with (7.12).

Limit of my < my, my
In the limit of a very low Higgs mass, the contributions of individual diagrams are given
by Ellis et al [5] in the form

2,2 2

) e’r n m ko k1,
e Ar(z——) L+ By, “ _4 1

and reproduced below. The coefficients A, B and C which are used in [5] are related to
our notation as follows

2 2
B +— mQWAO (7.18)
m
H J(1,1,0)-0
C +— miAs (7.19)

For comparison, our corresponding results for A are given.
It is seen that, for some individual terms, the dependence on n is different, but our
total A has the form

mZ
A = (n—4)—L + (2n° — 10n +8)
myy,
2

= () (0

w

and gives a finite result when multiplied by the divergent two-point function J(1,1,0).
Also, in the limit n — 4, they agree. The different n-dependence of individual terms could
be related to different ways of approaching the limit n — 4.
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Diagrams A B C
a + crossed 3(n—1) 37/6 —23/6
la + 1b 2(—=dn +7)
b —2(n—1) -2 0
lc 4(n —1) 0
c+d—+crossed | —(n—1)/2 19/12 —23/12
3c + 3d + 3e + 3f 2n -5
e + crossed 0 2m2, /m3 +1/6 0
3a + 3b 0 m2, /m% +1/12 | 0
f + crossed 0 1 0
4a + 4b 0 1/2 +m?3 /24m3, 0
g + h + crossed 1 1/6 —7/6
dc + 4d + 4de + 4f -2
i + crossed -2 0 0
da + 5c¢ 4 0
2xj + crossed -1/2 —1/12 —1/12
6a 4+ 6b + 6¢ + 6d 1 —1/12
2a + 2b + 2¢ n—4
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7.3 Total decay amplitude
The full decay amplitude can in the Standard Model be written as [see (7.9) and (7.13)]

Ay = Ag(t) + Ag(W)
= —QfNew[1 + (1 — ) f ()]
22+ 30+ 32— 1)) (72)

For low values of mpy, it approaches the limit [14]

2 7
Ay = —Q?’N.u?>— + —
0 Qt cut3/1,?+2
1 24N,
- _Z _ .22
[t (12)

There is destructive interference between the quark-loop and the W-loop contributions.
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Chapter 8

Decay of a non-SM Higgs boson into
two photons

Let us now consider the effect of an additional gq¢H coupling involving ~5. Thus, we take
the q¢H coupling to be
g
T 1 1
e ma(L+ 575) (8.1)

as would be appropriate for a Higgs particle that is not an eigenstate of CP.
This extra term generates a contribution to the amplitude which is easily evaluated
using the REDUCE program attached in Appendix D. The additional term is

4
MEW Gy k) = 0L g g g,k 701,1,1)
my
2
= 16 A5 ghhzpo ]{/'1 kza (82)
m¥
with
im?As = 2im; Q7 J,(1,1,1) (8.3)
or, using (6.94),
= —@Qtﬂtf( ) (8.4)

In the low-mass limit, y? > 1, it takes the form

11
A, = —
’ Qir { pi o 3puf }

1 , 1
= —iQ? {1 + %} = —iQ?+ 0 (u_%) (8.5)

Because of the € tensor, it is automatically gauge invariant,

o —
klul PCYEY /ﬁ1p/€20— =0,

k2u2 6#1#290 klpkgg = 0 (86)
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8.1 Cross section

The unpolarized cross section is proportional to the sum

D ek men(ke)u, ME (ka, ko) (8.7)

e1(k1),e2(k2)

Let us consider the full amplitude, and sum over polarizations

ME'" (k1 k) = A {guluz N A } + 2§ As 1207 ki pkog (88)
(k1 - ko) My

The interference terms between Ay and Aj are seen to vanish, since [compare (5.14) and
(5.15)]

g2 eIPT ke o kos G Gusgis = 0 (8.9)
and
K5 kA2 €207 oy s kos G s Guois = O (8.10)
Let us next consider the new term squared:

pip2po B1fi2pT 1. 1. _ _
€ k1pkag € k15k25 9 s Gz o

= MH2p9 klkao’ Euluga klﬁkQa— (811)
We use the fact that (see [2], Appendix A)
eaﬁ;w €ap oT _ _2(g;uf gI/T _ g;m' gua) (812)

to obtain

—2(9@906 - gpﬁgaﬁ)klpk% klﬁkZ(‘f
= =2 [k{k] — (k1 - k2)?] (8.13)

Thus, for H — ~ (this will be different for the H — Z~ case)

4
S0l umer (k) ME (ki ko) ? = 2/ Aol +26%(ky - ko) —r | As]?
e1(k1),ea (k) H
= 2|A4¢* +23% 4s)? (8.14)

The decay mode H — ~v is insignificant far below the W and top thresholds. The
width is proportional to m?; as given in eq. (3.11). The decay rate of H — ~y vs. my is
shown in fig. 8.1, for my, = 80.41 GeV and m; = 173.8 GeV, 8 = 1. The dashed curve at
the bottom right shows the contribution to the decay rate from the additional term As in
the decay amplitude. The additional term is seen to be ‘small’ in the region my < 2my
and totally negligible in the region my < 2myy. For a heavier Higgs particle, though, such
an additional interaction could contribute significantly to the v+ decay rate.
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Figure 8.1: Decay rates for H — . Dashed: Standard model and contribution of Aj;
term. Solid: Total decay rate.
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Chapter 9

Conclusions

We have analyzed the contributions from quark, W+ bosons, G ghosts, mixed WWG
and WGG loops, and n* Faddeev-Popov ghosts, to the coupling of the Higgs boson to two
photons (H — ~yv) in the Standard Model, as well as in a more general theory.

