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1. INTRODUCTION

1.1 Background

Understanding and using proteins is a vital area of reseach within the ever-more important fields of
biology and hiotechnology. Despite mnsiderable dforts, predicting the full, three-dimensional structure
of a given protein based on its components remains a persistent challenge to biochemistry. Although a
variety of approaches display appredable progress this protein folding problem — as it is dandardly
referred to —seems unlikely to be resolved in the nea future.

The proteins consist of chains of amino adds, ssimple organic adds that are cnneded to ead other in
long chains. The processof determining which amino adds a protein consists of is cdled sequencing. As
new proteins are sequenced and analysed and their description added to central databases, several
problems arise. One is the amount of information — already databases contain information on several
thousands of more or lessrelated proteins. Another and perhaps more serious problem is the organisation
of al this information. As of today, there is no uwniversally acceted classification of proteins into
different caegories and subcategories. Proper categorisations are important and will become even more
so, for various reasons.

This problem is complicated by the fad that proteins often are divided into several distinct structures,
conneded by chains of unstructured amino adds. Often these structures repea in the different proteins,
and might serve the same purpose. For this reason, attention lately has been focused not only on proteins
asawhole but also on the different protein structures.

There ae several ways of classifying protein structures, these will be discussed in sedion 2.3. A new
system that has receved some dtention lately is the CATH clasdficaion system. In this system, protein
structures are dassified at five different levels: Class, Architedure, Topdogy, Homologous super-family
and family. Methods for automaticaly classfying structures are being developed, athough at some levels
clasdficaion is still done semi-automatically or manually.

Another important tod is visualisations of the threedimensional structure of proteins. The structure is
essentialy three-dimensional, and no two-dimensional maps can show the full structure. However, due to
the reaurring elements (beta-strands and alpha helices) and reaurring patterns of organisations of these,
two-dimensional maps can till be used to show the basic, three-dimensional organisation of secondary-
level structures. TOPS is a system that uses a formal representation of a graph structure to construct two-
dimensional maps — cartoons — suitable for this purpose. Moreover, this system can also be used for
comparisons, acceerating seaches and identifying reaurring patterns. Algorithms for converting
structural information from current databases to TOPS cartoons have drealy been devel oped.

TOPS cartoons are stored as formally represented direded graphs, using a speda version of the
congtraint-programming language clp. This makes their representations very small, and thus easily
seachable. In addition, templates — generalisations of structures — can be defined, making fast pattern
matching and pattern searching possible.



1.2. Aims

In this thesis, a framework for the dassification of protein structures based on their TOPS representation
will be presented. Various classifying methods, both unsupervised and supervised, will be discussed and
implemented. As a basis for comparison, the CATH system will be used; its classficaions will be the
target to which classifications and maps will be cmpared. Other classifications systems could be
included as well.

At a more detailed level, the central part is a set of functions that, given a TOPS diagram, credae a
numericad vedor. The vedors thus creaed will then be used as basis for several classification methods:

e Unsupervised leaning, or self-organising, will be used to creae maps of the structures.
These maps will show the simil arities between the different entries by clustering similar
entries nea ead other, geometricd distances indicaing differences between structures and
clusters of structures.

e A supervised classficaion technique will be used for a more predse dassfication of all
diagramsinto categories.

e Unsupervised clasdficaion or clustering will be used to creae dasdfications and to reved
patterns in the vedors.

The maps will be manually compared to the dassificaion done by CATH. If successful, structures
grouped together in the same cdegory in CATH should be placal nea ead other in the map. A method
for seleding TOPS diagrams acording to their corresponding classfication in CATH will be
implemented. Methods for automaticaly comparing different classificaions will also be implemented,
and will be used to compare the obtained classificaions to a“corred” target classification. The “corred”
clasdficaionsin thisthesis will be based on CATH, but other targets are possble, based on other existing
classficaion systems. These gproaches will be tried at different levels of caegorisation in the CATH
hierarchy, and in several categories at ead level.

1.3. Methods

The methods used will mainly be based on Artificial Neural Networks (ANNS) or similar approaches.
ANNs have been used successfully in many cases where dgorithmic solutions are hard to find o
undesirable for other reasons. Unsupervised leaning, used properly, often enables the network to find
patterns in complex data. However, when it comes to categorisation relative to a given (known) system or
classfication, supervised methods generally perform better and are better suited. Although the training
phase of a neural network may be long, running data through a network after training is usually very
efficient.

Thefirst task isto extrad numericd information from the given TOPS cartoons. This functionality will be
implemented in a software padage, referred to as the TOPS padkage henceforward.

To creae the map of protein structures (or rather, of TOPS catoons), we will use a
Self-Organising Feaure Map (SOFM), aso known as a SOM or a Kohonen network, after its inventor
Teuvo Kohonen. This network architedure will be described in detail in alater chapter.

Leaning Vedor Quantizaion (LVQ) is a supervised classificaion technique, and will be used as the
main classification method. Based on the Vedor Quantization method, LVQ is also invented by Kohonen
and has been applied successfully to several different areas within pattern classification.



We will also experiment with standard clustering techniques. A measure of the distance between two
given diagrams will be implemented; this measure will be based on the vedors creaed by the rules
mentioned ealier. Standard hierarchicd clustering and the isodata (k-means) algorithm will then be used
to perform unsupervised clustering of TOPS diagrams.

After the final categorisation process the methods will be tested on protein structures not used in training
the network or in the cdegorisation process Success will depend on these structures being classified
acaordingto the dassificaion done by CATH, in an efficient and generali zable manner.

1.4. Implementation

Java® has been chosen for programming language, and the choice of programming language deserves
further explanation. Using Java in scientific work is rather uncommon, mainly because of its inefficiency
compared to ather structured or objed-oriented languages like C++. It is adso a recent language, with
which the scientific community may not be acaistomed. However, programming in Java usually leads to
rapid development cycles, and for the tasks at hand its efficiency is aufficient. The built-in serialisation
cgpability of Java will be used to provide objed persistence Other bonuses by using Java ae aoss-
platform compatibility and ease of maintenance and dstribution.

For the SOFM and LV Q tasks, the software pacages developed by Kohonen and his co-workers will be
used. The padkages are cdled SOM_PAK and LVQ _PAK, respedively, and are more or less the
reference implementation for both methods.

1.5. Organisation of the thesis

The amerging field of bioinformatics, or computational biology, is inherently cross-disciplinary. This
thesis, again, is cross-disciplinary within bioinformatics, and correspondingy needs a thorough
badkground. Chapters 2 and 3 cover the necessary biologicad badcground, including TOPS cartoons and
their formal representation. Chapter 4 introduces the terms and definitions necessary to understand the
theory behind neural networks. Building on the notations and concepts presented there, chapter 5 will
then describe the Self-Organising Feaure Map algorithm while chapter 6 dscusses pattern classificaion
and the Leaning Vedor Quantization method.

Having introduced the foundation on which this thesis is based, chapter 7 will describe the dassificaion
framework in detail, and glue the different parts together. In chapter 8, the results of applying this
clasdficaion system to the current TOPS database ae cmmpared to the CATH classfication system.
Chapter 9, drawing conclusions and propasing diredions for future work, concludes the thesis.

! Java Development Kit 1.2, avail able & http://java.sun.com



2. BIOLOGICAL BACKGROUND

In this chapter a brief summary of the biologicd asped of the thesis is given. First, a description of the
important biologicd moleaules is presented in section 2.1. We then have a ¢oser look into proteins and
their compasitions, structures and functions, in sedion 2.2. Sedion 2.3 discusses classificaion of proteins
and protein structures, and lists the most important systems and methods. In additi on, the protein-folding
problem is explained. Finally, in sedion 2.4, the dassification system named CATH is described in detail .
Later inthethesis, CATH will be used as a basis for comparisons of classifications.

Most of the material on proteins and the biological maaomolecules presented in this chapter is based on
“Proteins. Structures and Moleaular Properties’ by Thomas E. Creighton [1].

2.1. The Biological macromolecules

2.1.1. DNA and RNA

We find the Deoxyribo-Nucleic Acids (DNA) in al cdls of al known life forms. The DNA is
maaomolecules that store the genetic information of an individual. They consist of a double dhain of
smaller molealles: Adenine, guanine, cytosine and thymine; these ae cdled bases and usually
abbreviated as A, C, G or T. When we monsider DNA moleaules, the bases are mnneded to ead other in
long chains. The cabon atoms of the bases thus form a central backbore, and the side chains of these
bases are usually denoted nucleotides. The two chains interad with each other and form the famous
douHe helix spiral, discovered by Crick and Watson in 1953

Thereason DNA isimportant isthat it is used as a blueprint for creaing proteins. Proteins are essential in
virtually all operations cdls perform; for instance they transport oxygen, digest food, repair damaged
cdls and ad as muscles. We will say more éout proteins in paragraph 2.1.3, for now just note that they
consist of chains of amino acids.

The DNA inside cdls are found in chromosomes. Humans have 23 pairs of chromosomes, but the number
varies from spedes to spedes. Not al parts of the DNA molecule ae important — large sedions are never
used in the protein synthesis and thus srve no clea biologicd function; these sedions are usually cdled
junk DNA,

A contiguous sguence of nucleotides that are adually used in the protein synthesis — expressed in
biologicd terms—iscadled agene. Not all genes are expressed in all cdls; which genes are expressed in a
cdl i sdetermined by what type of cdl it is. The processes that make diff erent cdls express different genes
are quite complex and still not completely understood

! Theories put forth by various reseachers siggest that junk DNA have afunction in accéerating
mutational effeds—ie, it ads as a mutagen.



Theletters A, C, G and T are often cdled the alphalet of the DNA, as the genetic information is coded in
those four letters. The information is extraded through complex chemicd readions, but basicdly three
letters are grouped together at atime, and that group, cdled a codon then either identifies an amino add,
or marks the start or the end of a sequence A gene may then be cnsidered a contiguous dretch of DNA
that codes for a protein. This picture is not entirely correa?, but then in biology few simplificaions are,
asthe complexity of biology giveslittle room for simplifications.

The DNA molecule is not used dredly in creding proteins; it is first transformed into another kind of
moleaule cdled ribonucleic add or RNA. The RNA is much like DNA, despite some differences; the
most important chemical differences are that RNA (usually) does not form double helixes, and that
thymine is replaced with wradl (abbreviated U). The process that credes RNA from DNA is called
transcription. During this process only regions of DNA that code for genes are used. Thus, the RNA
contains the genetic information of the DNA but none of the “junk”. The RNA is then used to crede
proteins in a processcdled trandation. For detail s about the aedion of proteins, the protein synthesis,
see[1].

2.1.2.  Amino acids

There ae more than 100 known amino adds. Twenty of these ae used in the mnstruction of proteins and
only those ae cmnsidered here. An isolated amino add consists of a ceitral carbon atom, cdled the alpha
carbon or C,, to which? is conneded a hydrogen atom, an amino group, a caboxyl group and a side
chain, seefig. 2-1. The side chains are what makes distinct amino aads different. When chained together,
the amino adds are cdled residues, becaise the chaining processis a condensation, producing water
moleaules and residues.

CHs
I
H,N —— Cq —— COOH

|
R

Figure 2-1: Generic amino acid

Schematic depiction of a generic amino acid. In the simplest case, alanin, the side chain Ris smply a
hydrogen atom.

! For instance, some genes do not code for proteins, but for RNA molecules.

2 This does not apply to al amino adds — in some of them, the side chain and the caboxyl group are
conneded to dfferent carbon atoms. It does, however, apply to 19 d the 20 amino adds that form
proteins. A spedal caseis prolin, where the side chain isalso banded to the nitrogen atom.



As mentioned, during the trandlation ead codan codes for a spedfic amino add. This threeletter coding
is universal — with very few exceptions, al organisms follow the same mapping from codans to amino
adds. This mapping, often cdled the genetic code, is given in table 2-1.

Different side chains have different chemicd properties, all of which are important in the formation of
protein structures. A sample property is the degreeof hydrophobcity — hydrophobic side chains generally
occur in the cre of a protein, while hydrophilic side dhains usualy are found on the surface These
properties are important when trying to predict protein structures, or when trying to define ameasure of
distance between amino add sequences.

5 & Seond position - &
= = = =
T8 u c |A G =]

Phe |Ser |Tyr Cys u

Phe |Ser |Tyr Cys C

U Leu |Ser |Terminate | Terminate | A

Leu |Ser |Terminate|Trp G

Leu |[Pro |His Arg U

Leu |[Pro |His Arg C

c Leu |[Pro |GlIn Arg A

Leu |[Pro |GlIn Arg G

lle Thr |Asn Ser U

lle Thr |Asn Ser C

A lle Thr |Lys Arg A

Met |Thr |Lys Arg G

va Ala |Asp Gly U

va Ala |Asp Gly C

G va |Ala |Glu Gly A

val Ala |Glu Gly G

Table 2-1: The genetic code table

The genetic code table shows what a combination of threeamino acids—a codon —codes for in the
trandation process Threeletter shortcuts for amino acids are used. Note the pattern in the redundancy —
this explains how simple mutations in the DNA sequence often lead to no changes in the proteins, because
seveal threeletter combinations code for the same amino acid. Met is gedal, as AUG also signdsthe
start of an expressed gene sequence, while UAA, UGA or UAG signdsthe end. Since the genetic code
appiesto RNA, Tis replaced with U for uracil (seemain text for explanation).



2.1.3. Proteins

Chemicdly, proteins are polypeptide dains of amino adds, seefig. 2-2. Sometimes two or more chains
combine to form a single protein. The number of residues varies from less than hundred to several
thousand, with three hundred as a typicd value. The sequence —N— C, —CO— is repeaed for eadh
residue, producing the main chain or the backbone' of the protein, to which the side dhains of the amino
adds are dtached. As can be seen, the badbone has two ends that are eaily distinguishable, and it can
thus be mnsidered direded. The @nvention is that a protein starts at the amino group (N-terminal) and
end at the caboxyl group (C-terminal).

Figure 2-2: Amino acid chain

Amino acids appear in pdypeptide chains, forming acentral backbone of C,, - and N-atoms. The atoms
can rotate with resped to each ather —within certain restrictions — thus the backbone is able to form
complexstructures. From|[2].

2.2. Protein structures

2.2.1. Structuresat different levels

Proteins generaly form a cmpad and complex three-dimensional structure. The sequence of amino
addsthat comprise aproteinis cdled its primary structure. The main chain folds around itself, creging a
seoonday structure. This mndary structure is formed by readions between nearby badkbone goms.
Due to the chemicd structure of peptide bonds, the secondary structure cnsists of repetitions of basic
buil ding blocks cdled seoonday structure dements (SEs). Only afew SSEs are likely to form, and only
two of them are @mmon enough to be of interest when describing protein structures. These ae cdled
alpha relices (heredter helices) and beta strands or exended elements (heredter strands). Between
Ss, the badkbone has a sequence of non-conneded residues. Such a sequenceis cdled aloop, aturn or
acoil.

Helices are spirals formed by the bad<bone binding to itself, and can be described by the average number
of residues per turn, normally 3.6. A “standard helix” has about four to forty residues, but variants differ
both in number of residues per turn and total number of residues.

1 Not to be confused with the badbone of the DNA molecules.
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Figure 2-3: Alpha helix and beta shed

A part of the protein backbore forming an alpha helix is here shown if four different ways. (a) Alpha
helices are spiral structureswith an average of 3.6 residues per turn. (b) A closer look at the alpha helix,
side chainsleft out for clarity. Hydrogen bands, shown red and striated, form between nitrogen and
oxygen atoms. (€) An arti parall el beta shed consisting d four beta strands. Note the alternating
diredions: Thefirst strandto the left has diredion top-down. Hydrogen bonds are depicted as griated
bonds between oxygen and (the hydrogen atom conneded to) nitrogen. Adapted from|[3].

The other important SSE, beta strands, can be described as a spedal type of helix with 2.0 residues per

turn. Strands by themselves are not stable, so strands are dways found conneded together in a beta shed.

We say that a beta strand has a diredion: It “paints’ along the badbone (i.e., the start of a strand is the
end that is neaest to the N-terminal of the badkbone). The strands comprising a shed can al be pointing
the same way (cdled aparallel shed), they can pant the oppasite way of their neighbour(s) (anti parallel

shed) or they can be of a mixed nature. Human proteins show a strong bias towards parallel sheds. See
fig. 2-3 for asmplified depiction of the two secndary structure dements.

The protein is folded further, and the relative positioning of the SEs are cdled its tertiary structure. The
tertiary structure is more complex than the seandary, but some regularity can be found. For instance, we
find simple combinations of SEs occurring in different proteins and several times in the same protein.
These combinations are often cdl ed motifs or sometimes super-semnday structures; examples are helix-
loop-helix and helix-shed-helix. Some motifs have a ¢ea biologicd function, others do not. These
super-seandary structures are formed by hydrogen-bindings between different SSEs that not necessarily
are found nea ead other on the backbone. Tertiary structure prediction is complicaed by the fad that
the tertiary structure is often formed by connedions between atoms far from each other along the

badbone.



Proteins tend to form one or more cmpad structures that to a cetain extent are self-contained. These
complex structures, referred to as domains, usually (but not always) consist of only one or at most a few
segments of the polypeptide badbone, and are linked to the other domains by a single stretch of the
badbone. There is no consistent definition of domains, and reseachers may divide a protein into
domains differently. Paragraph 2.4.1 mentions me automated methods for domain assignment.
Domainstend to be stable if cut loase from the rest of the badkbone, and are ale to fold badk to itsinitial
configuration if stretched. Thisis often used as a definition, i.e., adomain is a sub-component of a protein
that is slf-contained, stable and able to fold by itself. It should be enphasised, though, that this definition
is not stringent, as ©me domains are unstable and/or unable to fold if left to them self. Note that some
domains have aclea hiologicd function — contains an active site — while others do not. For notational
purposes, ead protein is considered to consist of one or more domains and a set of domains make up a
protein.

Whenever the protein consists of more than one dhain of amino adds, the relative placements of these
chains are cdled the proteins quaernary structure. Remember that a domain may involve several
stretches of a chain; for instance the protein 1ppnconsists of two chains, and the first chain contains two
domains. The first domain consists of residues 1 to 11 and 111 to 212, while the second consists of
residues 12 to 109 Some residues are not in any domain at al (e.g. 110 in the previous example), these
(stretches of) residues are cdled fragments.

One interesting property of protein structures is that, despite their complex folding, the protein backbone
does not form a well-defined knot, i.e. if stretched the badbone dways becomes a linea structure'. The

reason for thisis unclea.

Figure 2-4: Primary, secndary, tertiary and quaternary structures

This diagram shows protein structures at the four levds, from amino acid sequences (primary structure)
to complex, self-contained domains (quaternary structure). From[2].

! Exceptions exist, but these usually involve only small “knots” at the extreme ends of the badbone.



2.2.2. Theprotein folding problem

Experimental evidence shows that a protein that is unfolded in vitro immediately will fold bad to its
origina threedimensional structure'. This means that given the amino add sequence of a protein — its
primary structure — the full structure is uniquely determined. The structure of a protein determines its
function to a large degree by dedding which substances the protein can bind to. Finding the primary
structure of aproteinis easy, either by reading the mrresponding DNA/RNA sequenceand looking up the
genetic table, or by sequencing the protein diredly. Dedding the secondary structure of a protein is
harder, and tertiary structure harder still .

Since the ealy 19505, scientists have been working on this task: How can ore determine the eact
structure of a dgven protein? There are two kinds of methods in use: Those that try to find the structure
direaly, by observationa means, and those that try to predict the complete structure given the primary
structure, i.e. by theoreticd means. Unfortunately, none of these methods has been perfeded and they are
still being improved upon.

Of observational methods, two are aurrently in use: X-ray crystallography and Nuclea magnetic
Resonance (NMR). X-ray crystallography has been used since gprox. 1910to determine the pasition of
atomsin crystal structures, and can be gplied to proteins as well. Although the technique has improved,
it is gill complicated, as is evidenced by it sometimes being cdled an art, rather than science Some
proteins — espedally those with highly hydrophobic components — have never been crystalli sed, and so
cannot be studied except by NMR.

NMR works by sending radio waves through substances placeal in a magnetic field. The waves affed the
spin of the @omic nuclei of the substances, and when the radio wave is turned off, the nuclel releases
pulses of energy. These pulses can be used to determine the relative positioning of atoms (and thus of the
moleaules). NMR is also known as Magnetic Resonance Imaging (MRI) in its medicd applications.

Unfortunately, none of these two methods work perfedly. They can only be gplied to some proteins, and
the acaracy is not always high enough. In addition, it isa wstly and time-demanding process

There ae two reasons for wanting to be ale to predict the tertiary structure based only on the primary:
Oneisthat sequencing proteins, or trandating from DNA/RNA to amino add sequences, is © simple and
efficient. Additionally, this abili ty would enable one to easily model new, synthetic proteinsin sili co, and,
in long terms, design proteins with desired properties. For these reasons, lots of reseach has been devoted
to solving this problem, referred to as the protein folding problem.

There ae severa ways to approach this problem: One is smulating the chemicd readions taking place
between atoms and molecules, and seled among the paossble wnfigurations. Another approach,
threading, is to compare the primary sequence to ather proteins with known structures, and to guess a
tertiary structure based on the structure of those proteins, and posshbly on additional data.

In determining secondary structure, severa methods have been tried, including reural networks and
pattern-matching methods. Currently the best methods have gproximately 70% successrate [4] , which
is good enough for some purpases but not completely satisfadtory. When it comes to tertiary and
guaternary structure, progresshas been even less .

! Some proteins require aixiliary molecules — e.g. iron atoms in the cae of haemoglobin — to fold
corredly.
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The largest database of known structures is the Protein Data Bank (PDB)* and the latest release (16"
November 1999 had 11065 entries. PDB, being the largest and most recognised database of determined
structures, is used as a basis for several other databases focusing on structures, including, CATH.

2.2.3. 3d-modelsand visualisation

In medicd and biologicd sciences the function of proteins are an important field of study. To see
relationships between proteins, functions, adive sites etc. the scientists need to be ale to study the full
threedimensional structure of a protein. Several ways of representing structures have been developed.
Some of them are purely ways of visualising a mmplex structure, others are designed to permit database
seaches and automated comparisons based on structura topdogy and reaurring elements.
Molscript/Ribbons/Chime ae examples of the first. The representations operate on several levels of
abstradion; some work at molecular level (displaying nicleotides), and some & secondary or super-
seoondary level (displaying only SSEs or only motifs). In general, the higher the level of abstradion, the
eaier it is to comprehend the full structure of a protein. On the other hand, some information is lost.
Which representation to use depends on the task at hand.

Note that in order to suppart automatic topdogy-based searching and comparison, invariance of some
kind is important; it is desirable for the representation to be one-to-one, i.e. ead structure is represented
by only one diagram. Most representations are not so —i.e., several different diagrams can represent the
same structure.

Perhaps the most common representation is Molscript, which represents SSEs by arrows and cylinders.
Molscript is viewed with a suitable program such as Rasmol, which displays the structure on a mmputer
screen and allows the user to zoom and rotate the protein at will. Another representation is TOPS
catoons, which display SSEs and their relationships in two dmensions, but also imply their three-
dimensiona positioning. Lately TOPS has been formalised, and its representation can now be used for
automated comparisons and seaching as well. TOPS will be discussed further in chapter 3.

2.3. Protein classification

Out of the gproximately 30.000 proteins found in humans, only few have been adequately described.
Many of them exhibit large similarities, both in structure axd function, and are naturally viewed as
members of the same group. In other cases, small differences in the primary structure lea to large
differences in tertiary structure and in function. More and more proteins are being sequenced and
described in detail, as part of different research projeds. To handle dl this information, biologists and
computational biologists have devised ways of classifying the proteinsinto distinct classes or groups.

There ae many approacdesto the dassification of proteins. One mnsideration is exadly what to classify;
Full (posshle multi-chained) proteins, single dchains, or single domains. Another is which properties to
include: Should the focus be on biologicd function, chemicd properties, simil arities in primary structure,
or on something else? Small changesin choice of algorithmslead to major changesin the final categories.

! Maintained by Research Collabaratory for Sructural Bioinformatics, formerly by Brookhaven Nationa
Laboratory, this database is avail able & http://www.rcsb.gov.
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Currently there is no universal, commonly accepted clasdficaion. Different reseach aress use different
systems, and this will likely remain so. Two of the most common structural classificaion systems in
computational molecular biology are Structural Classification o Proteins (SCOP) and CATH.

SCOP is a hierarchicd structure-based classification of al proteinsin PDB. Not only complete proteins
are dassfied, sometimes individual domains are treaed as classficaion units. CATH will be described
further in sedion 2.4.

Both systems are aurrently semi-automated. Idedly, a dassificaion should be completely automated and
based upon primary structure only. Amongst other, this would enable reseaches to design new proteins
more efficiently, performing fewer adua experiments. While the protein folding problem remains
unsolved, this ssems rather utopian. However, automated classfication for determined protein structures
should be possble, and work isin progressin this area

2.4. CATH

24.1. Genera

CATH is ahierarchicdly organised database of protein domain structures, sponsored and maintained by
Biomolecular Structure and Modelling Unit, University College, London. Data ae taken from the PDB
database, and only non-empty domains lved to a resolution better than 3.0 Angstroms are mnsidered,
together with NMR structures. The name derives from the initial letters of the four major clasdficaion
levels: Class, Architedure, Topdogy and Homologous superfamili es.

The latest version of CATH (version 1.6) has 7703PDB entries, which includes 13103chains and 1857
distinct domains. CATH can be accesd and seached via Internet (http://bsm.bioc.ucl.acuk/cah) and
the entire database can be downloaded.

The entries in the PDB database say nothing about domains or other structural units. To separate the
protein chain(s) into dstinct domains, a mnsensus method is used: The results of three different
algorithms for domain recognition (DETECTIVE, PUU and DOMAK) are mmpared. If the dgorithms all
yield the same domain assignment, those ae dasdfied. If the dgorithms disagree manual inspedion is
needed to determine asuitable domain assgnment. Currently approximately 53% of the proteins have
domains assgned automaticdly.

CATH uses different classificaion methods at the different levels. Generally, a score and an overlap ratio
are omputed using dobal comparison agorithms, and if the domain matches one or more domainsin a
given category, it is added to that category. To avoid over-population, some cdegories use different cut-
offs than the other caegories at the same level. The aut-offs have been determined empiricdly, on a
smaller number of structures, and are aurrently under recmnsideration. This will probably affed the
caegories of future releases of CATH.
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2.4.2. Classfication Levels

At thetoplevel, eat domain belongs to one out of four classes. The dassis determined acording to the
seoondary structure compasition. Using the method o Michie g a I[5] it is determined automaticdly for
approx. 90% of the structures - the remaining domains are grouped manually.

The dasss are;

¢ Mainly alpha Domains with mainly alpha helixes and few beta strands.
¢ Mainly beta Domains with mainly beta strands and few alpha helixes
¢ Alpha and beta Domains with both beta strands and alpha helixes

e Other Domains with few secondary structure dements or irregular structures (i.e., those
domains that do not belong to any of the previous classes)

Eadh classis further subdivided into architedures; for instance, the Mainly beta classis divided into 18
architedures. Determination of architecdure is achieved through manual inspedion of the overall shape of
the domain.

The next level is Topdogy, or fold family. At this level the grouping is achieved automaticdly using
SSAP scores[6], and the focusis on the mnnectivity of the SSEs.

The last major level is Homologows superfamily. Here domains that are thought to share a @mmon
ancestor are grouped together automatically. SSAP scores and sequence identity are @nsidered, along
with domain function.

Additionally, each superfamily is further divided into sequence famili es, based on sequence identities.
Domains clustered in the same group at this level have & least 35% sequence simil arity, as well as the
same overall domain structure.

To eat goup at eat level isassigned a number as well as a more describing name. The dassfication of
a given domain is then gven as a set of numbers sparated by dots, eg. 1hxn is classfied as
2.110.10.10.1 (classno. 2, architecture no. 110etc.). In similar manner 2.110.10 spedfies the Hemopexin
fold family in the 4-Propell or architecure.
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3. TOPS

This chapter describes TOPS, a system for representation of protein structures. Sedion 3.1 introduces
TOPS cartoons, the simplest representations in the TOPS system, and TOPS diagrams, a spedali sation of
cartoons that display more information. A brief summary of the origin and status of TOPS is also given.
In sedion 3.2 formal definitions are given and the diagrams are explained in details. The format of the
database used as a basis for the dassificaion system is then described.

Most of this chapter is based on articles published by David Gilbert and David Westhead et a [9]. The
foll owing description foll ows their notation.

3.1. The Tops System

3.1.1. Cartoons

TOPS Cartoors are asimplified way of representing protein structures. The TOPS system was originally
used for hand-drawings [7], but an algorithm for automatic generation of cartoons was formulated by
Flores et al in 1994[8]. Tops cartoons have recently been formalised by Gilbert, Westheal et al [9]. They
introduced the concept of diagrams, and creaed a database of all protein structuresin PDB.

