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Chapter 1

Introduction

Wind generated surface waves are without a doubt the most striking phenomenon found

at the ocean surface. They play a significant part both in modern society and climate

variability, affecting the likes of offshore and shipping industry, and more importantly

the heat and gas exchange at the air-sea interface. Ongoing scientific work continue

to better our understanding of ocean wave physics, which are put to use in numerical

models. But as our level of knowledge improves, a higher demand for reliable measuring

tools and optimized numerical models are required if further progress are to be expected

in the future.

In this thesis focus will be made on all three sides of the aspect, wave physics,

observation/measurement and modelling. The measurements have been obtained by

a remote sensing wave radar developed and manufactured by MIROS A/S, while cor-

responding model data are deduced using a third generation wave model, WAM, run

operationally at the Meteorological Institute of Bergen, Norway(met.no). Both meth-

ods produce comparable 2D directional frequency spectra. Since neither of the two

are flawless in operation, but have different advantages, they may be used to address

shortcomings in the other. In addition, the two different approaches may be used in

hypothesis testing. While mechanisms not jet fully understood are unaccounted for in

the WAM-model, they may affect the measurements and in that way support/reject

developing theories.

The terminology used to describe wind generated surface waves often separate the

phenomenon wind-sea and swell. When wind blows across the ocean surface waves are

generated through friction between the atmosphere and ocean. As long as the velocity

of the wind is higher than the phase velocity of the waves, friction is maintained, causing

waves to grow. A growing wave system is what we refer to as a wind-sea. However, if

the wind subside, change direction or the waves evolve to the point of having the same

velocity as the wind, these waves are no longer subjected to energy transference from

the atmosphere. Such freely propagating wave systems are known as swells. In the

open ocean wave conditions are most often influenced by swell activity. The small effect

of dissipation allows swells to propagate over thousands of kilometers, giving rise to

1



2 Introduction

combined swell and wind-sea systems. Pure wind-seas are more commonly experienced

at coast-near locations.

The analysis of this thesis is based on two severe wave events from February 2000

and December 2003 taking place in the North Sea and Norwegian Sea. Both time

series are dominated by combined swell/wind-sea conditions, which may have certain

implications in wave radar observations and wave modelling. Some of the problems

encountered will be presented and discussed in the following. In addition, a general

comparison of the WAM-model and MIROS radar is carried through.

The classical works of Miles (1957) and Phillips (1957) set the framework for our

knowledge on generation of wind waves. Since then several improvements have been

made in the struggle to find an optimized parametrization of the momentum transfer-

ence at the air-sea boundary. The problem comes down to finding those mechanisms

affecting the stress, τ , between the atmosphere and the ocean, represented by

τ = ρu2
∗

= −ρa < u′w′ > (1.1)

where ρa is the air density and u′ and w′ are the horizontal and vertical turbulent

velocity fluctuations respectively. u∗ is known as the friction velocity. The time aver-

aging in eq. 1.1 is typically 20 min. Often the drag coefficient, CD, is used to relate

the wind speed to the surface stress, which is expressed by

τ = ρCDu2(z) (1.2)

A lot of effort have been laid down to find an universal relation expressing the drag

coefficient, using readily measurable quantities such as wind speed and atmospheric

stability. However, the large amount of scatter found in the experimental data indicate

that other mechanisms need to be taken into consideration.

Several studies have shown the drag coefficient to be dependant on the wave age

(e.g. Donelan et al. (1993); Smith (1980)), which is expressed by cp/u∗, where cp is the

phase speed of the wave components carrying the most amount of energy. The wave

age represents a wind-sea’s degree of development. Whereas a young sea is defined as

wave ages < 10, an old sea is defined by wave ages > 25. These field studies have

shown that the drag coefficient is increasing for younger waves. The WAM-model uses

a wave age dependent wave growth which have given high quality results. However,

in the open ocean most wave systems are close to full development, making it hard to

discern wave age effects (Drennan et al. 1999).

Focus has been directed towards how the interaction of swell may alter the drag

coefficient. Kudryavtsev and Makin (2004) presented in their work a model which

proposed a significant increase of the drag coefficient in conditions of swell opposing

weak winds, compared to situations without swell. This effect was also debated in

the works of Donelan et al. (1997) and Drennan et al. (1999), which made similar

findings. Dobsen et al. (1994) made comparisons of the drag coefficient obtained in
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pure wind-seas and in the presence of swell, but did not find the same effects. Now, if

counter-swells are stimulating a larger drag coefficient, this would further increase the

growth rate of wind-seas. This effect is not accounted for in the WAM-model. Thereby,

comparing the WAM-model with corresponding observations should give a less evolved

simulated wind-sea in the presence of opposing swell.

The oblique looking MIROS-radar is a remote sensing device measuring the di-

rectional frequency spectrum with a 30 degree directional resolution and 0.0078Hz

resolution in frequency. The physical shape of the radar is constructed to scan 180

degrees of open ocean. Highly developed signal analysis enables the radar to measure

both approaching and receding waves. However, the signal analysis is based on the

condition that only one out of two directional-frequency bins of 180 degrees ambiguity

can be represented (Grønlie 1999). How much is the quality of the 2D spectrum re-

duced in situations where two colliding wave systems are present? And in this context,

is the MIROS-radar sensitive to its heading?

In operational application the model is forced by both analyzed and prognostic

10m wind fields obtained by an independent atmospheric model. Since the analyzed

wind fields are a combination of first-guess data and observations, the wave model is

expected to perform better when forced by these winds compared to prognostic winds.

However, often the 12-24 hour wave-forecasts are of just as high quality, or even better,

as when forced by analyzed winds (Komen et al. 1996). This statement will be tested

comparing the most commonly used wave parameters, significant wave height, Hs, and

the peak period, Tp.

Several institutions around the world are currently running the WAM-model oper-

ationally. Since the model simulations require large amounts of computer power, most

users restrict the modelling to geographical limited areas. As the model allows for some

degrees of freedom, the boundary conditions can be chosen by the user, but are often

set to zero. This means all energy generated outside the boundaries are lost, which

may give significant misrepresentations when powerful distant swells produced outside

the boundaries propagate into the modelled area.

The program of this paper is therefore as follows. Chapter 2 will give an introduc-

tion to fundamental wave theory followed by a presentation of the MIROS-radar and

the WAM-model. Chapter 5 takes a closer look at the drag coefficient at the air-sea

interface. Chapter 6 gives a presentation of the data and methods used in the analysis

of chapter 7. And finally, chapter 8 offers final conclusions and future thoughts.



Chapter 2

Fundamental wave-theory

2.1 Assumptions on sea water and wave motion

In all its simplicity ocean surface waves may be summarized as the interplay of three

different forces. First of all, there must exist some kind of generating force, e.g. wind,

capable of perturbing the surface. Once the surface no longer is flat, a restoring force

striving to bring back the surface to its equilibrium state is needed. In case of wind

generated waves, this is the sum of gravity/buoyancy and the surface tension between

water particles, their individual importance depending on the spatial scale of motion,

i.e. the wavelength. Finally, the inertia of the system makes the surface overshoot

its equilibrium state. The interplay between the restoring force and inertia maintains

the oscillating motion characterizing a wave. With no other exterior forces acting on

a wave, this oscillating motion would go on infinitely. However, as there are several

additional factors affecting ocean surface waves, this is not the case.

In order to give an exact mathematical description of the phenomenon, some physi-

cal and chemical assumptions concerning sea water are often being made (WMO 1998):

• water is an incompressible fluid

1

ρw

dρw

dt
= 0 (2.1)

• water is an inviscid fluid

µw = 0 (2.2)

• motion is irrotational

∇× u = 0 (2.3)

, where ρw is the water density, µw is the water viscosity and u is water particle velocity

in the horizontal.

4



2.2 Wave definitions and basic relations 5

2.2 Wave definitions and basic relations

A wave is best described using a few simple parameters illustrated in fig. 2.1:

- x, t (mean sea-level)

6

η

crest

trough

¾ -λ

¾ -T

?

6a
6

?
H = 2a

Figure 2.1: Basic parameters used to describe a wave.

• The wave crest is the highest part of the wave above mean sea-level

• The wave trough is the lowest part under mean sea-level

• The wavelength, λ[m], is the horizontal distance between two successive crests,

or troughs

• The wave period, T [s], is the time interval between the passage of two successive

crests at a fixed point

• The frequency, f [Hz], is the number of crests passing a fixed point per second

• The wave amplitude, a[m], is the maximum displacement from the mean sea-level

• The wave height, H[m], is the difference in vertical displacement between a crest

and the adjacent trough

• The phase speed, c[m/s], or rate of propagation, is the speed the crest advances

in space

• The steepness is given by the ratio of wave height to wavelength H/λ

The most basic mathematical representation of an ocean wave is given by the sine-

curve, illustrated in fig. 2.1:

η(x, t) = a sin(kx − ωt) (2.4)

, where k = 2π/λ is the wave number and ω = 2π/T the angular frequency. A sinusoid

is a periodic progressive wave, with equal shape above and below the mean sea-level.

However, this shape is never observed at the ocean surface, where the crests are shorter
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and sharper, and the troughs longer and more shallow. Still, the equation gives a fair

representation in ocean wave physics. Notice that eq. 2.4 contains both a temporal

and a spacial coordinate able to describe the surface displacement at a fixed position,

x = const, varying in time and at a certain time, t = const, varying in space. Like all

truly periodic waves, eq. 2.4 yield the relation:

λ = cT = c/f (2.5)

The ocean surface consists of a range of wave components, each having its own

characteristics. The functional variation of angular frequency/phase speed with the

wave number is expressed by the important dispersion relation

ω2 = gk tanh kh (2.6)

⇓

c =

√

g

k
tanh kh (2.7)

, where g is the gravity and h the water depth. This relation is deduced from the

equation of motion assuming linearity and eq. 2.1-2.3.