Our results are as follows: The contribution from of the quark loop to the decay am-
plitude Ag(t) is finite and gauge invariant, for the top quark loop it approaches the finite
value —8/9 in the low Higgs mass regime. The contributions from the individual diagrams
of pure W bosons, mixed WW G, WGG and n*-loops are not gauge invariant, but the over
all sum of these contributions gives a finite and gauge invariant result. The contribution
from the G loops is finite and gauge invariant by itself. These results, as discussed in the
text, are found to agree with results obtained by others who worked on the same topic.

We have also calculated the contribution of the top quark loop to the coupling of a
non-standard Higgs to two photons. The decay amplitude A; should be similar to that of
the CP-odd Higgs particle A° of the MSSM.

This detailed investigation of the Standard Higgs coupling to two photons was done in
order to provide a solid starting point for studies of the coupling of non-standard Higgs
particles to two photons.

In the decay of a Higgs to Z~ final states, things might be somewhat different. Since
the coupling of the Z to the quark involves a 5, an additional coupling of the form Aj
would be generated even without the Bvys-term in the Higgs-quark coupling. Furthermore,
the Bvys-term could then, with the v5 from the Zqq coupling, lead to a contribution to the
amplitude Ay. Thus, the contribution to the decay rate would be proportional to 3, not
(3% as in the case of H — 7.
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Appendix A: Feynman Rules for
selected vertices

We here give the Feynman rules for Selected Vertices, in the Feynman gauge, according to
Bailin and Love [8]. (Some signs are corrected according to T.T. Wu.)

(1) iQeyH

—i,., m
T ST TQm—W
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(1)

-2
216 Gy

(m2)

i(p+m)
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Appendix B: Tensor decomposition
of the integral #¥

Let us introduce the tensor integral:
7"q"
N L— /d”q
[(a = 5p)* —m*][(a + 3p)° — m?|[(q — k)* — m”]
= Xog" + Xiphp” + Xo(p*KY + kFpY) + XskHEY

which is totally symmetric under the permutation of its indices, 1 and v.
The next step is to express the coefficients ( Xy, X, Xz, X3 ) in terms of the scalar
integrals J of Chapter 6. Let us define the following new parameters:

G = g;wIW
nXy + p* X, + 2p.k Xy + K2 X (B.1)
Co = pupI™
= p’X + (P°)’X + 20 (p-k) Xy + (k)2 X5 (B.2)
Cs = (pukv + kupy) 1"
= 2p.kXy + 2p%(p.k) Xy + 2[p*k* + (p.k)?| X + 2(p.k) k> Xs (B.3)
Cy = k“k',,fwj
Xy + (p.k)2 X + 2(p.k)E* Xy + (K*)* X (B.4)

and, for simplification, let:
a=p, b=k c=p.k (B.5)
Solving eq. (B.2) through eq. (B.4) simultaneously, we get:
1

XO = (7’[, — 2)(ab _ 02) {(ab —C )Cl - bCQ + CC3 - aC4} (B6)
L 2 — 2 —\n— CL3
X = m—mwwwﬂ*‘ww‘”“+“blwg (n —1)beC
+[ab+ (n — 2)¢*]C4} (B.7)
1

(n — 2)(ab — ¢2)? {c(ab— c*)C1 — (n — 1)bcCs + L[(n — 2)ab + nc?|Cs
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ng

—(n—1)acCs}

1

(n—2)(ab — ?) 2{

a(ab — ¢*)Cy + [ab+ (n — 2)c?]Cy — (n — 1)acCs

+(n — 1) 2C4}

The C can be expressed in terms of the J as

C, =
C, =
C; =

Cs

37(0,1,1) +

;5171
+(k?

+(k* = 7p°
+(k* — 3p°

APPENDIX B

+17(1,0,1) + (m2 — 1) J(1,1,1)
71, -1,1)+7(-1,1,1) - 27(0,0,1)]

)2J(1,1,1) J(0,1,0) —
)TJ(0,1,1) +7(1,0,1) -

1,1) - J(-1,1,1)] = J(1,0,0) + J(0,1,0)
ipZ)[J(l,O 1) (01 151)]}
-1,1)+27(0,0,1)] + J(1,1,-1)

J(1,0,0)
27(1,1,0)]}

(B.8)

(B.9)

(B.12)

(B.13)



Appendix C: Listing of REDUCE
program

Standard Model calculation

set_bndstk_size 50000;
% Calculation of one-loop h \gamma\gamma vertex

off nat$

%on gcd$

% Must do this in n dimensions, divergent!
vecdim n$

%vecdim 4$ % Must be used with Gammab;

vector alpha,beta,alphal,alpha2,betal,beta2$
vector p,q,k1,k2$

operator j$

operator prq,qqga,qgh$

operator prG,GGga,GGgaga$

operator hGWpl,hGWmi,GWplga,GWmiga$

operator ghghplga,ghghmiga$

operator prW,prZ,prgh,WWga,WWgaga,hWW$

diagram:=1$

)
% FEYNMAN RULES (according to Bailin & Love, signs corrected by Tai Tsun Wu)

% exclude denominators in propagators!