In TOPS cartoons, the structure of a protein is ¢iown in two dmensions, and only SSEs are displayed.
Each alpha helix is displayed as a drcle, and ead beta strand as a triangle. Length and structure of turns
are discarded, as are the size (Ilength) of SSEs. Loops are represented by lines conneding two SEs. In
additi on, the N-terminals and C-terminals are displayed for ead chain. Normally each domain is ¢own

separately.

The diredion of the SEs relative to the protein fold are dso shown, through the mnneding loops: If the
connedion is drawn to the eentre of a SSE it points downward into the plane; if the mwnnedion is drawn
to the boundary of a SSE it points upward, out of the plane. For beta strands, diredion is aso shown more
diredly: An up triangle points upward and vice versa. Seefigure 3-1.

When constructing cartoons, domains must be assgned somehow. In the current database, this is done
using domain assgnments from CATH, described in sedion 2.4.1.
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Figure 3-1: Rasmol picture and corre sponding TOPS cartoon

Rasmol diagram and TOPS cartoon of the 2bop protein domain, consisting o five beta strands (direced
arrows, not all of them are \visible), conneded in ashed, andthreealpha helices.

3.1.2. Diagrams

A TOPS dagram is a formalisation of a TOPS catoon. A diagram contains more information than a
cartoon — it also describes the nature of the hydrogen bindings between SSEs, and the dirality between
some of the SSEs. This information is used to creae catoons, but is not showed explicitly except in
diagrams.

Hydrogen bindings (H-bonds) can be ather parallel or anti-parallel, shown by either A or P above a
dotted line cnneding two SSEs. Hydrogen bindings are implicitly assumed present between any two
beta strands stuated next to ead other in a strand. Chiralities can be ather right-handed or left-handed,
shown by L or R above dotted conneding lines.

15



Figure 3-2: TOPS dagram

A TOPS dagram showing the same protein structure as the cartoon in figure 3-1, the 2bop1 protein. Note
the anti parallel hydrogen bindings between neighbouring beta sheds and the two right-handed
chiraliti es present.

3.2. Detailed description

3.2.1. Formal Definition

Formally a TOPS-diagram isatriple D = (E, H, C), where E = (S¥1, SE2, ..., SSEn) is a sequence of
seoondary structure dements, H [7{ (s, d, &) | s, JE Od O{A, P} } and C[K (s, h, s ) | s, SLE
UKL, R} }}, that is, H and C are sets of binary labell ed relations over the SSEs.

E describes the SSEs. Each S is a beta strand (€), an alpha helix (h) or aterminal (C or N). To strands
and helixes are asciated a diredion as well; +1 for upward and —1for downward.

H represent hydrogen bonds — ead relation represents a ladder of individual hydrogen bonds between
adjacent strands in a shed. Diredion can be dther paralel (P) or anti paralel (A).

C represent chiraliti es — handednesssays whether it is right-handed (L) or left-handed (R).
Thediagram D in fig. 3-2 could thus be represented as:

D=(EH,C)

E = ( SEO0=N, SE1=e(+1), SE2=h(-1), SE3=h(-1), ST4=e(+1), SE5=e(+1), SE6=6(-1),
SE7=h(+1), SE8=e(-1) , SE9=C)

H={ (SE1, A SSE6), (SE1, A, SES), (SE4, A, SE6), (SE5, A, SSE6) }
C={ (SEL R, SF4), (SE6, R, SSE8) }

A TOPS-diagram isinvariant under rotation, which is an important property. This can be seen most easily
by "stretching” adiagram, asin fig. 3-4, to achieve alinearised dagram.
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3.2.2. Fixed Structures

In TOPS cartoons the higher level structures — referred to as fixed structures - are shown indiredly. For
instance, a beta shed is siown by two or more beta strands lying next to each other. In a TOPS diagram,
this is made more explicit by the fact that the H-bonds are dso shown. Although not part of the formal
definition of a TOPS diagram, these structures are important for the graphicd presentation. Structural
information of thiskind is therefore stored in the TOPS database, as will be seen later.

Currently, there ae six types of fixed structures in the TOPS database:

« Sheds, consisting of threeor more strands. Note that sheds may be bifurcaed, asin the case of
2bop

e Barrels, in which along beta shee is curved to form a drcular structure.

e Curved sheds, in which a beta shee is curved but not enough so to form abarrel.
e Vertically curved sheds, averticdly curved but not closed beta sheet.

e Sandwiches, consisting of two sheds padked together.

* Unknowns, which covers unknown higher level structures.

Note that all these structures consist of beta strands only. Alpha helixes also tend to form structures but
these ae harder to find, and the dpha structure description in the current TOPS formalism is quite week.
This means that TOPS diagrams are more suitable for describing protein structures with high beta strand
content. Work isin progressto improve description of structures containing helices.

3.2.3. TOPSPatterns

A TOPS pdtern is a generadisation of a diagram. In addition to spedfying the SEs and their
relationships, a pattern may permit insertions of a spedfied number of SSEs at certain spedfied pasitions.
A diagram may then be considered a pattern with no alowed insertions. In this way, a TOPS pattern may
describe the important properties of a group of structures, or a common motif, without being too spedfic
about which SEs are to be found and in which order.

A TOPS pattern is like aTOPS diagram except that to ead pair of adjacent SEs—i.e,, for eat direded
arrow representing a loop —is asciated two numbers; these numbers represent the minimum and
maximum number of insertions allowed at this position, respedively. The range of the numbersis from 0
to N, where N is the maximum number of SSEsin any TOPS diagram — currently about 60. (0, 0) means,
understandably, that no insertions are dlowed at that point. Seefigure 3-3.
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Figure 3-3: TOPS pattern
Sample tops pattern describing the plait motif. Note the simil arity to the cartoon for 2bop1, it is easy to
seehow inserting S&s could yield 2bopl

A pattern may then match some diagrams — i.e., the diagrams can be obtained by inserting SEs (zero or
more) at alowed pasitions in the pattern. Note that several patterns may match the same diagram, a
diagram may match severa patterns and a diagram may match a pattern in several ways.
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Figure 3-4: Linearised TOPS pattern and matching linearised diagram
A samplelinearised TOPS pdtern describing the plait motif, and alinearised TOPS dagram (2bopl)
that matches this pattern.
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When matching a pattern to a diagram, we obtain a correspondnce, i.e. a sequence of matching pairs of
SEs, one for eat SSE in the pattern, where first member is an SSE from the diagram and the second is
an S from the pattern. We can describe the result of matching by the @rrespondence and also by alist
of the total number of inserts between adjacent members of the SSE sequencein the diagram.

For example, there ae two ways in which the plait motif can match the diagram for 2bop

e Charader matches: (1,1),(2,2),(4,3),(6,4),(7,5),(8,6). / Inserts: (0,1,1,0,0)
e Charader matches: (1,1),(3,2),(4,3),(6,4),(7,5),(8,6). / Inserts: (1,0,1,0,0)

3.24. TheTOPSDatabase

The TOPS database ntains al structures in PDB. Each cartoon is represented as a separate entry,
identified by its PDB domain name and chain id.

The format of an entry in the database is as foll ows:

TopsCartoon = c(Name, NodeList, H-bonds, FixedLists, Chirality)
Name = String!

NodeList = [NO,N1, ..., Nkl where
Nj (0 <= j <= k) = node(NodeNum,Type,Dir,Size,XY,Label) |

NodeNum in 0..n
Type in {N,C,E,H}
Size = (PDBstart, PDBend)
XY = (X,Y) | X, Y in 4+- Int
Dir in {1, -1, 0%,
Label in {-, Nx, Cx}

H-bonds = { X -H(Z)- Y |
X,Y in NodeNum,
Z in {pP,A}

}

Fixed = { FixedStructList |
FixedStructList = FixedType( [X0,X1, ... Xi] )
Xi (0 =< i =< k) 1in NodeNum
FixedType in { SHEET, BARREL, CURVED_SHEET,
V_CURVED_SHEET, SANDWICH, UNKNOWN
3
}

Chirality = { X -C-> Y | X,Y in NodeNum, C in {L,R} }

Note that this text representation contains additional information that is not part of the formal
representation, for instancethe a-ordinates.

! The PDB domain name, consisting of a four-charader protein identification, one charader identifying
the chain and a digit identifying the domain.
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An sample TOPS cartoon entry:

c('2bopA0’,
[NO,N1,N2,N3,N4,N5,N6,N7,N8,N9],
[N1-h(-1)-N6,N1-h(-1)-N8,N4-h(-1)-N6,N5-h(-1)-N6],
[sC[N8,N1,N6,N5,N41)],
[(N1,1,N4),(N6,1,N8)] ):-
NO=(0,n,1,(-9999,-9999), (275,-260), 'N1"),
N1=(1,e,1,(327,333),(275,-210),0),
N2=(2,h,-1,(335,348),(225,-110),0),
N3=(3,h,-1,(350,352),(225,-160),0),
N4=(4,e,1, (355,356),(174,-227),0),
N5=(5,e,1,(360,363),(174,-198),0),
N6=(6,e,-1,(370,380),(225,-210),0),
N7=(7,h,1,(383,392),(275,-160),0),
N8=(8,e,-1,(400,405),(325,-210),0),
N9=(9,c,1,(-9999,-9999), (325,-260), 'Cc2").
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4. ARTIFICIAL NEURAL NETWORKS

Later in the thesiswe will use aspedal kind of artificial neural network, the Self-Organising Feature Map
(SOFM), to perform unsupervised learning on TOPS diagrams. In order to understand SOFM, an outline
of neural networks in general is neaded. This will also ease the description of the other classficaion
methods described later. Artificial neural networks are ahuge reseach field within computer science, and
this chapter will only cover the main outline, which should be sufficient to understand its basics and the
notation used in this thesis. The materia is heavily indebted to “Neural Networks: A comprehensive
foundaion” by Simon Haykin [10] and the reader isreferred to his bodk for detail s and more information.

First, a brief summary of the mathematicd notation is given in sedion 4.1. Sedion 4.2 defines neural
networks and explains their origins. A model of the neurone, the building block of neural networks, is
presented formally, and the leaning processis briefly explained. Sedion 4.3 describes the achitedures
of neural networks, while sedion 4.4 explains and exemplifies the leaning processin detail. A brief
description of some of the important classes of artificial neural networksis given in section 4.5.

4.1. Mathematical concepts and notation

In general, we will use capital letters to denote sets and lower-case letters do denote antities in the
corresponding sets, entries are usually vedors. Input spaces, that is, the spaceof posshble values that the
input to a neural network can have, isusually denoted X.

Neural networks and the dassification systems described later operate on numerical vedors'. Unless
otherwise stated, all vedors are assumed to be in Euclidean space and additions and subtradions of
vedors gandard unweighted Eucli dean additi on, so that:

If X = [Xq, Xo..] O X and y=[yy, yo...] O X, then x+y = [X1+Y1, Xo+Ys,...] isthe vedor sum of x and y.

A distance function d() is a function d: (X, X) - R that asciates a red-valued distance to a pair of
vedors. A standard distanceis the (unweighted) Euclidean distance

dE(X’ y):\/Z (Xi_yi )2 :\/(Xl - 3/1)2 + (Xz - YZ)Z to

Another distance measure is the standard da product: X ® Y = Z XY, = XY, XY, ...
|

We similarly define the norm of avedor x as ||X|| =A/Xe X = \/Xl2 + X12 +...,

note that thisimplies that dE (X, y) = ”X - y|| . Wewill use both notations interchangeably.

A distance function d(x, y) that is reflexive (i.e., d(x, y) = d(y, X) ), 0 if and only if x=y and that satisfies
the triangle inequality d(x, y) < d(y, ), is cdled a metric distancefunction.

! Generally, classficaion systems operate on objeds, but a measure of distance between objeds is
needed; this distanceis usually the distance between numericd representations of objeds.
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4.2, Introduction to Artificial Neural Networks

4.2.1. History and definition

The study of artificial neural networks has its roats in neural modelli ng. The University of Chicago had a
group working on reural modelling as ealy as the late thirties. Their aim was to understand sensory
perception in biologicd organisms, by modelling the neural processes taking place within the brain.
Although neural modelling started out as a means to understand hiologicd networks, the idea of using
artificial neural networks to docomputational tasks quickly spread. Von Neumann, generaly considered
the father of modern computing, addressed neural networks in one of his four famous eedes at the
University of lllinoisin 1949 Today ANNs are used in a variety of fields, for both purpases: To model
biologicd neural processes and to solve pradicd red world problems.

Defining a neural network is not trivial, and dfferent definitions serve different purposes.
Based on the fundamental properties of al neural networks, the following general definition may be
offered (adapted from [10]):

A neural network is a masdvey parallel distributed procesoor that has a natural propensity for storing
experimental knowledge and making it avail able for use. Two of its main characteristics are:

1. Knowledgeisacquired by the network through alearning process
2. Interneuron connedion strengths known as g/naptic weights are used to store knowledge.

Clealy, this definition covers both biologicd neural networks (or brains) and ANNSs. This is natural —
they have several similarities, both in properties and in structure. Some of their most common, esential
charaderistics are:

e Fault tolerance athoughindividual neural cdls/ neurons may fail, this does not
necessarily lead to malfunction or noticeale performance degradation in the
system asawhole

e Pattern discovery and matching — the aility to dscover important feaures and
patterns in the input

« Both consist of ahigh number of highly conneded processing units[neurons].

Note that neural networks are esentially parallel. Yet most networks are never redly implemented, but
simulated in software running on an (hon-parall el) computer, which is more st efficient. This does not
influence the main properties of neural networks — e.g. their ability to generalise — hut it does deaease
another of their benefits: The aility to run all the neurons in parallel, thus increasing the speed of large
networks. Lately, however, advances in integrated circuit design have made it possble to produce
thousands of neurons implemented on a single chip. One of the latest state-of-the-art neural networks
consists of approximately 32000 neurons organised in modues, and is an experiment in designing an
artificial brain —in this case, to control aroba ca.

4.2.2. TheBasic Neurone

An artificial neural network consists of one or more neurons, organised in a cetain structure. Based on
the neural cdlsin biologicd brains, neurons used in ANNs operate in a similar though simplified manner.
The basic neurone can be modelled in several equivalent ways, the upcoming description follows [10].
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A neurone recaves a number of inputs, each of which is associated with a cetain weight. The neurone
adds the products of the inputs and their corresponding weights, applies a threshold to this aim and
optionally cdls an activation function on the sum, to producethe final output value.

(510—(0)

Activation
v @ function
X5 0

u
‘!np'ut‘< Y >_1<> o() Ou:put
signals \ Yk

Summing
junction

()k
Threshold

Synaptic
weights

Figure 4-1: A basic neurone

A neurone k recaves p inpu values and has a fixed threshold value 8. After sumning the \alues it
apies the threshold and the activation function to get the output y,, this forms part of the inpu of
anaher neuronein the next layer. From[10]

More formally, a neurone k can be modell ed asin figure 4-1. Here x; represents the numeric input number
i to the neurone k, w,; represents the weights of the arresponding connedions and uy is the sum of the
input values times the weights, that is,

U, = Z Wi X
I

In addition to the weight of the @nnedion, ead neurone is assgned a threshold level 6. To this
threshold and the sum u the adivation function @ ([ is applied, yielding y:

Y« :¢(uk _ek)

Being the output of the neurone, yy is passed along to ather neurons or forms part of the output of the
neural network as awhole. The vedor [Wwiq, Wi, ..] isreferred to as the synaptic (weight) vedor.

The adivation function can have different forms, the simplest being ssimply a threshold: ¢(X) =1 if x=0,

0 atherwise. The most common forms are sigmoid functions, that is, functions that are strictly increasing,
smocth and asymptotic (when the agument approaches positive and negative infinity). A sample sigmoid
function isthe logistic function, defined by

1

¢(X):m

where ais the slope parameter (the slope a the origin is a/4). The logistic function is continuous and
differentiable for all x, which isanimportant property in neural network theory.

When describing neural network architedures, a neurone may be simplified to a single node, as in figure
4-2,
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Output

X
[I
Figure 4-2: Simplified figure of a neurone

Each neuroneis depicted as a single node in the graph, and connedions between neurons as direded
arrows. Soucenodes are represented by square nodes. The threshold 6, is represented asinpu xg with
fixed value —1 and a synaptic weight vedor wio=6 . From[10].

4.2.3. Thelearning process

The leaning processis at the heat of neural networks, and is what separates them from traditi onal rule-
based computing. While normal programming requires knowledge to be built into the program itself, in
ANNs merely the aility to store the knowledgeis built in.

An ANN can be viewed as a bladk box input-output mapping: Given an input vedor (the adivation level
of the source nodes) it produces an output vedor (the output of the nodes in the output layer). The ad of
running an input vector through the network is cadled running aniteration, the time it takes a time unit.

Training a neural network consists of giving it input vectors and updating the weights. This updating
process may take place dter ead iteration, or after a set of iterations, the last case is cdled batch
updaing. In some caes, leaning never stops. The updating processnever ceases, even when the network
is doing whatever it is designed to da Thisis cdled on-line updating. Normally, however, after a given
number of iterations or when some desired or maximum performance is adiieved, the leaning is
considered complete and no further updating takes place This improves efficiency — by not having to run
compli cated algorithms to update weights — and prevents overlearning. Overleaning occurs whenever a
network is trained for too long on the same input, thus losing its abili ty to generalise.

4.3. Neural Network Architectures

43.1. General

The organisation of neuronsis cdled the architedure of the network. Normally the neurons are organised
in one or more layers — non-layered architectures will not be considered here. Most networks have & least
two layers, the input layer and the output layer. In addition, they have zeo or more hidden layers. Note
that the input layer is not counted when giving the number of layers of a network; thus, a network with
one input-layer and one output-layer is cdled a single-layer network, as opposed to a multi-layer network.
The output layer and the hidden layers are dso cdled computation layers, and their neurones computation
nodes, sinceit is here the cmmputations are performed.

Using the simplified neurone model, the achitecure of a graph may then be viewed as a direded,
weighted graph, where nodes represent neurons, and dreded, weighted links represent synaptic

24



connedions with the given weight. The input neurons, cdled source nodes, are represented by square
nodes. Figure 4-3 shows a simple single-layered network.

Note that the achitedure need not be mnstant throughout the entire life cycle of a network. A common
approach, e.g., to acceerate the leaning process is to start out with few neurons, train them, and then add
more neurons with weights that refled the training of the original neurons. In this way a huge network
can rapidly passtheinitial training phase and proced to the final training phases.

Haykin identifies four different classes of (layered) architedures:

e Single-layer feed-forward networks
e Multi-layer feed-forward networks
e Lattice networks

* Reaurrent networks

Thefirst threeof these dasses share enough common traitsto be treaed together as a single group —feed-
forward retworks.

L.

Input layer Output layer
of source of neurons
nodes

Figure 4-3: Architedural view of a neural network

A simple network consisting d aninput layer of sourcenodes and an output layer of computation nodes.
This network is feed-forward andfully conneded (seemain text).
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4.3.2. Fed-forward networks

As the name implies, in feed-forward networks each layer projeds onto the next layers’ only, that is, no
neuron conneds to a neuron that is closer to the input nodes than itself*. In most cases, the nodes of a
layer will projed onto asinge layer only, the “next layer”.

If for eadh layer there is a wnnedion from all of its nodes to all the nodes of the next layer, the network
is sid to befully conneded, if not it is partially conreded. The network in figure 4-1 is fully connected.

If the output neurons are aranged in rows and columns; the cmputational nodes thus forming an n-
dimensiona array, the network is cdled a lattice network. A simple lattice network is depicted in figure
4-5,

4.3.3. Rearrent networks

A reaurrent architecture contains at least one feedback loop —that is, there is a cycle in the achitedure
graph; a neurone or alayer projeds onto a neurone or layer that is closer to the input layer. Thisinvolves
a unit-delay operator — an element that delays the signal one time unit, thus letting the output of a
neurone serve & the input of ancther neurone in the next iteration. If a neurone receves it’s own output
asinput, it is cdled a self-feedback loop. Reaurrent networks are not used in this thesis, and will not be
described any further.

4.4. Learning algorithms

44.1. Genera

The weights of the inter-neural connedions contain the information encoded in an ANN. Thus, how to
change, or updae, the weights are important; the set of rules that guide this updating is cdled alearning
algorithm. When considering leaning algorithms, an important thing to consider is how the network
relates to the outside world, or, more predsely, to its model of its given environment. We may separate
the different learning processes in three dasses or learning paradigms [10]:

e Supervised learning, in which an external teacher gives feedbadk to the network
e Reinforcement learning, in which a“critic” evolves through atria-and-error process
» Sdf-organised / unsupervised lear ning, in which no external teacher or critic is used

! Alternatively: The network, viewed as a direded graph, contains no cycles. Thisis valid for non-layered
architedures as well.
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For ead paradigm different leaning algorithms exist; which paradigm the network works under
influences which algorithms can be used. There ae four mgjor types of algorithms:

e Hebbian learning, based on the following neurobiologicd principle: Whenever an axon
repeaedly fires another axon, the annedion between those neuronsis grengthened.

e Error-correction lear ning, in which the differences between the adual and desired responses of
neurons to events are minimised

e Boltzman learning, where random values are alded to the synapses acording to a spedfic
probabili ty function

e Competitive lear ning, where the neurons compete to be the one that is active

Often more than one dgorithm is used in the same network. For instance, an unsupervised leaning
scheme is used in the initial training and then supervised leaning is used to fine-tune the network in the
final training phase. Thisis usually to make the computationally heavy tasks easier.

4.4.2. Supervised learning

The supervised network paradigm requires an external teacher that knows the solution or desired response
to an input pattern. Normally this information comes in the form of a set of pairs of input vedors and
their corresponding “corred” or desired output vedors. The learning algorithms adjust the cnnedion
weights D that, given the same input vedors, the output vedors will be doser to the desired responses.
Which form this adjustment will t ake depends on the spedfic leaning algorithm used.

The most common and well-known supervised leaning algorithm is the error back-propagation
algorithm, which will be briefly described in sedion 4.5.

Supervised leaning may be viewed as a speda kind of line fitting: The network functions as an input-
output mapping, and we want the produced output to match the desired response & close & posshle.

4.4.3. Unsupervised learning

Whereas the previous methods where operating within the supervised leaning paradigm, other methods
are used in the unsupervised paradigm. In self-organising systems the network must self discover
important feaures in the input and lean to spedalise in those feaures. This can be adieved in several
ways, and so different models exist. These models can be quite different in origin, yet have similar
properties. Haykin distinguishes between threemain classes of self-organising systems:

¢ Self-organising feature maps, or the Kohonen model, described in chapter 5.

e Systems based on Hebbian learning
e Systemsrooted in information theory

Hebbian leaning is based on the principle that whenever two neurons fire simultaneously, their inter-
neuron connedion is grengthened, and vice versa — the principle of positive feedback. This principle has
strong biologicd justifications, and algorithms based on it have been used extensively in the mnstruction
of ANNs and learning algorithms.

The information-theoretic models are based on Shannon’s information theory [16]. The input-output
mapping performed by an unsupervised network can be treaed like an information preservation groblem:
How do we maximise the mutual information content in the input and output vectors? This approac is
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often referred to as infomax. Solving this problem by mathematicd means leads to some interesting
algorithms, and this areais gill open for further research.

4.5. Important examples of neural networks

45.1. Perceptrons, Least-Mean-Square and Err or Back-Propagation

A perceptron is a simple network, in its original incarnation consisting of only one neurone. First
described by Rosenblatt in 1958 it is the basis for severa more advanced networks. The perceptron is
used to classfy patterns that are linearly separable, i.e. the pattern vedors can be separated in two
distinct groups by a single hyper-plane. Though its usage is limited, the theory behind it has led to
generalisations that are more powerful. The most apparent generalisation is to use more than one neurone,
which alows the perceptron to classfy patterns into more than two caegories. Still, it requires the
cdegoriesto belinealy separable.

Another limited yet important class of neural networks is those employing the least-mean-square
algorithm (LMS). The LMS-agorithm, also known as the delta rule or the Widrow-Hoff rule, was first
formulated by Widrow and Hoff in 1960[17] for use in their Adaline, an adaptive pattern-classificaion
madhine. It operates on a single linea neuron, and has been applied in several fields, the most important
of which isadapivesignd processng.

Both the original perceptrons and the LMS algorithm are needed to fully understand the Multi-Layer
Perceptrons (MLPs) and their corresponding leaning algorithms. An MLP is a multi-layer feed-forward
network, and the first reported use of MLPs was the work of Widrow and his gudents on the Madaline in
the ealy sixties. As the name implies, the Madaline was originally a more alvanced version of the
Adaline pattern-classifier, however due to inadequate learning algorithms its usage was smilarly limited.

With the introduction of the error back-propagaion agorithm, commonly known as back-prop, in 1985,
the use of MLPs suddenly became widespread. It is probably corred to say that the introduction of the
badk-prop algorithm revolutionised the field of neural networks: The badk-prop agorithm is
computationally efficient yet able to solve awide range of problems. Successful applicaions can be
found in al fields in which reural networks have been applied; some examples are opticd charader
recognition [22], speed recognition [23], and the oppasite, i.e. pronouncing Engdlish text [24].

The badk-prop agorithm may be mnsidered a generalisation of the least-mean-square algorithm. The
algorithm is conceptually simple. There ae two major phases, the forward passand the backward pass
In the forward pass the input is fed to the first computational layer and propagated to the output layer the
normal way, i.e. no updating is performed.

In the badkward pass the output vedor y is compared to the desired response d, and an
error signd e = d —y for the output layer is computed. A corredion is applied to the weights of the
neurons in the output layer, to deaease this error. A new error signdl is then computed for the neuronsin
the preceding layer, based on the previous error signal, and the weights are updated in a similar manner.
Theresult isthat the eror is propagated badkwards, giving the dgorithm its name.

1 A description of an algorithm similar to error bad-propagation appeared in a thesis by Werbos as ealy
as 1974[18]. However, the term error badk-propagation was not coined until 1985 when the dgorithm
was rediscovered and put to use.
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45.2. Systemsbased on competitive learning

In competitive leaning, the neurons compete among themselves for the right to be the one to be adive
(fired). Initialy, al neurons in the competitive layer (usually the output layer) have randomised values'.
When presenting the network with an input vedor, one of the neurons “wins’, acording to some
seledive mechanism. This neurone, cdled a“winner-takes-all neurone”, then gets its weights updated so
that it becomes more likely to “win” if presented with similar input vedors. This process leals to
spedalisation —ie, ead neurone leansto spedalise on a set of similar patterns, thus enabli ng the network
to function as a feature detecor.

Consider a simple fully conneaed feed-forward neural network with one input layer and one competitive
output layer. Each of the weights is randomised so that the sum of all synaptic weights for agiven nodeis
1, that is, 2w;=1 for all neuronsj.

When presented with an input vedor x, the winner is the neurone j that has the highest adivation level v;.
The weights of the @mnnections are then updated. The standard competitive-learning formula for this
updating is

A O n(x; —w;), if neurong winsthecompetition

W.=
" 0o, if neurong losesthecompetitian

where n, the learning-rate parameter, usually is a function of time t. The overall effed of thisruleisthat

of moving the synaptic weight vedor w; towards the input pattern x.
The following geometric analogy, adapted from [15] will serveto ill ustrate competitive leaning:

Consider the simple network depicted in 4-5. All input patterns, as well as the synaptic weight vedors,
have afixed length n, and so may be viewed as a point on an n-dimensional hyper-surface figure 4-6. It
is assumed that the input patterns form clusters (on this hyper-surface, while the weight vectors initially
arerandomised (fig 4-6a). After successful training (fig 4-6hb), the weight vedors have moved towards the
centre of gravity of the dusters. |.e., as a neurone wins the competition, its synaptic weight vedor is
moved towards the input vedor, and the neurone leans to spedalise in the vectorsin a duster. Note that
in the figure dl vedors are cmnstrained to have the same Euclidean length, so that they can be represented
as points on an three-dimensional sphere.

! Different initialisation schemes exist and are usually more dficient — in effect they give the network a
jump-start.
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Figure 4-4: Single-layered lattice network
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A simple feed-forward fully conneded lattice network consisting o 3 input neurons and 3 output vedors
organised in a 1-by-3 grid. From[10].

Figure 4-5: Input patterns as pointson a surface

Inpu vedors to the network in figure 4-5 are here given as points on athree-dimensiond sphere, while
the synaptic weight vedors are represented as crosses. Figure aistheinitial values, with the input
patterns forming neural clusters andthe weight vedors placed randomly on the surface Figure b shows
the weight vedors after training: They havenow moved in the diredion o the centre of a cluster of inpu

vedors. From[10].
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45.3. Modular networksand VLS|

Another important issue concerning neural networks is moduarity, i.e. building retworks that have other
networks as their components. This is a wmplex undertaking, but one that shows grea potential. By
using more than one kind of architedure and more than one kind of leaning algorithm, the benefits of
several algorithms may be cmbined. For instance an unsupervised leaning scheme or locd methods
that converge swiftly could be used ealy on, to extrad feaures and patterns in the input data. Following
that, a supervised learning scheme wuld improve the performance further. This usually requires the use
of an integrating unit, which direds the use of the networks. The integrating unit does not dedde how to
perform the different modes of leaning, only which mode to use axd which patterns to present to the
network. Modularity is also important when building huge VLSI Circuits' - based neural networks. These
consist of modues (chips) comprising several (in the range of a few to several thousand) units
functioning as neurons, and it is necessary to trea them in amodular way to maintain efficiency.