Fig. 2.2 illustrates how the phase speed vary with wavelength, eq. 2.7. In this

context, the term deep and shallow water are meant as relative measures depending on

the ratio wavelength to depth. One often characterizes deep water as the depth where

h > λ/4 and shallow water where the depth is h < λ/25, in between is the so called

transitional depth. Based on fig. 2.2, the phase speed, eq. 2.7, reduces to

c =

√

g

k
=

√

gλ

2π
(2.8)

in deep water and

c =
√

gh (2.9)

in shallow water. This implies that all wavelengths fulfilling h < λ/25 propagate with

a constant speed only varying with depth. Waves in this range are non-dispersive as

they are not a functions of k (WMO 1998).

2.3 Orbital motion

When studying the movement of a floating object exposed to wave motion, it is ap-

parent that only the energy follows the wave, not the water particles. A buoy will

move up and down and back and fourth in an orbital motion in the direction of the

wave. In deep water the water particles have almost the same displacement in the hor-

izontal as in the vertical plane, making close to perfect circles. However, when waves
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Wavelength, λ [m]

P
h

a
se

 v
e

lo
ci

ty
, 

c 
[m

/s
]

Deep water

Transitional depth

Shallow water

λ =4h λ =25h
c=0

c=√gh

c=√gh/2

c=√g/k

c=√g/k*tanh(kh)

Figure 2.2: The phase speed of gravity waves according to the dispersion relation for increasing

wavelengths, λ, given at a constant depth. Deep water, transitional depth and shallow water are

defined by the wavelength-depth-ratio.

move into shallow water the motion becomes elliptic. In both cases the orbits decrease

exponentially with depth, only affecting the top layer of the water column.

The orbital path of a water particle covers a circumference of πH during one period,

which equals a velocity of πH/T . This corresponds to the maximum velocity in the

vertical as well as the horizontal plane. Compared to the phase speed, see eq. 2.5, the

particle velocity is small as λ in deep water most often is substantial in comparison to

πH.

As mentioned above, the orbital motion reduces with depth, meaning the particles

move slower in the horizontal plan with depth. This creates a slight forward movement

going in the direction of the wave, known as the Stokes drift. The steeper the waves

the stronger the wave-induced current. This is observed at its most extreme in the surf

zone where the Stokes drift exceeds the phase speed, causing the wave to break.

2.4 Superposition, Wave groups and Group veloc-

ity

The ocean surface is never represented by only one wave component with the same

wavelength, amplitude and direction. Its chaotic pattern is the sum of numerous com-

ponents. A simplified example is illustrated in fig. 2.3, where two separate wave

components with the same amplitude and direction, but different wavelengths interact
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and change the profile of the surface. Some places the waves are in phase and add

up, other places they are out of face and cancel each other out. This is known as

the superposition principal. Enough components interacting will create that irregular

pattern we so often observe at the ocean surface.

a)

b)

−2

−1

0

1

2

−2

−1

0

1

2

Figure 2.3: The superposition-principal: a)Two separate wave components with the same amplitude,

but different wavelengths. b)The sum of the two interacting components.

At times the ocean surface may appear somewhat orderly, much like a sinusoid.

This is most pronounced in pure swell conditions, as these types of wave systems are

characterized by a smoother ’look’. When a swell is allowed to propagate undisturbed

over a vast distance of open ocean the different wave components disperse according

to eq. 2.7.

In that way the longer wave components will separate from the shorter ones. Even

though the number of components at a fixed point may be reduced, the wave system still

consists of a range of components. Because waves tend to group together, illustrated in

fig. 2.3b), the surface appears more smooth. Despite each wave component propagating

at its own phase speed, the group as a coherent unit moves at the same speed, the group

velocity, expressed by

cg =
dω

dk
=

c

2
(1 +

2kh

sinh 2kh
) (2.10)

In deep water, h ≫ k, this reduces to

cg =
c

2
(2.11)

and it can be shown that cg = c in shallow water,h ≪ k. Eq. 2.11 will become more

evident in the next section.
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2.5 Energy in waves

As a bearer of energy, ocean surface waves separate between kinetic energy, related to

the particle motion, and potential energy, related to the displacement of the surface.

The total wave energy is equally divided between the two, which will be proven in the

following.

From general physics we know the potential energy as Ep = mghc, m being mass, g

the gravity and hc the displacement of the center of gravity. Now, considering a wave

where the mass of an unit water column above mean sea-level is m = ρwη and the

center of gravity is hc = η/2, the potential energy of one wave length equals

Ep =

∫ λ

0

ρwg

2
η2dx (2.12)

and the average potential energy per unit horizontal area [Jm−2] is given by

Ep =
ρwg

2λ

∫ λ

0

η2dx (2.13)

When the surface displacement is represented by the sinusoid, eq. 2.4, we obtain

Ep =
ρwga2

4
(2.14)

Similarly, we often find the kinetic energy equation expressed by

Ek =
1

2
mv2 (2.15)

where v is the velocity of the moving mass, m. To derive the total kinetic energy of a

wave, an integration over the whole water column is necessary. In 2 dimensions this

yields

Ek =
1

2
ρw

∫ η

−d

(u2 + w2)dz (2.16)

, where the over-bar represents an average of the velocity component in the x and z

direction. Using the fact that the particle motion is represented by

v ∼ ηekz (2.17)

in deep water, for a varying depth z, eq. 2.16 reduces to eq. 2.14, proving that there

are equal amounts of kinetic and potential energy in a propagating wave. All in all the

total amount of energy in a wave per unit water column is given by;

Etot = Ep + Ek =
ρwga2

2
(2.18)

When expressed by the wave height this may be written

Etot =
1

8
ρwgH2 (2.19)



10 Fundamental wave-theory

Based on the discussion above, it is clear that the total amount of energy can not

follow the phase velocity of a wave, as only half the energy is related to this velocity.

As stated in eq. 2.11 the energy travels with half the phase velocity which makes

sense considering the substantial difference in phase and orbital velocity. Half the

energy propagates with the phase velocity and the other half practically stands still.

Combined, the energy travels with half the phase velocity.

2.6 The wave spectrum

Theoretically it should be feasible to calculate the total amount of wave energy con-

tained by the ocean surface based on the knowledge of eq. 2.18. However, as the sea

surface is the sum of numerous wave components, the problem becomes how to separate

each wave component from the other in a system controlled by stochastic processes.

And, separating the components would only be an approximation as the ocean surface

is represented by a continuum of wave components and not discrete values. Still, in

everyday practice we operate with discrete components to simplify the calculations.

Therefore, the wave condition is described as a statistical quantity.

A wave record of the surface elevation can by means of harmonic or Fourier analysis

be decomposed into a number of sinusoids, each component having its own frequency,

amplitude and phase

η(t) = η0 +
N

∑

j=1

aj sin(jω0t + φj) (2.20)

The higher the frequency, the more insignificant the energy contained by the wave

η(t) surface elevation at time t

η0 mean surface level

j number of wave component

ω0 angular frequency of the longest wave

component fitted to the record

N total number of components

φj phase angel of the jth component

aj amplitude of the jth component;

Table 2.1: Notation used in eq. 2.20

component becomes, meaning there is a reasonable limit to n. It should be acknowl-

edged that each spectral component j of eq. 2.20 represents a frequency interval and

not only the frequency itself. Depending on the resolution, a spectral component with

frequency 0.1Hz may e.g. represent the frequency interval 0.095-0.105Hz.
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Once a time series has been decomposed into a range of sinusoids, eq. 2.20, the

squared amplitudes of each spectral(wave) component may be plotted against its fre-

quency to obtain the variance spectrum, S(f). However, more often the variance

density spectrum, E(f), is being used, which represents the squared amplitude of the

spectral component divided by the width of the frequency interval it represents. Syn-

onymously, the variance density spectrum is known as the energy density spectrum,

even though the energy density is given by the variance density times ρwg. A common

notion is simply the wave spectrum. To add to confusion, the wave spectrum often

apply to both the squared amplitude, a2, and half its value, a2/2. In the following the

latter will be preferred.

The wave spectrum is obtained using different measuring techniques or numerical

models. Depending on the apparatus or model, the spectrum is either given in one

dimension(1D), the frequency spectrum, or in two dimensions(2D), the directional fre-

quency spectrum. The frequency spectrum represents the total sea state, while the

directional frequency spectrum represents one spectrum per directional sector.

2.6.1 Moments and parameters

The wave spectrum is a statistical distribution, meaning a lot of wave parameters can

be deduced in the same way as any other statistical parameter. Most used quantity is

different orders, n, of moments, expressed by;

mn =

∫

∞

0

fnE(f)df (2.21)

where E(f) denotes the variance density per frequency, f . As noted above, in practice

E(f) is never expressed as a continuum, but rather as discrete values. When eq. 2.21

is adjusted to finite form it can be written;

mn =
N

∑

j=0

fn
j

a2
j

2
(2.22)

From eq. 2.22 the moment of zeroth order, m0, can be found. This represents

the total variance obtained by the sum of the variances of each individual spectral

component;

m0 = σ2
η =

N
∑

j=0

a2
j

2
(2.23)

Now, if we consider m0 to represent only one sinusoidal wave, m0 = a2/2, it can be

shown that the total wave energy at the ocean surface is given by Etot = ρwgm0 deduced

from eq. 2.18.

By rewriting eq. 2.19 we obtain;

Hrms =

√

8Etot

ρwg
=

√
8m0 (2.24)
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In common practice the significant wave height, Hs, is a more preferable parameter

than the root-mean-square wave height. Empirical studies have found a
√

2-relation

between these two parameters, yielding the very important expression

Hm0
= 4

√
m0 (2.25)

In other words, by taking the square-root of the area under the variance density curve

multiplied by 4, the significant wave height is deduced, which corresponds to the av-

erage height of 1
3
rd of the highest waves estimated traditionally by means of visual

observation.