% Quark propagator (massive) January 1998
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for all 11,p01,mq
let prq(1l,p01,mq)=i*(G(11,p01)+mq)$

% Quark-Quark-photon vertex:
for all 11,Qf,mul
let qgga(11,Qf ,mul)=i*Qf*G(11l,mul)$

% Quark-Quark-Higgs vertex:
for all 11,mq

let qgh(11l,mq)=-(1/2)*i*(mq/mW)$ % (leave out "g")
% let qgh(11l,mq)=-(1/2)*i*(mq/mW)*(1+bb*G(11l,a))$

% Feynman gauge
% W and Z propagators

for all pO1,mul,mu2 let
prW(p01l,mul ,mu2)=-i*mul.mu2,
prZ(p01,mul ,mu2)=-i*mul .mu2$

% Goldstone propagator:
for all pO1
let prG(p01)=i$

% Goldstone-Goldstone-Higgs vertex:
% Bailin & Love, p. 228, (14.85) (leave out "g")
let hGG=-(1/2)*i*mh**2/mW$

% Goldstone-Goldstone-photon vertex:

% Bailin & Love, p. 226, (14.74) (leave out "e")
% G™+ in, momentum pOl in

% G°- in, momentum p02 in

for all p01,p02,muil

let GGga(p01,p02,mul)=i*(p01-p02) .mul$

% Goldstone-Goldstone-photon-photon vertex:

% Bailin & Love, p. 335, (14.74) (leave out "e"2")
% G°+ in

% G- in

% photon in, Lorentz index mul

% photon in, Lorentz index mu2
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for all mul,mu2
let GGgaga(mul,mu2)=2*i*mul.mu2$

% (Faddeev-Popov) Ghost propagators
for all pO1
let prgh(p01)=i$

% Ghost-Ghost-Higgs vertex:
% Bailin & Love, p. 231, (14.99) (leave out "g")
let hghgh=-(1/2)*i*mW$

% Ghost-Ghost-photon vertex:
% Bailin & Love, p. 230, (14.93) (leave out "e")
% out-ghost has momentum pOl incoming
for all p01,mul
let ghghplga(pOl,mul)= i*p0O1.muil,
ghghmiga (p01,mul)=-i*p01.mul$

% Three-vector vertex (all momenta pO1,p02,p03 are in-going)

for all p01,p02,p03,mul,mu2,mu3 let % (14.66), (leave out "e")
WWga(p01,p02,p03,mul ,mu2,mu3) % order: W*+, W°-, gamma
=-ix((p01-p02) .mu3*mul.mu?2
+(p02-p03) .mul*mu2.mu3
+(p03-p01) .mu2*mul.mu3)$

% Four-vector W-W-gamma-gamma vertex: (leave out "e"2")
% W+, W-: Lorentz indices nul,nu?2
% photonl, photon2: Lorentz indices mul,mu?2
for all mul,mu2,nul,nu2
let WWgaga(mul,mu2,nul,nu2)
=-i*(2*mul.mu2*nul .nu2-nul.mul*nu2.mu2-nul.mu2*nu2.mul)$

% WW-higgs vertex: % (leave out "g")
for all mul,mu2 let
hWW (mul ,mu2)=1i*mW*mul .mu2$

% Higgs—Goldstone-W vertices: % (leave out "g")
% Bailin & Love, (14.78), (14.79)
% Higgs in: momentum pO1
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% G°- in:  momentum p02
% W™+ in: index mul

for all p01,p02,mul
let hGWpl(p01,p02,mul)= (1/2)*ix(p01-p02).mul,

% G°+ in:  momentum p02
% W™ - in: index mul
hGWmi (p01,p02,mul)=-(1/2)*i*(p01-p02) .mul$

% Tai’s sign

% Tai’s sign

% Goldstone-W-photon vertices: % (leave out "e")
P

% G- in

% W™+ in: index mul

% photon in: index mu2

for all mul,mu2

let GWplga(mul,mu2)= i*mW*mul.mu2,

GWmiga (mul,mu2)= i*mW*mul.mu2$ % same sign.