LVLSI Circuits: Very Large Scae Integrated Circuits
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5. THE SELF-ORGANISING
FEATURE MAP

Self-organising feature maps (SOFMs) have been used extensively within biocinformatics, and will be
used in this thesis as an important component of the dassification system. We will here present a brief
description, buil ding on the theory presented in the previous chapter. The main sources of information are
[12] and [19].

In sedion 5.1 the achitecure will be described. Sedion 5.2 covers the detail s of the updating algorithm,
and describes the topdogica maps that represents the main output from a SOFM.

5.1. SOFM Architecture

The Self-Organising Feature Maps (SOFMSs), also known as Self-Orgarnising Maps or Kohonen Networks
after their inventor Teuvo Kohonen, were first described in 1981/1982 [21], athough it is based on the
Learning Subspace Method. Since its first appeaance, the SOFM algorithm has been used widely, in
such diverse fields as peed remgnition [25], classficaion of biologicd sequences [27] and radar
classficaion of seaice [28]. The main reasons are its flexibility, esse of implementation and its
efficiency as afeature detecor. The SOFM also has neural justifications, which hasled to it being wsed in
neural modelli ng as well.

An SOFM is a single-layer fully conneded feed-forward lattice network. The nodes in the competitive
layer are organised in (usually) 2- or 3-dimensional grids. A modified version of the competitive leaning
algorithm selects winner(s) in this layer and updates weights acordingly. After training, the output layer
can be used to produce atopological map of the input vedors. This map, described more fully in the next
sedion, isthe primary product of a SOFM network.

It should be stated at the outside that SOFMs are not designed for pattern clasdficaion by them selves.
Their main applicaions are visualisation of complex data and reduction of the dimensionality of data. For
pattern classfication, a better approach is to use the SOFM algorithm in combination with a supervised
leaning scheme, e.g. Least Mean Square. Leaning Vector Quantization (LVQ) is another method dten
used in combination with a dimensionality-reducing SOFM. Chapter 6 discusses pattern classificaion in
genera and LVQ in particular.
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Figure 5-1: Simple SOFM network

A SOFM network is a single-layer fully conneaed feed-forward lattice network. In this case, the input
layer has 3 input neurons whil e the output layer has 9 neurons organised in a 3-by-3 grid.

5.2. SOFM Algorithm

52.1. Genera

The main difference between SOFM and traditional competitive leaning schemesisthat in a SOFM, the
winner neurone usually does not “take it all”. Given an input vedor, the data is fed through the input
layer and to the competitive layer as normal, in particular awinner is chosen. A winning area around the
winner is then chosen, acwrding to a spedfic neighbouhoad function (see beneah). The neurons inside
this area ae then all winners, and get their weights updated acording to spedfic updating functions, not
necessarily by the same amount.

By choasing a neighbouhood aea or neighbourhood kernel and updating all neurons inside it, some
properties different from normal competitive networks arise. Essentially, the SOFM preserves the
geometrical relationships between different neurons and dfferent classes of input data. This means that
given two input vedors that are roughly similar, their winner neurons should be placel close in the output
layer.

Remember that the output layer is organised in a lattice, usually two- or three-dimensional. It is then
passble to construct atopdogicd map of the neurons, with the same dimensions. The input vedors are
placal on this map acrding to their winner neurons, i.e. if an input vedor with label | causes neuron j to
win, then the label | is placed on the position of neuron j. The result is a visualisation of the input data,
where input vedor (classes, labels) that share similarities are placal close to ead other on the map
(possgbly on the same neuron) whereas different vedors are placed in distinct regions. Figure 5-1 shows a
sample map.

A normal training proceeds by running all vedors in the input set through the network; this is cdled an
epoch. The number of epochs necessary to achieve satisfadory performanceis large; common values are
5000to 20000.

33



5.2.2. Initialisation

The weights in the competitive layer could be initialised with random values, with small deviations from
a cantre (commonly 0.5). The network will then converge. A faster approach, however, isto initialise the
network with samples from the input vedor; this deaeases the length of the initial training phase
considerably. With unsuitable input values, however, this increases the risk of the network not reading a
optimum configuration; it is guck inalocd minimum.

5.2.3. Neighbourhood functions

The exad form of the neighbourhood function is not important. The requirements are that it starts out
large (e.g. approximately half of the neurons) and deareases with time; in the final training phase, the aea
should be small, e.g. consisting of only the winner neuron. The simplest function is a square aound the
winner neurons, with length 2*k+1, i.e. the winner neuron and its k nearest neurons, horizontally or
verticdly, are chosen. Other versions are hexagons or other approximations of circles.

The size and form of the neighbourhoodis linked with the form of the updating function, considered next.
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Figure 5-2: Topological map

This sample topdogical map shows the relationships between countries, asthreeletter ids, based on
statistical data oneconomy and politi cs. Data from the muntriesin capital letters were used in the
training d the network, while wurtriesin lower case only were used when creating the map. Note that
courtriesthat normally are considered similar, likethe Nordic courtries or Canacdh and the USA, are
placed close together. From[12].
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5.24. Updating functions

Many possible updating functions exist. Note that it is possble to apply the same formula to all the
neurons in the winner area Higher accuracy is usualy adhieved by adjusting for the distance to the
neuron, acaording to a linea deaease or even a Gaussan function. The following formulas are taken
from Kohonen:

First awinrer is sleded, the standard formulais based on Euclidean distance®:
c=i: Oj:lix-m; fI=]Ix-m; |

so that m. is the winner neuron. The general updating formulais then
m, ¢+ =m,(t)+ h (1) x[x(t) - m, (©)]

where h (t) represents the neighbourhood function.

First, consider the simplest case where the neighbourhood function is a square aound the winner neuron.
Let N (t) denote the neurons inside that region; note that the region is adually a function of time and

neurone, as the neighbourhoodarea dianges with time. We can then let

h,(t)=a(t) if iON,
h,(t)=0 if i0 N,
where a(t) is the learningrate factor. The value of a(t) should be in the range zeo to one ad

deaeasing with time t. This formula gplies the same updating to all vedors within the winner area
While naive, it is gill widely used and efficient for most purposes.

If we ajust linealy for distanceto winner neurone, we get a standard neighbourhood formula:

k(t)
h, () =a(t) x
dci
where dg is the distance (in neurons) from neurone c to neurone i, and k(t) is a linealy deaeasing

function of the time t. Other neighbourhood functions are based on Gauss functions or other more
complex expressions.

! Other versions are based on dot products, which has gronger biologicd justifications.
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6. CLASYFICATION AND
CLUSTERING

Classification of patterns into caegories is an important task, having applicaions in biology, engineaing
and ather fields. Many different methods exist, rooted in e.g. statistics, information theory and the theory
of neural networks.

Most of the technicd details of Leaning Vedor Quantization are from the documentation of the
LVQ_PAK software padcage [20]. The general and statisticd parts are based on [12], [13] and [14].

After introducing the mncept of classes and classlabelsin sedion 6.1, this chapter will briefly introduce
and explain some important concepts in section 6.2. These @mncepts will be used when describing the
Leaning Vedor Quantizaion in sedion 6.3. Clustering in general and two spedfic dustering methods
will be described in sedions 6.4, 6.5 and 6.6. Some ways of measuring the quality of clasdfications are
introduced in sedion 6.7.

6.1. Introduction and notation

In pattern classificaion, the @m is to classify a data set into a finite number of caegories. This can be
adhieved in several ways, the method chosen depends to a large degreeon the statisticd properties of the
input data set. In the general case, we have aset of vectors of n dimensions, the input set, from a set of
posdble values X, the inpu space The task is to partition al (possble) input vedors into one of a (not
necessarily fixed) number of categories or classs, that is, we want to associate aclasslabel c[IC to eath
input vedor, where the label set C is the set of possible dass labels. Esentidly, what we want is a
function f: X — C, where X is the input set and C is the label set. Note that clustering sometimes is
defined differently, see6.4.

We ca separate dasdficaion methods into two groups, supervised and unsupervised. Within these
groups, several organisation schemes exist. Normally, clustering is considered an unsupervised
classficaion method, while dassficaion can be both unsupervised and supervised. Definitions of most
of these terms vary, so, to clarify: The leaning vedor quantization is a supervised method, while the
hierarchicd and the isodata dustering methods, as described here, are unsupervised. The SOFM, which
might be onsidered a dassficaion method, is also unsupervised.

If the result of a dassficaion method returns a set of sets of objeds, the dassficaion iscdled asinge-
levd (or flat) clasdfication, if it returns a hierarchy of sets it is cdled a multi-levé (or nested)
clasdgficdion.
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6.2. Vector Quantization and The Voronoi Tessellation

Consider an input spaceof n dimensions. We may partition the input spaceinto regions, bordered by
hyperplanes (of n-1 dimensions), “such that each partition contains a reference vetor that is the
“nearest neighbou” to any vedor within the same partition” [12]. Seefigure 6-1. This partition is a
Vorond Tessllation', the regions are cdled Vorona cdls and the sets of vedors in a region a Vorona
set. The set S of reference vedors is also cdled the codebodk and a vedor from the mdebodk (i.e., a
reference vector) a codebodk vector.

Figure 6-1: Voronoi tesslation

A Vorona tessllationis a partition d a (hyper-) plane into polygors. All cdls havereference vetors
(marked by dots) that are the nearest reference vetor to al pointsin their region. This Voronoi
tessllationis two-dimensiond and has fourteen cdls andreference vetors. From[12].

Vedor quantization is a signd-approximation method that uses these concepts. For a given input space a
set of codebodk vedors is chosen. To approximate agiven input vedor v, we then find the amdebodk
vedor x that is closest’ to v in the input space Depending on the number of codebodk vedors and the
distribution of actual input vedors, this approximation can yield significant reduction of computing time/
bandwidth / storage requirements, at the price of a cetain distortion. This distortion, of course, may be
too highapriceto pay, depending on the input set and number and placement of the reference vedors.

! Tessllation: an arrangement of polygons without gaps or overlapping, esp. in a repeaed pattern
[Oxford]

2 Closest in this context normally means Euclidean distance, although other measures are posshble.
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6.3. Learning Vector Quantization

6.3.1. Introduction

First described by Kohonen in 1986 the Leaning Vedor Quantizaion (LVQ) is a supervised leaning
scheme based on vedor quantization and the Voronoi tessell ation. Starting with a set of reference vedors,
the ideaisto use dassinformation to move the reference vedors, thereby improving performance

More spedficdly, consider an input space a mdebodk S and a vedor x picked randomly from the input
set. Each codebodk vedor is associated with a single dasslabel. Sincethisis a supervised method, there
is, for ead input vedor, an associated class label. Let ¢ denote the dasslabel of the codebodk vedor w
that is the nearest neighbour to x, similarly let d denote the dass label associated with x. If c=d, the
codebook vedor w is moved in the diredion of x; if not, w is moved away from x. The other codebook
vedors are not modified. After atraining period, consisting of a number of iterations of al vedorsin the
input space the mdebook vedors will more dosely approximate the input vedors.

The cdebodk vedors may then be used bah for representation and for classificaion. In the last case, the
classof agiveninput vedor isthe dassof its neaest referencevedor.

The LVQ is a stochastic goproximation algorithm, with certain convergence properties. Mathematica
detail s can be found in [30].

6.3.2. Initialisation of theLVQ

Before leaning starts, the LVQ has to be initialised; i.e., some initial reference vectors must be dedded
upon. The first dedsion is how many reference vedors to use. This depends on several variables,
including, of course, the desired acairacy, the statisticd properties of the input set and the amount of
computational power available. A common value is a small nhumber (less than 10) times the number of
classs.

The second dedsion is how many reference vectors we need for ead class One paossibili ty, the simplest,
isto have the same number of reference vedors for ead class In most cases, thisis adequate, even if the
input samples are not evenly distributed. A sometimes better approadh is to use propartional initiali sation:
If there aei vedorsin the training set (input set), a dasshaving d input vedors should be represented by
approximately ed/i codebodk vedors, where e isthe total number of vedorsin the adebodk.

Having dedded upon the number of reference vedors for ead class initial values must be assigned.
Sample vectors from the input set can be used, assuming they are dassfied corredly. Failing this
assumption, the reference vectors will not be representative and convergence is not guaranteed. Simple
methods that chedk this assumption exist; Kohonen mentions the “K-nearest-neighbour” -method, which
first performs tentative dassificaions and then removes or replaces codebodk vedors that are incorredly
Set.
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6.3.3. Updating

Let C = {mi} be the adebodk, initialised as described in the previous sdion, and consider an input

vedor X. Let
c=i| Oj:lx-m; |[<][x-m, ||

so that m. is the neaest reference vedor to x. The dgorithms update m. (and possbly other vedors as
well) acoording to spedfic update functions. Several functions exist, the most common are cdled LVQ1,
LVQ2.1, LVQ3 and Optimised LVQ1 (OLVQL1) in Kohonens notation. LVQL is the basis for all
algorithms, and will be presented beneah. LVQ3 is a modificaion of LVQ2.1 that generaly perform
better and is more stable, while OLVQ1 is a modified version of LVQ1 that converges faster. The detail s
of the other algorithms can be found in [20].

Both the phil osophy and the mathematics behind LV Q1 are simple. Let m(t) denote the amdebodk vedor
m(t) a timet, smilarly let «(¢) denote some time-dependant function cdled the learning paameter (see
below). x(t) represents the input vedor. We then set

m, (t +1)=m, (t) —a(t)* [x(t) -m.(t)], if xandm, belongtodifferentclasse:
m.(t+D=m.(t) +a(t)* [x(t) -m, (t)], if xandm, belongto thesameclass

All other codebodk vedors are left unmodified. The dfed is thus, as dated ealier, that of moving the
codebook vedor that is closest to the input vedor closer to the input vedor x(t) if the dassificaions
agrees, away from the input vector if the dassficaions disagree (This can most easily be seen by letting
a(t) equal 1, in which case m(t+1) will equal x(t) if and only if x(t) and m. belong to the same class.)

6.3.4. Discusdon of thealgorithms

It should be noted that all of these dgorithms, despite their differences, yield approximately the same
acarracy. The OLVQ1 converges fast, and is recommended in the initial phase. Sometimes running
OLVQL1 isenoudh to achieve satisfactory performance but in order to improve acaracy one of the other
algorithms sould be run. Kohonen recommendations are running OLVQ1 for 30-50 times k iterations,
followed by LVQ3 (or some other algorithm) for 50-200 times k iterations, where k is the number of
codebook vedors. These recmommendations are necessarily based on experience — no mathematicdly
proven or optimal guidelines exist’.

The learning parameter o must be in the range zeo to one, and should deaease monotonicaly over time.
Kohonens recmmendation is a start value of 0.1 and linear dearease towards zero.

! Nor are possble, asthe abitrary statistica distribution of the input prevents mathematicd analysis.
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6.4. Clustering

6.4.1. Overview

Related to the dassificaion systems described above is clustering. Consider a set of n objeds: The task
of a dustering algorithm is then to divide these objeds into a number of clusters, where eab cluster isa
set of objeds. The number of clusters need not be predetermined or even fixed, and the result is not
necessarily a partition, i.e., in general eat objed may be found in zero, one or more dusters'. In
addition, there ae no classlabels (or only arbitrary ones). These last properties distinguish a clustering
processfrom a clasdfication process Of course, if we impose some restrictions, like requiring the result
of a spedfic dustering processto be apartition, that processis equivalent to a dassficaion. These
restrictions apply to most clustering tasks, nevertheless clustering is usually considered a separate field
within statistics, and methods and notation differ somewhat.

To cluster objeds, a distance must be asciated to ead pair of objeds. The simplest distance measure is
the (weighted or unweighted) Euclidean distance between some numericd representation of the two
objeds, but other distance measures are frequently used. The numericd representation is quite often
simply alist of properties of the objeds. One important issue is whether the distance should be metric or
not.

6.4.2. Clustering methods and a generic dustering process

Before dustering starts, the data set(s) should be analysed by statisticd means. This is to determine
whether thereis any cluster tendency in the data set. Most clustering processes will return a set of clusters
no matter if there redly is a duster tendency in the data set, and so avoiding or at least deteding
malformed clusters are important.

The next step isto dedde which method to use. The different methods can be taxonomicaly divided into
groups in several ways; an obvious way is to separate between top davn and bottom up methods. Bottom
up methods dart by considering eat objed a duster and proceed by joining clusters, usually in an
iterative process until some predetermined stopping criteriais stisfied. The merging of two clusters can
be lossy (norn-nested), i.e., the new cluster is a set of objeds, so information about sub-clusters are lost,
or non-losgy (nested), i.e., the new cluster is a set of clusters. Top down methods, on the other hand, start
with a duster consisting of al objeds in the data set and then (usually iteratively) split the duster(s).
Other methods gdart with a set of randomly chosen clusters and iteratively refine them; the vector
guantization and the isodata method described below are examples of this.

Note that the result of a dustering processis either a single-level (flat) or a multi-level clustering. In the
first case, the result is a set of sets of objeds. In the last case, ead cluster either contains objeds or
clusters® and the result is a treein which the leaves are objeds and non-leaf nodes are dusters. After
clustering the data set, the resulting clustering must be evaluated —this will briefly be discussed in sedion
6.7.

1 Or else anumber between 0 and 1 determines to which degree a objed is part of a duster, thisis caled
fuzzy dustering.

2 Or, concevably, amixture of both.
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6.5. Hierarchical Clustering

6.5.1. Genera

Hierarchicd clustering is a bottom up non-lossy clustering technique that is widely used. Briefly, the
method works by building a distance matrix and repededly joining the two clusters that have the
minimum common distance The result of merging two clustersis a duster with two clusters as children,
thus the result of a hierarchicd clusteringisabinary tree

Hierarchicd clustering being a standard method, several implementations exist and most major statisticd
padkages provide a least one. The implementation can be simple and a sample dgorithm is outlined in
the next paragraph.

Different methods usually differ in how the distance between two clusters (of more than one point) is
computed. Three simple and standard measurements are single linkage, complete linkage and average
linkage. With single and complete linkages, the distance between two clusters is the minimum or
maximum distance between any two pdnts in the two clusters, respedively. With average linkage, the
distanceis the average distance between pairs of points with one point from each cluster”.

6.5.2. A simplehierarchical clustering agorithm

Input: A set of n objects and a way to measure the distance between two oljeds or between two sets of
objeds.

Output: A root node to abinary treg where eat node is either aled node wntaining one of the original
objeds or a non-leaf node with two nodes as children.

Steps:
1. Construct a set of n nodes, where nodei isaled node mntaining objed i.

2. Construct an n times n distance matrix, where dement (X, y) is the distance between node i and
nodej.

3. Find the small est number in the distance matrix, let the w-ordinates of this number be (i, j).

4. Crede anode k with node i and j as children. Replacenode i with node k and remove j from the
distance matrix.

5. Update the distance matrix to refled the changes.

6. Repea steps 3 through 5 until only one node remain; this root node is then the output of the
algorithm.

! Or a simplificaion of this, e.g. the average of the minimum and maximum distances between the two
clusters
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6.6. The Isodata algorithm

Another algorithm widely used is the isodaa agorithm, also known as the k-means or the c-means
algorithm. The ideais to start with a set of points that represent clusters, cdled point representatives, and
iteratively set the point representatives to the mean of the vedors that are neaest them. While
computationally efficient and simple to implement, the dgorithm can be quite effedive in identifying
compad clusters. However, it has two weaknesses. As clusters are represented by points, the dgorithm is
not good at finding shell-shaped clusters. In addition, it tends not to ded acairately with clusters of
significantly different sizes. Several variants of the dgorithm exist, optimised for various conditi ons.

The basic isodata dgorithm can be described as foll ows (adapted from [13]):

Input: A set X = {x} of N=||X|| nhumericd vedors of sizek, and m, the number of clustersto produce
Output: An 1-by-narray b so that x; isin cluster/category b(i)

Steps:

e Initialisation: Let 8 be an 1-by-m array of vedors of size k, the point representatives, and
initialise it with random values

* Repeat
Fori=1toN
»  Determine the dosest point representative 8 for x;
© Seth(i)=]
Fori=1tom
* Let 8 bethe mean of all vedorsx [J X that has b(j)=i
Until no changein 8 occurs between two successve iterations

¢ Return the duster identificaion matrix b.
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6.7. Comparing classifications

6.7.1. General

Consider a set S of objeds that has been classified by two methods, returning the single-level
clasdfications C and D. We want to compare the two classifications C and D to see how much they
agree and neal some definition of agreement. One goplicaion isif one of the dasdficaionsis corred, by
some external criteria, and the other classficaion approximates that one, e.g. if we have amanually
congtructed clasgficaion and want to develop automated methods to replacethe manual ones. Other uses
are to verify a dasdficaion withou externa criteria, by comparing it to randomly generated
classficaions.

If eadh group in the two classficaions we ae to compare has a dass label associated with it, and these
classlabels are comparable, comparison is sSmple. Several measures exist, a smple one is to count the
number of objedsthat in Cis classified in the same cdegory asin D, and expressthis as a percentage of
the total number of objeds. While simple and intuitive, thisis not always the optimal measurement, as it
can be misleading. If, in the wrred classficaion, one group contains a huge part of the total set of
entries, a high percentage score muld be adieved by a (clealy not very useful) classfier that puts all the
entriesin that category.

In general, we @an not assume that we have dasslabels for both clasdficaions, or, to be predse, that we
can compare dasslabels from different classificaions. The only information avail able is which objeds
are grouped together. Next, a set of general methods for such cases is explained. Note that these methods
apply to single-level clasdfications only. Methods for comparing nested clusters are more compli cated,
and are not discussed here.
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6.7.2. The rand statistic and similar indices

Consider the set S and classificaions C and D as previoudy. The goal is to find a statisticd index that
tells to which degree C matches D (or v.v.). The ideais to compare dl pairs of objeds from S, and, for
both C and D, seeif they are in the same cdegory (i.e., have the same dass label). In this manner, the
amount of agreement is computed.

The basic dgorithm is as follows ([13], p. 549):

1. Initialisefour counters SS SD, DS, DD to zero.

2. For ead pair (sl, s2) of objedsfrom S, do:
—if sl and s2 have the same dasslabel in C and in D, increment SS
—if sl and s2 have the same label in C but different labelsin D, increment SD.
—if sl and s2 have different labelsin C but the same label in D, increment DS.
—if sl and s2 have different labelsin both C and D, increment DD

Let ml =SS+ SD, m2 =SS+ DSand M = SS+ SD + DS + DD. We then use the threestatistica indices
defined as foll ows:

- SS+ DD
* Randsatistic: R=—"""—"
M
. SS
» Jaccard coefficient: J=— "
SS+SD+ DS
SS

+  Fowlkes andMall ows index FM=———
VM x me

It is clea that for al of these indices, the higher the value the better the agreement. For the rand statistic
and the Jaccad coefficient the range is (0, 1), with 1 meaning a total match of all pairs. This requires the
number of categoriesin the two classifications to be equal, which in genera is not always the cae.

Another important statistical index is the Hubert ™ statistic, which measures the correlation between two
matrices. For two symnetrical matrixes X and Y the formulais
N-1
N
Z Z XY
j=i+1” 0

Hubert statistic: (X, Y) = v

! Note that M is the total number of pairs from S, that is M=N*(N-1) / 2 where N=|S| is the number of
objedsinS.
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6.7.3. Probability distributions and Monte Carlo estimations

It isimportant to understand that the statisticd indices in themselves do not tell very much, except for
extreme values. Not knowing the statistical distribution of the numbers in the data set, the probalility
density function (pdf) of an index is unknown. This means that we know neither the expeded values of the
dtatisticd indices nor the significances of the values. To yield usable information, an index should
therefore be mmpared to indices of randam data set; i.e., a Monte Carlo approach should be used to
estimate the pdf of the index. The average indices of random classificaions will then be comparable to
the index of the dassification in question. This approach will not be described in detail here; readers are
referred to [13] or [14] for more information.

An outline of one possble way to doa Monte Carlo estimation of the Hubert ' statistic will be given
here. This corresponds to a simple Monte Carlo approach urder the randam label hypaothesis as presented
in[13].

First, consider a set X of N input vedors, an N-by-N distance matrix P and a partition C of the objedsin
X. We want to measure the degreeto which the partition C matches the data set X.

Note that the partition C can be viewed as a mapping function c: X - {1..m}, where mis the number of
clusters in C. Now construct an N-by-N matrix Y, so that Y(i,j)=0 if c¢( X(i) ) equals c( X(j) ) and 1
otherwise, and compute the Hubert I statistic of the matrices P and Y. Let y be the result; y tells us to
which degreeY matches P.

Next, construct r mappings ¢: X — {1..m}, corresponding to r random classifications of X. For eah
mapping i, compute the corresponding Hubert I statistic . Typicd valuesfor r is 100 a 200.

We can now use the y; values to estimate the expeded value of y, and find out if the dustering C is
statisticdly superior to random clusterings.
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/. DESCRIPTION OF THE
CLASSFICATION SYSTEM

In this chapter, implementation of the dassficaion system is described in somewhat detail. First, an
overview of the different componentsis given in sedion 7.1. The diff erent components are then described
more fully in the foll owing sedions.

7.1. Overview

The dassfication system consists of several components. The starting points are the TOPS and CATH
data fil es, which are used for analysing, classification and classficaion comparisons of TOPS diagrams
in several processes. The main functionality of the system is depicted in a block diagram in figure 7-1.
There ae four major parts or software packages:

Central in the system is a software padkage used for analysis of TOPS diagrams, the TOPS pakage,
described in sedion 7.2. The TOPS padage provides a set of methods for producing \vector
representations of diagrams and writing these to (flat-text) files. In addition, it has functionality for
extrading seledions of diagrams, based on their CATH entry, and for identifying ead vedor with a
string version of their CATH number, suitable for classification purposes.

The Cluster package described in sedion 7.3 has methods for (unsupervised) hierarchicd clustering of
diagrams, and for comparing classifications using the statisticd indices described in the previous chapter.
This padkage is usualy cdled dredly from the TOPS padcage, without the need to go through
intermediary files.

The SOFM package contains methods for applying the SOFM algorithm to vedor representation of
diagrams. This padkage is described in sedion 7.3. After training a network, it can produce topdogicd
maps showing relationships between diagrams. In addition, the network can be used to crede revised
vedor representations of diagrams with fewer dimensions, in our case two®. The vedors can then be used
asinput to the duster padkage or to the LVQ package described next.

The LVQ package uses the LVQ agorithm to perform supervised classfication of the TOPS diagrams.
After the LVQ has been trained on a set of diagrams, classification can be done on other (or the same) set,
and the acarracy (compared to CATH) isfound. Seesedion 7.4 for a complete description.

The CATH files are used to find the CATH caegory of ead TOPS entry. This information can be used to
seled on which diagrams the programs are to be working. The CATH number can also be included in the
text file version of the vector representations.

! This is connedted to the dimension-reducing property of the SOFM algorithm, as described in sedion
5.1.
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Figure 7-1: Overview of the dassfication system

This diagram shows the important functionality and conredionsin the dassfication system. Redanguar
shapes denate data andround shapes denote processs, i.e. programs/ software packages. Note that the
SOFM package, whose main ouput isthe topological maps, also produces vedor representations of
TOPS dagramsin tex files with the same format as the fil es used by the LVQ package. The output from
the SOFM package can therefore be used as the basis for both supervised andunsupervised
clasdfication. Thisis gown by the bi-dirediond arr ow between the SOFM package andthe vedtor
representations. The dassfication comparisonis actually performed by the duster package, but for
clarity it is here shown separated.

7.2. The TOPS package

7.2.1. Overview

The TOPS padage can be further divided into several sub-units, see figure 7-2, and uses abstrad
representations of the TOPS diagrams internally. This enables fairly complex properties to be found
eaily, as well as making it easier to find new fedures. The dustering functionality is generalised and
separated from the TOPS padkage. While in most cases it is cdled from the TOPS padkage, it can also
operate on text files and is treaed as a separate padkage in the next sedion.

Initially, the program reals the TOPS and CATH data files. The files are adually read only once, and
later stored in an internal format for faster access at start-up. Several different vedor representations are
possble — new representations can be designed at run time — and which TOPS diagrams to include can be
spedfied. Commands are spedfied at the command line, given in a script file or entered interadively. For
instance, the command “ java ns.tops.Main -Ddebug.levé=0 @cluster1.txt” sets the debug level to zero
and then runs the file script file “ cluster 1.txt” . Typicd script files will set up parameters and then run a
command like “cluster” to perform clustering, using the given parameters. The other important command
is“generate”, which generates data fil es for processng by the SOFM padkage or the LVQ padkage.
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The following paragraphs describe the different aspeds of the padkage. The gpendix includes UML
static structure diagrams.