Finding parameters representing different wave periods are a more complicated

matter. The ocean surface is often represented by different systems, combinations of

swell and wind sea, giving rise to bimodal and multi-modal wave spectra. In everyday

practice the peak period, Tp, is the most commonly used parameter. It represents the

period or wave component carrying the most amount of energy. fp, is the corresponding

peak frequency, related by Tp = f−1
p . In addition, the mean period, Tm01

, and mean

down-crossing period, Tm02
, is commonly used, given by

Tm01
=

m0

m1

Tm02
=

√

m0

m2

(2.26)

2.6.2 Models

In general, a wave spectrum representing a wind-sea has certain coarse features that

stay more or less the same. This self-similar characteristic of ocean waves has given rise

to different spectrum models, with the purpose of representing the wave spectrum just

by knowing a few readily measurable quantities. Historically two models have been of

significant importance, the Pierson-Moskowitz-spectrum(PM) (Pierson and Moskowitz

1964) and the Jonswap-spectrum (Hasselmann et al. 1973).

Pierson and Moskowitz (1964) defined a model spectrum for a fully developed wind-

sea based on observations and theoretical studies. They considered a constant wind

blowing over the surface without being fetch or duration limited, letting the spectrum

reach its equilibrium state, that is, where wind input equals dissipation. The variance

density spectrum is expressed by

E(ω) = αg2ω−5exp

[

−0.74

(

g

ωU19.5

)4
]

(2.27)

where α = 0.0081 is a dimensionless parameter and U19.5 is the wind speed at 19.5m

and the only required unknown. The experimental spectrum developed by Pierson and

Moskowitz (1964) yield the relation

Uωp

g
= const = 0.879 (2.28)
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which leads to a ’simplified’ version of eq. 2.27;

E(ω) = αg2ω−5exp

[

−5

4

(

ω

ωp

)−4
]

(2.29)

The PM-spectrum has one obvious shortcoming; it does not model the wave condi-

tion in situations where fetch or duration are limiting factors, which often is the case.

Observations made by Hasselmann et al. (1973) during the Joint North Sea Wave

Project led to the JONSWAP-spectrum. The model immediately got recognized and

has been used intensively in ocean surface wave literature.

The JONSWAP-spectrum is an extended version of the PM-spectrum given by

E(ω) = αg2ω−5exp

[

−5

4

(

ω

ωp

)−4
]

γδ, (2.30)

δ = exp

[

−
(ω − ω2

p)

2σ2
0ω

2
p

]

(2.31)

where σ0 = σ
′

0 for ω < ωp and σ0 = σ”
0 for ω > ωp. γ is known as the peak enhancement

factor and is what separates the JONSWAP-spectrum from the PM-spectrum, giving

the spectrum a more enhanced peak which is typical for a growing sea. σ0 adjusts the

width of the peak region.

The mean JONSWAP spectrum yields; γ = 3.3, σ
′

0 = 0.07, σ”
0 = 0.09, while α and

ωp are expressed by the following;

α = 0.076

(

gX

U2

)−0.22

ωp = 7π
( g

U

)

(

gX

U2

)−0.33

(2.32)

Fig. 2.4 illustrates the evolving Jonswap-spectrum for a 20m/s constant wind speed

varying with fetch. Notice how the components of highest frequencies and shortest

wavelengths are generated first. As the wind perseveres, the peak frequency moves

towards lower frequencies. This downshift of the spectrum continues as long as the

wind speed is stronger than the phase speed of the propagating waves, given by eq.

2.7.
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Figure 2.4: A developing Jonswap-spectrum for a 20m/s constant wind speed, varying with fetch(X)

given in kilometers.



Chapter 3

Remote wave sensing

3.1 Remote sensing fundamentals

Most remote sensing methods with the aim of measuring surface waves are using active

microwave sensors transmitting electromagnetic energy. Highly sophisticated signal

analysis has made it possible to obtain information on the wave condition at the ocean

surface by studying the reflected signal. In order to operate properly these systems are

designed to depend on a few fundamental principals which will be introduced in the

following sections.

3.1.1 Bragg scattering

Lets first consider an arbitrary transmitter of electromagnetic waves sending out energy

spreading at an angel α towards the surface, see fig. 3.1. If the surface is perfectly level

only a small area perpendicular to the surface will reflect the signal back, illustrated

in fig. 3.1a). As soon as the surface is perturbed by waves, the backscatter increases

in strength by the growing number of perpendicular facets, see fig. 3.1b) and c).
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Figure 3.1: Reflection characteristics for different surfaces, where α corresponds to the spreading

angel of the transmitted signal.
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Now, consider a narrow beam of electromagnetic waves being transmitted at a

grazing angel, θ, see fig. 3.2. Unlike fig. 3.1, here α is thought to be zero, focusing all

the energy in one direction. Be aware that the evenly spaced rays of fig. 3.2 are all

representing the narrow incoming beam. If the signal hits a rough surface perturbed

by different wavelengths coming from different directions, the signal will be reflected in

a variety of directions. Only those waves going directly toward or away from the source

will give a significant echo. In this way, backscatter from waves going in other directions

can be ignored. The strongest echo is obtained when the electromagnetic waves are

scaled to the surface waves satisfying the Bragg resonance condition, expressed by

λs =
λr

2 cos θ
(3.1)

where:

λs surface wavelength

λr radar wavelength

θ incidence angel

λr

2

λs

θ

Figure 3.2: Example where the Bragg scattering condition is satisfied using a sinusoidal wave, where

the surface wavelength and wavelength of the signal is given by λs and λr respectively. θ is the incoming

angel of the signal.

This condition is met when the backscatter from one crest has exactly an integer

number of wavelengths shorter or longer path then the backscatter from the next crest,

see fig. 3.2. Other wavelengths will not offer the same coherent scatter as wavelengths

satisfying eq. 3.1, and can therefore be filtered out(Shearman 1983).
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3.1.2 Doppler effect

The Doppler effect is the frequency modulation we experience on an everyday basis.

Take for instance the sound of a passing car that seems to send out a higher frequency

sound when approaching than when driving away. This effect is caused by the relative

movement between the sound-source and the receiver. The doppler effect is in fact

observed in all cases of wave motion, with the exception of light that needs special

consideration.

Lets first consider a stationary source sending out sound with a frequency f and a

wavelength λ = c/f , c being the phase velocity of the sound relative to the air, and

a receiver moving away from the source with a velocity vr. The receiver experiences

the speed of the sound to be less than c because it travels in the same direction as the

sound. The relative velocity between the sound and the receiver is given by c′ = c−vr,

meaning the frequency of the sound appears to the receiver to be

fr =
c′

λ
= f

c′

c
= f

(

c − vr

c

)

(3.2)

In the opposite case, where the receiver is approaching the source, the sound has a

higher relative speed than c and the frequency measured by the receiver will be given

by the same expression as eq. 3.2 with the opposite sign.

Now, consider the sound source moving at a velocity vs and the receiver being

stationary. The phase speed of the sound is still c relative to the air, but the wavelength

of the emitted signal vary. The wavelength depends on how far the source travels during

one period relative to the foregoing maxima. This means the wavelength of the sound is

shorter in the direction the source is moving λ′ = (c−vs)/f , and longer in the opposite

direction λ′ = (c + vs)/f . The frequency measured at the receiver is now given by

fr =
c

λ′
= f

(

c

c ± vs

)

(3.3)

When sound is emitted by a stationary source and reflected back by a receding

object eq. 3.2 and 3.3 may be combined to find the new frequency of the echo, given

by

fs = f

(

c − vr

c + vr

)

(3.4)

For an approaching object the new frequency is also expressed by eq. 3.4, but with

opposite signs. Now, if the frequency of the emitted and reflected signal and the phase

speed is known eq. 3.4 may be solved on behalf of vr to calculate the speed of the

moving object. What we know as the Doppler shift is the difference in frequency in

the transmitted and received echo, △f = fd = fr − fs. If vr ≪ c the Doppler shift can

be shown to be

fd =
2vf

c
=

2v

λ
(3.5)
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3.1.3 Wave-wave interaction

The interaction between small-scale capillary waves and the much larger underlaying

gravity waves is often referred to as the two scale model. The gravity waves affect the

physical shape of the capillary waves in several ways (WMO 1998):

• ”Straining”, stretching and compressing the ripples caused by the orbital motion

of waves

• Tilting the surface and changing θ in eq. 3.2

• Hydrodynamic interaction, most effectively found on the leading edge of the wave

where the wind stress is at its strongest

In this way the echo is both amplitude and frequency modulated by the indirect inter-

action with gravity waves. Remote sensing is about detecting variations in the reflected

signal caused by theses effects.

3.2 MIROS-radar

3.2.1 Features

The MIROS-module is a specially designed radar capable of measuring the directional

frequency spectrum and currents at the ocean surface. It can be either platform

mounted or installed on floating structures. In all its simplicity the entire system

consists of an antenna with a microwave transmitter and receiver and a processing

unit, illustrated in fig. 3.3. The physical shape of the antenna is constructed to radiate

a 180 degrees sector of open ocean. This is sufficient to obtain a complete representa-

tion of the total wave condition, as the radar measures both approaching and receding

waves. The free sight sector is resolved into another six sectors giving a 30 degrees

resolution, see fig. 3.3 and 3.4.

The MIROS antenna is oblique looking, transmitting electromagnetic waves at a

grazing angel θ = 10◦, almost pointing horizontally, or parallel with the surface, see fig.

3.4. E.g. when installed at a height of 70m, waves 400m away are being measured. The

periodic pulses are transmitted at a 2Hz rate. It operates in C-band, which means the

electromagnetic waves have a frequency of 5.8GHz with a corresponding wavelength of

5.17cm (Grønlie 1996).