Tai, p. 4-6

% Higgs-Goldstone-W-photon vertices: % (leave out "eg")

% G*— in

% W™+ in: index muil

% photon in: index mu2

for all mul,mu?2

let hGWplga(mul,mu2)= i*(1/2)*mul.mu2,

% G™+ in
% W= in: index mul
% photon in: index mu2
hGWmiga (mul,mu2)= i*(1/2)*mul.mu2$

ApPENDIX C

h

% The generic diagram

/2 ki
h /1
% q+p/2 / |
h (up) / |
h /|
h p / |
h o - | q-k (down)
) \ |
h N
h (up) \ |
% q-p/2 \ |
h \

o mmmmme- k2

di=(q-p/2)°2 - m"2
d2=(q+p/2)"2 - m"2
d3=(gq-k)"2 - m"2
p=ki1+k2

k=(k1-k2)/2
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% The ttt diagram (two diagrams)

termOa:=-qgh(11l,mt)*prq(ll,q-p/2,mt)*qqga (11l,Qt ,mu2)
*prq(1l,q9-k,mt)*qqga(ll,Qt ,mul)*prq(1l,q+p/2,mt)$

termOb:=-qgh(11,mt)*prq(ll,-q-p/2,mt)*qqga(1l,Qt ,mul)
*prq(11,-q+k,mt) *qqga(11,Qt ,mu2) *prq(11,-q+p/2,mt) $

% Note: Trace in REDUCE implies division by 4.
% This factor must be multiplied back in.

Tl o tototo oo loToToto 1o o oo ToToTo To o o To T To T To o o o o To T To o oo oo o To T T o oo oo ol T o o oo oo o T T T o oo oo T o T
% The WWW diagrams

termla:=hWW(alpha,beta) % W™+ clockwise
*prW(q+p/2,alpha,alphal)
*WWga(q+p/2,-q+k,-kl,alphal,alpha2,mul)
*prW(q-k,alpha2,beta2)
*WWga(q-k,-g+p/2,-k2,beta2,betal ,mu2)
*prW(q-p/2,betal,beta)$

termlb:=hWW(alpha,beta) % W"- clockwise
*prW(g+p/2,alpha,alphal)
*WWga(-q+k,q+p/2,-k1,alpha2,alphal ,mul)
*prW(g-k,alpha2,beta2)
*WWga(-q+p/2,9-k,-k2,betal ,beta2,mu2)
*prW(q-p/2,betal,beta)$

termlc:=hWW(alpha,beta) % with quartic coupling
*prW(q+p/2,alpha,alphal)
*WWgaga (mul,mu2,alphal,betal)
*d3 % cancel absent propagator of J(1,1,1)
*prW(g-p/2,betal,beta)$

terml:=termla+termlb+termic$

Tl ToloToToToToToToToTo 1o 1o 1o o o o o o o Jo o Jo o To o Jo T T T T T T T T T T T oo o o oo oo oo o oo o o oo oo oo o Jo o o o T o o o

% The Goldstone (Higgs ghost) diagrams:

term2a:=hGG % positive charge clockwise
*prG(q+p/2)
*GGga(q+p/2,-q+k,mul)
*prG(q-k)

*GGga(q-k,-q+p/2,mu2)
*prG(q-p/2)$
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term2b :=hGG % negative charge clockwise
*prG(q+p/2)
*GGga (-q+k,q+p/2,mul)
*prG(q-k)
*GGga(-q+p/2,9-k,mu2)
*prG(q-p/2)$

term2c :=hGG % quartic G-G-gamma-gamma vertex
*prG(q+p/2)
*GGgaga (mul,mu2)
*d3 % cancel absent propagator of J(1,1,1)
*prG(q-p/2)$

term2:=term2a+term2b+term2c$

T tototo ot lo o Toto 1o oo ToToTo 1o o o ToToTo o To o o o o T To T o o oo o T To T o oo o o T T T o oo oo o T T T o o oo o T o o
% Goldstone-W diagrams:

%Clockwise W-W-G (positive charge):
term3a:=hWW(alpha,beta)
*prW(q+p/2,alpha,alphal)
*GWplga(alphal,mul)
*prG(q-k)
*GWmiga (betal ,mu2)
*prW(g-p/2,betal,beta)$
%Clockwise W-W-G (negative charge) = crossed 3a:
term3b:=hWW(alpha,beta)
*prW(q+p/2,alpha,alphal)
*GWmiga(alphal,mul)
*prG(q-k)
*GWplga(betal,mu2)
*prW(q-p/2,betal,beta)$

%Clockwise W-G-W (positive charge):
term3c:=hGWpl(p,-q-p/2,beta)
*prG(q+p/2)
*GWmiga(alpha2,mul)
*prW(q-k,alpha2,beta2)
*WWga(q-k,-q+p/2,-k2,beta2,betal ,mu2)
*prW(q-p/2,betal,beta)$
%Clockwise G-W-W (negative charge) = crossed 3c:
term3d:=hGWpl(p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*WWga(-q+k,q+p/2,-k1,alpha2,alphal ,mul)
*prW(q-k,alpha2,beta)
*GWmiga (beta,mu2)
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*prG(g-p/2)$
%Clockwise G-W-W (positive charge):
term3e :=hGWmi (p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*WWga(q+p/2,-q+k,-kl,alphal,alpha2,mul)
*prW(q-k,alpha2,beta)
*GWplga(beta,mu2)
*prG(q-p/2)$
%Clockwise W-G-W (negative charge) = crossed 3e:
term3f : =hGWmi (p,-q-p/2,beta)
*prG(q+p/2)
*GWplga(alpha2,mul)
*prW(q-k,alpha2,beta2)
*WWga(-q+p/2,9-k,-k2,betal ,beta2,mu2)
*prW(q-p/2,betal,beta)$
term3:=term3a+term3b+term3c+term3d+term3e+term3f$