Multi-level Binary

TOPS data files Classifications

Cluster Package

Internal Abstract
Represenation of
TOPS diagrams

Internal Vector
Representation

Vector
represenation of
TOPS diagrams

in text files

CATH data files FileManager

Figure 7-2: The TOPS package

A block diagram describing the main entiti es of the TOPS package. Note that the duster package, while
called fromthe TOPS pakage, is a separate entity. It can operate on tex files of the same format as the
LVQ and SOFM package. Normally, howeve, the duster package will be alled dredly fromthe main
programin the TOPS pakage, as sown here.

7.2.2. Internal abstract representations

Remember that, formally, adiagram is a set of SEs and relations on those SSEs (paragraph 3.2.1). This
is refleded in the dassDiagram, representing TOPS diagrams: Each diagram has an array of SEs, an
array of Chiralities and an array of HBonds relations. In addition, ead diagram has a domain name (see
footnote on p. 19) and a CATH entry named CATHERtry (classesin italics). The CATH entry is assigned
by looking up the domain name in the CATH file, and is used for seledion of diagrams and for later
identification.

The structural information found in TOPS diagrams is gored as an array of Structures. Each structure is

one of the types mentioned in 3.2.2 and consists of atype label and a reference to which SEs are part of
that structure.

Each SSE can be one of four types: Alpha helix, Beta strand, N-terminal or C-terminal. Chiralities and
handednessrelations, being binary, has a diredion and a left and aright SSE (or afrom and ato S, in
the cae of HBonds).

Constructing the internal data representation is the job d the parser. Based on a modified version of a
Backus-Naur Form (BNF) description of the format of the different data files, Java cde that parses the
datais automaticdly constructed. Thisis done using a parser generator known as JavaCC (“Java compil er
compiler”). The grammar and source mde for the parser isfound in the file “Tops,jj” in the gpendix.

! Seehttp://www.metamata.com for more information.
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7.2.3. Extracting quantitative infor mation —the Quantifier

Theimportant asped of the TOPS padkage is its abili ty to extrad quantitative information from diagrams.
In order to maintain generality, this functionality is sparated into two classs, using one dass to extrad
numerica properties from diagrams and another classto construct a complete numericd vedor from a
diagram. These two clases are DomainProperty and Quartifier, respedively, and they represent
functions. DomainProperty: Diagram - float and Quartifier: Diagram - float[]. Both are astrad
superclasses, and their subclasses will be described below. We will refer to instances of the Quantifier
classas quantifiers and instances of the DomainProperty classas domain properties or simply properties.

The reason for this separation is that it alows us to use properties of diagrams to build complex
aggregated rules, spedfiable & run time. At the same time, not all quantifiers are aggregations of domain
properties, this goes for quantifiers that has a globa context, or quantifiers for which suitable
DomainProperties do not exist. The PairwiseQuartifier, described below, is an example of the latter.

To all quantifiersis assicaed an array of corresponding weights; that is, eady number of the quantifiers
output vector can be weighted independantly of the other. This all ows weighting acording to importance,
or adjusting for different magnitudes among equally important fields.

Five subclasses of the DomainProperty class have been implemented, these range from simple, e.g. the
number of SEs of ead kind, to complex, like theratio of parallel hydrogen bondsto anti-parall el.

The domain properties implemented so far are:

e S count; the number of SSEs of each of the four kinds (strand, helix, N-terminal, C-terminal).
This classcan thus have four distinct instances.

e Structure cmunt; the number of super-secondary structures of ead of the six kinds (see 3.2.2).
This classcan thus have six distinct instances.

e Chirality; theratio of left-handed chiraliti es to right-handed.

e Crosdngs, i.e., the number of times the backbone aosss from one side of a sandwich to
another™.

« Parallel; theratio of parallel h-bonds to anti-parall el h-bonds”.

These DomainProperties represent the most essential properties of a diagram. Normally the first two
properties will be the most important, as will be evidenced in table 8-1, seebelow. With these properties,
most of the locd structural propertiesin a diagram are catured. Other properties could focus on the long-
range interadions between distinct structures, to capture the esentials of (classes of) proteins. As will
become dea in the next chapter, in some caes such a global view seems to be needed to extrad the
charaderistics that distinguish one dassof proteins from another.

Two subclasses of the Quartifier class have been implemented, the Rule class and the PairWiseQuartifier
class The first represents aggregations of domain properties — it is smply an (ordered) set of domain
properties. It can be represented as a text string, containing names of domain properties and optionally
weights. Entries are separated with comma, e.g. “strands, shegs*2” represents an simple rule that returns
the number of strands and the number of sheds multiplied with two.

! This property only applies to sandwiches. The number is actually the average over all sandwiches in a
diagram, or zero if the diagram contains no sandwiches.

2 This property only applies to sheds and is the average over all shedsin a diagram, or zero if there ae
none.
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Following a @mmon approach in quantificaion of sequences over a limited aphabet, the
PairwiseQuartifier counts the occurrences of pairs of succealing SEs. It returns four values, the number
of apha-apha pairs, the number of apha-beta pairs etc, so that given a diagram with the SSE sequence
“heheheé’ the (unweighted) output would be[ 0 32 1]. Severa clasdficaion projeds have used this or
similar approadhes within the field of computational biology, and it is ssmetimes cdled a neighbourhood
matrix.

In addition to the numericd values, the result of a quantificaion of a diagram includes a smple
representative string. This dring isimportant, asit is used to determine the dassof that vedor. Normally,
the string will consists of the CATH identificaion of the diagram, down to some given acairacy,
depending on at which level we want to classfy diagrams. Alternatively, the stringid could be the PDB
domainid or a cmbination of PDB and CATH codes.

7.2.4. Seledions

To extrad seledion from the total set of diagrams, an instance of the CathMatcher class is used.
Basicdly, it is an abstrad data type representation of a CATH identity string that all ows wildcards; e.g.
“2.60.*" matches all diagrams in any topdogy of the sandwich-architecure of the mainly-beta dass
Which seledion to useis dedded at runtime, by parsing a user-suppied expression.

7.25. Statistics

The result of applying a quantifier need not only be used for classfying. The dassSat has methods that,
given a selection of diagrams and a quantifier, output several statisticd indices (average, standard
deviation, co-variance and kurtosis). By providing a rule that lists (unweighted) domain properties as
quantifier, information of average number of strands and helixes, average number of sandwiches etc is
listed for eatch CATH caegory of interest. This information can then be used for further statistica
analysis.

7.2.6. Datafiles

Each time the CATH database changes a new version of the CATH transition table is released. This text
file is a mapping from PDB-id’s to the five-level CATH clasdfication, and is real by the parser when
congtructing the CATH map used internally. Other input data files include the TOPS database described
in sedion 3.2.4, and atext file containing alist of rules (Rule quantifiers). Thislast fileisrea at start-up
and can be modified by the user.

Anintermediary file format, not described in the block diagrams, is used for faster access at start-up. It is
a binary serialisation, utilising Java's built-in objed persistence mechanism. When the program is
installed and whenever necessary, for instance when new CATH or TOPS data fil es are downloaded, the
program parses these files, credes the internal representation and stores this. This deaeases the start-up
work and saves pace

The output files are mnstructed using the format of the SOFM and LVQ padkages. The fil es start with a
line containing a single number n, the length of the numericd vedors. Each procealing line mnsists of n
floats and ends with an identification string. The function of the identification string varies with the use of
thefile, but, in general, it appeasasaclasslabel.

All files can be stored or read in zipped format ssimply by providing a fil ename that ends with .gz; thisis
the default for serialisation, CATH and TOPS data fil es.
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7.3. The SOFM package

The Self-Organizing Map Program Package, or SOM_PAK for short, is a software bundle designed by
the SOFM programming team of the Helsinki University of Technology. Its authors include Teuvo
Kohonen, the inventor of the SOFM agorithm. The bundle mnsists of programs for initialising, training
and visudlisations of feaure maps, and is available from the Helsinki University® free of charge for
reseachers and students.

Programmed in ANSI-C, SOM_PAK is available for a broad range of platforms, including MS-DOS and
most UNIX flavours. It operates on flat ASCII text fil es, given as parameters to the different programs.

A detailed description of the different programs in the package can be found in the acompanying
documentation [19]; the treament in this sction will be brief.

Initialising a feaure map consists of seleding a set of reference vedors, the mdebodk. Two programs
perform this: randnit, which initialises the mdebodk vedors to random values, and lininit, which uses
the @genvedors of the input data vedors for initialisation. Note that both initialisation schemes normally
lead to the same result, although lininit may converge faster. For this thesis randnit was ®leded, with a
map sizeof 20 by 20 (ie, the output layer has 20 times 20 neurons).

Training the network is done by the main program, vsom; severa runs of this program are normally
required. In addition to names of data fil es, the number of training iterations and the learning paameter
must be spedfied. Following Kohonens recommendations, the learning parameter will deaease linealy
to zero from the spedfied value. For our purposes training periods of length 2000 and 20000 were
deamed sufficient, using learning parameters of 0.1 and 0.02, respedively. These values are based on
K ohonens recmmmendations, and whil e further experimenting probably could find better values, they are
likely to be alequate.

After using the program vcal to label the map units (neurons in the output layer) acwrding to the samples
in the input data file, the program umat is run. Umat produces gandard Post-script maps, where the map
units are labell ed with the label of the best-matching input sample.

7.4. The LVQ package

LVQ PAK, or The Learning Vedor Quartization Package, is another software bundle provided by
Helsinki University of Technology. Developed by (almost) the same people, LVQ_PAK shares enough
similarities with SOM_PAK to be treaed in the same manner and the data files can be used
interchangeably. Like SOM_PAK, LVQ_PAK is programmed in ANSI-C, available for most major
platforms, freeof charge for use in reseach and avail able from the same address

The LVQ_PAK operates in a similar manner to SOM_PAK. First, a set of reference vedors is chosen.
LVQ_PAK provides two initialising programs, eveninit and propinit. Eveninit all ocaes the same number
of reference vedorsto ead class, whil e propinit uses propartional initialisation (see86.3.2).

After initialisation, the program balance may be cdled. Balance performs one step of the OLVQ1
algorithm and then adjusts the mdebodk vedors D that the medians of the shortest distances between the
codebook vedorsin all classes are equalised.

L URL: ftp://cochleahut.fi/ pub/
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The next step istraining the LVQ. Four programs are provided: olvql, Ivgl, Ivg2 and Ivg3, corresponding
to the four algorithms described in sedion 6.3.3. In thiswork, only olvglis used; it uses default optimised
parameters and only the number of iterations needs to be provided. For our purposes, 10000 iterations are
considered sufficient, foll owing Kohonens recommendations.

To adually perform a dasdficaion, the program classfy is used; given a set of input vedors, it assgnsto
ead sample aclasslabel. The acaracy of this classificaion can be measured by the program accuracy.
Note that when evaluating the quality of a dassfication, the mapping between the correa class label and
the class label returned by the classfy program are known. This makes comparisons easy: Simply
measure the ratio of input samples classified corredly to the total number of input samples. Accuracy
yieldsthisratio for ead classand the total.

In order to verify the arredness of classfications, al datafiles used in this thesis are split into a training
set and atest set. The test set is not used in any codebodk changing operations, only when measuring the
quality of classificaions. The samplesin the test set are @ther chosen randomly, with a given probability
distribution, or chosen so that each relevant class is represented exadly once

7.5. The Cluster Package

75.1. Overview

The Cluster Padkage is another software bundle. Implemented in Java, for reasons dated ealier, the
padkage dusters general Java objeds using either the isodata dgorithm or standard hierarchicd
clustering. It can also operate on text files, using a simple data format compatible with that of LVQ_PAK
and SOM_PAK.

Its main components are the Node class used for representation of binary trees, the
ClassficationComparator class used for comparisons of matrices and classficaions, and two classes
that perform clustering.

7.5.2. Hierarchical clustering

The dass HierarchicalClustering, as the name implies, performs hierarchical clustering using the
algorithm described in 6.5.2. The default linkage method is complete link, ie, the distances between two
clusters is the maximum of the distances between any two nodes in separate dusters. Other linkage
methods implemented are single link (minimum of distances) and simple average (maximum distance, but
adjusted for number of nodes in a duster). Taking as input a (one-dimensional) array of objeds to be
clustered and a distance function, the method cluster returns the roct noce of a binary tree In the cae of
the TOPS padkage, the typicd parameters would be an array of diagrams and a distance function based on
the Quantifier class’. The nodes are instances of the dassNode, which has operations for accessng the
left or right sub-treeor, in the cae of led nodes, the leaf item itself.

The dasshas a main method and so can be cdled from the coommand line. The only parameter is the
name of a file, and the program assumes the file to be of the same format as the data files used by

! The simplest case being, of course, the Euclidean distance between the vedors returned by the
Quantifier.
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SOM_PAK and LVQ_PAK (7.2.6). Procesing the vedors and assigning the string ids as names,
Euclidean distance between the vedors is used as a distance function. A binary treeis then constructed.
The output of the program consists of a parenthesised version of the treg as in
{{x1,x2},{{yl,y2}, z1}. This dandard notation can be understood ty standard software padkages for
visualisation or processng.

The implementation is kept simple and runsin O(n*) worst-case time, where n is the number of objeds to
cluster. Faster solutions are posshle, but, for our usage, the dficiency of the padage is sufficient:
Clustering 1000instances takes lessthan a minute on a standard desktop computer.

In addition to the dustering functionality, a method that merges (sub)-trees acwrding to spedfic aiteria
is implemented. This method takes as input a maximum value for the distance between two nodes in a
cluster, and returns a dassficaion (Colledion of Colledions) in which al subnodes of trees with an
internal distance less than the given value ae merged. In this manner, a singe level classficaion is
returned, and this classification can then be mmpared to ather classficaions with the methods described
later. Note that this classification method is primitive, and if a singe-level classificaion is desired, other
algorithms perform better.

7.5.3. Distancemeasures

To measure the distance between diagrams, an abstrad super-class Distance was defined. The only useful
implementation is the Quartifi er Distance, which, asthe name implies, is based on a quantifier. Given two
diagrams, the distance function computes the Euclidean distance between the vedors returned by the
quantifier. The value returned is the result of a sigmoid function applied to this distance to have afixed
range for the values. The sigmoid function in question is the logistic function ¢(x), defined as

1

¢(X):m

7.5.4. Thelsodata class

The Isodaa classcontains methods to perform clustering wsing the isodata dgorithm described in 6.6. In
addition, methods for constructing proximity matrices and cdculating the Hubert I datistic ae
implemented. For efficiency, the representation of classficationsis different: Normally, a partition P of a
set of objeds S={s} is represented by an array of integers, where the integers denote duster labels; this
means that the objed s is in cluster P[j]. Note that the integer labels are only internal labels, and not
comparable to ather classficaions. Thus, if we have two partitions P; and P,, comparing them is done by
comparing classlabels within the partitions, and not between. Given two oljeds s and s, they are in the
same duster in Py if and only if Py[i]=Py[j], similarly for P,. Methods for changing from one
representation to another are dso implemented.

The main method is cluster, which takes as input an array of red-valued vedors and the desired number
of clusters. Note that with the isodata dgorithm, the number of clusters must be spedfied and the
algorithm is only guaranteed to converge with the squared Euclidean distance function, thus no ather
parameters are needed.

The implementation is smple yet efficient; clustering 10000 vedors of size 2 into 8 clusters takes
approximately 10 seconds. The cmplexity is roughly O(N‘mr*s), where N is the number of entries, sis
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the size of those entries, m is the number of clusters and r is the number of iterations necessary. Typicd
vauesfor r are 10-50.

7.5.5. Comparing classfications

The four statisticd indices described in sedion 6.7 are implemented as a part of the dustering padkage
and are found in the dass ClassificationComparator. The method compare takes as input the two
colledions to be mmpared and an integer identifying the method to use (RAND, JACCARD or
FOWLKE), and returns a float value with the desired index. The method hubert takes as input two
proximity matrices and returns a float value with the standard (not normali sed) Hubert I statistic.

The method montecarlohulert takes as input a proximity matrix, a source of randomness and two integers
r and m, and returns a sorted array of sizer of red values. These values are the result of producing a
random partition, performing an isodata dustering of the random partition and comparing the resulting
clasdficaion to the proximity matrix.

All algorithm runsin O(n?), and in effed, the @mputations are more than fast enough (usually less than a
seoond on a standard desktop computer). However, these mmparison only works for single-level
classfications. Methods that compare trees can be implemented, using simil ar techniques.
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8. RESULTS

In this chapter the results obtained with the dasdfication system so far is presented. Sedion 8.1 gives an
overview of which results are included in the thesis and why. Sample topdogicd maps are shown in
sedion 8.2 along with explanations and interpretations. Section 8.3, the main sedion, presents a
representative set of classificaions obtained using various quantifiers, as well as the statistics obtained
when comparing these dassificaions to the CATH clasdficaion. Finally, in sedion 8.4, the results of the
unsupervised classificaions are given.

8.1. Overview

8.1.1. Seledionsand general procedures

The TOPS classgficaion system has been tested using the two kinds of quantifiers Pairwise and Rule
described in the previous chapter. The quantifiers have been used for the aeaion of topdogicd maps as
well asfor supervised and unsupervised classificaion. Another variation is represented by the seledion of
diagrams to work on; threeselections were chosen:

e All diagrams — a ommplete set of all TOPS diagrams, which corresponds to the latest release of
the BDP database and so with the most determined protein structures. With this sledion, the
diagrams were dassfied in one out of four categories and compared to the Classassignment in
the CATH system.

e All diagrams in the second Class in the CATH system, the mainly beta domains. This time the
diagrams were dassfied in one out of 18 categories, the different Topdogies in the mainly-beta
class

e All diagrams in the sandwich topdogy in the CATH system (2.60.*). As before, the
classficaion is done arrespondingto the caegoriesin the sub-level in CATH —in this case, the
26 dfferent Homologous super-families.

Thefirst seledion was chosen mostly as atest of the system: In CATH, clasdfication at this level is based
only on SE counts. This means that classification using a simple rule that only counts SSEs should
adhieve high accuracy. The seaond seledion was chosen on the grounds that TOPS cartoons are better
suited to describe proteins with high beta strand content, due to their weak description of alpha helix
interadions. The third seledion was dedded to be on the next level in the CATH hierarchy, and the data
set chosen is smply the Topology with the highest number of proteins.

For ead of these seledions, two sets were generated, a training set and a test set. The training sets were
used when using supervised classificaion and for the initial training of the SOFM when performing self-
organising. The test sets were used for the final (visible) topdogicd maps and for measuring the acaracy
of the dassificaions performed using LVQ. The diagrams in the test set were chosen randomly, by
picking 20 percent of the diagrams to be in the test set, and ensuring that all categories found in the
training set had at least one representative in the test set.
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For ead of the seledions and for ead of the five quantifiers — see below — the foll owing procedure was
applied:

1. Thenumericd output of the quantifiers on the given set was written to text files.

2. A saf-organising map was trained on the training set, and topdogicad maps were aeaed using
the test set and manually inspeded.

3. A leaning vedor quantizaion was trained on the training set, classificaion performed on the
test set and the crresponding acairacy found.

4. Clustering was applied to the mmplete set, and the dassfication compared to CATH.

For the supervised classifications, all classes are labelled. This means that the dassification acaracy is
simply a @unt of matches: For ead category produced by the LV Q algorithm, the entries were compared
to the mrresponding category in CATH and the percentage of corredly classified entries computed. In the
unsupervised classifications, there ae no comparable dasslabels, so the results of comparisons are the
statisticd indices mentioned in sedion 7.5.4.

8.1.2. Quantifiers

Five quantifiers were tested, one Pairwise instance (P) and four Rule instances (R0-R3), seesedion 7.2.3.
The enphasis has been on the Rule quantifier, as thisis the most genera kind.

The four Rule quantifiers used were

e RO “strands/6.4623 helices/4.9025, shees/0.9908 barrels/0.063, csheds/0.0701,
vcsheds/0.0252 sandwiches/0.2257, unknowns, parall€l/0.0745 crossngs/0.6405
chiralities/1.056’, where dl properties are weighted with the inverse of the arerage value over
all diagrams.

* RL“ strands/9.17086 helices/2.1506, sheds*2, barrels*5, csheets, vesheets* 5, sandwiches* 5,
unknowns, paralel, crosings/1.6352”, based on the properties considered important, and pertly
weighted based on the total statistics for all diagrams.

* R2: “dtrands, helices, sheets, barrels, csheds, vcsheds, sandwiches, unknowns, parall e,
crossngs, chirdlities’, that is, a unweighted listing of all implemented properties.

* R3: “Strands, helices’, that is, only counts number of strands and helixes.

The weights given here ae ather one (whenever not spedfied), the inverse of the average value, or some
“suitable” number, based on the importance of the corresponding property. This prevents fields with large
values (eg the number of SEs of a spedfic kind) dominating the vedors and thus biasing the
classficaions. Being a naive gproacd, this weighting could be improved by weighting statisticaly
significant fields higher than fields found to be irrelevant.
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8.2. Topological maps

Fifteen maps were aeded, of which three ae showed in figures 8-1 to 8-3. The maps were aeaed using
a SOFM with 25 neurons organised in a 5-by-5 grid. The SOFM was trained on the seledions described
in the previous fdion, using LV QL1 as leaning algorithm for 22000 iterations.

After the training phase, a test set was chosen. These entries were then run through the network, and a
winner neurone chosen. The dasslabel (in this case, the CATH id) was written on the winner neurone’s
placein the topdogicd map. Note that only one dass label is shown; this means that if two entries with
different class labels produces the same winner neurone, the dasslabel of the second entry will hide the
first. Thisis alimitation in SOM_PAK, which could have been avoided by using the raw data to creae
customised graphicd presentations. That, however, was considered beyond the scope of thisthesis.

While showing some interesting properties, the maps are not unambiguous. Diagrams from the same
clases are often placal far apart, and diagrams from different classes are sometimes packed close
together. Yet some mherenceis obvious: The diagrams tend to be grouped together with diagrams of the
same CATH caegory. The dfed is omewhat easier to see when using maps with a higher number of
neurons (maps with 50 neurons were tested), but because of their high resolution they are not suitable for
printing and so are not included here.
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Figure 8-1: Topological map of all domains

Thistopdogical map shows relationships between dagrams from separate dassesin the top leve of the
CATH hierarchy (Class). The 25x25 pants represent neurons. If an entry with classlabel xis“won” by
neurony, neuroney hasthe dasslabel x associated with it. It can ke seen that diagramstendto be found
nex to ather diagrams from the same CATH category, for instance the mainly-alpha(l) diagrams are
foundin the lower (right). The greyscale on the map mark areas with large differences, whil e areas with
mostly white background ae similar (lessdifferent). This suggest, for instance, that the group of mainly-
beta damains found in the upper left corner are distinctly different from their neighbouring mainly-beta
domains. The fact that the alphatbeta dagrams (class3) are spread aoundthe map, can be explained
by looking at the quantifier used. As the quantifier takes beta-interactionsinto account, and the alpha-
helix descriptionin TOPSis weak, variations within the alpha+beta classwill be larger thanvariations
within the other classes.
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Figure 8-2: Topological maps of mainly-beta domains
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In this map, only protein damains belongng to the mainly-beta classwere used. For clarity, the labels

only show the architedure — the class for domainsin this map, is mainly-beta (2). Note the boundaries

between, e.g., the 2.40 and the 2.60 groupsin the upper left corner. Ancther interesting goupisfoundin
the upper right corner, where seveal proteins from different architecure are in the same group. This

might suggest that the differences between thase vedors are small er thantheir difference from some of
the other groups, e.g. 2.40 or 2.60. The map also refleds the fact that the majority of the proteins belong
to the 2.40 a the 2.60 architedure.
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Figure 8-3: Topological maps of sandwich topologies

In this map, only protein damains belongng to the sandwich architedure of the mainly-beta class(2.60)
were used. The labels only show the topology id. Again, the map refleds the fact that the majority of the
proteins belongto two topdogies, the 2.60.40 and 260.120. The 2.60.40topologies are spread dl over
the map, with clear boundaries. With few exceptions, all other topdogies are fourd close together in the
upper right and left corner, or at the bottom borderline. This might indicate that with this quantifier, the
immunodobulin-like topologies (2.60.40) havegreater variation d possble \alues thanthe other
topdogies. Thejelly rolls (2.60.120), on the other hand, seems to consist of two easily distinguishale
classs.
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8.3. LVQ classifications

For eat of the three seledions, similar tables are produced, listing the output from the LVQPAKS

accuracy program (7.4). The tables sow classficaion acarracy for ead of the five quantifiers, and the
weighted total in percent.

The acaracy of classificaion on the top level is rather good, but thisisto be expeded, due to the simple
clasdficaion procedure used at this level in CATH. All five quantifiers yield approximately the same
results on the different classes except for the fourth class where the results vary from 52% to 63%.

Classlabd | Size RO R1 R2 R3 P
1 85 94.12 85.88 9294 90.59 84.71
2 151 88.08 86.75 90.07 90.07 89.40
3 172 80.23 80.81 8314 76.16 77.91
4 19 57.89 52.63 63.16 63.16 5263
Total 427 84.78 8267 86.65 8337 82.20

Table 8-1: Supervised classification of all classes

Thisisthe accuracy obtained when classfying dl diagramsin the database, which corresponds (more or
less) to al determined protein structures. Note that class4 is“ Other” , domains not grouped in the first
three ategories for some reason, usually for having low secondary structure cntent. Bad accuracy for
this category shoud be eyeded, espedally considering the low number of entries. This hads true for all
quartifiers, so at least theyfail consistently, which isinteresting by itself.

Table 8-2 and 83, showing the results when classfying mainly-beta diagrams and diagrams from the
sandwich architedure in the mainly-beta class respedively, are more interesting. The values this time
cover a wider spedrum, which is natural considering that R3 and P only takes into account the amount
(and order) of alpha and beta SSES, without considering structural properties any further. RO, R1 and R2
count the number of super-secondary structures, in addition to the SSE count, and predictably have the
highest total score. This is explained by looking at the different architecures in the mainly-beta dass
Remember that when classifying into different architectures the focus is on the overall shape, and super-
semndary structures must be taken into acount for classificationsto be feasible.
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Classlabel Size RO R1 R2 R3 P
210 11 81.82 63.64 63.64 27.27 27.27
2.20 7 85.71 85.71 85.71 85.71 7143
2.30 5 20.00 40.00 20.00 40.00 40.00
2.40 42 7381 76.19 8571 4524 42.86
250 1 0.00 0.00 0.00 0.00 0.00
2.60 81 9259 98.77 9259 75.31 87.65
2.70 1 0.00 0.00 0.00 0.00 0.00
2.80 3 66.67 0.00 3333 0.00 0.00
290 1 0.00 0.00 0.00 0.00 0.00
2.100 1 0.00 0.00 0.00 0.00 0.00
2.102 1 0.00 0.00 0.00 0.00 0.00
2.110 1 0.00 0.00 0.00 100.00 100.00
2.120 2 100.00 100.00 100.00 100.00 100.00
2.130 1 100.00 100.00 100.00 100.00 100.00
2.140 1 0.00 0.00 0.00 0.00 0.00
2.150 1 0.00 0.00 100.00 0.00 0.00
2.160 1 0.00 0.00 0.00 0.00 0.00
2170 2 0.00 0.00 0.00 0.00 0.00
Total 163 7791 79.75 79.75 58.28 63.19

Table 8-2: Supervised classification of mainly-beta diagrams

Accuracy when clasdgfying dl diagramsin the mainly-beta class Note that the quartifiers that only
consider SE contents and organisation, R3 and P, score naticeably lower thanthe quantifiers that take
super-semnday structures into accourt. The numbers also suggest that 2.120 ard 2.130 ae distinctly
different from the other vedors, astheyare both classfied corredly by all quantifiers despite having only
one and two representatives, respedivey.
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The total acarracgy, varying from below 60% to 8%, is rather low but still useful. However, the problem
is the difference in magnitudes: A majority of the caegories has only a single entry, and as the data-set
generating algorithm chooses at least one from ead category to be in the test set, the cadegories with only
one eitry (singletons henceforward) are not necessarily represented in the training set at all. Out of 18
caegories in the mainly beta dass only 9 have more than one topdogy. Unfortunately, all categories in
the CATH classification system share this property: At the second and third level of classfication many
(>50%) groups have only a single dement. A solution to this problem is to include the singletons in bath
sets, but then the test would not be representative: Testing a supervised algorithm on entries that are part
of the training set is not appropriate. Another solution is to exclude the singletons from the test set. While
this would undoubtedly be interesting, and surely raise the total scores, it was felt that the test set should
be & representative & possible. Thus using LVQ on these datasets is error-prone, or rather inacaracy-
prone: Unless the single entries are highly distinguishable, chances are high that entries belonging to
those caegories will be dassified incorredly.

At both levels, a few categories contain most of the entries. This leads to a high total score, athough, in
fad, most caegories are not used at al. Being a property of the nature of the dassfication of CATH, this
isaproblem at most levels. A way to compensate would be to weight the singular entries higher, e.g. by
duplicating those vedors. However, unlessthe entries are significantly different from the other entries,
this will not work well .