3.2.2 Operation

The low grazing angel of the radar-signal sees to that no direct specular echo is retrieved

from the gravity waves themselves. Instead, the radar uses the two scale model relying

on the small-scale capillary waves riding on top of the much larger gravity waves.
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Figure 3.3: The MIROS-radar(left) and the corresponding assembly(right) consisting of a

transmitter/reciver-antenna, a processing-unit and a display-unit.

According to the Bragg resonance condition, see eq. 3.1, the radar obtains the strongest

echo from capillary waves with a wavelength of about 2.6cm. The echo is range-gated,

meaning other echoes from outside the footprint is excluded. The footprint is defined in

azimuth by the physical shape of the radar and in the radial by the length of the pulse

in time. With a 2Hz rate the radial depth of the footprint is small compared to the

gravity waves of interest. The radar illuminates two closely positioned footprints, see

fig. 3.4, to solve the 180 degrees ambiguity problem, commented in the next section.

The radar is working in a pulse doppler mode. Coherent pulses of electromagnetic

waves are sent toward the surface and the doppler shift in the echo is measured. The

instantaneous doppler shift, see eq. 3.5, is an indirect measure of the average water

particle velocity taken at the footprint. The low phase speed of the capillary waves

65-75m
10◦

370-425m

sector 6

sector 5

sector 4

sector 3

sector 2

sector 1

footprint 1

footprint 2

Figure 3.4: The MIROS-radar is installed at a height of 65-75m. The surface is illuminated at two

footprints at a grazing angle of 10◦, covering 6 sectors of 30◦.
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means they are proportional to the particle velocity at the surface. As described in

chapter 2, the sea surface is the sum of a great number of wave components. The

particle velocity will be, to the first order, the vector sum of the orbital motion of all

wave components present, in addition to any underlaying currents.

3.2.3 Signal processing

The process of transforming the doppler shift into a directional frequency spectra is a

complicated matter. Only a rough description will be made in the following.

The ’raw’ velocity information is a 128 seconds time series of 258 samples (2Hz).

The series is divided into smaller intervals of time T . These intervals are Fourier

transformed and the mean frequency, the Doppler frequency, is retrieved. The new time

series of Doppler frequencies is then frequency to voltage converted by multiplying with

a constant, and then Fourier transformed once more to obtain the complex amplitude

spectra. This procedure is done for both footprints. Next, the cross spectrum of the two

amplitude spectra is calculated, which provides an explicit expressions for the average

water particle velocity spectrum for both receding and approaching waves (Grønlie

1999).

Through linear wave theory, MIROS has developed a transfer function(confidential).

By multiplying the velocity spectra with the this function the desirable directional

frequency spectrum is deduced. In the following a basic understanding of the transfer

function is presented.

3.2.4 Transfer function

Lets consider a surface only perturbed by a single sinusoid with the angular frequency,

Ω. In the line of sight, the particle velocity of the surface can be expressed by

v(t) = Ω
H

2
sin(Ωt + φ) (3.6)

Based on eq. 3.5, the doppler shift is given as

fd(t) =
HΩ

λ0

sin(Ωt + φ) (3.7)

with an frequency to voltage converter, β, the new time series is expressed by

s(t) = β
HΩ

λ0

sin(Ωt + φ) (3.8)

The amplitude spectrum of eq. 3.8 will only be a single line at ω = Ω. When integrating

over all frequencies, in this case only a single frequency, the power in 3.8 is obtained

P =
1

2

(

βHΩ

λ0

)2

(3.9)
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Solving eq. 3.9 with respect to the squared wave-height gives

H2 = Pω=Ω2

(

λ0

βΩ

)2

(3.10)

From eq. 3.10 the transfer function may be defined by

TF (ω) = 2

(

λ0

βω

)2

(3.11)

considering the surface to be perturbed by a number of wave components of frequencies,

ω. This portraits the basic idea of the relation between the Doppler spectrum and the

wave-height(Grønlie 1999).

3.2.5 Output data

The MIROS output data are presented using two different formats, DF005 and DF038.

Both formats comprehend the complete directional frequency spectrum. For DF005,

the spectrum covers a total of 180 degrees, but is representing approaching and re-

ceding waves by posting positive or negative values for each directional-frequency bin.

In addition, the DF005 contains several parameters calculated by the MIROS signal

processing unit.

The 2D spectrum has a frequency resolution of 0.0078125Hz, see fig. 3.5. DF005

spans the interval 0-0.3125Hz and DF038 0.0313-0.3125Hz, see fig. 3.5. The directional

resolution is either 10 or 30 degrees and the data are posted every 15 or 20 minutes.
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Figure 3.5: Frequency resolution used by the Miros-radar, DF005 -and DF038 format



Chapter 4

Wave modelling

4.1 The wave energy balance equation

In wave modelling theoretical and observational knowledge on ocean surface waves

are combined and expressed highly mathematical. The purpose of the model is to

be a practical tool able to simulate the wave condition just by knowing a few easy

measurable quantities. Since wind is the primary force driving waves, most models

only require surface winds to operate. However, as wave models become increasingly

perfected more input parameters may be necessary to maintain progress, e.g. air-sea

temperature.

The wave spectrum is the most common way of describing the wave condition at a

ceratin location. In modelling its evolution in time and space is often calculated using

the wave energy balance equation, expressed by

∂E

∂t
+ ∇ · (cgE) = Sin + Snl + Sds (4.1)

Eq. 4.1 is only valid in deep water. Other mechanisms also affecting the wave spectrum,

like shoaling effects and currents, are not considered here.

The left hand side of eq. 4.1 constitute a local term and an advective term moving

at the group velocity, cg. The evolution of the spectrum is depending on three source

functions, wind input(Sin), nonlinear interaction(Snl) and dissipation(Sds). There are

continuous work being done to optimize the source function parameterizations. How-

ever, today still a lot of physical aspects concerning ocean waves are not fully un-

derstood. Empirical studies have only given us parts of the picture. In the following

section the source functions are briefly discussed, with primarily focus on their influence

on the wave spectrum.

4.1.1 Wind input

On short timescales wind is the only significant source of energy input to the ocean

surface apart from landslides and earthquakes below the surface. The transfer of mo-

22
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mentum between the atmosphere and ocean is a function of stress between the two

media. This process is seemingly affected by several mechanisms and will be presented

more in depth in chapter 5.

Quite a few studies on wind wave growth have been presented over the years, where

the works by Phillips (1957);Miles (1957) stick out as the milestones. Even though the

theory proposed by Miles (1957) is generally thought to give an underestimated wave

growth, it still constitutes a foundation for most studies on this topic today. Several

scientists have developed modified versions of Miles’ theory. However, these will not

be presented here. Instead a coarse description of how the wind input, Sin, affects the

appearance of the wave spectrum is given.

Fig. 4.1 illustrates how the three source terms vary with frequency in two duration

limited cases, after 3 and 96 hours respectively (Komen et al. 1996). The wind input

source function is represented by connected open circles and is as expected always

positive. The peak of the source term corresponds to the peak of the wave spectrum,

not shown in fig. 4.1, and is similar to its overall shape, besides being less energetic.

Notice how the wind input decreases with wave age, being almost divided in half

comparing 3 and 96 hours duration.

a) b)

Figure 4.1: Simulated source functions Sin, Sds and Snl for two duration limited cases obtained by

the WAM-model. a) 3 hours and b) 96 hours. Figures are taken from Komen et al.(1996)

4.1.2 Nonlinear interaction

The evolution of wind generated waves can to a certain degree of accuracy be expressed

by linear theory which is possible because waves on average are not very steep. Once

the steepness of the wave field increases, as is the case for wind-sea, the nonlinear

processes grow more important to the evolution of the wave spectrum. The effect of

nonlinear interaction is transference of energy between wave components of different

frequencies. This redistribution of energy occur when interacting wave components are
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in resonance. The process is conservative, not affecting the total amount of energy of

the wave spectrum.

The Snl is perhaps the most debated source function in the energy balance equation.

The pioneering work by Hasselmann (1962) established a theoretical framework for

the problem. His four-wave interaction model is a very complex and time consuming

integral not to be discussed here.

The nonlinear term is characterized by a three lobe structure of opposite signs. In

general, energy is being transported from frequencies around the peak of the spectrum

towards higher and lower frequencies of the spectrum, with the majority going towards

the latter. The nonlinear term is represented by connected black dots in fig. 4.1. For

young seas, see fig. 4.1a), the positive lobe at low frequencies are centered slightly to

the left of the peak frequency. This creates the downshift of the spectrum observed

in developing seas. In the case of old seas the same positive lobe is centered closer

to the peak frequency, giving a much weaker downshift. The positive lobe at the

higher frequencies is smaller, but has a stronger directional distribution, giving rise to

a broadening of the spectrum.

4.1.3 Dissipation

Dissipation is the least understood aspect of wind generated waves. Loss of energy in

the wave field can be due to several mechanisms, like the interaction of waves with

the bottom in terms of friction and wave breaking (shoaling), internal processes by

viscosity and in the surface by white capping. Here, the emphasize will be on deep

water where bottom interaction is negligible. The drain of energy by viscose processes

are well known, but only important for wave lengths in the capillary region. The main

energy loss in deep water is due to wave breaking, also known as white capping. White

capping is a strong nonlinear process hard to formulate mathematically. It is highly

irregular, where the actual threshold for breaking is not well understood(Massel 1996).

As with the two prior source functions, only the main effect of dissipation by white

capping will be presented.

Not surprisingly, also this mechanism changes with wave age. Fig. 4.1a) illustrates

how the dissipation source function is more or less the mirror of the wind input after

3 hours, only slightly weaker. For an old sea, fig. 4.1b), the effect is reduced, however

not as much as the wind input. Because the sea state is getting closer to its saturated

state, the wind input and dissipation is almost in balance.