% Clockwise: G-G-W (positive charge):
termda:=hGG
*prG(q+p/2)
*GWmiga(alpha2,mul)
*prW(q-k,alpha2,beta2)
*GWplga(beta2,mu2)
*prG(q-p/2)$

% Clockwise: G-G-W (negative charge) = crossed 4a:

termdb :=hGG
*prG(q+p/2)
*GWplga(alpha2,mul)
*prW(q-k,alpha2,beta2)
*GWmiga(beta2,mu2)
*prG(q-p/2)$

% Clockwise: G-W-G (positive charge):
terméc :=hGWmi(p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*GWplga(alphal,mul)
*prG(q-k)
*GGga(q-k,-q+p/2,mu2)
*prG(q-p/2)$

% Clockwise: W-G-G (negative charge) = crossed 4c:

termdd :=hGWmi (p,-q-p/2,beta)
*prG(q+p/2)
*GGga (-q+k,q+p/2,mul)
*prG(q-k)
*GWplga(beta2,mu2)
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*prW(q-p/2,beta2,beta)$
% Clockwise: W-G-G (positive charge):
termde :=hGWpl(p,-q-p/2,beta)
*prG(q+p/2)
*GGga(q+p/2,-q+k,mul)
*prG(q-k)
*GWmiga(beta2,mu2)
*prW(q-p/2,beta2,beta)$
% Clockwise: G-W-G (negative charge) = crossed 4e:
termdf :=hGWpl(p,q-p/2,alpha)
*prW(q+p/2,alpha,alphal)
*GWmiga(alphal,mul)
*prG(q-k)
*GGga(-q+p/2,9-k,mu2)
*prG(q-p/2)$
termd :=termda+termdb+terméc+terméd+termde+termdf$

%Clockwise W-G (positive charge, quartic coupling):
termbSa:=hGWplga(mul,beta)

*d2 % cancel absent propagator of J(1,1,1)
*prG(q-k)
*GWmiga(betal ,mu2)

*prW(g-p/2,betal,beta)$
%Clockwise W-G (negative charge, quartic coupling):
termbb:=hGWmiga (mul,beta)
*d2 % cancel absent propagator of J(1,1,1)
*prW(q-k,beta,betal)
*GWplga(betal,mu2)
*prG(q-p/2)$

%Clockwise W-G (positive charge, quartic coupling) = crossed ba:

termbc :=hGWplga (mu2,beta)
*prG(q+p/2)
*GWmiga(betal,mul)
*prW(q-k,betal,beta)
*d1$ % cancel absent propagator of J(1,1,1)

%Clockwise W-G (negative charge, quartic coupling) = crossed 5b:

termbd:=hGWmiga (mu2,beta)
*prW(q+p/2,beta,betal)

*GWplga(betal,mul)
*prG(q-k)
*d1$ % cancel absent propagator of J(1,1,1)

termb:=termba+termbb+termbc+termb5d$

ApPENDIX C
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% The Faddeev-Popov ghost diagrams:

term6a:=-hghgh % positive FP ghost clockwise
*prgh(q+p/2)
*xghghplga(-q+k,mul)
*prgh(q-k)

xghghplga(-q+p/2,mu2)
*prgh(q-p/2)$
term6b:=-hghgh % crossed diagram (positive FP ghost anticlockwise)
*prgh(q-p/2)
xghghplga(q-k,mu2)
*prgh(q-k)
xghghplga(q+p/2,mul)
*prgh(q+p/2)$
term6c:=-hghgh % negative FP ghost clockwise
*xprgh(q+p/2)
xghghmiga (-q+k ,mul)
*xprgh (q-k)
xghghmiga (-q+p/2,mu2)
*prgh(q-p/2)$
term6d:=-hghgh % crossed diagram (negative FP ghost anticlockwise)
*prgh(q-p/2)
*xghghmiga (q-k ,mu2)
*prgh(q-k)
xghghmiga (q+p/2,mul)
*prgh(q+p/2)$
term6:=termba+terméb+terméc+terméd$

Tl Tolo o ToToToToTo 1o 1o 1o 1o 1o o o o o o o Jo o To o To o To T T To T T T T T T T T oo o o oo oo oo o oo o o oo oo oo o Jo o o o T o o o

if (diagram=0) then
let term=4x*(termOa+termOb), m=mt$

if (diagram=1) then
let term=terml+term2+term3+term4+termbS+term6, m=mW$
% let term=terml+term3+termé4+termS+term6, m=mW$
% let term=termlat+termib, m=mW$
% let term=termlc, m=mW$
% let term=term2a+term2b, m=mW$
% let term=term3at+term3b, m=mW$
% let term=term3c+term3d+term3e+term3f, m=mW$
% let term=termda+termdb, m=mW$
% let term=termé4c+termdd+termde+termdf, m=mW$
% let term=termbSa+termSb+termSc+termbd, m=mW$
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% let term=term6, m=mW$
% let term=term2, m=mW$

ApPENDIX C

h

% Start contracting indices:
index alpha,beta$

term:=term;

index alphal,alpha2,betal,beta2$
term:=term;