On the third level, all quantifiers yield approximately the same accuracy, between 60 and 70 mercent,
which by it self could be cnsidered satisfadory. However, again al quantifiers fail at classifying
singletons; even the best quantifier only classified 2 ait of 18 singletons corredly.

Another interesting fad is that the RO, R1 and R2 quantifiers, which differs mostly in weights and not in
which properties are included, have only minor differences in scores on al levels. Thisisto be expeded:
The SOFM agorithm is robust enough not to be (too much) influenced by differences in magnitude
between different elements of the vedors.
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Classlabdl | Size RO R1 R2 R3 P
2.60.9 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.11 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.20 4 entries 0.00 0.00 0.00 0.00 0.00
2.60.30 2 entries 0.00 0.00 0.00 0.00 0.00
2.60.34 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.35 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.40 64 entries 95.31 95.31 96.88 96.88 95.31
2.60.43 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.47 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.50 1 entries 10000 0.00 0.00 0.00 0.00
2.60.60 1 entries 10000 10000 10000 0.00 0.00
2.60.71 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.80 2 entries 0.00 0.00 0.00 0.00 0.00
2.60.90 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.97 2 entries 0.00 0.00 0.00 0.00 0.00
2.60.98 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.100 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.110 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.120 |2lentries 61.90 61.90 7143 61.90 7143
2.60.130 | 1entries 10000 10000 10000 0.00 0.00
2.60.160 | 1entries 0.00 0.00 0.00 0.00 0.00
2.60.169 1 entries 10000 10000 10000 100.00 100.00
2.60.170 1 entries 0.00 0.00 0.00 0.00 0.00
2.60.175 1 entries 0.00 0.00 0.00 0.00 0.00
Total 113 entries | 69.03 68.14 70.80 67.26 68.14

Table 8-3: Supervised classification of sandwich diagrams

The accuracy obtained when clasdfying dagramsin the sandwich architedure. Again dl quartifiers
score well onthelargest group, drawing their total scores up, but fail to classfy singletons corredly.
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8.4. Clustering

The duster padkage was used to perform clustering on the seledions and quantifiers given in section 8.1.
Both the hierarchicd and the isodata dgorithm were tried. The results of the hierarchicd clusterings were
binary trees, but for the purpose of comparison, the binary trees were wllapsed to flat, single-level
clasdficaions. These dassificaions were then compared to CATH using the Classifi cationComparator
class The results of the isodata dusterings were single-level classificaions, which also were mmpared to
the CATH classification.

The isodata dgorithm performed considerable better than the hierarchicd algorithm, as expeded. This
might be caised by inadequate cmparisons: Collapsing a hierarchicd structure by the smple means
provided in the duster padage can loase too much information. See[13] for better methods to identify
the significant structure in a hierarchicd clustering, or for methods to compare hierarchica clusterings to
single-level clusterings. The statistics obtained by the isodata dgorithm on the three seledions are given
intable 8-4 to 8-6.

Note that this does not congtitute a ©@mplete dustering process including cluster validation. It isto be
considered atest of the system and a basis for further analysis.

RO R1 R2 R3 P
Rand statistic 0.44 0.67 0.68 0.67 0.69
Jaccard coefficient 0.26 031 0.32 0.31 0.34
Fowlkesand Mallows | 75.86 NaN 18.37 NaN 34.43

Table 8-4: Unsupervised classfication of all diagrams

Sample statistical indices when comparing isodata classfications at the top-levé to the dassficationin
CATH. NaN (Not-a-Number) represents overflow, which (usually) indicates a highlevd of agreament.
Note that different statistical indicesyield dfferent relativeresults, e.g., according to the Fowlkes and
Mallows index RO is better than R2 whil e according to the rand statistic R2 is better than RO.
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RO R1 R2 R3 P

Rand statistic 0.74 0.70 0.71 0.64 0.64
Jaccard coefficient 0.36 0.25 0.28 0.21 0.18
Fowlkesand Mallows | 1.78 1.66 NaN NaN 1.10

Table 8-5: Unsupervised clasgfication of mainly-beta architectures

Sample statistical indices when comparing isodata classfi cations of mainly-beta architeduresto the
classficationin CATH. Note the comparativey lower rand statistics of the “ simple”’ quatrtifiers P and
R3, the same dfea isfound when using supervised clasdfication (seediscussionin 8.3).

RO R1 R2 R3 P
Rand statistic 0.62 0.66 0.71 0.71 0.75
Jaccard coefficient 0.18 0.16 0.36 0.37 0.35
Fowlkesand Mallows | 0.31 0.28 0.54 0.55 051

Table 8-6: Unsupervised clasdfication of barrel topologies

Sample statistical indices when comparing isodata classfications of barrel topdogiesto the
classficationin CATH. Notethe comparativey higher rand statistics of the “ simple” quartifiers P and
R3, the same dfea isfound when using supervised clasdfication (seediscussionin 8.3).

As gated before, the statistical indices by them selves do not tell much. For all classificaions, a Monte
Carlo approach was used to find the estimated value of the Hubert I' statistic, following the simplified
hypothesistest outlined in 6.7.3. The result of this approach is given in table 8-7.
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Seledion
. RO R1 R2 R3 P
(CATH entries)
. 42959 62.21 167.57 146.66 114.88
36071 51.96 13852 11922 96.33
o 44519 77.16 11632 91.78 76.38
' 42290 73.37 11251 88.68 73.44
240 596.63 48.38 70.28 63.72 52.44
T 569.50 47.62 7276 65.18 5210

Table 8-7: Monte-Carlo gpproximation of Hubert I statistic

Thistable shows the Hubert I” statistic for the given quartifiers andseledions. For each cdl, the first
(top) number isthe I statistic for the isodaa clasdfi cation, andthe second number isthe expeded value,
estimated by Monte-Carlo appoximation (100iterations) under the random label hypothesis. In dl cases
where the clculated values were higher than the expeded value, theywere higher than al 100 Monte-
Carlo values.

We observe that at the achitedure and classlevelsthe I statistics of the isodata dassifications are higher
than of al 100 random classficaions. The obvious interpretation is that the isodata dassificaions are
better than random, and that it has cgptured some dusters inherent in the data. Generally, if the tatistic is
higher (for right-tailed pd distributions like that of ') than 100-p percent of the random classificaions
we @n assume, with a significance level of p, that the dassificaion is ggnificantly better than random.
Note, however, that this is not a mwmplete statisticd analysis and further work is required to verify that,
e.g., the random label hypothesis holds. The analysis, unfortunately, is beyond the scope of thisthesis.

At the third level, the results are more disappanting and a bit confusing: With two of the quantifiers, R2
and R3, the expeded values (acmrding to the Monte-Carlo approximation) are higher than the adual
values. This deserves further investigation.
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9. SUMMARY AND DISCUSSION

9.1. Overview

In this thesis, a framework for classficaion of higher-level structural descriptions of proteins is
presented. The dassfication systems reads TOPS and CATH datafiles, and allows €ledion of diagrams,
dtatisticd analysis, unsupervised (hierarchicd and isodata) clustering and, via external padkages,
supervised classficaion and the formation of topdogicd maps.

The system is highly generalised and extendable. Being divided into logicd modules, the system can
easily adapt to ather uses, for instance @mparisons with other classificaion systems (than CATH) or
other clasdficaion methods. The protein domains are represented using abstrad data types, based on the
structural information contained in TOPS diagrams. Numericd vedors are aeaed using functions, of
which several types exist. New functions can be defined, and this functionality deserves more testing. The
clustering functionality is sparated in a padkage by itself, and can be used for other clustering tasks.

Note that methods based on neural network or similar techniques are unlikely to be used as reference
clasdfication methods: For a fixed, standardised clasdfication, deterministic, explicit and, preferably,
intensional methods are needed. However, methods along the lines described here can be used for
preliminary or tentative dassifications and for analysis.

9.2. Discussion

The system has been tested on the current TOPS and CATH databases, with supervised and unsupervised
classficaions and the formation of topdogicd maps. The dassficaions have been compared to the
CATH system. A very high level of agreement being considered unlikely, the results of comparisons are
promising but not satisfactory. In the @ase of proteins belonging to the mainly-beta dass (for which the
TOPS diagrams are more adequate, due to their weak alpha helix structure description), the highest total
supervised classficaion acaracy was 80 percent. Classification accuracy depends heavily on which
properties are included, and it is obvious that further statisticad analysis of the propertiesis needed. This
could also reved interesting statistica properties of the different categories in existing (manual and semi-
automatic) classficaion systems, e.g. SCOP and CATH.

The low accuracy problem is mainly caused by the singletons, i.e. categories with only one single entry;
these ae in general not classified corredly. Highest performance is found when uwsing the LVQ
clasdfication system, as is natural: In most cases, supervised methods will perform better than
unsupervised ones.

68



TOPS diagrams, being a formal and very compad structural description, have several useful feaures. Of
these, pattern matching and seaching is perhaps the most interesting: Due to their compadness, a
database of all known (determined) structures can be seached in a small amount of time. It is therefore
interesting to note that despite their simplicity, TOPS diagrams clealy retain structural information
enough for classficaion to be possble. Thisis siown by the aceracy of these first feeble atempts of
clasgficdions.

As dated above, for the dasdficaions to be mnsidered satisfadory, a higher level of acaracy is
required. Whether this can be atieved using the goproach chosen in thisthesisremainsto be seen.

9.3. Further work

Clealy further work isrequired in this areaof research. At first sight, a mmplete statistical analysis of the
numerica properties of the TOPS diagrams could have been done on an ealier stage, to single out the
important ones. Principal components analysis, or other statisticd methods, could reved which variables
were significant at the different levels. In addition, more work should be done on quantifiers, to reved
more subtle charaderistics of diagrams.

Another issue left unfinished is to combine the methods and framework described in this thesis with the
work of Gilbert, Westhead and co-workers, described ealier, to include treagment of patternsin the TOPS
padkage. This would enable eay retrieval of patterns found descriptive of CATH categories. Presumably,
intensional approaches are better suited for this classificaion task.

Further work could also include:
* Integration with domain assgning and TOPS cartoons generating programs, in order to provide
aninitial / tentative / suggestive dassficaion for CATH and SCOP.
o Statisticd analysis of the results of the dustering algorithms.
e Compare with other classification systems, eg SCOP.
*  Further experimenting with new rules and new domain properties.
e Makingan applet and aweb interface
e Testingclassification of patterns.
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Appendx A: PROGRAMS

Logical View

Rule

DomainProperty

Quantifier

Diagram

0..n<f 0.n]0.n ?O.n

Chirality

PairwiseQuantifier

SSE

HBond

Structure

Figure A-1: Central data structure

This gatic structure diagram shows the main classesin the data structure. The arr ows indicate
aggegation (diamond shape at owner clasg, spedali satiorVgeneralisation (arr owhead & super-clasg
or general associations (use-relationships) between classes.
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Logical View

—

ns.tops.parser

—

ns.clust

—

ns.tops.distances

Main

ClassificationEnging

Quantifier[]

Diagram[]

Figure A-2: Modulesin the TOPS package

The TOPS pakage isdivided into several modues, bound together by the Main class Of the dasses
shown, those representing dagrams are found in the ns.tops.diagrams package, the rest in ns.tops.
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CLASSES/ FILES
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ns.tops.cath.CathEntry

package ns.tops.cath;

import ns.tops.*;
import java.util.*;
import java.io.*;

/** Simple class representing CATH-entris. Parses or
unparses

* them according to the normal dot-notation.

* Also contain methods for reading the CATH-file and

* creating a HashTable of PDB-entries and CATH-
classifications.

public class CathEntry
implements Serializable

/I Class variables
static final int CATH_LEVELS = 5;

/I Protected object variables
protected final int [] myFields = new intf CATH_LEVELS
+1];

/I Main accessor-method:

/** Get the number of the class at a given level.
* @param i Level. Legal values are 1 through 5.
* @return -1 if illegal index, category index
otherwise
*

public int get(inti)

return ( (i <= CATH_LEVELS &&i>=1) ? myFields[
i]:-1);
}

/** Full string representation, eg "1.10.40.40.580".
*
public String toString() { return toString( 5 ); }

[** String representation with a given number of
levels.*/
public String toString( int levels )

if(levels < 1 || levels > CATH_LEVELS)
throw new lllegalArgumentException(
this.getClass().toString() + ": " + levels );

StringBuffer sb = new StringBuffer( ™" +
myFields[1] );
for(inti=2;i<=levels; i++)
sh.append("." ).append( myFields[i]);
return sb.toString();
}

/** Returns true iff the objects identify the same

family.

* @param o A CathEntry to compare too.

* @return true iff o has the same class,
architecture,

* topology, superfamily and family.

* @throw ClassCastException iff o not is a
CathEntry.

*

public boolean equals( Object o0 )

if( 0.getClass() != CathEntry.class )
throw( new ClassCastException(
getClass() + "->" + o.getClass() )

)
CathEntry ce = (CathEntry)o;
boolean eq = true;
for(inti=1;i< CATH_LEVELS; i++)
if( this.get( i) !=ce.get(i))
return false;
return true;

}

/I Constructors: Hide no-options-constructor

protected CathEntry() {}

/** Given a string, eg "1.10.40.40.580", returns a
* CATHENtry object representing that class.
* @return null if invalid string, a valid CATHEntry
otherwise.
*
public static CathEntry parse( String rep ) {
CathEntry c;
try{
¢ = new CathEntry();
/I Get cath-numbers:
StringTokenizer st = new StringTokenizer( rep,

" for(inti=1; i <= CATH_LEVELS; i++)

c.myFields[ i ] = Integer.parselnt(
st.nextToken() );

catch( Exception e ) {
e.printStackTrace();
return null;

}

return c;

/** Reads cath-entries from a named file. */
public static Map readCATH( String fname )
{
try{
return readCATH( new BufferedReader(
new FileReader( fname )

));

}
finally{ return null; }

/** Reads cath-entries from a text stream. Assumes the
*file is in the same format as cath_all.pl.
*
public static Map readCATH( Reader r )
try
{
HashMap cath = new HashMap();
StringBuffer sb = new StringBuffer();

BufferedReader fr = new LineNumberReader( r );
fr.readLine();

while( fr.ready() )
{
String s = fr.readLine();

/I Check if it is an entry, if not just skip:
if( s.indexOf( (") = 0) continue;

String p = s.substring( 2, 8);
String t = s.substring( 11);
String ¢ = t.substring( 0, t.indexOf( \" )

cath.put( p, parse(c));

r.close();
return cath;

}
catch( Exception e ){ e.printStackTrace(); return
null; }

}
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ns.tops.cath.CathMatcher

package ns.tops.cath;

import java.util.*;
import java.io.*;
import ns.Util;

/** Simple class to select diagrams
* according to their CATH-classification.
*
/

public class CathMatcher
implements Serializable

/I Object variables

protected int [][] values = { null, null, null, null,
null };

/** matches( null ) always returns
MATCH_UNCLASSIFIEDS.
* Default is false.
*
public boolean MATCH_UNCLASSIFIEDS = false;

/** If true, a null value in the values array
* matches everything. Default is true.
*
public boolean NULL_MATCHES_ALL = true;

/** Set values. */
public void setValues( int [I[] v)

if( v != null && v.length == values.length )
values = v;
else
throw( new RuntimeException(
"CathMatcher.setValues: Invalid v. "
)

return;

/** Get values. */
public int [][] getValues() { return values; }

/** Returns a readable version of this CathMatcher. */
public String toString()

StringBuffer sb = new StringBuffer();

for(inti=0;i < values.length; i++) {

if( values[ i ] == null || values][ i ].length ==

sh.append( "*");
else

{
sh.append( ™ + values[i][0]);
for(intj=1;j<values[i].length; j++)
sb.append( "/* + values[i][j]);

}
if(i < values.length-1)
sb.append(".");

return sb.toString();

/** True iff this matcher matches ce. */
public boolean matches( final CathEntry ce )

if(ce ==null)
return MATCH_UNCLASSIFIEDS;

Util.debug( "Cathmatcher.matches: " + ce, 15 );
int [] target = ce.myFields;

/I default for boolean is false, | hope:
boolean [] b = new boolean[ 5 ;

for(inti=0; i< values.length; i++)

int [] tmp = values[ i ];

if(tmp == null)
b[i]=NULL_MATCHES_ALL;
else

innerfor: for(intj = 0; j < tmp.length; j++
if(tmp[j] ==target[i+1])
b[i]=true;
break innerfor;
}

}
}

return ( b[0] && b[1] && b[2] && b[3] && b[4] );
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}

/** This matcher will match all cathentries.*/
public CathMatcher() {}

/** This matcher will match all cathentries in class
i %

public CathMatcher(int i)

{

int[ltmp={i};
values[ 0 ] = tmp;

}

/** This matcher will match all cathentries in
* class i and architecture j.
*
/

public CathMatcher( inti, intj)

int () tmp ={{i}, {j}, null, null, null };
setValues(tmp);

}

/** Parses strings to CathMatchers.
* Syntax: "class{/class}*.arch{/arch}* etc".
* @return A valid CathMatcher or null.
*

public static CathMatcher parse( String s )

try{
CathMatcher cm = new CathMatcher();
StringTokenizer st = new StringTokenizer( s, "."

for(intj=0;j<=4;j++){
String s2 = st.nextToken();
if( s2.equals("*") )
cm.values[j] = null;
else {
StringTokenizer tmp = new StringTokenizer(
s2,"I");

int [] ss = new int[ tmp.countTokens() |;
for(inti=0; i< ss.length; i++)
ss[i] = Integer.parselnt(
tmp.nextToken() );
cm.values[j] = (ss.length==0 7 null :

}
}

return cm;

ss);

catch( Exception e ) { e.printStackTrace(); return
null; }

}



ns.tops.diagram.Diagram

package ns.tops.diagram;

import ns.Util;
import ns.tops.*;
import ns.tops.cath.*;

import ns.tops.parser.TopsParser;

import java.util. ArrayList;

import java.util.Map;

import java.util.Collection;
import java.util.StringTokenizer;

import java.io.*;

/** A representation of a TOPS diagram.

* Contains the structures and number of strands and
helixes.

* A tops diagram is a triple ( SSEs, H-Bonds,
Chiralities ) where

*<ul>

* <|i>SSE [] getSSEs </li>

* <li>HBond [] getHBonds</li>

* <li>Chirality [] getChiralities</li>

* <ul>

*

* Those define a set of structures, Structure []
getStructures()

*

public class Diagram
implements java.io.Serializable, TopsConstants,
Comparable

/I Class constants

public static final int ID_ALL = -1;
public static final int ID_DOMAIN = 0;

/I Class variables
public static int stringID = ID_DOMAIN;

/I Object variables - main data structure

protected CathEntry myCE = null;
protected CathEntry cathEntry;
protected String myDomainName = "Xxxxxx";

protected SSE [] mySSEs;
protected Structure [] myStructures;
protected HBond [] myHBonds;
protected Chirality [] myChiralities;

protected int [] noOfStructs;

/I Main accessor methods:

public SSE [] getSSEs() { return mySSEs; }
public void setSSEs( SSE [] sses ) { mySSEs = sses;
return; }

public HBond [] getHBonds() { return myHBonds; }
public void  setHBonds( HBond [] HBonds ) {
myHBonds = HBonds; return;

public Chirality [] getChiralities() { return
myChiralities; }
public void setChiralities( Chirality []
Chiralities ) {
myChiralities = Chiralities; return;

public Structure [] getStructures() { return
myStructures; }
public void setStructures( Structure [ s ) {
myStructures = s; return;

public String getDomainName() { return myDomainName; }
public void setDomainName( String n) {
myDomainName = n; return;

public String toString()
{

switch( stringlD ) {
case ID_ALL: return getDomainName() + "/" +
getCathEntry().toString( 5 );
case ID_DOMAIN: return getDomainName();
default: return getCathEntry().toString(
stringID );
}

}

/I Some additional accessor methods:

public CathEntry getCathEntry() { return myCE; }
public void setCathEntry( CathEntry ce ) { myCE = ce;

public int [] getNoOfStructs() { return noOfStructs; }

public int getNoOfStrands() { return noOfStructs|
STRAND J; }

public int getNoOfHelixes() { return noOfStructs|
HELIX ]; }

/** Complete string representation. */
public String unparse()

StringBuffer sb = new StringBuffer();

sb.append( "Diagram: " ).append( EOL );

sb.append(" name="+ myDomainName )
.append( EOL ).append( EOL );

sb.append(" SSEs:[");

for(inti=0; i < mySSEs.length; i++)
sb.append( mySSEs[i]+"");

sb.append( "]" ).append( EOL ).append( EOL );

sh.append(" Structs: [");
for(inti=0; i< myStructures.length; i++)

sh.append( myStructures[i]+"");
sh.append( "]").append( EOL ).append( EOL );

sbh.append(" HBonds: [");

for(inti = 0; i < myHBonds.length; i++)
sh.append( myHBonds[i]+"");

sh.append( "]").append( EOL ).append( EOL );

sb.append( " Chirs: [");

for(inti=0; i < myChiralities.length; i++ )
sh.append( myChiralities[i]+"");

sb.append( "]" ).append( EOL ).append( EOL );

return sb.toString();
}

/I Constructors
protected Diagram() { return; }

public Diagram( String dname, SSE [] sselist,
Structure [] structs, HBond [] hblist, Chirality
[l chirs)
{

setDomainName( dname );
mySSEs = sselist; myStructures = structs;
myHBonds = hblist; myChiralities = chirs;

/I assign noOfStructs:
noOfStructs = new int[ TopsConstants. UNKNOWN+1 J;
for(inti=0; i< myStructures.length; i++)

noOfStructs[ myStructures[ i ].getType() ]++;

for(inti=0;i< mySSEs.length; i++)
noOfStructs| mySSEs|[ i ].getType() ]++;
return;

/** Given a string from the TOPS database,
* returns a Diagram-object representing that
diagram.
* @param cath A HashMap of CATH-entries.
* @return null if invalid string, a valid Diagram
otherwise.
*
public static Diagram parse( String s, Map cath ) {
return TopsParser.parseDiagram( s, cath );

/** Reads diagrams from a datafile.
* Same as readDiagrams( f, null, cath );
*
public static Diagram [] readDiagrams( Reader r, Map
cath) {
return readDiagrams( r, null, cath );

/** Reads diagrams from a datafile.
* Normal usage: Diagrams [] d =
* readDiagrams( new FileReader( "cartoons.pl") );
* This method uses buffering, ie do not provide a
* buffered reader as that only will decrease
performance.

* @param r A character stream containing the
diagrams.

* @param cath A map from pdp-names to cath-entries

* @param cm A cathmatcher that the diagram must
match

* @return An array of diagrams.

*

public static Diagram [] readDiagrams( Reader r,
CathMatcher cm, Map cath )

Util.tock();
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Util.verboseO( "Reading diagrams" );

Collection c;

try{ c = TopsParser.parseDiagrams( r, cath ); }

catch( Exception e ) { e.printStackTrace(); return
null; }

Util.verbose( " done (" + Util.tick()/1000 + "
secs)" );

return selectDiagrams(

(Diagram[]) c.toArray( new Diagram[ 0] ), cm

}

/** Selects diagrams according to CATH-category.
* @param A matcher that the cath of the diagrams
* must match, eg new CathMatcher( 3, 40 ).

*

public static Diagram [] selectDiagrams(
Diagram [] diags, CathMatcher cm ) {
Diagram [] res = null;
try
{

Diagram [] tmp = new Diagram[ diags.length ;
intindex = 0;

for(inti=0; i< diags.length; i++)

boolean matches = (cm == null || cm.matches(
diags[ i ].getCathEntry() ) );
if( matches )
tmp[ index++ ] = diags[i];

res = new Diagram[ index J;

for(inti=0;i<index; i++)
res[i]=tmp[i];

catch( Exception e ) { e.printStackTrace(); }
return res;

/** Compares domain id's. */
public int compareTo( Object 0 ) {
Diagram d = (Diagram)o;
if( this.equals( o))
return 0;
else

return myDomainName.compareTo( d.myDomainName );
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ns.tops.diagram.SSE

package ns.tops.diagram;

import java.util.*;
import java.io.*;
import ns.Util;

/** Secondary structure element.*/

public class SSE implements java.io.Serializable
{
protected int no = -1;
protected int dir = 0;
protected String name ="";
public int myType = TopsConstants. UNKNOWN;

public final int getDir() { return dir; }
public void setDir(intd) {
if(d>=-1||d <=1) dir = d; return;

public final int getNo() { return no; }
public void setNo( int newNo ) { no = newNo; return; }

public final String getName() { return name; }
public void setName( String s ) { name = s; return; }

public int getType() { return myType; }
public void setType( final int type )

{
if( type >= TopsConstants.STRAND &&
type <= TopsConstants.CTERM )
myType = type;
else
throw( new RuntimeException(
this.getClass().toString() +
".setType(" + type +"): invalid type." ) );
return;

public String toString() {
return getName() + ":" + getType() + "(" + getDir()
+ oy

}
protected SSE() { return; }

public SSE( String n ) { setName( n ); return; }
public SSE(int type, int no, int dir ) {
setType( type );
setNo( no);
setDir( dir );
return;



ns.tops.diagram.Structure

package ns.tops.diagram;

[/** Class for the different third-level structures in
diagrams.
* Each instance has a integer type, as defined in
* TOPSConstants, and an array
* of SSE elements.
*

public class Structure
implements java.io.Serializable

protected SSE [] mySSEs = null;
protected int myType = TopsConstants. UNKNOWN;

public int getType() { return myType; }
public void setType(ints){
if( s >= TopsConstants.STRUCT_START &&
s <= TopsConstants.UNKNOWN )
myType =s;
return;

}

public SSE [] getSSEs() { return mySSEs; }
public void setSSEs( SSE [] sses ) { mySSEs = sses; }

/I Constructors:
protected Structure() { return; }

public Structure( int struct_type, SSE [] sses ) {
mySSEs = sses;
setType( struct_type );

public String toString()
{

StringBuffer sb = new StringBuffer();
sh.append( TopsConstants.struct_ids[ myType ] + "([

for(inti=0; i< mySSEs.length; i++)
sb.append( mySSEs[ i ].getName() +" " );

sh.append('])" );

return sb.toString();

/** If result[ i ] == 1/2 then strand number
* i belongs to the 1st/2nd sheet.
*

int [] getSheetArray( Diagram owner )

if( myType != TopsConstants. SANDWICH )
return null;

int [] t = new int[ owner.getSSEs().length ];
HBond [] hb = owner.getHBonds();

Il Initialize first sheet:
t[ mySSEs[ 0 ].getNo() ] = 1;

/I First get members of the first sheet:
boolean changed = true;
while( changed )

changed = false;
for(inti=0;i< hb.length; i++)
{

int from = hb[ i ].from.getNo();
intto =hb[i].to.getNo();

if(f{to]==1&&t[from]!=1)

t[from]=1;
changed = true;

}
elseif(t{from]==1&&t[to]!=1)

ffto]=1;
changed = true;
}
}
}

/I Then get the rest:
for(inti=0; i < mySSEs.length; i++)
tf mySSEs[i].getNo() | =
(tf mySSEs[i].getNo()]==1?1:2);

return t;

}

ns.tops.diagram.Chirality

package ns.tops.diagram;

import ns.tops.*;
import ns.tops.cath.*;

import java.util.*;
import java.io.*;
import ns.Util;

/** Class representing chiralities.
*

public class Chirality implements java.io.Serializable
SSE from, to;
public int handedness;
public static final int LEFT = -1, RIGHT = 1;
public Chirality( SSE f, intd, SSE t)
from = f; to = t; handedness = d;
public String toString() {

return "(" + from.getName() + *," +
handedness +"," + to.getName() + ")";
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ns.tops.diagram.HBond

package ns.tops.diagram;
import java.util.*;
import java.io.*;
import ns.Util;
/** Secondary structure binary directed relation. */
public class HBond implements java.io.Serializable
public SSE from, to;
public int direction;
public static final int DOWN = -1, UP = 1;
public HBond( SSE f, intd, SSE t)
from = f; to = t; direction = d;
public String toString() {
return "(" + from.getName() +"," + direction +","

+
to.getName() +")";
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ns.tops.diagram.Point

package ns.tops.diagram;

import java.util.*;
import java.io.*;
import ns.Util;

/** TOPS diagram element - parsed and created,
* but currently ignored.
*

public class Point implements java.io.Serializable
intx,y;

public Point( int x, inty ) {
this.x = x; this.y = y; return;



ns.tops.diagram.CrossingProperty

package ns.tops.diagram;

import ns.tops.diagram.*;
import ns.Util;

import java.util.Collection;
import java.util.Vector;
import java.util.Arrays;
import java.util. HashSet;

/** Count crossings in sandwiches. */

public class CrossingProperty extends DomainProperty

public CrossingProperty( String id, String desc )
{

setID(id );
setDescription( desc );
return;

/** Returns the average times the backbone crosses
from
* the first sheet to the second sheet in the
sandwiches.
*
public float valueOf( final Diagram d ) {

int sum = 0;
intno=0;

for(int strindex = 0O;
strindex < d.getStructures().length;
strindex++ ) {

if( d.getStructures()[ strindex ].getType() !=
TopsConstants.SANDWICH )
continue;

no++;

Structure sw = d.getStructures()[ strindex J;
int [] sheets = sw.getSheetArray( d );

/I move along the backbone and
/I count the times it crosses from one sheet to
another

if( false )

StringBuffer deb = new StringBuffer(
"sheets: { " + sheets[01]);
for(inti=1;i < sheets.length; i++)
deb.append( ", " + sheets[i]);
deb.append("}");
Util.debug( deb, 12 );

SSE [] sa = d.getSSEs();

int cur = 0;
for(inti=1;i < sa.length-1; i++)

int tmp = sheets| sa[ i ].getNo() ];
if(

(cur==1&&tmp==2)|| (cur==2&&
tmp==1)
)
sum++;
cur = tmp;

}

iftno==0)
return O;
else
return ( (float)sum ) / (float)no;

ns.tops.diagram.Parallel Property

package ns.tops.diagram;

import ns.tops.diagram.*;
import java.util.Collection;
import java.util.Vector;
import java.util.Arrays;

/** Measures degree of parallelity. */

public class ParallelProperty extends DomainProperty

public ParallelProperty( String id, String desc )

setID(id );
setDescription( desc );
return;

/** Returns the ratio of parallel hbonds in the
sheets...
* Does not include the sheets found in sandwiches.
* @return float in the range [0..1], 0 meaning
* only parallel hbonds.
*

public float valueOf( Diagram d )
Structure [] structs = d.getStructures();

int sum = 0;
intno=0;

for( int strindex = 0; strindex < structs.length;
strindex++)

if( structs[ strindex ].getType() !=
TopsConstants.SHEET )
continue;
no++;

intup =0;
int tot = 0;

Structure s = structs| strindex ];
Collection sses = Arrays.asList( s.getSSEs() );

HBond [] hbtmp = d.getHBonds();
for(inti=0; i< hbtmp.length-1; i++)
{

if( sses.contains( hbtmp[ i ].from ) &&
sses.contains( hbtmp[i].to))

{
if( hbtmp[ i ].direction == HBond.UP )
up++;
tot++;

}

}
if(tot1=0)
sum += (int) ( ( ( float )up )/ (float) tot );

}

iftno==10)
return 0;
else
return ( (float)sum ) / (float)no;

81



ns.tops.diagram.DomainProperty

package ns.tops.diagram;

import ns.tops.diagram.*;
import java.util.*;

/** A DomainProperty acts on a Domain and assigns it a
value.