The sum of the three source functions are illustrated by connected stars in fig. 4.1.

Notice the change in magnitude of the two functions. This is a logical behavior consid-

ering the difference in wind speed and phase speed of the dominating wave components

are getting smaller with wave age.
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4.2 A historical perspective on wave modelling

The need for reliable wave prediction models have become increasingly important in

modern society. It is essential that the likes of oil and shipping industry receive accu-

rate wave forecasts to operate in a safe and efficient manner. More than half a century

ago the first numerical wave model was established by Gelci et al. (1957). Since then

numerical modelling has come a long way. Not only do we understand the physical

aspects of ocean surface waves better, now we have computer power able to calculate

vast quantities of mathematical equations in a short matter of time. Still all numerical

wave prediction models are based on the strive to solve the wave energy balance equa-

tion with its corresponding source terms. In the lights of this we have seen the rise of

a first, second and today’s third generation models.

What mainly separates the three generations of wave models are the different ways

the source functions are parameterized. Especially the nonlinear term has been a

huge topic of discussion. At the time Gelci et al. (1957) developed their first model the

physical understanding of wind generated waves was vague, and reflected in the quality

of the model. However, around the same time the important works of Phillips (1957),

Miles (1957) and Hasselmann (1962) were published. These studies set the framework

for future wave modelling. As a consequence, a number of new models saw the daylight

in the 60s and 70s (Massel 1996).

In general, the first generation wave models did not consider any energy transference

between wave components. Nonlinearities were simply ignored, Snl = 0, or modelled

in a way that had little effect on the total energy balance. Atmospheric input by

wind, Sin, was expressed linearly and generally overestimating the energy transference.

Dissipation was modelled by establishing a limiting form of the wave spectrum where

the waves suddenly stopped growing. A f−5 saturation range was prescribed by Phillips

(1958).

After extensive field and laboratory work during the 70s doubt spread about the

quality of the first generation wave models. Scientists grew aware of the neglected

effect of nonlinearities, as the forward face of the simulated spectrum simply grew to

slow in developing seas. An attempt was also made to simulate the observed overshoot

phenomenon of the wave spectra. In the light of this new understanding a new type

of models were established. In general, we distinguish between three types of second

generation models, the discrete spectral models(DS), the parametric models(P) and the

combined hybrid models(H).

In the DS-models the wave spectrum is represented by discrete directional-frequency

bins at times t0 + n∆t at each grid point. The energy balance equation is then solved

numerically within the model area. The SWAMP-group (1985) reviewed three different

types of DS-models in which all use a linear wind input function in accordance to the

measurements of Snyder et al. (1981). They are limited in their growth by some form

of saturation spectrum depending on the stage of development. In most models the
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JONSWAP and PM spectra are used. What mainly separates these models are the

way the nonlinear source function is treated. One way of solving this problem is by

involving the Snl implicitly in the Sin and Sdis, or by giving a coarse parametrization of

the nonlinear term. The main drawback of the DS-model is the amount of calculations

needed for its execution, which is drastically reduced in the P-models.

The P-models are based on the idea that as long as the nonlinear term is recognized

as a controlling process, there are no need to express the other source functions in any

more detail. Since the models at the time did not calculate the nonlinear source function

exactly, the Sin and Sdis did not need to be expressed more precisely. Hasselmann et al.

(1976) developed the first P-model. Unlike the DS-model, the wave condition and its

evolution was characterized using only a few parameters. Unfortunately, the P-models

only apply to developing waves and is not valid for waves outside the generating area.

In other words, swell must get special attention. This is solved by combining a DS-

model with a P-model, recognized as a H-model. The P-model controls the developing

sea and the DS-model simulates the swell.

4.3 A third generation wave model: WAM(cycle-4)

The SWAMP-group (1985) concluded that all second generation models suffered from

limitations in the nonlinear source function parametrization. Generally they performed

satisfactory in fetch and duration limited cases, but showed weaknesses in extreme

events with strongly varying wind fields, e.g. hurricanes, where accurate wave pre-

diction is of special importance. By the mid-1980s numerical improvements (Hassel-

mann and Hasselmann (1985); Snyder et al. (1993)) made it possible to calculate the

Boltzmann-type integral, the nonlinear source function, explicitly. This set the frame-

work for the WAM(WAve-Model)-model which is described in great detail in Komen

et al. (1996). In the following a brief introduction of the kinematics, source function

parameterizations and numerical schemes used in the model are presented.

4.3.1 Kinematics and parametrization in the energy balance

equation

The WAM-model is of the DS-type and was first implemented in 1988. It calculates

the action density spectrum instead of using the variance density spectrum, defined by

N(f, θ) =
E(f, θ)

f
(4.2)

Depending on the model area, suitable grid coordinates are chosen. In the case of a

global model, the 2D spectrum is a function of angular frequency, propagation direction,

latitude, longitude and time, N(ω, Θ, φ, λ, t). The energy balance equation is expressed
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as follows

∂N

∂t
+ (cosφ)−1 ∂

∂φ
(φ̇cosφN) +

∂

∂λ
(λ̇N) +

∂

∂ω
(ω̇N) +

∂

∂θ
(θ̇N) = S (4.3)

in which

φ̇ =
dφ

dt
= (cgcosθ + U|north)R

−1 (4.4)

λ̇ =
dλ

dt
= (cgsinθ + U|east)(Rcosφ)−1 (4.5)

θ̇ =
dθ

dt
= cgsinθtanφR−1 + θ̇D (4.6)

ω̇ =
∂Ω

∂t
(4.7)

and

θ̇D =

(

sinθ
∂

∂φ
Ω − cosθ

cosφ

∂

∂λ
Ω

)

(kR)−1 (4.8)

where cg is the group velocity, R the radius of the earth, Ω = σ + k ·U the dispersion

relation accounting for any mean currents and S the sum of the source functions;

S = Sin + Snl + Sdis + Sbot (4.9)

Today the physical knowledge on Sin and Snl are both of such complexity, that both

terms need considerably computer power to be exactly calculated. It is therefore nec-

essary to parameterize these two source functions into more time efficient expressions.

The wind input term is based on the theory proposed by Miles (1957). By always

assuming a logarithmic wind profile, he concluded the growth rate of wind generated

waves only to depend on two parameters

x =
u∗

c
cos(θ − φ) and Ωm = κ2 gz0

u2
∗

(4.10)

where κ = 0.4 is the von Kármán constant, c the phase speed of the waves, θ the

direction in which the waves propagate and φ the wind direction. Ωm is known as

the profile parameter. These two parameters depends on the roughness of the airflow

above the surface and is therefore dependent on the sea state. The WAM-model uses

a growth rate, γ, defined by Janssen (1991) expressed as

γ

ω
= ǫβx2 (4.11)

Here, ǫ is the air-water density ratio, ρa(0)/ρw(0) and β the so-called Miles parameter,

which is defined by

β =
βm

κc
µln4(µ), µ ≤ 1 (4.12)

where βm is a constant and µ defined by

µ =
(u∗

κc

)2

Ωmexp
(κ

x

)

(4.13)
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The input source term of the WAM-model is given by

Sin = γN (4.14)

where N is the action density spectrum.

Eq. 4.10-4.14 are dependent on the stress of air flow over the surface which again

depends on the sea state. Janssen (1991) considered the momentum balance of air and

found the kinematic stress to be expressed as

τ = u2
∗

=

(

κ
U(zobs)

ln (zobs/z0)

)2

(4.15)

where u∗ is the friction velocity, zobs is the mean height above the waves and the

roughness length is defined by

z0 =
α̂τ

g
√

1 − y
, y =

τw

τ
(4.16)

τw is the stress induced by the surface waves and is defined by

τw = ǫ−1g

∫

dωdθ γNk (4.17)

Whenever the wave induced stress becomes of the order of the total stress the roughness

length gets enhanced and the momentum transfer from air to sea is more efficient.

Finally we are left with two unknown constants, βm and α̂, which have both been

estimated by comparing observational and numerical results to find the best fit. They

are found to be βm = 1.2 and α̂ = 0.01.

The dissipation term of the WAM-model has a less complicated form than the input

and nonlinear term. This is basically because dissipation by whitecapping is a highly

nonlinear term not well understood. The term is given by

Sdis = −Cdis ω̄ (k̄2 m0)
2

[

(1 − δ)k

k̄
+ δ

(

k

k̄

)2
]

N (4.18)

Here ω̄ and k̄ are the mean angular frequency and mean wave number respectively. In

practice, the constants are set to Cdis = 4.5 and δ = 0.5. It should also be mentioned

that the dissipation term by bottom friction is expressed as

Sbot = −Cbot
k

sinh(2kh)
N (4.19)

where Cbot = 0.038/g and h is the depth.

The Boltzmann-type integral is a highly time consuming expression to calculate

exactly. In the WAM-model the integral is parameterized using the DIA(discrete

interaction approximation) (Hasselmann and Hasselmann (1985); Hasselmann et al.