% Diagram 0,1:

% dl = (g - p/2)**2 - m*x*2$

% d2 = (q + p/2)**2 - m*x*x2$

% d3 = (g - k)**2 - m¥*2$

% d3 = (g - k).(q - k) - m¥x2$

let q.q = (1/2)*( d1 + d2) - p.p/4 + m**2$
let q.k = (q.q + k.k - d3 - m*x2)/2$

term:=term;

h

% Start extracting coefficients:

% M {mul,mu2} = AO*g~{mul,mu2} + Alxkl~{mul}xkl”{mu2} + A2xk1~{mul}*k2~{mu2}
% + A3*k2"{mull}*k1~{mu2} + A4*k2~{mul}*k2~{mu2}

% First, evaluate contractions:

oo ToloToToToToToToToToTo 1o 1o To o o o o o o fo o Jo o Tl o To T T o To o T T T T T T T T o o oo o oo oo oo oo oo o oo oo oo o

% Test decomposition:

term00:=aal0*mul .mu2 + aal*kl.mul*kl.mu2 + aa2*kl.mul*k2.mu2
+ aa3*k2.mulxkl.mu2 + aad*k2.mul*k2.mu2$

% For testing, un-comment next line:
%term:=term00$

Tt ToloToToToToToTo 1o 1o 1o 1o 1o o o o o o o o fo o Jo o Tl o To T To o To o T T T T T T T T T o o T oo o oo oo oo oo oo o o oo o oo o

% Rescale amplitude:

ampl :=(mW/mh**2) *term*j(1,1,1)$
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bl:=mul.mu2*ampl$

b2:=k1l.mul*kl.mu2*ampl$
b3:=kl.mul*k2.mu2*ampl$
b4 :=k2.mulx*kl.mu2*ampl$
b5:=k2.mul*k2.mu2*ampl$

index mul,mu2$
% Do this tensor algebra in nn dimensions:

a0:=(1/ (kkk*(nn-2)))
*(kkk*bl - k2.k2*b2
+ k1.k2*(b3+b4) - k1.k1%b5)$

al:=(1/ (kkk**2*(nn-2)))
* (-kkk*k2.k2*%bl + (nn-1)*k2.k2**2xb2
-(nn-1)*k2.k2*xk1.k2*(b3+b4) + (kkk+(nn-1)x*kl.k2**2)*b5)$

a2:=(1/ (kkk**2%(nn-2)))
* (kkk*k1.k2%bl — k2.k2xk1l.k2%(nn-1)*b2 - (kkk - ki1.k1*k2.k2%(nn-1))#*b3
+ k1.k2**2x(nn-1)*b4 - k1.klxkl.k2*x(nn-1)*b5)$

a3:=(1/(kkk**2*(nn-2)))
* (kkk*kl.k2%bl - k2.k2*kl.k2*x(nn-1)*b2 + ki1.k2**2%(nn-1)*b3
-(kkk - k1.k1%k2.k2*(nn-1))*b4 - ki1.klxkl.k2*(nn-1)*b5)$

ad:=(1/ (kkk**2* (nn-2)))
* (—kkk*kl.k1*bl + (kkk + k1.k2**2x(nn-1))*b2
- k1.k1xkl.k2*(nn-1)*(b3+b4) + kl.kil**2x(nn-1)*b5)$

let k1.q = (1/2)*( (d2 - d1)/2 + (q.q + k.k - d3 - m*x2)),
(1/2)*( (d2 - d1)/2 - (q.q + k.k - d3 - m**2))$

IR

N
Q

I

let k=(k1-k2)/2%
let p=k1+k2$

for all n1,n2,n3,s

let dix*s*j(nl,n2,n3)=j(nl-s,n2,n3),
d2**s*j(nl,n2,n3)=j(nl,n2-s,n3),
d3**s*j(n1,n2,n3)=j(n1,n2,n3-s)$

for all n1,n2,n3

let di*j(nl1,n2,n3)=j(n1-1,n2,n3),
d2*j(nl,n2,n3)=j(nl,n2-1,n3),
d3*j(n1,n2,n3)=j(n1,n2,n3-1)$



92 ApPPENDIX C

let kkk=k1.k1%k2.k2 — k1.k2**2$

let j(1,0,0)=3(0,0,1),
j(€0,1,0)=3(0,0,1)$

let J(1,1,-1) = J(0,1,0) + (k.k - (1/4)*p.p)*J(1,1,0),
J(1,-1,1) = J(0,0,1) + p.(p/2 + k)*J(1,0,1),
J(-1,1,1) = J(0,0,1) + p.(p/2 - K)*J(0,1,1)$

al;
al;
a2;
a3;
a4;

% Now take photons on mass-shell:
let k1.k1=0, k2.k2=0$

a00:=a0;
alO:=al;
a20:=a2;
a30:=a3;
a40:=a4;

%out "diagramO.res";
%out "diagraml.res";
diagram;

a00;
al0;
a20;
a30;
a40;

numO00 : =num (a00) ;
den00:=den(a00) ;

numO0;

c110:=coeffn(num00,j(1,1,0),1)
+coeffn(num00,j(1,0,1),1)
+coeffn(num00,j(0,1,1),1);
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let k1.k2=(mh**2-k1.k1-k2.k2)/2$

a00;
a30;