* This is an abstract base class. All properties are

* identified with unique string id's.

*

/

public abstract class DomainProperty
implements java.io.Serializable

protected DomainProperty() { return; }

/** Unique ID.*/
protected String myID = "undefined_property";

/** Set the id. */
public void setID( String id ) { myID =id; }

/** Get the id.

* @deprecated

*

public String getID() { return myID; }

/** Each property has a description. */
protected String myDesc = null;

/** Get the user description of this property. */
public String getDescription() { return myDesc; }

/** Set the user description of this property. */
public void setDescription( String s ) { myDesc =s;
return; }

/** This implementation returns the DomainProperty's
* unique ID. Subclasses may or may not override
this.
*
public String toString() { return getID(); }

/** Reads the known properties and stores them in an
HashMap. */
public static Map readProps()

Map m = new HashMap();
String [] sa = { "sheets", "barrels", "csheets",
"vcsheets",
"sandwiches", "unknowns", “strands",
"helixes" };

m.put( "sheets", new NoOfStructuresProperty(
"sheets",
TopsConstants.SHEET , "beta sheets") );
m.put( "barrels",new NoOfStructuresProperty(
"barrels",
TopsConstants.BARREL , "barrels" ) );
m.put( "csheets”, new NoOfStructuresProperty(
"csheets",
TopsConstants.CSHEET , "curved sheets" ) );
m.put( "vesheets”, new NoOfStructuresProperty(
"vcsheets”,
TopsConstants.VCSHEET |, "vcurved sheets" )
);
m.put( "sandwiches", new NoOfStructuresProperty(
"sandwiches",
TopsConstants. SANDWICH , "sandwiches" ) );
m.put( "unknowns", new NoOfStructuresProperty(
"unknowns",
TopsConstants. UNKNOWN |, "unknown structures"
m.put( "strands”, new NoOfStructuresProperty(
"strands",
TopsConstants.STRAND , "beta strands" ) );
m.put( "helixes”, new NoOfStructuresProperty(
"helixes",
TopsConstants.HELIX , “alpha helixes") );
m.put( "crossings”, new CrossingProperty(
“crossings”, "Average no of crossings in
sandwiches" ) );
m.put( "parallel”, new ParallelProperty(
"parallel", "Average ratio of p. hbonds in
sheets") );
m.put( "chiralities",new ChiralityProperty(
"chiralities”, "Number of r-chirs minus I-
chirs"));

return m;

}

/** The method!! */
public abstract float valueOf( Diagram d );
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ns.tops.diagram.ChiralityProperty

package ns.tops.diagram;

import ns.tops.diagram.*;
/** Counts chiralities. */
public class ChiralityProperty extends DomainProperty

{
public ChiralityProperty( String id, String desc )

{
setID(id );
setDescription( desc );
return;

public float valueOf( Diagram d )

{
Chirality [] chirs = d.getChiralities();
int sum =0;
for(inti=0; i< chirs.length; i++)
if( chirs[ i ].handedness == Chirality.RIGHT )
Sum-++;
else if( chirs[ i ].handedness == Chirality.LEFT

sum--;
return sum;



ns.tops.diagram.NoOf StructuresPr

operty
package ns.tops.diagram;
import ns.tops.*;

/** Simple domain-property used to count the 5 fixed
structures.
* Each instance has an <it>index</it>, as specified in

* TopsConstants.
*

public class NoOfStructuresProperty extends
DomainProperty

protected int mylndex = TopsConstants.STRAND;

public void setindex( int ind ) { myIndex = ind;
return; }
public int getindex() { return mylndex; }

public float valueOf( Diagram d )

return d.getNoOfStructs()[ myIndex ];
}

public NoOfStructuresProperty( String id, int
structindex )

mylD =id;
mylIndex = structindex;

public NoOfStructuresProperty( String id, int si,
String desc)

myID =id;
mylIndex = si;
myDesc = desc;

}

ns.tops.diagram.TopsConstants

package ns.tops.diagram;

** Defines some useful constants. */

public interface TopsConstants{
public static final String EOL =
System.getProperty( "line.separator" );

public static final int STRAND = 0;
public static final int HELIX =1,

public static final int NTERM = 2;
public static final int CTERM = 3;

public static final int SHEET =4;
public static final int BARREL =5;
public static final int CSHEET = 6;
public static final int VCSHEET =7;
public static final int SANDWICH = 8;
public static final int UNKNOWN = 9;

public static final int STRUCT_START = 4;
public static String [] struct_id
ne" Mht Mt et s

sw,
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ns.tops.distances.AbstractDistance

package ns.tops.distances;

import ns.Util;
import ns.tops.diagram.*;

import ns.tops.*;
import ns.tops.cath.*;

/** An abstract superclass for classes representing
methods

* for finding a measure of the distance between two
diagrams.

*

public abstract class AbstractDistance
implements java.io.Serializable, ns.clust.Distance

/** The method!! */
public abstract float getDistance( Diagram d1, Diagram
dz);

[** String representation. */
public String toString() { return
this.getClass().toString(); }

/** Convenience method.
* Subclasses can override this for effiency, if
needed.
*
public float [] getDistances(
final Diagram d, final Diagram [] diagrams ) {
float [] da = new float[ diagrams.length J;
for(inti=0; i < diagrams.length; i++)

da[ i] = getDistance( d, diagrams[i]);

return da;

/** Convenience method.
* Subclasses can override this for effiency, if
needed.
*
public float [J[] getDistances( final Diagram []
diagrams1,
final Diagram [] diagrams2 ) {
float [][] da = new float[
diagrams1.length ][ diagrams2.length ];
for(inti=0; i< diagramsl.length; i++)
da[ i] = getDistances( diagrams1[i],
diagrams2 );
return da;

/** Convenience method.
* Subclasses can override this for effiency, if
needed.
* @return A distance matrix.

public float [J[] getDistanceMatrix(
final Diagram [] diagrams ) {
return getDistances( diagrams, diagrams );

/** Calls getDistance( (Diagram)d1, (Diagram)d2 ). */
public float distance( Object 01, Object 02 ) {
return getDistance( (Diagram)ol, (Diagram)o2 );

/** Static helper method. */
public static float [] transform( double [] m ) {
float [] t = new float[ m.length ];
for(inti=0; i< m.length; i++)
tli]=(float) m[i];
return t;

/** Static helper method. */
public static double [] transform( float [ m) {
double [] t = new double[ m.length ];
for(inti=0;i< m.length; i++)
t[i]=(dou ble) (m[i]);
return t;

/** Static helper method. */
public static void abs( double [] da ) {
for(inti=0; i< da.length; i++)
da[i] = Math.abs(da[i]);
return;

}
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ns.tops.distances.
QuantifierDistance

package ns.tops.distances;

import ns.Util;
import ns.tops.Quantifier;
import ns.tops.diagram.Diagram;

import java.io.Serializable;

/** Uses Euclidean distance between quantifier-vectors.
*

public class QuantifierDistance extends AbstractDistance

{

protected Quantifier q;
protected static float a = 0.5f;

/** Default constructor. */
public QuantifierDistance( Quantifier r ) {
if(r==null)
throw( new RuntimeException(
"QuantifierDistance: g==null")
)
q=r
}

/** Returns the result of a sigmoid function applied
to
* the euclidean distance between
* quantifier-vectors for the diagrams.
* @return Euclidean distance.
*
public float getDistance( Diagram d1, Diagram d2 ) {
float [] v1 = g.valueOf( d1);
float [] v2 = g.valueOf( d2 );

float sum = 0;
for(inti=0;i<vl.length; i++)
sum += Math.pow( vi[i]-v2[i], 2);

return sigmoid( Math.sqrt( sum ) );

public static float sigmoid( double d ) {
return (float) ( 1.0f/ (1 + Math.exp(-a*d))

[** String representation. */
public String toString() {
return this.getClass() + ": g="+

g}



ns.tops.distances.CathDistance

package ns.tops.distances;

import ns.Util;
import ns.tops.diagram.*;

import ns.tops.*;
import ns.tops.cath.*;

/** An abstract superclass for classes representing
methods

* for finding a measure of the distance between two
diagrams.

*

public class CathDistance
extends AbstractDistance

protected int myLevel = 1,

/** Default constructor with level as parameter. */
public CathDistance( int level ) {
myLevel = level;

/** The method!! */
public float getDistance( Diagram d1, Diagram d2 ) {
if( d1.getCathEntry().get( myLevel ) ==
d2.getCathEntry().get( myLevel ) )
return 0;
else
return 1;

[** String representation. */
public String toString() { return
this.getClass().toString(); }

ns.tops.Quantifier

package ns.tops;
import ns.tops.diagram.Diagram;

import java.util.Locale;

import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.text.FieldPosition;
import ns.Util;

/** A representation of a rule that transforms a diagram
into a

* vector. Abstract base class with implementation of
most methods.

*

public abstract class Quantifier implements
java.io.Serializable

protected static byte numberSize = 2;
protected static byte decimals = 3;

protected static NumberFormat dnf =
NumberFormat.getNumberinstance( Locale.US );
static

dnf.setMaximumFractionDigits( decimals );
dnf.setMinimumFractionDigits( decimals );
dnf.setMaximumintegerDigits( numberSize );
dnf.setGroupingUsed( false );

protected static String formatFloat( float d )

StringBuffer sb = new StringBuffer();

FieldPosition fp = new FieldPosition(
dnf.INTEGER_FIELD );
dnf.format( d, sb, fp );

int missing = numberSize - fp.getEndindex();

for(inti=0; i < missing; i++)
sh.insert(0,"'");

return sb.toString();

protected float [] myWeights;

/** Returns the weights vector. */
public float [] getWeights() { return myWeights; }

I** Sets the weights for this quantifier. */
public void setWeights( float [| newWeights )

if( newWeights != null &&
myWeights.length == newWeights.length )
myWeights = newWeights;
}

/** Returns the length of vectors created by this
quantifier. */
public int getSize() {
return ( myWeights == null ? -1 : myWeights.length

}

/** Same as toString() */
public String unparse() { return toString(); }

/** Calls stringOf( diagram, true ). */
public String stringOf( Diagram diagram ) {
return stringOf( diagram, true );

/** Returns a string version of the vector values of
the diagram,
* optionally including the name and class of the
structure.
* @return A string, eg "0.0 2.5 1.666
pdpbladi/cathbladi
*

public String stringOf( Diagram diagram, boolean
header )

StringBuffer res = new StringBuffer();

float [] values = valueOf( diagram );

for(inti=0; i< values.length; i++)
res.append( formatFloat( values[i]) +"");

if( header )

res.append( diagram.toString() );
return res.toString();
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/I Plural methods - just for convenience

/** Calls valueOf( d[i] for all i's. */
public float [J[] valueOf( Diagram [ d )
{

float ][] res =
new float[ d.length ][ valueOf( d[ 0 ] ).length
' for(inti=0;i<d.length; i++)
res[i] = valueOf(d[i]);
return res;

}

/** Calls stringOf( d[i]) for all i's. */
public String [] stringOf( Diagram [ d )
{

String [] res = new String[ d.length J;

for(inti=0;i<d.length; i++)
res[i] =stringOf(d[i]);

return res;

/I Object ([]) methods - just for convenience

[** Calls valueOf( (Diagram) 0 ). */
public float [] valueOf( Object 0 ) {
return valueOf( ( Diagram ) 0 );

}

/** Calls valueOf( (Diagram[]) o ). */
public float [][] valueOf( Object [] o) {
return valueOf( ( Diagram[] ) 0 );

}

[** Calls stringOf( (Diagram) o). */
public String stringOf( Object 0 ) {
return stringOf( ( Diagram ) 0 );

/** Calls stringOf( (Diagram[]) o). */
public String [] stringOf( Object[J o) {
return stringOf( ( Diagram[] ) 0 );

/** Gives a string describing fields - used in eg
statistics. */

public String [] getHeaders() { return new String[
getSize() |; }

/I The abstract methods!!
/** The method: Calculates the actual values, given a

diagram. */
public abstract float [] valueOf( Diagram d );
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ns.tops.Rule

package ns.tops;

import ns.Util;
import ns.tops.diagram.*;
import ns.tops.parser.TopsParser;

import java.io.*;
import java.util.*;
import java.text.*;

/** A representation of a rule that transforms a
* diagram into a vector. A Rule is an aggregation
* of DomainProperties.
*

public class Rule extends Quantifier implements
java.io.Serializable

/I Object variables

protected DomainProperty [] props = null;
protected String name = new String();

/I Main accessor

public DomainProperty [] getProps() { return props; }

/I Constructor

public Rule( DomainProperty [] p, Float [] ws, String
name )
{
props = p;
myWeights = new float[ ws.length ];
for(inti=0;i<ws.length; i++)
myWeights[ i ] = ws[ i ].floatValue();
this.name = name;

return;

}

/** Calculates the actual values, given a diagram. */
public float [] valueOf( Diagram d )

float [] valueOf = new float[ myWeights.length ];
for(inti=0; i< props.length; i++)
valueOf[i] = myWeights[i] * props][i].valueOf( d

)
return valueOf;

}

/** Given a string representing a rule, returns a
Rule-object
* representing that rule.
* @return null if invalid string, a valid Rule
otherwise.
*
public static Rule parse( final String s, final Map
props )
{

return TopsParser.parseRule( s, props );

/** Reads a set of rules from a text (ASCII) file.
* @param fname Name of the file to read the rules
from
* @return An array of the rules in the file
*
public static Rule [] readRules(
final String fname, final Map props )
{
try

Collection ¢ = TopsParser.parseRules(
new FileReader( fname ), props );
return ( Rule[])c.toArray( new Rule[01]);

finally { return null; }

/** Returns an array of the names of the
domainproperties.*/

public String [] getHeaders()

{

String [] getHeaders = new String[ getSize() ];
for(inti = 0; i < getHeaders.length; i++)
getHeaders[ i ] = props[i] +
( myWeights[i]!=1.0? "*" +
formatFloat( myWeights[i]) : "™ );
return getHeaders;

}

[** String representation. */
public String toString()
{



return "Rule " + name + " (size: " + getSize() + . . -
" ns.tops.PairwiseQuantifier
. o . . package ns.tops;
/** Full string representation, including weights. */
public String unparse() { import ns.Util;
. import ns.tops.diagram.*;
String [] headers = getHeaders(); import java.text.*;
StringBuffer sb = new StringBuffer("[ ).
append( headers[ 0] ); ) ** Creates a float vector with the frequencies of pairs
for(inti=1; i< headers.length; i++) of SSEs. */
sb.append(", " + headers[i]);
sb.append("; " + this.toString() + " ); public class PairwiseQuantifier extends Quantifier
) return sb.toString(); implements TopsConstants

public static boolean qualityCheck = false;

protected static final int ALPHA_ALPHA = 0;
protected static final int BETA_ALPHA =1;
protected static final int ALPHA_BETA = 2;
protected static final int BETA_BETA = 3;

protected PairwiseQuantifier() {
float [] w = { 1.0f, 1.0f, 1.0f, 1.0f };
myWeights = w;
return;

I

public PairwiseQuantifier( float [ w ) {
this();
setWeights(w );
return;

public float [] valueOf( Diagram d ) {

SSE [] sses = d.getSSEs();

float [] result = new float[ 4 ];

int cur = sses[ 1 ].getType();
for(inti=2; i< sses.length-1; i++)

if( cur == HELIX)
{

if( sses[ i ].getType() == HELIX)
result] ALPHA_ALPHA ]++;
else if( sses[ i ].getType() == STRAND)
resultf ALPHA_BETA ]++;
else if( qualityCheck )
Util.bug( this.getClass().toString() +
" .valueOf: " + d.getDomainName() + ",
1+i);

}
else if( cur == STRAND )

if( sses[ i ].getType() == HELIX)
resultf BETA_ALPHA ]++;
else if( sses[ i ].getType() == STRAND )
result] BETA_BETA ]++;
else if( qualityCheck )
Util.bug( this.getClass().toString() +
" .valueOf: " + d.getDomainName() + ",
2,"+i);

else if( qualityCheck )
Util.bug( this.getClass().toString() + "
.valueOf: " +
d.getbomainName() + ", 3," +i);
cur = sses[ i ].getType();

}
1l Quality check:
if( qualityCheck )

int sum = 0;
for(inti=0;i<4;i++)

sum +=result[ i ];
if( sum != sses.length - 3)

Util.bug( this.getClass().toString() + "

.valueOf: " +
d.getDomainName() + ", 4, sum =" + sum +
", should be " + ( sses.length-3) );

for(inti=0;i<4;i++)
result[ i ] *= myWeights[ i ];
return result;

}
public String [] getHeaders()
{

String [] getHeaders = { "ALPHA_ALPHA",
"BETA_ALPHA",
"ALPHA_BETA", "BETA_BETA"};
return getHeaders;




ns.tops.Holder

package ns.tops;

import ns.tops.diagram.*;
import ns.tops.cath.*;
import java.util.Map;

/** Just a basic holder... */

public class Holder implements TopsConstants
{

public Map cath;

public Map props;

public Rule [] rules;

public Diagram [] diagrams;

public Map getCath() { return cath; }

public Map getProps() { return props; }

public Rule [] getRules() { return rules; }

public Diagram [] getDiagrams() { return diagrams; }

public String toString()
{

return

"Holder:" + EOL +
" + cath.size() + " cath-elements" + EOL +
" + props.size() + " properties" + EOL +
"+ rules.length + " rules" + EOL +
" + diagrams.length + " diagrams" + EOL;
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ns.tops.PropLanguage

package ns.tops;
/** Constants used for reading properties files. */

public interface PropLanguage

static final String DEBUG_LEVEL = "debug.level";

static final String VERBOSE_LEVEL = "verbose.level";

static final String DIAGRAM_STRINGID =
“diagram.stringid";

/** Folder of data files. */
static final String DATA_FOLDER = "tops.data.folder";

1/ Statistics stuff

static final String STAT_MIN_ARCHES =
“stat. minimumArches";

static final String STAT_CLASS= "stat.class";

static final String DIAG_RE = "tops.diagrams.matcher";
static final String INCLUDE_NULL_ENTRIES =
"tops.diagrams.includeNullEntries";

1/ Classification stuff

static final String CLASSIFICATION_ENGINE =
"classification.engine";

static final String CLASSIFICATION_COLLAPSE_LEVEL =
"classification.collapse.level";

I Main stuff

/** Name of main data file. */

static final String DATA_FILE = "tops.data.filename";

/** Name of cartoons file. */

static final String CARTOONS_FILE =
“tops.data.cartoons";

/** Name of rules file. */

static final String RULES_FILE = "tops.data.rules";

/** Name of cath file. */

static final String CATH_FILE =
"tops.data.cathentries";

/** Zip method of cartoons file. */

static final String CARTOONS_ZIP =
“cartoons.zip.method";

static final String generatorOutputType =
"generator.output.type";

static final String generatorOutputLevels =
"generator.output.levels";

/** DataSetGenerator training set output file. */

static final String TRAINING_OUTPUT_FILE_NAME =
"generator.training.filename";

/** DataSetGenerator test set output file. */

static final String TEST_OUTPUT_FILE_NAME =
"generator.test.filename";

/** D of splitter. */

static final String SPLITTER =

“generator.splitter.id";

/** Argument to splitter, if applicable. */

static final String SPLITTER_ARG =
"generator.splitter.argument";

/** Number of rule to use in DataSetGenerator. */

static final String RULE_NUMBER = "rules.number";

static final String QUANTIFIER = "quantifier.id";

static final String QUANTIFIER_ARG =
“quantifier.argument”;

static final String TOPOLOGY = "topology";



ns.tops.ClassificationEngine

package ns.tops;
import ns.tops.diagram.*;

/** Interface for classes that classify diagrams
according
* to given rules. Classes that implement this interface
* contain one method to classify a set of Diagrams, and
* may contain additional methods. No constructors are
specified;
* an engine may require a set of diagrams on which to
train,

* and additional parameters.
*

public interface ClassificationEngine

{

/** Returns a classification of the given diagrams.
* No restrictions on the number of levels or
structure of
* classification are given.
* @param diagrams An array of diagrams to be
classified.
* @return A Collection containging Collections of

Diagrams
*

public java.util.Collection classify( Diagram []
diagrams );

ns.tops.CathClassificationEngine

package ns.tops;

import banda.stat.clust.*;
import java.util.*;

import ns.Util;

import ns.tops.cath.*;
import ns.tops.diagram.*;

/** Classifies known structures according to their CATH-
entry.

* Uses the Diagrams pdp-id to obtain a classification,
given

* a map between pdp-id's and Cath-entries.

*

public class CathClassificationEngine
implements ClassificationEngine

{

1/ object variables:
private intlevel = 1;

/** Hide empty constructor. */
private CathClassificationEngine () {};

/** Constructor.
* @param level The level on which to classify.
* Legal values are 1 to 5
*

public CathClassificationEngine( int level )

if(level >= 1 || level >=5)
this.level = level;
else throw new lllegalArgumentException(
this.getClass().toString() + ": illegal level(*
+level +")");

/** Returns a flat classification as an array. */
public static int[] fastClassify( final Diagram[]
diagrams, final int level ) {
final int[] s = new int[ diagrams.length J;
for(inti=0;i < diagrams.length; i++)
s[i] = diagrams[ i ].getCathEntry().get( level

return's;

/** Creates a 2-level classification of the diagrams
according
* to their CathEntry at the given level.
*
/
public Collection classify( final Diagram [] diagrams

final int[] ¢ = fastClassify( diagrams, level );
Map main = new HashMap();
for(inti=0; i< c.length; i++) {
Integer key = new Integer(i);
Collection ctemp = (Collection) main.get( key );
if( ctemp == null ) {
ctemp = new HashSet();
main.put( key, ctemp );

}
ctemp.add( diagrams[i]);

return main.values();

}

/** Creates a 2-level classification of the diagrams
according
* to their CathEntry at the given level.
*
public static Collection classify( Diagram []
diagrams, int lev ){
return new CathClassificationEngine( lev ).classify(
diagrams );
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ns.tops.Main

package ns.tops;

import ns.Util;

import ns.tops.diagram.*;

import ns.tops.cath.*;

import ns.tops.parser.TopsParser;
import ns.tops.distances.*;

import ns.clust.*;

import java.io.*;
import java.util.*;
import java.util.zip.*;
import java.text.*;

/** Main class: Used to update database, test classes,
* run DataSetGenerator etc.
*
* TODO: Fix / delete methods, rename stuff etc... lots!
*
|

public class Main implements PropLanguage, TopsConstants

/I Some really hardcoded sensible defaults:

protected static String optionsSuffix = "-D";
protected static String scriptSuffix = "@";
protected static String propertiesFile =
"tops.properties”;
protected static String propertiesHeading =
"# User-defaults for tops-program. *;
protected static String defaultPropertiesFile =
"tops.default.properties";

/I read ini-file at startup:
static Properties properties = getProperties();

/I Main holder
protected static Holder myHolder = null;

public static Holder getHolder()

if( myHolder == null )
myHolder = FileManager.loadHolder();
return myHolder;

protected static void usage()

String help =
"Usage: java tops.Main [ option | command
) * "+EOL+
" where command is: update | test |
"+
"defaults | generate | gzip |..."
+EOL +
" and optionis: "+
optionsSuffix +
"prop=value" + EOL +
"See readme.html for more help.";
System.out.printin( help );

public static void main( String [] args) throws
Exception
{
Runtime r = Runtime.getRuntime();
if( Util.verboseLevel >= 15)
properties.list( System.out );

parseOption( null );
System.out.printin();

if(args.length==0)
dolnteractive();
else
doCommands( args );
return;

private static void dolnteractive()

System.out.printin( “Interactive mode. Enter
commands, " +
"separated by enter or space. " + EOL +
“Enter quit to finish. " );
try

BufferedReader r = new BufferedReader(

new InputStreamReader( System.in) );
while( true ) //r.ready()
{

System.out.print( ">");

String command = r.readLine();

if( command.equals( "quit") )

break;
else if( command.trim().equals( ") )
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continue;
String [] args = new String[ 1 ];
args[ 0 ] = command;

System.out.printin( "Doing command: " +
command );
doCommands( args );
}
} catch( Exception e ) { e.printStackTrace(); }
return;
private static void doCommands( String [] args )
throws Exception
for(inti=0; i< args.length; i++) {
args[i] = args[i].trim();
if(args[i]==null || args[ i
].trim().equals( ™" ) ) continue;
else if( args[ i ].indexOf( scriptSuffix ) 1= -1
) doScript(args[i]);
else if( args| i ].indexOf( optionsSuffix ) != -
1) parseOption(args[i]);
else if( args[ i ].equals( "interactive" ) )
dolnteractive();
else if( args[ i ].equals( "wait" ) )
Util.waitForlnput( "waiting..." );
else if( args[ i ].equals( "update" ) )
myHolder = FileManager.updateAll();
else if( args[ i ].equals( "test"))
test();
else if( args[ i ].equals( "defaults" ) )
setProperties();
else if( args[ i ].equals( "print") )
printDiagrams( args, i+1 );
else if( args[ i ].equals( "stat" ) )
Stat.doit();
else if( args[ i ].equals( "generate" ) )
DataSetGenerator.doit();
else if( args[ i ].equals( "list"))
properties.list( System.out );
else if( args[ i ].equals( "read" ) )
getHolder();
else if( args[ i ].equals( "gzip") )
FileManager.gziplt(args[i+1]);
else if( args[ i ].equals( "gunzip") )
FileManager.gunziplt( args[i+ 1]);
else if( args[ i ].equals( "cluster" ) )
cluster();
else if( args[ i ].equal s("r'))
properties = getProperties();
else
usage();
/I that's it
return;

}

private static void doScript( String fname )

{
try

fname = fname.substring( scriptSuffix.length()

)
BufferedReader r = new BufferedReader( new
FileReader( fname ) );
Collection ¢ = new Vector();
while( r.ready() )
c.add( r.readLine() );

doCommands( ( String[] )c.toArray( new String[ O

D)

}
catch( FileNotFoundException e ) { Util.out( "File
"+ fname + " not found. " ); }
catch( Exception e ) { Util.out( "Scripterror: " +
e); e.printStackTrace(); }
}

private static void parseOption( String arg ) {
try

if(arg = null) {
String prop = arg.substring(
optionsSuffix.length(), arg.indexOf( '=") );

)
Util.verbose( "Setting \"" + prop + "\" to \"" +
val +"\"",5);
properties.setProperty( prop, val );
Util.verboseLevel = Integer.parselnt(
properties.getProperty( VERBOSE_LEVEL ) );
Util.debugLevel = Integer.parselnt(
properties.getProperty( DEBUG_LEVEL ) );
Diagram.stringlD = Integer.parselnt(
properties.getProperty( DIAGRAM_STRINGID ) );
}