(1985)). Without going to much into detail, this approach applies the same integration

method used to integrate the exact source term, but instead of integrating over the

five-dimensional interaction phase space, the integration is taken over a two dimen-

sional continuum and two discrete interactions. The reader is referred to Hasselmann

and Hasselmann (1985) for an in depth presentation.
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4.3.2 Numerical schemes

Fig. 4.2 illustrates the most commonly used frequency resolution of the WAM-model,

with a minimum frequency fmin = 0.042 and a maximum frequency fmax = 0.42. In

between, the discrete frequency centers are represented by fi = (1.1)i−1fmin. This

offers a total of 25 frequency bands, i = 25, where each individual interval is defined

by ∆f = 0.1f . The frequency bands are represented in 24 directional sectors, offering

a 15◦ resolution.
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Figure 4.2: Frequency resolution used in the WAM-model

In the WAM-model, the wave spectrum distinguishes between a prognostic part,

fmin to fhf , and a diagnostic part. The diagnostic part is represented by an predeter-

mined f−5 tail and has the same directional distribution as the last frequency band of

the prognostic region. The tail is expressed given by;

E(f, θ) = E(fhf , θ)

(

f̄

fhf

)−5

for f > fhf (4.20)

, where the high-frequency limit is defined by

fhf = min{fmax, max(2.5f̄ , 4fPM)} (4.21)

With the high frequency limit the spectrum is scaled for young waves by the mean

frequency f̄ and for more developed wind-seas by the Pierson-Moskowitz-frequency

fPM = 4.57 · 10−3 (Massel 1996). The diagnostic tail is mainly needed to compute the

nonlinear transfer and the dissipation of the prognostic region. While the diagnostic

part of the wave spectrum is predetermined, the prognostic part has to be calculated

numerically by solving the energy balance equation.
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Source functions

The WAM-model uses an implicit second order scheme to simulate the evolution of the

source terms. The advantage of this scheme is found in its ability to use an integration

time-step that is greater than the dynamical adjustment time of the highest frequencies

still treated prognostically in the model.

The implicit second order, centered difference equation is expressed by

En+1 = En +
∆t

2
(Sn+1 + Sn) (4.22)

where ∆t is the time step and n refers to the time level. If the source functions had

been linear eq. 4.22 could have been solved directly. Since this is not the case a Taylor

expansion is introduced

Sn+1 = Sn +
∂Sn

∂E
∆E + ... (4.23)

Sn+1 is then expressed numerically by a discrete matrix, Mn, and divided into a

diagonal,Λn, and non-diagonal matrix, Nn

∂Sn

∂E
= Mn = Λn + Nn (4.24)

By substituting eq. 4.23-4.24 into 4.22, and considering that the source terms may

depend on the friction velocity u∗, it can be showed that the change of the wave

spectrum, ∆E = En+1 − En, is given by

∆E =
∆t

2
(Sn(un

∗
) + Sn(un+1

∗
))

[

1 − ∆t

2
Λn(un+1

∗
)

]−1

(4.25)

Computations show that the non-diagonal contribution is insignificant and is therefore

not taken into account.

Advection and refraction

The advection term of the energy balance equation is expressed in flux form and its

evolution is solved using a first order up-winding scheme. This scheme is chosen because

it is easy to implement, requiring less computer time and memory. And, the results

have been satisfactory.

Here, only an one dimensional case is illustrated, simply because the analogy to

more dimensions is straight forward. Lets consider the advection equation given by;

∂

∂t
E = − ∂

∂x
Φ, (4.26)

where Φ = cgE, then the rate of change of the spectrum in the jth grid point is given

by;

∆Ej = −∆t

∆x
(Φj+1/2 − Φj−1/2). (4.27)
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Figure 4.3: The area of which the WAM-model is run operationally at met.no. The grid spacing is

given at 50km.

Here the ∆x is the grid spacing and;

Φj±1/2 =
1

2
[vj + |vj|]Ej +

1

2
[vj − |vj|]Ej+1 (4.28)

where vj = 0.5(cg,j + cg,j±1) is the mean group velocity. This concludes the numerical

schemes used in the WAM-model.

4.3.3 The WAM-model run at met.no

Set-up/Grid and boundary conditions

At the Meteorological Institute of Bergen(met.no) the WAM-model is run operationally.

The modelled area, see fig. 4.3, has a grid spacing of ∆x = 50km and closed bound-

aries set to zero. Energy generated outside the boundaries, advected across, are not

simulated.

Input/Output

The WAM-model is, as mentioned, only dependent of 10m winds covering the mod-

elled area. At met.no these wind fields are obtained from the atmospheric model

HIRLAM-20, introduced in the next section, forcing the wave model every three hours.

Integration time step is ∆t = 15min. Wind fields for each time step are calculated

using linear interpolation in between every three hours the HIRLAM-20 simulates new

wind fields.
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Figure 4.4: At met.no the WAM-model offers output data at the following hours. -12h to 0h are

based on analyzed winds, while the rest are based on prognosis.

The software package of the WAM-model is made flexible so the user may choose the

composition of the output data, which also apply to the time intervals the simulations

are posted. At met.no two types of output formats have been used in general. Type 1

offers the full 2D directional frequency spectrum and the parameters; Hs, Tp, THp(peak

direction), Tm0−1 and Tm02 for the chosen position. In addition, the locally simulated

wind is presented. Operationally, type 1 is posted every six hours. Each output give

data representing present time (0 hours) and hindcasts for -12 and -6 hours, see fig. 4.4.

These data, including 0 hours, are based on analyzed HIRLAM wind fields. Prognosis

are given up until 60 hour in advance, illustrated in fig. 4.4.

The type 2 format only offers parametric values; Hm0, Tp, Tm02 and THp repre-

senting the total sea, wind-sea and swell, in addition to wind. This type of data are

posted every three hours.

HIRLAM

The latest version of the atmospheric model HIRLAM, version 5.2.3, was implemented

March the 20th 2003 at met.no. There are currently three different model set-ups,

HIRLAM-5, HIRLAM-10 and HIRLAM-20, in use at the institute, differing in hori-

zontal resolution, grid spacing, and area coverage. The model forcing the WAM-model,

HIRLAM-20, has the sparsest resolution with an 0.2◦ grid spacing and 468x378x40 grid

points. The boundary conditions are relaxed to ECMWF-data with an 0.5◦ spacing,

forcing the model every 3hours. HIRLAM-20 data are posted every 3hours and offers,

as the WAM-model, up to +60h forecasts. Even though the model has 40 vertical levels

of wind data, the WAM-model is only dependent on the winds of the lowest level, at

10m (Vignes 1998).



Chapter 5

The drag coefficient in the presence

of swell

The ocean-atmosphere is a coupled thermodynamic system. That is, if the characteris-

tics of one fluid changes, e.g. temperature, momentum, pressure, gas content etc., the

other will respond to obtain balance at the interface. Wind generated surface waves

are the result of momentum transference from air to sea. The exchange rate depends

on the friction between the two media, represented by the stress, ~τ . In general, the

mean horizontal momentum equation of the atmosphere can be expressed by

du

dt
= − 1

ρa

∇hp + fcu × k +
1

ρa

∂ ~τh

∂z
(5.1)

in which u is the mean horizontal velocity component, ρa is the atmospheric density,

fc is the Coriolis parameter, ~τh is the horizontal stress vector and k is the vertical unit

vector. However, the lowest part of the boundary layer, also known as the constant

stress layer, is dominated by friction, reducing eq. 5.1 to

∂ ~τh

∂z
= 0 (5.2)

The thickness of the constant stress layer varies, but is often described as the lowest

10m above the sea surface (Komen et al. 1996). The total stress, |~τh| = τ , consists of

a viscose-term and a turbulence-term

τ

ρa

= u2
∗

= νa
∂u

∂z
− u′w′ = constant (5.3)

where u′ and w′ are the horizontal and vertical components of random velocity fluctu-

ations, u∗ is the friction velocity and νa is the kinematic viscosity of air. The over bar

indicates a time averaging, usually set to 20 minutes. Only in a very thin layer close

to the ground(∼1mm) the viscose-term is of any significance. Elsewhere, within the

constant stress layer, the turbulence-term is far superior, reducing eq. 5.3 to

τ = ρau
2
∗

= −ρau′w′ (5.4)
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It has been normal practice to express the stress as a function of wind speed and a

drag coefficient, Cd, at a height z, expressed by

τ = u(z)2CD(z) (5.5)

Considering a logarithmic wind profile in neutrally stratified conditions

u(z) =
u∗

κ
ln

(

z

z0

)

(5.6)

the sea surface drag can equivalently be expressed by a roughness length, z0

Cd =
κ2

ln2
(

z
z0

) (5.7)

where κ = 0.4 is the von Kármaán constant.

In order to improve our knowledge on the growth rate properties of wind waves, it

all comes down to finding those mechanisms affecting the drag coefficient. This prob-

lem has acquired considerable attention for more than four decades (Drennan et al.

1999). Several studies have tried to parameterize the surface stress using easy mea-

surable quantities, such as mean wind speed and atmospheric stability. However, large

scatter in the data have forced the wave community to consider alternative mechanisms

affecting the stress.

It was first proposed by Charnock (1955) that the roughness length above the

sea surface varies with wind speed. Since then other studies (Smith 1980; Large and

Pond 1981; Taylor and Yelland 1996) have concluded the drag coefficient in neutrally

stratified conditions to be dependent on wind speed alone. A summary of previous

works are presented in Geernaert and Plant (1990). However, in general, only a weak

wind speed dependence has been found, with a significant scatter. The drag coefficient

varies within the individual experiments and from study to study.

The weak wind speed dependence required scientists to consider other possible

mechanisms affecting the drag coefficient. Donelan et al. (1990); Smith et al. (1992);

Donelan et al. (1992) found an additional dependence on the development of the wave

field, expressed by the wave age, cp/u∗, where cp is the phase speed of the waves at

the peak of the spectrum. It was concluded that the drag coefficient is reduced for

increasing wave ages and vice versa for young seas. This result proved to be of special

importance in near-shore areas and in intense storm situations, where conditions often

are idealized fetch or duration limited cases. However, there is a drawback with relating

the drag coefficient to the wave age. In the open ocean most wind-sea systems are close

to being fully developed. In that way, wave age effects are not easily discern.