% Check gauge invariance:

check:=a00+ (mH**2/2) *a30;
end;

let nn=n;

% Study coefficients of Ellis et al:
capA:=(mh**2/mW**2)*c110* (n-4)*j(1,1,0)/den00;
capB:=J(1,1,1)*coeffn(a00,j(1,1,1),1);

capC:=mW**2* (mh**2/mW**2)*a30 ;

% J(1,1,0) etc give -2xi*pi**2/(n-4)
% (i*pi**2 extracted in overall factor)

in "low_mass.red";
%end;
caph;
capB;
capC;

end;

capC+capB;
comp : = (4*mW**2/mh**2) *capAO;

end$
%
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Appendix D: Listing of REDUCE
program

Non-Standard Model calculation

Dot totaTo o to o To foTo ToTo Toto To o o o o o o Yo Jo o T o T o o Fo o o o Jo o o o Yo s o o o o o o o o o T o o o o Yo o Yo o o o Yo o o o
set_bndstk_size 50000;

% Calculation of one-loop h \gamma\gamma vertex

off nat$

%on gcd$

% Must do this in n dimensions, divergent!
%vecdim n$

vecdim 4$ % Must be used with Gammab;

vector alpha,beta,alphal,alpha2,betal,beta2$
vector p,q,k1,k2$

operator j$

operator prq,qqga,qgh$

operator prG,GGga,GGgaga$

operator hGWpl,hGWmi,GWplga,GWmiga$
operator ghghplga,ghghmiga$

operator prW,prZ,prgh,WWga,WWgaga,hWW$

diagram:=0$

)
% FEYNMAN RULES (according to Bailin & Love, signs corrected by Tai Tsun Wu)

% exclude denominators in propagators!

% Quark propagator (massive) January 1998
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for all 11,p01,mq
let prq(1l,p01,mq)=i*(G(11,p01)+mq)$

% Quark-Quark-photon vertex:
for all 11,Qf,mul
let qgga(11,Qf ,mul)=i*Qf*G(11l,mul)$

% Quark-Quark-Higgs vertex:

for all 11,mq

% let qqh(11,mq)=-(1/2)*i*(mqg/mW)$ h (leave out "g")
let qgh(11,mq)=-(1/2)*i*(mqg/mW)*(1+bb*G(11l,a))$

% Feynman gauge
% W and Z propagators

for all pO1,mul,mu2 let
prW(p01l,mul ,mu2)=-i*mul.mu?2,
prZ(p01,mul ,mu2)=-i*mul .mu2$

% Goldstone propagator:
for all pO1
let prG(p01)=i$

% Goldstone-Goldstone-Higgs vertex:
% Bailin & Love, p. 228, (14.85) (leave out "g")
let hGG=-(1/2)*i*mh**2/mW$

% Goldstone-Goldstone-photon vertex:

% Bailin & Love, p. 226, (14.74) (leave out "e")
% G°+ in, momentum pOl in

% G°— in, momentum p02 in

for all p01,p02,mul

let GGga(p01,p02,mul)=i*(p01-p02) .mul$

% Goldstone-Goldstone-photon-photon vertex:

% Bailin & Love, p. 335, (14.74) (leave out "e"2")
% G°+ in

% G- in

% photon in, Lorentz index mul

% photon in, Lorentz index mu2
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for all mul,mu2
let GGgaga(mul,mu2)=2*i*mul.mu2$

% (FP) Ghost propagators
for all pO1
let prgh(p01)=i$

% Ghost-Ghost-Higgs vertex:
% Bailin & Love, p. 231, (14.99) (leave out "g")
let hghgh=-(1/2)*i*mW$

% Ghost-Ghost-photon vertex:
% Bailin & Love, p. 230, (14.93) (leave out "e")
% out-ghost has momentum pOl incoming
for all p01,mul
let ghghplga(pOl,mul)= i*p0O1.mul,
ghghmiga (p01,mul)=-i*p01.mul$

% Three-vector vertex (all momenta pO1,p02,p03 are in-going)

for all p01,p02,p03,mul,mu2,mu3 let % (14.66), (leave out "e")
WWga(p01,p02,p03,mul ,mu2,mu3) % order: W*+, W°-, gamma
=-i*((p01-p02) .mu3*mul.mu?2
+(p02-p03) .mul*mu2.mu3
+(p03-p01) .mu2*mul.mu3)$

% Four-vector W-W-gamma-gamma vertex: (leave out "e"2")
% W+, W-: Lorentz indices nul,nu?2
% photonl, photon2: Lorentz indices mul,mu?2
for all mul,mu2,nul,nu2
let WWgaga(mul,mu2,nul,nu2)
=-i*(2*mul.mu2*nul .nu2-nul.mul*nu2.mu2-nul.mu2*nu2.mul)$

% WW-higgs vertex: % (leave out "g")
for all mul,mu2 let
hWW (mul ,mu2)=1i*mW*mul .mu2$