String val = arg.substring( arg.indexOf('=') + 1

catch( Exception pe ) { pe.printStackTrace();
Util.verbose( "lllegal option.”, 3); }
return;

}



public static void setProperties()
try
{
properties.store( new FileOutputStream(
propertiesFile ), propertiesHeading );

catch( Exception e ) { e.printStackTrace(); }

private static Properties getProperties()

Properties properties = new Properties(
getDefaults() );
try

properties.load( new FilelnputStream(
propertiesFile ) );

catch( FileNotFoundException fnfe )

System.err.printin( "DomainProperty file " +
propertiesFile + " not found. " + EOL +
"Use \"java ns.tops.main d\" to create a
default properties file. " );

catch( Exception e ) { e.printStackTrace(); }
parseOption( null );
return properties;

private static void test()

{
Holder h = getHolder();
Map pdpMap = new HashMap();

for(inti=0; i< h.diagrams.length; i++)
pdpMap.put( h.diagrams][ i ].getDomainName(),
h.diagrams[i]);

Map props = h.props;

Map cath = h.cath;

Rule [] rules = h.rules;

Diagram [] diagrams = h.diagrams;

Util.verbose( EOL );

/I Check serialization

Util.verbose( "Serialization" );

Util.verbose(" Cath-entries: " + cath.size() );
Util.verbose( " Properties: " + props.size() );
Util.verbose( " Diagrams:" + diagrams.length );
Util.verbose( " Rules: " + rules.length );
Util.verbose( "™ );

/I CathMatcher:

Util.verbose( "CathMatcher:" );

String diagRE = properties.getProperty( DIAG_RE );

boolean b = Boolean.valueOf(
properties.getProperty( INCLUDE_NULL_ENTRIES)
)-booleanValue();

Util.verbose( " To parse: " + diagRE + "(" + b +
")
CathMatcher cm = CathMatcher.parse( diagRE );

c¢cm.MATCH_UNCLASSIFIEDS =b;

Util.verbose0( " toString: " + cm.toString() );

Util.verbose( (cm.MATCH_UNCLASSIFIEDS ?
"(inclusive)" : "(exclusive)") );

/I Check selection
Util.verbose( "Selection:" );
diagrams = Diagram.selectDiagrams( diagrams, cm );
Util.verbose(" Got " + diagrams.length + "
diagrams matching " + cm);

StringBuffer sb = new StringBuffer();
/I for(inti=0; i< Math.min( diagrams.length,
100*4 ); i+=100)
for(inti = 0; i < Math.min( diagrams.length,
100%2 ); i+=100)
sb.append( diagrams][ i ].toString() );

Util.verbose(" 2 sample diagrams: " +
sh.toString() );
Util.verbose( " );

/I Other stuff:

Util.verbose( "DomainProperty:" );

String fullName = null; Diagram d=null;

/I String [] pdpName = { "2stv00", "2bopA0",
"2sttA0", "2tbvA0", "13pkA1" };

String [] pdpName = { "2stv00", “2bopA0" };

for(inti=0;i < pdpName.length; i++)

{

d = (Diagram)pdpMap.get( pdpName[i]);
if(d==null)
continue;

String property = "parallel”;

fullName = d.getDomainName() + "/" + cath.get(
d.getDomainName() );

DomainProperty p = (DomainProperty) props.get(
property );

if(p==null)
Util.debug( "Ups: p=="+p,5);

if(d ==null)
Util.debug( "Ups: p=="+p,5);

Util.verbose(" Sample diagram with fullname "

+ fullName );
Util.verbose("  has tostring() " +

d.toString() );
TopsParser.printDiagram( d );
Util.verbose("  has " + p.valueOf(d) + "
")

Util.verbose( "™ );

/I Rules

Util.verbose( "Rule" );

Rule r=rules[0];
r.numberSize = 3;
" Rule’"+r
applied to

Util.verbose(
Util.verbose(
yields: ");
Util.verbose(" " + r.stringOf(d ) + EOL );
Util.verbose(" rule.unparse() =" + r.unparse()

+ fullName + "

/I Properties:
Util.verbose( "Properties: " );

Util.verbose( props );
Util.verbose( "---");

private static void printDiagrams( String [] args, int
index )

{
Holder h = getHolder();
Map pdpMap = new HashMap();
for(inti=0;i < h.diagrams.length; i++)
if( h.diagrams][ i ].getDomainName() == null )
Util.debug( "ups altsd. " );
else
pdpMap.put( h.diagrams][ i ].getDomainName(),
h.diagrams[i]);
Quantifier g = getQuantifier();
Util.verbose( "Quantifer: " + q );
for(inti = index; i < args.length; i++)
Diagram d = (Diagram) ( pdpMap.get( args[i])
if(d ==null)
Util.debug( "ups: d == null");
Util.verbose( d.unparse() );

Util.verbose( g.stringOf(d ) + ™ );

return;

public static Collection merge( Collection c)

Collection main = new Vector();
for( Iterator i = c.iterator(); i.hasNext(); )

Object 0 = i.next();
if( o instanceof Collection )
main.addAll( merge( (Collection)o ) );
else
main.add( o );

return main;

}

static void printCollection( Collection c, PrintStream
out)

printCollection( ¢, "™, 2, 0, out );
System.out.printin( "done printing collection c" );
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public static Properties getDefaults()

Properties p = new Properties();

try{ p.load( new FilelInputStream(
defaultPropertiesFile ) ); }

catch( Exception e ) { e.printStackTrace(); }

return p;

public static Quantifier getQuantifier()

String id = properties.getProperty( QUANTIFIER );
Util.debug( "getQuantifier: id =" +id + ".", 16

);
if(id.indexOf( "Rule" ) 1=-1 )
{
inti=0;
try{

i = Integer.parselnt( properties.getProperty(
QUANTIFIER_ARG ).trim() );
} catch( Exception e ) { e.printStackTrace();
Util.out( "Generator: Warning: Settingi=0."); }
Util.debug( "getQuantifier: returning " +
getHolder().rules[ i ], 10 );
return getHolder().rules[ i J;

}
else if( id.indexOf( "Pairwise" ) I=-1)

Quantifier g = new PairwiseQuantifier();
float [] d = { 1/0.3222f, 1/1.6663f, 1/1.672f
1/6.5729f };
q.setWeights(d );
return new PairwiseQuantifier();
}
else {
Util.out( "Ups: got null quantifier" );
return null;

}
public static CathMatcher getCathMatcher()

return CathMatcher.parse( properties.getProperty(
DIAG_RE));
}

public static Diagram [] getDiagrams()

CathMatcher cm = getCathMatcher();
return Diagram.selectDiagrams(
getHolder().diagrams, cm );

public static DataSetGenerator.Splitter getSplitter()

if( true )
return DataSetGenerator.getSplitter(
Integer.parselnt( properties.getProperty( "level") ), 15
String id = properties.getProperty( SPLITTER );
if( id.indexOf( "Training" ) 1= -1)
return
DataSetGenerator.getTrainingOnlySplitter();
else if( id.indexOf( "Random" ) 1= -1)
{
int p = Integer.parselnt(
properties.getProperty( SPLITTER_ARG ) );
return DataSetGenerator.getRandomSplitter( p );

else if( id.indexOf( "Representative” ) I=-1)

int | = Integer.parselnt(
properties.getProperty( SPLITTER_ARG ) );
return
DataSetGenerator.getRepresentativeSplitter( | );
}
else
return null;

public static PrintWriter getTestOut()
{

try{ return new PrintWriter( new FileOutputStream(

properties.getProperty( TRAINING_OUTPUT_FILE_NAME ) ) );

} catch( Exception e ) { e.printStackTrace();
return null; }

public static PrintWriter getTrainingOut()

try{ return new PrintWriter( new FileOutputStream(

properties.getProperty( TEST_OUTPUT_FILE_NAME) ) );

} catch( Exception e ) { e.printStackTrace();
return null; }
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private static void printCollection( Collection c,
String prefix, int level, int lines, PrintStream out )

if( lines >= 20 && out.equals( System.out ) ) {
Util.waitForinput();
lines = 0;

else
lines++;
if(level ==0)
c=merge(c);

final String fix="";
out.printn( prefix + c.getClass().toString() + ":
"+ c.size() + " elements. " );
out.flush();
lines++;
for( Iterator i = c.iterator(); i.hasNext(); )
{
Object o = i.next();
if (0 == null)
continue;
if( 0.getClass() == Diagram.class ) {
out.printin( prefix + fix + ( (Diagram)o
).getCathEntry() );
out.flush();
lines++;
}
else
printCollection( (Collection)o, prefix + fix,
level-1, lines++, out );

return;

private static void cluster() throws Exception {

String f1 = properties.getProperty( "cluster.out"
’ PrintStream out = fl.equals( "System" ) ?
System.out : new PrintStream( new FileOutputStream( f1 )

f1 = properties.getProperty( “cluster.resout" );
PrintStream resout = new PrintStream( new
FileOutputStream( 1) );

Util.out( "Sending results to " + f1);
resout.printin( "Output started at " + new Date()

)

int level = Integer.parselnt(
properties.getProperty( "level" ) );
CathMatcher cm = getCathMatcher();

/I Quantifiers:
Quantifier [] g = new Quantifier[ 5 ;
for(inti=0;i<4;i++) {
properties.setProperty( "quantifier.argument”,
Integer.toString(i ) );
q[ i ] = getQuantifier();

q[ 4 1 = new PairwiseQuantifier();
out.println( "Cathmatcher: " + cm );

Diagram [] diagrams = Diagram.selectDiagrams(
getHolder().diagrams, cm);
Diagram.stringID = level;

out.printin( "\n\n\nLevel " + level + ":");

out.print( "Getting cath classification" );

Util.tock();

final int[] cathClassification =
CathClassificationEngine.fastClassify( diagrams, level );

final int m;

HashSet set = new HashSet();
for(inti=0; i < cathClassification.length;
i++)
set.add( new Integer( cathClassification[ i ]

m = set.size();
out.printin( " done, " + m + " categories. (" +
Util.tick() + " millis)\n" );
final int monty = Integer.parselnt(
properties.getProperty( "monty" ) );

/I For each quantifiers:
for(int func = 0; func < g.length; func++)

Util.tock();
out.pr int( "Calling quantifer..." );



X, m);

final float[][] x = q[ func ].valueOf(

diagrams );

out.printin( "done (" + Util.tick() + "

millis)" );

out.print( "Calling isodata algorithm, level="

+ level +", diags=" + diagrams.length

+" g="+q[func]);
Util.tock();
final int [] classification = Isodata.cluster(

out.printin( * done (" + UtiLtick() + "

millisecs)" );

out.print( "Getting original statistics: " );
Util.tock();
float [] firstStats =

ClassificationComparator.fastStats( cathClassification,
classification );

out.printin(" ... done (" + Util.tick() + "

millisecs)" );

out.print( "Getting Hubert for original values"
Util.tock();
final int N = x.length;

/I Generate a proximity matrix to use with

hubert:

final float[][] P = new floatf N ][ N ];
for(inti=0;i<N;ji++)
for(intj=0;j<N;j++)
P[i][j]=Isodata.sqeu( x[i], X[j]

/I Generate another proximity matrix to use with

hubert:

final float[][] Y = new floatf N ][N ];
for(inti=0;i<N;i++)
for(intj=0;j<N;j++)
Y[i][j] = classification[ i ] ==

classification[j]? 0 : 1;

final float origHubert =

ClassificationComparator.hubert( P, Y );

out.println( " done (" + Util.tock() + ",

origHubert=" + origHubert );

out.print( "Getting " + monty + " Monte-Carlo

classifications and comparing them" );

Util.tock();
final float[] mchuberts =

ClassificationComparator.montecarlohubert( P, monty, m,
new Random() );

out.println( " done (" + Util.tick() +"

millis), origHubert=" + origHubert );

resout.printin(); resout.printin();

resout.printin();

resout.printin( "Got isodata classification:

resout.printin(" level="+ level );
resout.printin( " cath.size=" +

cathClassification.length );

resout.printin(" clust.size=" +

classification.length );

resout.printin(" g="+q[ func]);
resout.printin();
resout.println( "Standard indices: " );

String [] names =

ClassificationComparator.NAMES;

for(inti=0; i< names.length-1; i++)
resout.printin("* "+ names[i]+""

+ formatFloat( firstStats[i]) );

resout.printin( + names[ names.length-1
+": " + (firstStats[ names.length-11) );

float hub = 0;

for(inti=0; i< mchuberts.length; i++)
hub += mchuberts[ i ];

hub /= mchuberts.length;

resout.printin( "Origiginal hubert: " +

formatFloat( origHubert ) + "(" + formatFloat( hub ) +

)

resout.println( "Average mc-hubert: " + hub

resout.println( "Largest mc-hubert: " +

mchuberts[ mchuberts.length-1]);

resout.printin(); out.printin();
resout.flush();

}

resout.printin( "Output ended at " + new Date() );
resout.close();

}

protected static NumberFormat dnf =
NumberFormat.getNumberinstance( Locale.US );
static

dnf.setMaximumFractionDigits( 2 );
dnf.setMinimumFractionDigits( 2 );
dnf.setMaximumintegerDigits( 3 );
dnf.setGroupingUsed( false );

}

protected static String formatFloat( float d )

{
StringBuffer sb = new StringBuffer();
FieldPosition fp = new FieldPosition(
dnf.INTEGER_FIELD );
dnf.format(d, sb, fp);
int missing = 3 - fp.getEndIndex();

for(inti=0; i < missing; i++)
sh.insert(0,"'");

return sb.toString();
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ns.tops.Stat

package ns.tops;

import ns.Util;

import ns.tops.diagram.*;
import ns.tops.cath.*;
import ns.tops.distances.*;

import VisualNumerics.math.Statistics;
import java.util.*;
import java.io.*;

/** A class for obtaining and displaying statistical

* information about quantifiers and sets of diagrams.
*
|

public class Stat
implements java.io.Serializable, PropLanguage,
TopsConstants

{
static Properties properties = Main.properties;
public static void main( String [] args )

{
doit();

public static void doit()

Diagram [] diags = Diagram.selectDiagrams(
Main.getHolder().diagrams, Main.getCathMatcher() );

System.out.printin( “Statistics for " +
Main.getCathMatcher() + "(" + diags.length + " diags):
\n");

stat( diags, Main.getQuantifier(), new PrintWriter(
System.out, true ) );

}
public static void stat( Diagram[] diags, Quantifier ¢,
PrintWriter out ) {
float [J[] data = getData( diags, q );
final int [] tabs = { 20, 10, 10, 10, 10, 8 };
String [] fields = { "Field", "Average", "VarCoEff",
"Kurtosis", "Std dev", "Total" };
String [] headers = q.getHeaders();
for(inti=0; i < fields.length; i++)
out.print( Util.rightPad( fields[ i ], tabs[i])
' out.printin();
for(inti=0;i < g.getSize(); i++)
{
out.print( Util.rightPad( headers[ i ], tabs[ 0]
for(intj = 0; j < data[i].length; j++)
out.print( Util.rightPad( formatFloat( data[
il[j] 4) tabs[j+1]));
out.printin();

out.printin();

public static float [J[] getData( Diagram [] diags,
Quantifier r )

/I First, avoid exceptions:
if( diags == null || r == null') return null;

/I Util.verboseO( "Calculating values, " +
diags.length + " diagrams:" );

/I Run through all diagrams, get values, compute
average, stddev and total

float [J[] ar = new float[ diags.length ][
r.getSize() |;

for(inti=0; i < diags.length; i++)

ar[i] = r.valueOf( diags[i]);

/I Compute std and average for each collumn of ar
float [J[] getData = new float[ r.getSize() ][5 ];
for(inti=0; i < r.getSize(); i++)

float [] da = new float[ ar.length ];
for(intj = 0;j < ar.length; j++)

{
) da[j] = arfj][il;
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float std = (float)
Statistics.standardDeviation(
QuantifierDistance.transform(da) );

float ave = (float) Statistics.average(
QuantifierDistance.transform( da ) );

float coVar = (float) (std / ave);

float kurt = (float) Statistics.kurtosis(
QuantifierDistance.transform(da ) );

float sum = ave*da.length;
getData[i][0] = ave;
getData[i][ 1] = coVar;
getData[ i ][ 2] = kurt;
getData[ i ][ 3] = std;
getData[i][4]=sum;

}

return getData;

public static void printStats( Diagram [] diags,
Quantifier q, PrintWriter out )

/I Assumes qg.getSize() and q.getHeaders().length
matches!

Util.debug( "printStats called, " + diags.length +
" diagrams, g="+q,5);

final int [] tabs = { 20, 10, 10, 10, 10, 8 };
String [] fields = { "Field", "Average",
"VarCoEff", "Kurtosis", "Std dev", "Total" };

String [] headers = g.getHeaders();

/I First get the data:
float [][] data = getData( diags, q );

for(inti=0;i < fields.length; i++)
out.print( Util.rightPad( fields[ i ], tabs[i]

)
out.printin();
for(inti=0; i< q.getSize(); i++)

out.print( Util.rightPad( headers[ i ], tabs[ 0
N
for(intj = 0; j < data[i].length; j++)
out.print( Util.rightPad( formatFloat( data[
i1j].4), tabs[j+1]) );
out.printin();

out.printin();

public static String formatFloat( float d, int digits

{
int exp = (int) Math.pow( 10, digits );
int newlInt = (int) ( d*exp );
String formatFloat = " + (float) newlInt/exp;
Util.debug( "exp: " + exp + ", newInt: " + newlInt +
" s:" + formatFloat + ", d: " +d, 15);

return formatFloat;

}



ns.tops.FileManager

package ns.tops;

import ns.Util;

import ns.tops.diagram.*;

import ns.tops.cath.*;

import ns.tops.parser.TopsParser;
import ns.tops.distances.*;

import banda.stat.clust.*;

import java.lang.reflect.*;
import java.io.*;

import java.util.*;

import java.util.zip.*;
import java.text.*;

/** FileManager class: Used to update database, load
files etc.
*

public class FileManager implements PropLanguage,
TopsConstants

/I Some defaults
protected static final String [] zipExts =
(" " deflated”, ".zip", ".gz" };
protected static final Properties properties =
Main.properties;

public static void main( String [] args) throws
Exception

return;

}

public static Map readProps()

return DomainProperty.readProps();

public static Map readCATH()

Map readCATH = null;
try

readCATH = CathEntry.readCATH( getReader(
properties.getProperty( CATH_FILE ) ) );
Jcatch( Exception e ) { e.printStackTrace(); }

if( readCATH == null )
Util.bug( "pokker!!" );
else

return readCATH;

/** Reads the original source files, creates the
* data file used internally and returns the data.

*/

public static Holder updateAll()

Holder myHolder = new Holder();
try

long t1 = System.currentTimeMillis();
/I Get folders and stuff:

String dataFolder = properties.getProperty(
DATA_FOLDER);

String cartoonsFile = properties.getProperty(
CARTOONS_FILE );

String rulesFile = properties.getProperty(
RULES_FILE);

/I Properties:
myHolder.props = DomainProperty.readProps();

/I Cath
myHolder.cath = readCATH();

/I diagrams:

Reader r = new InputStreamReader(
getlnputStream( cartoonsFile ) );

myHolder.diagrams = Diagram.readDiagrams(
r, null, myHolder.cath );

Il rules:
myHolder.rules = (Rule[]) TopsParser.parseRules(
new FilelnputStream( rulesFile ),
myHolder.props ).
toArray( new Rule[ 0] );

/I Done, now serialize and quit.

saveHolder( myHolder );

long elapsed = ( System.currentTimeMillis() - t1
) /1000;

Util.verbose( "Total time: " + elapsed + "
secs)" + EOL );

}
catch( Exception e ) { e.printStackTrace(); }

return myHolder;

I** Writes the data to the location specified in
* the properties file.
*
/

public static void saveHolder( Holder h)

Util.verbose0( "Writing data : ", 2 );
long t1 = System.currentTimeMillis();
try

ObjectOutputStream s = new ObjectOutputStream(
getOutputStream( properties.getProperty(
DATA_FILE)));
s.writeObject( h.cath );
Util.verboseO( "cath ", 2 );

s.writeObject( h.props );
Util.verboseO( "props “, 2 );

s.writeObject( h.rules );
Util.verboseO( "rules ", 2 );

s.writeObject( h.diagrams );
Util.verboseO( "diagrams ", 2 );

s.close();
catch( Exception e )
e.printStackTrace();
I}ong elapsed = ( System.currentTimeMillis() - t1 )

/1000;
Util.verbose( "done (" + elapsed + " secs)", 2);

}

/** Loads the data from the location
* specified in the properties file.
*

public static Holder loadHolder()
Util.verboseO( "FileManager: Reading data from
disk: ", 2);
System.out.flush();
long t1 = System.currentTimeMillis();

Holder h = new Holder();
try

ObjectinputStream s = new ObjectinputStream(
getinputStream( properties.getProperty(
DATA_FILE)));

h.cath = (HashMap) s.readObject();
Util.verbose0( "cath ", 2 );
System.out.flush();
h.props = (HashMap) s.readObject();
Util.verbose0( "props “, 2 );
System.out.flush();
h.rules = (Rule[]) s.readObject();
Util.verboseO( "rules ", 2 );
System.out.flush();
h.diagrams = (Diagram[]) s.readObject();
Util.verboseO( "diagrams ", 2 );
s.close();

} .

catch( ClassCastException e )

{
updateAll();

catch( Exception e )
e.printStackTrace();

}

long elapsed = ( System.currentTimeMillis() - t1)

/1000;
Util.verbose( "done (" + elapsed + " secs)", 2);
return h;
/** Returns a BufferedReader for the given filename.
* Unzip zipped files if fname ends with gz(ip).
*

public static BufferedReader getReader( String fname )
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return new BufferedReader( new InputStreamReader(
getinputStream( fname ) ) );

/** Returns an OutputStream for the given filename.
* Unzip zipped files if fname ends with gz(ip).
* @return BufferedOutputStream or GZipOutputStream
*
public static OutputStream getOutputStream( String
fname )

try

final int bufsize = 5*1024*1024;
Iloverkillisneverenough
String zipTarget = ".gz";
if( fname.indexOf( zipTarget ) I=0)
return new GZIPOutputStream(
new FileOutputStream( fname ), bufsize );
else
return new BufferedOutputStream(
new FileOutputStream( fname ), bufsize );
} catch( Exception e ) { e.printStackTrace();
return null; }

/** Returns an buffered InputStream for the given
filename.

* Zips if fname ends with gz(ip).

* @return BufferedInputStream or GZipInputStream

*

public static InputStream getlnputStream( String fname

{
try

final int bufsize = 5*1024*1024;
Iloverkillisneverenough
String zipTarget = ".gz";
if( fname.indexOf( zipTarget ) !=0)
return new BufferedIinputStream(
new GZIPInputStream( new
BufferedinputStream(
new FilelnputStream(
fname ) ), bufsize ), bufsize );
else
return new BufferedIinputStream(
new FilelnputStream( fname ), bufsize );
} catch( Exception e ) { e.printStackTrace();
return null; }

/** Creates a gzip-file.
* The file is untouched, a new file named fname.gz
in the same
* dir is created.
* @param fname The name of the file to be gzipped.
*

public static void gziplt( String fname )

int cacheSize = 1024*1024;
try

long t1 = System.currentTimeMillis();

File inFile = new File( fname );

Util.verbose( "Opening input file " + inFile);

InputStream is = new BufferedinputStream(
new FilelnputStream( inFile ), cacheSize );

File outFile = new File( fname + ".gz");
Util.verbose( "Opening output file " + outFile

OutputStream os = new GZIPOutputStream(
new FileOutputStream( outFile ), cacheSize );

Util.verbose( "Zipping file: " );

byte [] buf = new byte[ cacheSize ];
boolean finished = false;
while( ! finished )

if(is.available() > cacheSize )
is.read( buf );
else
buf = new byte[ is.available() ];
is.read( buf );
finished = true;
os.write( buf );
is.close();
os.close();
buf = null;

long elapsed = (
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System.currentTimeMillis() - t1 ) / 1000;
Util.verbose( "Done zipping (" + elapsed +
secs.)");

catch( Exception e )

Util.err( "Error: " + e );
e.printStackTrace();
System.exit( 1 );

}

/** Unzips a gzip-file.
* The file is untouched, a new file named fname
* minus gz in the same dir is created.
* @param fname The name of the file to be gzipped.
*

public static void gunziplt( String fname )

int cacheSize = 1024*1024;
try

long t1 = System.currentTimeMillis();

File inFile = new File( fname );

Util.verbose( "Opening input file " + inFile );

InputStream is = new GZIPInputStream(
new FilelnputStream( inFile ), cacheSize );

File outFile = new File(
fname.substring( fname.length() - 3) );
Util.verbose( "Opening output file " + outFile

)
OutputStream os =
new BufferedOutputStream(
new FileOutputStream( outFile ), cacheSize
)

Util.verbose( "Unzipping file: " );

byte [] buf = new byte[ cacheSize |;
boolean finished = false;
while( ! finished )

if( is.available() > cacheSize )
is.read( buf );
else

buf = new byte[ is.available() J;
is.read( buf );
finished = true;

os.write( buf );

is.close();
os.close();
buf = null;

long elapsed = ( System.currentTimeMillis() - t1
)/ 1000;

Util.verbose( "Done unzipping (" + elapsed + "
secs.)");

catch( Exception e )
Util.err( "Error: " + e );

e.printStackTrace();
System.exit( 1);



ns.tops.DataSetGenerator

package ns.tops;

import ns.Util;

import ns.tops.cath.*;
import ns.tops.parser.*;
import ns.tops.diagram.*;

import java.io.*;
import java.util.*;

/** Class that generates test- and training sets. */

public class DataSetGenerator
implements PropLanguage, TopsConstants

0%
public static final int SOM = 0;
11
public static final int LVQ = 1;

public static int state = SOM;
public static int level = 1;

I** A splitter! */
protected interface Splitter

public void add( Diagram d, Collection trainingSet,
Collection testSet );
}

public static void main( String [] args ) { doit(); }

public static void doit()

{
PrintWriter testOut = Main.getTestOut();
PrintWriter trainingOut = Main.getTrainingOut();
Quantifier g = Main.getQuantifier();

state = Integer.parselnt(
Main.properties.getProperty( "state" ) );

String top = Main.properties.getProperty( TOPOLOGY
)

level = Integer.parselnt(
Main.properties.getProperty( "level") );

String header = " + g.getSize();
if( state == SOM )
header +="" + top;

testOut.printin( header );
trainingOut.printin( header );

generateDataSet( Main.getDiagrams(), g,
Main.getSplitter(), testOut, trainingOut );

trainingOut.flush(); trainingOut.close();

testOut.flush(); testOut.close();

public static Splitter getSplitter( final int levels,
final int percent )

return new Splitter()

final int | = levels;

final int p = percent;

final Map map = new HashMap();

protected final Random randomizer = new Random(
1);

public String t( Diagram d )

CathEntry ce = d.getCathEntry();
StringBuffer sb = new StringBuffer( "™ +
ce.get(l));
for(inti=2;i<=1;i++)
sb.append( "." + ce.get(i) );
return sh.toString();

public void add( Diagram d, Collection
trainingSet, Collection testSet )

{
if( map.put(t(d), d)==null||
randomizer.nextint( 100 ) < p-1)
testSet.add(d);
else
trainingSet.add(d );

}
public String toString() { return
"supersplitter(" + 1 +"," +p +")"; }

h
}
/** All diagrams goes to trainingset. */
public static Splitter getTrainingOnlySplitter()
{

return new Splitter()

{

public void add( Diagram d, Collection
trainingSet, Collection testSet )

trainingSet.add( d );

}
public String toString() { return
“TrainingOnly()"; }

/** Percent % goes randomly to testset, the rest to
trainingset. */

public static Splitter getRandomSplitter( final int
percent )

return new Splitter()

protected final long seed = 1;
protected final Random randomizer = seed == -1 ?
new Random() : new Random( seed );

final int p = percent;
public void add( Diagram d, Collection
trainingSet, Collection testSet )

if( randomizer.nextint( 100 ) < p)
testSet.add(d );

else
trainingSet.add( d );

}
public String toString() { return "Random(" + p
oy

}

/** One of each cath category goes to test, the rest
to trainingset. */

public static Splitter getRepresentativeSplitter(
final int levels )

return new Splitter()

final int | = levels;
final Map map = new HashMap();
public String t( Diagram d )

CathEntry ce = d.getCathEntry();
StringBuffer sb = new StringBuffer( ™" +
ce.get(1));
for(inti=0;i<=1;i++)
sh.append("." + ce.get(i));
return sh.toString();

public void add( Diagram d, Collection
trainingSet, Collection testSet )

if( map.put(t(d),d)==null)
testSet.add(d);

else
trainingSet.add( d );