Swell has been proposed as another possible factor influencing the wind-sea growth

rate, or the drag coefficient. So far, most studies have been conducted in laboratories,

but with inconclusive and at times contradictory results. A summary of selected earlier
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works is given in Hanson and Phillips (1999). Also based on laboratory data, Donelan

(1987) found gentle swell to significantly affect the development of wind-sea. This was

supported by the field work of Donelan et al. (1997); Drennan et al. (1999), which

reported an enhancement in the drag coefficient in conditions of swell propagating

across or opposite to the direction of the wind. Both works concluded that much of

the scatter found in the drag coefficient measurements most likely could be attributed

to the presence of swell. However, Dobsen et al. (1994), where conditions of both pure

wind-sea and mixed swell/wind-sea were investigated, did not find the drag coefficient

to be affected by swell. In the theoretical work of Kudryavtsev and Makin (2004), a

model describing the impact of swell on the atmospheric boundary layer was proposed.

The model results found the drag coefficient to be significantly enhanced in conditions

of wind opposing swell and less pronounced in cross-swell cases. It should be noted

that these results were obtained in low wind speed conditions.

While most earlier works have been based on direct stress measurements, (Donelan

et al. 1997; Drennan et al. 1999; Dobsen et al. 1994), laboratory testing (resumed

in Hanson and Phillips 1999) and theoretical approaches (Kudryavtsev and Makin

2004), there are other ways of testing the ’swell-altering effect on the drag coefficient’-

hypothesis. In the work of Ardhuin (Sub), data obtained from the east coast of the

U.S. during the SHOWEX-project, described in Ardhuin et al. 2003, was analyzed.

From August to December 1999 six buoys, giving the full 2D directional frequency

spectrum, were deployed in a line stretching about 80km off the coast. Out of the

5 months time series the 3rd of November came closest of resembling idealized fetch-

limited conditions. Fairly uniform winds(U10) blowing offshore at an angel of 20− 30◦

to the shore-normal was met by an opposing moderate amplitude swell. The measured

wave spectra were averaged over a 5 hour period from 1200 to 1700EST when the wave

conditions were fairly steady. Two numerical wave models, Wavewatch3 and Crest,

of different advection schemes, were implemented with the source functions of WAM

cycle-3 and cycle-4, with minor adjustments. The Wavewatch3 was run with a 1.5-

1.8km spacial resolution and integrated over a 60s time step. The wave conditions

of the 3rd of November were then simulated using the different model combinations

forced by short term forecast winds obtained from the COAMPS atmospheric model

run at Fleet Numerical Meteorological and Oceanographic Center. Each model was

run twice, with and without the opposing swell as a boundary condition.

Fig. 5.1 illustrates the observed and simulated wave spectra at the position of

the center buoy, located on the mid-shelf, and the outer buoy, located furthest away

from the coast. The model results obtained with the Wavewatch3 advection scheme

and the WAM(cycle-4) source terms, which basically operates in the same way as the

WAM(cycle-4) model, are represented by red left-pointing triangles and will be the

subject of discussion in the following. Notice how the model, when run without swell,

see fig. 5.1a), reproduces the wind-sea very well at the center buoy. Both energy

and peak frequency correspond satisfactory between model and observations. When
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a)

0.1 0.2 0.3 0.4 0.5 [Hz]

b)
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d)

0.1 0.2 0.3 0.4 0.5 [Hz]

Figure 5.1: Measured 1D spectra obtained during the SHOWEX-project(solid black line). Wave-

watch3 implemented with WAM(cycle-4) source functions(red left-pointing triangles). The spectra

represents a 5 hour mean from 12UTC-1700EST the 3rd of November 1999. a) and c) are obtained at

the mid-shelf, while b) and d) are taken at the outer-shelf. Simulations are given with and without an

opposing swell, relative to the wind, as a boundary condition. Figures are taken from Ardhuin(Sub)

moving to the outer buoy this situation changes, illustrated by fig. 5.1b). Ardhuin

(Sub) proposed that the slight increase in energy and downshifted peak frequency

of the measured wind-sea could possibly be explained by the effects imposed by the

opposing swell. As the model parametrization does not consider effects of swell, an

increase in the drag coefficient will not be accounted for in the simulations. It should

be noted that Ardhuin (Sub) also suggested non-stationary winds, as wind gustiness,

to be a just as likely cause for the deviation found between model and observations.

Now, when including the opposing swell as a boundary-condition the model over-

estimates the wind-sea significantly at the mid-shelf, see fig. 5.1c). This effect has

no physical interpretation, but clearly indicates deficiencies in the model, which can

be explained by a poorly parameterized dissipation-term which is based on the mean

wave number k̄. In mixed conditions of swell and wind-sea the mean wave number

becomes too large, resulting in an intensified wind-sea growth. On the outer-shelf, see

fig. 5.1d), the wind-sea is closer to a full development and the deviation is reduced.

This behavior of the model is important to the following analysis.



Chapter 6

Data & Method

6.1 Data

The following analysis is based on two severe wave events taking place in the north

North Sea -and south Norwegian Sea area. First case is related to the storm ”Edda”

that hit the coast of Norway the 11th of December 2003. This powerful low pressure

system produced significant wave heights exceeding 12m which characterizes a very

strong winter storm of this region. Second case of interest, 9-12th of February 2000,

did not experience the same wave heights, but peak periods above 22 seconds. Only

a combination of steady strong winds working over a long fetch is capable of creat-

ing similar conditions. Offshore installations like oil rigs and FPSOs are particularly

sensitive to these situations, having maximum response at periods around 25s, mak-

ing these types of events interesting in an economical and environmental sense. Both

cases to be analyzed are documented using WAM-model(cycle-4) simulations obtained

from met.no, see section 4.3.3, and MIROS-radar measurements, see chapter 3. In the

following, the two events will be referred to as the ’2003-case’ and ’2000-case’.

6.1.1 Positions and radar heading

The radar data were collected at four different locations, which are the positions of the

oil rigs, from north to south; Heidrun, Gullfaks C, Troll A and Sleipner A, see fig. 6.1.

Corresponding WAM-model data were obtained using the grid point closest to each

respective radar. However, as the model only offers simulations at a limited number

of grid points, predefined by met.no, the actual nearest grid point does not always

contain any output-data. This was solved using the nearest available simulations, see

fig. 6.1. Table 6.1 gives the positions of the corresponding measured and modelled

data, the deviating distance between the two and the water depth at each oil rig. The

deviating distance is calculated using the precise position of the grid point. However,

this is modified taking into consideration that the simulated data is a mean measure

representing a grid box of 50km and not only a single point. In addition, the shortest
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Figure 6.1: Studied area: MIROS-data are obtained from four different oil rigs in the North -

and Norwegian Sea; Heidrun, Gullfaks C, Troll A and Sleipner A, marked in black. In addition,

corresponding WAM-model-data are used, seen in green. The model grid box and grid center are

illustrated by a square and dot respectively. Grid spacing are 50km. Deviating distance between radar

and model grid center are given in table 6.1

distances separating the oil rigs are given in table 6.2.

Few oil rig constructions are exactly the same, making it unpractical or even im-

possible to always install a MIROS-radar in the preferred direction. The four radars

used in the following analysis have all different headings. Fig. 6.2 illustrates the 180

degrees of free-sight the radar covers at each respective oil rig.

Table 6.1: Positions of the MIROS-radars and the corresponding WAM-model grid points used in

the analysis. In addition, the deviating distance between these two positions and the depth at each site

are given.

Station Obs. position Grid position Dev. dist. Depth

Heidrun 65◦20’12”N 7◦18’35”E 65◦00’36”N 7◦35’24”E 39km 350m

Gullfaks C 61◦12’54”N 2◦16’26”E 61◦08’24”N 1◦57’36”E 19km 216m

Troll A 60◦38’45”N 3◦43’35”E 60◦38’24”N 3◦46’12”E 2.5km 303m

Sleipner A 58◦22’02”N 1◦54’31”E 58◦26’24”N 1◦48’00”E 10km 82m
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Table 6.2: The shortest distance measured between the oil rigs. Numbers are based on the obs.

position given in table 6.1 and are given in kilometers.

Position Heidrun Gullfaks C Troll A Sleipner A

Heidrun 0 523 552 825

Gullfaks C 523 0 101 318

Troll A 552 101 0 273

Sleipner A 825 318 273 0

a)

280 − 100◦

b)

90 − 270◦

c)

135 − 315◦

d)

45 − 225◦

N

Figure 6.2: Radar heading: The MIROS-radar scans a 180 degrees sector of open ocean. Red and

yellow area represents the free sight sector at a)Heidrun: 280− 100◦, b)Gullfaks C: 90− 270◦, c)Troll

A: 135 − 315◦, d)Sleipner A: 45 − 225◦

6.1.2 Radar and model documentation

The model and radar results are represented by the 2D wave spectrum. Both cases

are documented by almost identical observational MIROS-data, posted every 15 or 20

minutes, depending on the data format(DF005/DF038). The only difference is found

in the directional resolution of the spectra obtained at Heidrun, which is 10 degrees for

the 2003-case and 30 degrees for the 2000-case. All other positions have a 30 degrees

resolution in both cases.

The 2003-case has full WAM-data coverage. That is, both analyzed and prognostic

spectra, -12h to +60h, see fig. 4.4, are available every twelve hours, offering all together

analyzed spectra every six hours, as each model run calculates spectra for -12h, -6h

and 0h. In addition, analyzed and forecasted, +3h to +12h, parametric data(Hs,Tp

and THp) are available every three hours.

The 2000-case has far poorer model-documentation compared to the 2003-case.

Only one model run is available for all four positions and the prognostic data only

extend +42h ahead. Opposed to the 2003-case, no parametric data are available.

Neither of the two cases are equally spanned in time by simulations and radar data.

The focus of this analysis will be made on the time periods both results are available.
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6.1.3 Wind documentation

The MIROS company has its own format covering environmental data, DF022, includ-

ing wind. Each of the four chosen oil rigs have two or more wind measuring devices

located on deck. Most often one is situated at the helideck and the other at the highest

point of the oil rig. All measurements are adjusted to 10m above sea level, which is the

height of the wind fields used in the WAM-model, and posted every 10 minutes in both

cases. It should be noted that the wind conditions at the helideck can be affected by

the construction of the oil rig. Some platforms may therefore show significant deviation

between the two sensors for certain wind directions.