% Higgs—Goldstone-W vertices: % (leave out "g")
% Bailin & Love, (14.78), (14.79)
% Higgs in: momentum pO1
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% G°- in:  momentum p02
% W™+ in: index mul

for all p01,p02,mul
let hGWpl(p01,p02,mul)= (1/2)*i*(p01-p02).mul,

% G°+ in:  momentum p02
% W™ - in: index mul
hGWmi (p01,p02,mul)=-(1/2)*i*(p01-p02) .mul$

% Tai’s sign

% Tai’s sign

% Goldstone-W-photon vertices: % (leave out "e")
P

% G- in

% W™+ in: index mul

% photon in: index mu2

for all mul,mu2

let GWplga(mul,mu2)= i*mW*mul.mu2,

GWmiga (mul,mu2)= i*mW*mul.mu2$ % same sign.

Tai, p. 4-6

% Higgs-Goldstone-W-photon vertices: % (leave out "eg")

% G*— in

% W™+ in: index muil

% photon in: index mu2

for all mul,mu?2

let hGWplga(mul,mu2)= i*(1/2)*mul.mu2,

% G™+ in
% W= in: index mul
% photon in: index mu2
hGWmiga (mul,mu2)= i*(1/2)*mul.mu2$

APPENDIX D

h

% The generic diagram

/2 ki
h /1
% q+p/2 / |
h (up) / |
h /|
h p / |
h o - | q-k (down)
) \ |
h N
h (up) \ |
% q-p/2 \ |
h \

o mmmmme- k2

di=(q-p/2)°2 - m"2
d2=(q+p/2)"2 - m"2
d3=(gq-k)"2 - m"2
p=ki1+k2

k=(k1-k2)/2
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% The ttt diagram (two diagrams)

termOa:=-qgh(11l,mt)*prq(ll,q-p/2,mt) *qqga (11l,Qt ,mu2)
*prq(1l,q-k,mt)*qqga(ll,Qt ,mul)*prq(1l,q+p/2,mt)$

termOb:=-qgh(11,mt)*prq(1ll,-q-p/2,mt)*qqga(11l,Qt ,mul)
*prq(11,-q+k,mt) *qqga(11,Qt ,mu2) *prq(11,-q+p/2,mt) $

% Note: Trace in REDUCE implies division by 4.
% This factor must be multiplied back in.

Tl ToToToToToToToTo 1o 1o 1o 1o 1o o o o o o o Jo o Jo o To o To T To T T T T T T T T T oo oo Fo o oo oo o oo o o oo oo oo o o oo o oo o o
Tl ToTo o ToToToToTo 1o 1o 1o 1o 1o o o o o o oo Jo o Jo o To o To T T To T To T T T T T T oo o o oo oo oo o oo o o oo oo oo o o oo o T o o o

if (diagram=0) then
let term=4*(termOa+termOb), m=mt$
if (diagram=1) then
let term=ttl*terml+gg*term2+term3+termé+termb+popovsterm6, m=mW$

h

% Start contracting indices:
index alpha,beta$

term:=term,;

index alphal,alpha2,betal,beta2$
term:=term;

% Diagram 0,1:
% dl = (q - p/2)**2 - m**x2$

% d2 = (q + p/2)**2 - m**2$

% d3 = (q - k)**2 - m¥*2$

%end

let q.q9 = (1/2)*( 41 + d2) - p.p/4 + m**2$
let q.k = (q.q + k.k - d3 - m**2)/2$

term:=term;
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% First, evaluate contractions:

TototoToTotoToTotofoToto o Toto foToTo fo JoTo fo Jo To o Jo o oo o o Jo Fo 1o o Jo o o Jo o o Jo o o o To o o Jo To 1o o o 1o o T 1o o Yo o o o 1o o o T o o Jo T
% Rescale amplitude:

%ampl : =mW*term/mH**2$

ampl:=mW*coeffn(term,bb,1) /mH**2$

index mul,mu2$

let kl.qg
k2.q

(1/2)*( (@2 - d1)/2 + (g.q + k.k - d3 - m**2)),
(1/2)*( (d2 - d1)/2 - (q.q + k.k - d3 - m**2))$

let k=(k1-k2)/2%
let p=k1+k2$

for all ni1,n2,n3,s

let di**s*j(nl,n2,n3)=j(nl-s,n2,n3),
d2**s*j(nl,n2,n3)=j(nl,n2-s,n3),
d3**s*j(nl,n2,n3)=j(nl,n2,n3-s)$

for all n1,n2,n3,s

let di*j(nl,n2,n3)=j(nl-1,n2,n3),
d2*j(n1,n2,n3)=j(n1,n2-1,n3),
d3*j(n1,n2,n3)=j(n1,n2,n3-1)%

let kkk=k1.k1*k2.k2 - k1.k2**2$

let J(190,0)=J (09091) >
j(€0,1,0)=j(0,0,1)$

let J(1,1,-1) = J(0,1,0) + (k.k - (1/4)*p.p)*J(1,1,0),
J(,-1,1) J(0,0,1) + p.(p/2 + kK)*J(1,0,1),
J(-1,1,1) = J(0,0,1) + p.(p/2 - kK)*J(0,1,1)$

ampl;

end$
%