}
public String toString() { return
"Representative(" + | +")"; }
h
}

protected static void writeSet( Quantifier g,
Collection c, PrintWriter out )

if(q ==null || c == null | out == null')
return;
for( Iterator i = c.iterator(); i.hasNext();
out.print( stringOf( g, i.next() ) + EOL) )

out.close();

protected static String stringOf( Quantifier g, Object
0){
if( state == LVQ )
return q.stringOf( 0 );

Diagram d = (Diagram) o;
StringBuffer res = new StringBuffer( g.stringOf( d,
false ) );

res.append( d.getCathEntry().get( level ) );
return res.toString();

}

/** The method. */

public static void generateDataSet( Diagram [] diags,
Quantifier g, Splitter sp, PrintWriter testOut,
PrintWriter trainingOut )

Util.verbose( "generateDataSet: ", 3 );
Util.verbose(" " + diags.length + " diagrams", 3

Util.verbose(" Quantifer: " +q, 3);
Util.verbose(" Splitter: " + sp, 3);
Util.verbose(" testOut: " + testOut, 3 );
Util.verbose(" training: " + trainingOut, 3 );
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Util.verbose(" stringID: " + Diagram.stringID, 3

int stringerType = Integer.parselnt(
Main.properties.getProperty( generatorOutputType ) );

int stringerLevels = Integer.parselnt(
Main.properties.getProperty( generatorOutputLevels ) );

Util.verbose0( " Splitting...", 5);
Collection testSet = new Vector(), trainingSet =
new Vector();
for(inti=0; i < diags.length; i++)
sp.add( diags[ i ], testSet, trainingSet );

Util.verboseO( " done, writing test... ", 5);

writeSet( g, testSet, testOut );
Util.verboseO( " done, writing training...", 5 );
writeSet( g, trainingSet, trainingOut );
Util.verbose( " done.", 5);

return;
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Ve

* Main TOPS parser.
*
/

options

LOOKAHEAD = 1;
OPTIMIZE_TOKEN_MANAGER-=true;
STATIC=true;
FORCE_LA_CHECK=true;
ERROR_REPORTING=false;

}

PARSER_BEGIN(TopsParser)
package ns.tops.parser;

import ns.Util;

import ns.tops.*;

import ns.tops.diagram.*;
import ns.tops.cath.*;

import java.util.*;
import java.io.*;

/** Generated class to parse data files. */

public class TopsParser implements TopsConstants

{

// Used when parsing rules:
protected static Map myProps =
DomainProperty.readProps();

/I Used when parsing Diagrams:

protected static SSE [] curSSEs;

protected static Map myCathMap =
FileManager.readCATH();

/** The main method tests the integrity of the given
datafiles.*/
public static void main( String [] args )
throws ParseException, FileNotFoundException

Util.tock();
System.out.print( "Starting to parse: " );

Collection elements;
Iterator i;

elements = parseRules( new FileInputStream( args[1]
), myProps );

System.out.printin( "done in " + Util.tick() + *
millisecs. ");

System.out.printin( “Total: " + elements.size() );

i = elements.iterator();

i.next();

System.out.printin( "Sample: " + i.next() );

elements = parseDiagrams(
new FilelnputStream( args[0] ), myCathMap

System.out.printin( "done in " + Util.tick() + *
millisecs. ");

System.out.printin( "Total: " + elements.size() );

i = elements.iterator();

i.next();

System.out.printin( "Sample: " + i.next() );

public static Rule parseRule( String rule, Map props )

try{
myProps = props;
if( jj_initialized_once )
Relnit( new StringReader( rule ) );
else
new TopsParser( new StringReader( rule ) );
return Rule();

}
catch( Exception e ) { e.printStackTrace(); return
null; }

public static Collection parseRules( InputStream is,
Map props )
{

try{
myProps = props;
if( jj_initialized_once )
Relnit(is);
else
new TopsParser( is );
return RuleFile();

}
catch( Exception e ) { e.printStackTrace(); return
null; }



public static Collection parseRules( Reader r, Map
props )
{

try{
myProps = props;
if( jj_initialized_once ) Relnit(r );
else new TopsParser( r);
return RuleFile();

}
catch( Exception e ) { e.printStackTrace(); return
null; }

public static Collection parseDiagrams(
InputStream is, Map cathmap )

try{
myCathMap = cathmap;
if( jji_initialized_once ) Relnit( is );
else new TopsParser( is );
return DiagramFile();

}
catch( Exception e ) { e.printStackTrace(); return
null; }

public static Collection parseDiagrams( Reader r, Map
cathmap )

try{
myCathMap = cathmap;
if( jji_initialized_once ) Relnit(r);
else new TopsParser(r);
return DiagramFile();

}
catch( Exception e ) { e.printStackTrace(); return
null; }

public static Diagram parseDiagram( String diag, Map
cathmap )

try{
myCathMap = cathmap;
if( jj_initialized_once )
Relnit( new StringReader( diag ) );
else
new TopsParser( new StringReader( diag ) );
return Diagram();

catch( Exception e ) { e.printStackTrace(); return
null; }

}

public static void printDiagram( Diagram d ) {
printDiagram( d, System.out ); }
public static void printDiagram( Diagram d,
PrintStream out) {
out.printin( d.unparse() );

}
}

PARSER_END( TopsParser )

/I Initial definitions:

SKIP : /* WHITE SPACE */
| "\

| "\

[\

| "\

}

SPECIAL_TOKEN : /* COMMENTS */
{

< PERCENT_COMMENT: "%" (~["\n","\r"])*
(W ARY) >

| < HASH_COMMENT: "#" (~["\n","\r"])*
\n""\r"\r\n") >

| < BAD_INPUT_FILE: "bad_inputfile.\n" >

TOKEN: /* LITERALS */

< INT: (<DASH> )? <DECIMAL_LITERAL> >
| <#DECIMAL_LITERAL: ( (['1"-"9"] (["0"-"9"])* ) |

v ((0™-"9"])* (KEXPONENT>)?
o fg D)2
k 9"])+ (REXPONENT>)?
([ F D)2
| ([0"-"9"]}% <EXPONENTS (["F" "d" "D'])?

| (["0"-"9"])+ (KEXPONENT>)? ["f","F","d","D"]
>

| <#EXPONENT: ["e",
| < STRING_LITERAL: " ( ~["\"
}

N+ >

TOKEN : /* IDENTIFIERS */
{

< |d: <LETTER> (<LETTER>|<DIGIT>)* >
| <#LETTER:["_", "A"-"Z","a"-"z"]>
| <#DIGIT: ['0"-"9"]>

TOKEN : /* SEPARATORS */

< SEPARATOR: ":-" >
| <LPAREN:"("
| <RPAREN:
| <LBRACE:"
| < RBRACE:
| <LBRACKET: "["
| < RBRACKET:
| < SEMICOLON:
| < COMMA: "" >

vV VvV

/* Diagram:==
c(DomainName,
ListOfNodeNumbers,
ListOfHbonds,
ListOfFixedStructures,
ListOfChiralities ):-
SetsOfNodeAssignments.

*

Collection DiagramFile() :

1/ ParseUnit: a file containing a set of diagrams
Diagram x; Collection ¢ = new ArrayList();

(x = Diagram() { c.add( x ); } )* <EOF>
{returnc;}

}

Diagram Diagram():
{ String name; SSE [] sses; HBond [] hbonds;
Structure [] structs; Chirality [] chirs; }

<ld>

<LPAREN>
name = quotedString() <COMMA>
sses = InitialListOfNodeNumbers() <COMMA>
hbonds = ListOfHbonds() <COMMA>

structs = ListOfFixedStructures() <COMMA>
chirs = ListOfChiralities()
<RPAREN>
<SEPARATOR> SetsOfNodeAssignments( sses ) <DOT>

Diagram d = new Diagram( name, sses, structs,
hbonds, chirs);
d.setCathEntry( ( CathEntry ) myCathMap.get( name )

return d;

SSE [] InitialListOfNodeNumbers():

{ Token x; Collection ¢ = new ArrayList(); }

<LBRACKET>
(x = <Id>{ c.add( new SSE( x.toString() ) ); }
( <COMMA> x = <Id> { c.add( new SSE( x.toString() )

%1)*)?

' <RBRACKET>

{
CcurSSEs = (SSE[]) c.toArray( new SSE[0] );
return curSSEs;

SSE [] ListOfNodeNumbers():
{ SSE s; Collection ¢ = new ArrayList(); }

<LBRACKET> (s = nodeld() { c.add( s ); }
(<COMMA> s = nodeld() { c.add(s ); } )*)?
<RBRACKET>
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{ return (SSE[]) c.toArray( new SSEJ[0] ); }
}

HBond [] ListOfHbonds():
{ Collection ¢ = new ArrayList(); HBond x = null; }

{
<LBRACKET>
(x = HbondsEntry() { c.add( x ); }
( <COMMA> x = HbondsEntry() { c.add(x ); } )*)?
<RBRACKET>
{ return (HBond[]) c.toArray( new HBond[0] ); }

HBond HbondsEntry():
{SSEf, t;intd;}

{
f = nodeld() <DASH> d = hdir() <DASH> t = nodeld()
{ return new HBond( f, d, t); }

Structure [] ListOfFixedStructures():
{ Collection ¢ = new ArrayList(); Structure s;}

<LBRACKET>

s = Fixed() { c.add( s ); }

(<COMMA> s = Fixed() { c.add( s ); } )*
2
<RBRACKET>

return (Structure[])c.toArray( new Structure[ 0 ]
}
}

Structure Fixed():
{ Token tT; SSE [] structs; }

T = <ld> <LPAREN> structs = ListOfNodeNumbers()
<RPAREN>
{
int type = UNKNOWN;
for(inti = STRUCT_START; i < struct_ids.length;

i++)
if( struct_ids[ i ].equals( tT.toString() ) )
type =i;
return new Structure( type, structs );
}

Chirality [] ListOfChiralities():
{ Collection ¢ = new ArrayList(); Chirality chir; }

<LBRACKET>

(
chir = ChiralityEntry() { c.add( chir ); }
( <COMMA> chir = ChiralityEntry() { c.add( chir );
b
)?
<RBRACKET>

{
return (Chirality[]) c.toArray( new Chirality[ O ]
);
}
}

Chirality ChiralityEntry():
{SSEf, t;inth;}

<LPAREN>
f = nodeld() <COMMA> h = hand() <COMMA> t =
nodeld()
<RPAREN>
{return new Chirality(f, h, t); }

void SetsOfNodeAssignments( SSE [] sses ):
&
{

(

NodeAssignment( sses )

<COMMA>
NodeAssignment( sses )
¥
)?
{return; }

void NodeAssignment( SSE [] sses ):
{ String id; SSE sse; }

sse = nodeld()
<EQ>
NodeDesc( sse )
{return; }
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void NodeDesc( SSE sse):
{ Token noT; Token typeT; int d; }

{
<LPAREN>
noT = <INT> <COMMA>
typeT =<ld> <COMMA>
d = dir() <COMMA>

point() <COMMA>

point() <COMMA>

(<STRING_LITERAL> | <INT>)
<RPAREN>

{
String type = typeT.toString();
if( type.equals("n"))
sse.setType( NTERM );
else if( type.equals( "c"))
sse.setType( CTERM );
else if( type.equals( "h") )
sse.setType( HELIX);
else if( type.equals( "e"))
sse.setType( STRAND );
else
throw new ParseException(
"NodeDesc(): unknown SSE type. "

sse.setNo( Integer.parselnt( noT.toString() ) );
sse.setDir(d);
return;
}
}

SSE nodeld():
{ Token x; }
{

x = <ld>
t
int i;
for(i=0;i< curSSEs.length; i++)
if( curSSEs[ i ].getName().equals( x.toString()

break;
return curSSEs[ i ];

/** Handedness: -1 (left), 0 (unknown), or 1 (right) */
int hand():

{ Token x; }

{

X = <INT>
{ return Integer.parselnt( x.toString() ); }

}

/** Directon: -1 (down), O (unknown), or 1 (up) */
int dir():
{ Token x = null; }

X = <INT>
{ return Integer.parselnt( x.toString() ); }

}

/** Directon: -1 (down), 0 (unknown), or 1 (up) */
int hdir():
¢

"h(-1)"
{return-1;}

| "h(1)"
{return +1; }

/** Point: (x,y)*
Point point():
{Tokenx, y; }

<LPAREN>
X = <INT> <COMMA> y = <INT>

<RPAREN>

{ return new Point(
Integer.parselnt( x.toString() ),
Integer.parselnt( y.toString() )

}

}

Collection RuleFile() :
{ Rule x; Collection ¢ = new ArrayList(); }
{

(x=Rule(){c.add(x);})*

<EOF>
{returnc;}

Rule Rule():
{



Token com = null; Collection dpc = new Vector();
Collection ws = new Vector();

entries( dpc, ws ) <SEMICOLON>

{

DomainProperty [] dps = (DomainProperty[])
dpc.toArray( new DomainProperty[ 0] );

Float [] ds = (Float[]) ws.toArray( new Float[ O ]

if( dps == null ||
ds ==null ||
dps.length ==0||
ds.length==0)
Util.err( "ups: Error in tops.jj, " + dps + "
and " +ds);

return new Rule( dps, ds,

(com == null ? " : com.toString() )
)i
}

}

void entries( Collection dpc, Collection ws ):

DomainProperty curP; float curw;
Token op = null;

float w;
}
{
curP = property() { dpc.add( curP ); }
(op = <STAR> | op = <DIV>) w = numeric()
if( op.toString().equals( "*") )
ws.add( new Float(w ) );
else
ws.add(w == 0.0 ? new Float( 1.0) :
new Float(1.0/w));
}
)?
{if( ws.size() != dpc.size() )
ws.add( new Float(1.0)); }
( <COMMA> entries( dpc, ws ) )?
return;
}
DomainProperty property():
{ Token x; }
x = <ld>

{ return (DomainProperty)myProps.get( x.toString() );

/I General methods

float numeric():
{ Token x; }

{
(x = <FLOAT> | x = <INT>)
{ return Float.parseFloat( x.toString() ); }

String quotedString():
{ Token x; }

X = <STRING_LITERAL>

String s = x.toString();
return s.substring( 1, s.length() - 1);

ns.clust.l sodata

package ns.clust;

import java.util. Random;
import ns.Util;

/** An implementation of the isodata algorithm.
*

public final class Isodata

/** Writes dots to stdout, to show progress. */
public static final boolean VERBOSE = true;

/** Writes some debug info to stdout, to show what's

happening.*/
public static final boolean DEBUG = false;

/** Squared Euclidean distance. */

public static float sqeu( final float [] v1, final
float [] v2)

{

float sqeu = 0;
for(inti=0;i<vl.length; i++)

sgeu += Math.pow(Vv1[i]-v2[i], 2);
return sgeu;

/** Returns an array version of a clustering.
* Complexity: O( x.length * x[ 0 ].length * m * iter
* where iter is the number of iterations
neccessary...
* typical values are < 50.
* @param m number of clusters
* @param x An array of float-vectors
* @return An array clust so that the vector
* X[i] is in cluster number clust[i]
*
public static int[] cluster( final float[][] x, final
intm ) {

/I Create the result-matrix:
final int[] b = new int[ x.length ;

/I Do the clustering
I/ final float[][] theta = theta( x, m, b );
theta( x, m, b, new Random() );

return b;

static float[][] theta( final float [][] x, final int

" final int] b, final Random random )

if( b.length != x.length )
throw new lllegalArgumentException(
"Isodata: b.length must equal x.length"

)i

final int N = x.length;
final int size = x[ 0 ].length;

final float [J[] theta = new float[ m ][ size ];

/l'Init the theta's:
for(inti=0; i < theta.length; i++)
for(intj=0;j < size; j++)
theta[ i ][ j ] = random.nextFloat();

for( boolean changed = true; changed; )

changed = false;

if( VERBOSE )
System.out.print( ".");

else if( DEBUG )
printFA( theta );

for(inti=0;i<N;i++){

/I determine the nearest theta to x[i] ->
curlndex

float curDist = Float. MAX_VALUE;

int curindex = Integer.MIN_VALUE;

nearest_theta: for(intj=0;j<m;j++)

final float dist = sqeu( theta[ j ], X[ i

if( dist==0) {
if DEBUG ) {
System.out.printin(
"Zero: theta[" +j + "], x[" +i
1
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curDist = 0;

curlndex = j;
break nearest_theta;

}
else if( dist < curDist ) {
curindex = j;
curDist = dist;
}
}

I/l 'set b(ii’) = curlndex
b[i] = curlndex;

/Idetermine theta[ ? ] as the mean of the
IIvectors x[ ? Jwith b[ 2] ==7:

/I lterate over all thetali]
for(inti=0;i<m;i++){

final float [] tempTheta = new float[ size J;
int tempSize = 0;

1/ lterate over alle x[j]:
for(intj=0;j<N;j++){

1lif b[j]==i then tempTheta += x[j] and

tempSize++;

if(b[j]==1){

for(int index = 0; index < size;

index++)

I

tempTheta[ index | += x[ j ][ index

tempSize++;
}
}

for(int index = 0; index < size; index++) {
final float t = (
tempSize == 0 ? 0 : tempTheta[ index ]

/ tempSize

)

if( theta[ i ][ index]!=t) {
theta[ i ][ index ] =t;
changed = true;

}

}
}
}

return theta;

public static void main( String [] args ) {

final Random random;

if(args.length 1= 0) {
int seed = Integer.parselnt( args[ 0] );
System.out.printin( "Using random seed " + seed

random = new Random( seed );
}
else

random = new Random();

final int N = 10000;

/I generate test set:
final float [J[] centers ={

{-15.0f, -3.0f },

{1.0f, -12.0f },

{-1.0f, -3.0f},

{1.0f, 2.0f},

{3.5f, 3.5},

{6.0f, 1.0f},

{0.5f, 3.5},

{6.0f, 100.0f }
h
final int m = centers.length;
final int size = centers[ 0 ].length;
final float [J[] x = new float[ N ][ size ];
final int[] b = new int[ x.length ];

for(inti=0;i<N;i++)
for(intj=0; j < size; j++)
x[i][j]= (float)random.nextGaussian() +
centers[ i % centers.length ][ j ];

/I Cluster and write output
System.out.print( "Clustering " + N + " vectors of

length " +

size + " into " + m + " clusters" );
Util.tock();
final float [J[] theta = theta( x, m, b, random );
System.out.printin( " done in " + Util.tick() + "

millis.");

prianA( theta );

102

}

public static void printFA( float [J[] fa ) {
System.out.printin( "-");
for(inti=0; i< fa.length; i++) {
System.out.print( “|");
for(intj=0;j<fa[ 0 ].length; j++)
System.out.print(fa[iJ[j]1+"");
System.out.printin();

System.out.printin( "-");

}



ns.clust.HierarchicalClustering

package ns.clust;

import ns.Util;
import java.util.*;

/** Main class of the clust package; creates a binary
three with

* a hierachical clustering, using the given linkage
method.

*

public class HierarchicalClustering

/I Constants

public static final int SINGLE_LINK = 0;
public static final int COMPLETE_LINK = 1;
public static final int SIMPLE_AVERAGE = 2;
public static final int TEST_LINK = 99;

protected static final boolean DEBUG = false;
protected static boolean COUNT = true;

/I Object variables:

private final Node [] nodes;
private final int method;
private final float[][] distMatrix;
private final Distance distance;

/** Whether to keep distances in the nodes or not.
* Setting this to false may improve speed.
*

public boolean keepDist = true;

/** Return the root node of the hiearchical clustering
* with the given parameters.
*
!
public static Node cluster( final Object [] data, final
Distance d, final int method )

return new HierarchicalClustering( data, d, method
).cluster();

/** Constructs a cluster object with the given
parameters. */

public HierarchicalClustering( final Object [] data,
final Distance distance, final int m)

method = m;
this.distance = distance;

nodes = new Node[ data.length [;
for(inti=0; i< nodes.length; i++)
nodes[i]=new Node( data[i]);

distMatrix = new float[ data.length ][];
for(inti=0; i < data.length; i++)
distMatrix[ i ] = new float[ i ];
for(intj=0;j<i;j++)
distMatrix[ i ][ j ] = distance.distance( data[
i], data[j]);
}

}
/** The method!! */
public Node cluster()
for( int index = nodes.length; index > 1; index-- )

{
ifl COUNT)
System.out.print( " \r' +index );

/I First: Find minimum value, assume distmatrix
OK:

float min = Float. MAX_VALUE;
int minX=-1, minY=-1;

for(inti=0;i<index; i++)
for(intj=0;j<i; j++)
if( distMatrix[ i ][j] < min)
{

min = distMatrix[i ][] ];

minX =i; // Note that i > j so that minX >
minY

minY =j;

/I Remove n[ minX ] and n[ minY ] and replace
them:

/I Create a replacement for nodes minX and minY
final Node tmp = new Node(

nodes[ minX ],
nodes[ minY ],
distMatrix[ minX ][ minY ]

/I Insert it into minY:
nodes[ minY ] = tmp;

/I Swap X with last (index-1)
nodes[ minX ] = nodes[ index-1 ];

/I Now recalculate the distMatrix:

1/ First, recalculate
for(intj=0;j<minY; j++)
distMatrix[ minY ][j] =
value(
di stMatrix[ minY ][ j ],
distMatrix[ minX ][ j ]

for(inti = minX+1; i < index; i++)
distMatrix[ i ][ minY ] =
value(
distMatrix[ i ][ minX],
distMatrix[ i ][ minY ]

/I Next, swap

for(inti=0; i< minX;i++)
distMatrix[ minX ][ i] =
distMatrix[ index - 1 ][ i ];

for(intj=minX + 1;j <index - 1; j++)
distMatrix[ j ][ minX ] =
distMatrix[ index - 11[j];
}

/I 'and that's it, me thin k...

}

/I Clear the counts?
ifl COUNT)
System.out.print( " \r');

return nodes[ 0 ];

/** Simple output method. */

public void dumpMatrix( java.io.PrintStream out, int x,
inty)
{
out.printin( "DistMatrix:" );
for(inti=1;i < distMatrix.length; i++)

for(int j = 0; j < distMatrix[ i ].length; j++)
out.print("" + ((i==Xx&&j==y) ? "
"1 Util.formatFloat( distMatrix[i][j],5)) );
out.printin();

/I Hidden methods

/I Value method: uses the field method
private final float value( float f1, float f2 )

switch( method )

{

case SINGLE_LINK: return Math.min( f1, f2 );

case COMPLETE_LINK: return Math.max( f1, f2 );

case SIMPLE_AV ERAGE: return ( f1+f2)/2;

case TEST_LINK: return 42;

default: throw( new RuntimeException( "cluster:
Unknown method.") );

}
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ns.clust.Node

package ns.clust;

import java.io.Serializable;
import java.util.*;

/** A node in a binary three. Each node is either a leaf
containing an item, or

* a non-leaf containing two sub-threes, termed right
and left.

*

public final class Node implements Serializable

{

/** Left part of paranthesised String presentation.
* See toString(). Default is '{".
*

public static String LEFT_BRACE ="{";

/** Right part of paranthesised String presentation.
* See toString(). Default is '}'.
*

public static String RIGHT_BRACE ="}";
/I Hidden variables

protected final Node left, right;
protected final Object item;
protected final boolean leaf;
protected final int mySize;
protected final int myDepth;
protected final float myDist;

/I Constructors:

Node( final Object i ) {

item =1i;

leaf = true;

mySize = 1;

myDepth = 1;

left = null;

right = null;

myDist = Float.MIN_VALUE;
}

Node( final Node |, final Node r) {
this( I, r, Float. MIN_VALUE );

Node( final Node |, final Node r, final float dist ) {
left=1;
right=r;
leaf = false;
mySize = left. mySize + right. mySize;

myDepth = Math.max( left. myDepth, right. myDepth ) +

1
item = null;
myDist = dist;
}

/I Accessors:

/** Returns true iff this node is a leaf */
public boolean isLeaf() { return leaf; }

/** Returns the number of leaf ancestors, or 1 if leaf.
*
public int size() { return mySize; }

/** Returns the height of this node's subtree, 1 if
leaf. */
public int height() { return myDepth; }

/** Returns the distance between the sub-nodes, or
Float.MIN_VALUE if not assigned. */
public float getDist() { return myDist; }

/** Returns this node's item, or null if not leaf. */
public Object getlitem() { return item; }

/** Returns the left children of this node, or null if
leaf. */
public Node getLeft() { return left; }

/** Returns the right children of this node, or null if
leaf. */
public Node getRight() { return right; }

/** Returns a paranthesied presentation of this node.
* Uses LEFT_BRACE and RIGHT_BRACE.
*
public String toString() {
if( leaf )
return getltem().toString();
else
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return LEFT_BRACE + left.toString() + ", " +
right.toString() + RIGHT_BRACE;
}

/** Adds all sub-elements to the collection c. */
public void addElements( Collection ¢ ) {
if( leaf )
c.add( item);
else {
left.addElements( ¢ );
right.addElements( c );
}
}

/** Create a collection of collections given a minimum
distance.
* If the internal distance is less than the given
parameter
* the sub-elements are returned as a collection.
* @return a Collection of collections of items.
*
public Collection collapse( float minDist ) {
Collection ¢ = new Vector();
if( leaf ) {
Collection d = new ArrayList();
d.add( item);
c.add(d);
}
else
collapse( ¢, minDist );
return c;

}
protected void collapse( Collection c, float minDist )

if( leaf || myDist < minDist ) {
Collection e = new ArrayList();
addElements( e );
c.add(e);

else {
left.collapse( ¢, minDist );
right.collapse( ¢, minDist );



ns.clust.
ClassificationComparator

package ns.clust;

import java.util.*;
import ns.Util;

/** Compares classifications.
*

public final class ClassificationComparator {
/I Constants

public static final int RAND = 0;
public static final int JACCARD = 1;
public static final int FM = 2;

public static final String [| NAMES = {"Rand ",
"Jaccard","FM "},

protected static final int SS = 0;
protected static final int SD = 1;
protected static final int DS = 2;
protected static final int DD = 3;
protected static final int SUM = 4;

protected static final boolean DEBUG = false;
public static final boolean VERBOSE = true;

protected static final String EOL =
System.getProperty( "line.separator" );

/* Returns the three implemented indices. */
protected static float[] getStats( final int [] t) {
float [] res = new float[ 3 ];
intml=t[SS]+t{SD];
intm2=t[SS]+t[DS];
intM=t[SUM;
res| JACCARD | = (t[SS]/ (float)(t[ SS] + {[
SD]+1DS]));
res[ FM ] = (float) (t[ SS ]/ Math.sgrt( m1 * m2

res|RAND ] = ({{ SS]+{[DD )/ (float)tf SUM

return res;

/* Returns the three implemented indices, given to
classifications. */

public static float[] fastStats( final int[] c1, final
intf] c2)

return getStats( getNumbers( c1, c2));

/* Returns a binary proximity matrix. */
public static boolean[][] proxMatrix( final int[] ¢ )

boolean(][] Y = new boolean[ c.length ][];
for(inti=0; i< c.length; i++)
Y[i]=new boolean[i];

for(inti=0;i<Y.length; i++)
for(intj = i+1; j < Y.length; j++)
/I Compare the pair (i, j)
YOilljI=cli]==c[j];
returnY;

/* Returns the Hubert index. */
public static float hubert( final float[][] X, final
floatl] Y)

{
if( X.length !=Y.length || X[ O ].length != Y[ O
].length )
throw new lllegalArgumentException( "hubert:
wrong sizes.");

float res = 0;
final int N = X.length;
final int M = (int) (N * (N-1) / 2);

for(inti=0;i<N-1;i++)
for(intj=0;j<N;j++)
res+=X[[J1*Y[illi L

res /= M;
return res;

/* Returns r generated Hubert indexes. */
public static float[] montecarlohubert( final
float[][] distMatrix,
final int r, final int m, final Random random )

final int N = distMatrix.length;
final float[] hubs = new float[ r ];

for(int iter = O; iter <r; iter++ ) {
if( VERBOSE )
System.out.print( "." );
/I Generate a random partition:
final int[] partition = new int[ N ];
for(inti=0;i<N;i++)
partition[ i ] = random.nextint( m );

final float[][] randMatrix = new float[ N ][ N

for(inti=0;i<N;i++)
for(intj=0;j<N;j++)
randMatrix[ i ][ j] = ( partition[i] ==
partition[j]?0:1);

hubs] iter ] = hubert( distMatrix, randMatrix );

Arrays.sort( hubs );
return hubs;

protected static int[] getNumbers( final int[] c1,
final int[] c2)

{
if( cl.length != c2.length )
throw new lllegalArgumentException(
"getNumbers: cl.length!=c2.length"
);

final int m = cl1.length;
final int[] t = new int[ 5 ];

for(inti=0;i<m;i++)
for(intj=i+1;j<m;j++){
/I Compare the pair (i, j)

final boolean s1 =cl[i]==cl[j];
final boolean s2 = c2[i] == ¢c2[]];

if(s1&&s2)
t[ SS ]++;
else if( s1 && !s2)
t[ SD ]++;
else if( !sl && s2)
t[ DS ]++;
else //if( sl && !s2)
t[ DD J++;

t[ SUM ] = t[0]+t[1]+t[2]+t[3];
return t;
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