The winds forcing the wave model, calculated by the HIRLAM-20 atmospheric

model, are posted together with the WAM-model results, spectra and parametric data.

For the 2003-case, this gives a complete history on the local wind at each grid point.

Because the wind is linearly interpolated between every three hours, this offers an exact

representation of the wind forcing the model.

Since the 2000-case has model simulations available only every six hours, the wind

is known every second time step it forcing the model. The wind can therefore not be

linear interpolated in between these points in time, even though this is how the data

will be presented. This shortcoming makes it harder to evaluate the quality of the wind

driving the model.

In order to get a bigger picture of the wind conditions during each period, synoptic

wind fields obtained from NCEP-NCAR reanalysis(http://ingrid.ldeo.columbia.edu/)

are presented for each case.

6.2 Method

The focus of this study will be to locate deviations between the radar measurements

and model simulations during two severe wave events. Ideally, both approaches had

been flawless and no differences would be found. While this is not the case, it is

of our interest to address weaknesses in both the model and the radar to ease later

improvements.

Because these two approaches of obtaining wave data are based on different assump-

tions, they may be used to test the importance of processes not jet fully understood. In

the following, the effect of swell on the growth rate of wind-sea will be investigated. As

the model does not take this mechanism into account, the measurements should show

signs of different behavior in these situations if the effect is to be considered significant.

6.2.1 Wind

Emphasis will be made on the measured and simulated local wind. Local wind con-

ditions are not necessarily important for the total wave state, which depends on the
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larger scale wind fields and wind history, but it can tell something about the quality

of the wind forcing the model. Precise wind fields are an absolute crucial condition for

optimal model-results.

Now, if the wind fields are wrong the model can not be rejected for predicting

false wave conditions. But, if the wind has a satisfactory accuracy and the simulations

are off, it might indicate shortcomings in the model. Wether the inaccuracies are due

to local considerations, as gust winds, or of a more general physical character, bad

parametrization, it needs to be addressed. Luckily the WAM-model has been exten-

sively tested and proven to work well in most conditions. Therefore, if the simulations

are based on satisfactory winds, the model may in some contexts be considered a ’true

state’ and used to test the quality of the MIROS-radar in situations it is thought to

be less reliable.

It is not possible to quality check the entire wind field. There are simply not enough

observations. And, accurate wind at one grid point does not guarantee accurate winds

within the rest of the model area, but it can give an indication. However, in this thesis,

the quality of the model results will be based on the quality of the locally simulated

wind compared to observations.

As mentioned in the previous section, the measurements can be affected by the

platform construction in certain wind directions. This problem is tried solved by always

comparing the modelled wind with the sensor, A or B, measuring the highest wind

speeds for that particular case. This will vary from platform to platform.

Both wind speed and wind direction time series will be accompanied by scatter plots,

corresponding regression lines and correlation coefficients. In addition, a collection of

statistical parameters are presented, see appendix A.0.7.

6.2.2 Wave parameters

An obvious foundation for a comparison of the radar and the model should be based

on the most frequently used wave parameters. In operational wave forecasting these

are Hs, Tp and THp, which represent the total wave energy, the dominating wave

frequencies and the direction they are coming from. For the majority of users this is

often enough information. For the WAM-model and the MIROS’s DF005-format these

parameters are precalculated. The DF038-format contains only the 2D wave spectrum,

demanding the wave parameters to be calculated.

The significant wave height is given by

m0 =

n=Nθ
∑

j=1

n=Nf
∑

i=1

E(f, θ)∆fi∆θj (6.1)

Hs = 4
√

m0 (6.2)

, where Nf and Nθ are the total number of frequency and directional bands respectively.
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The peak period is obtained by first finding the 1D frequency spectrum calculated

by

E(f) =

n=Nθ
∑

j=1

E(f, θ)∆θj (6.3)

The peak frequency is then identified by

fj = argmax(E(f)) (6.4)

and weighted over a three point average to avoid any effects of poor resolution in

frequency

fp =
fj−1E(fj−1) + fjE(fj) + fj+1E(fj+1)

E(fj−1) + E(fj) + E(fj+1)
(6.5)

Finally, the peak period is given by the inverse of eq. 6.5.

6.2.3 Integrated spectra

As noted in chapter 3, the 2D wave spectrum of the DF005-format spans the frequency

interval 0-0.313Hz. However, wind generated waves are nonexisting on frequencies

lower than 0.03Hz. This is why all wave energy in the preceding analysis is calculated

using the same frequency interval for the DF005 as the DF038-format, 0.0313-0.3125Hz.

This also corresponds to the interval used by the MIROS’s signal processing unit when

precalculating wave parameters given in the DF005 format.

The MIROS-radar and the WAM-model span a different range of frequencies,

0.0313-0.3125Hz and 0.042-0.4137Hz respectively, see fig. 3.5 and 4.2. However, this

will not significantly effect the total amount of energy represented by the two methods.

The majority of energy is always going to be well in between both of these frequency

intervals.

It is of interest to investigate how the radar and the model differ when comparing

defined frequency intervals. In this analysis we separate the energy content below and

above 0.094Hz. The limit is set at this frequency to separate the long and short period

wave components. The summation is expressed by eq. 6.1, but with limits adjusted

to the two intervals. Because the MIROS-radar and the WAM-model do not use the

same resolution in frequency, the summation is not taken over the exact same interval.

The limit is set at 0.0938Hz for the radar and 0.0942Hz for the model. However, a

frequency interval differing 0.0004Hz will barely affect the results and are therefore not

taken into consideration.

The physical shape of the radar is constructed to scan 180 degrees of open ocean,

see chapter 3 and fig. 6.2. Because the radar has the ability to detect approaching as

well as receding waves, this should not affect the accuracy of the 2D spectra. How-

ever, one directional-frequency bin can only represent approaching or receding waves

by posting positive or negative values, but not both at the same time. There may



6.2 Method 43

be situations when two distant wind fields have produced waves propagating in the

opposite direction of each other. When both systems are present at the same time,

the MIROS-radar is not capable of representing both systems as long as they have

energy on the same frequencies. To test the effect of this shortcoming, the directional

frequency spectra obtained by the radar will be integrated over two 180 degrees sectors

covering approaching and receding waves, see fig. 6.2. The same integration is carried

through with the corresponding model spectra for comparison. The emphasis will be

made on the shorter time periods where two wave systems with 180 degrees ambiguity

are present.

6.2.4 Wave spectra

The best way of getting a clear picture of the overall wave condition at a fix point, is

made studying the 2D spectrum. It offers a quick overview of the wave energy content

at the sea surface, wether there are swell present or not, what direction the majority

of energy is coming from, peak period and so on.

The two different approaches of obtaining wave data make it of importance to search

for repeating deviation. However, the radar and model have different resolutions in

direction and frequency and the model calculates idealized spectra of the JONSWAP.

Seeing past this obvious distinction, the spectra are still a subject for discussion.

MIROS’s DF005-format is represented by a wave spectrum covering 180 degrees.

Each directional-frequency bin is either represented by a positive or a negative value.

The negative values have a 180 degrees ambiguity. Fig. 6.3a) shows the absolute

value of the 2D spectrum, while fig. 6.3b) illustrates the adjusted spectrum where the

180 degrees ambiguity has been taken into consideration. All DF005 spectra of the

following analysis are presented using this adjustment.
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Figure 6.3: a)The absolute value of the original MIROS’s DF-005 spectrum. b)The same spectrum

adjusted to the 180 degree ambiguity

The 2D spectra are represented using the oceanographic convention. Energy is
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’going to’ the direction indicated. This means that energy plotted in the north are

actually coming from the south. However, when discussed, a wave system coming from

the south will be referred to as a S wave system.

Here, only a selection of situations will be studied, primarily at times when the

spectrum obtained by the model and radar differ the most. All 2D spectra are com-

plemented by measured and modelled wind arrows and their scalar value. In addition,

the 1D frequency spectrum is presented.

All time series are marked with letters representing moments in time where the

corresponding wave spectrum will be illustrated and discussed. For convenience, these

spectra have also been marked with the same letters. If not noted otherwise, the

simulated data of the 2003-case are deduced from analyzed wind fields. For the 2000-

case, all data are used. Based on the different amounts of available model simulations,

the best documented case will be analyzed first.



Chapter 7

Results: Model vs Radar

7.1 10-16th of December 2003

7.1.1 Wind conditions

Synoptic scale

Within a week of December 2003 the mid and northern part of Norway got exposed

to severe weather conditions as three subsequent low pressure systems moved east into

Norwegian waters. Winds in the violent storm range (28.5-32.6m/s) and gust winds

reaching hurricane force (>32.7m/s) generated phenomenal wave conditions(Hs >

11.5m). The last storm in the sequence, named the ”Edda”, is evident in fig. 7.1a),

7.2b) and 7.2c). Fig. 7.2a) and 7.2b) illustrate the birth of the low pressure system

NE of Iceland and its track across the Norwegian Sea, finally dying out the 12th in the

Barents Sea area, see fig. 7.1d).

a) b)

Figure 7.1: Analyzed sea level pressure for the northern Atlantic at 12UTC the a)11th and b)12th of

December 2003. Data are obtained from the atmospheric model HIRLAM-20 (met.no).

45
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Figure 7.2: Analyzed sea surface winds(10m) for the northern Atlantic at 12UTC the a)9th - f)14th

of December 2003. Data are obtained from NCEP-NCAR(http://ingrid.ldeo.columbia.edu/).

The ”Edda” and the associated wind conditions at the time created an interesting,

but not at all unique situation. As the ”Edda” was accompanied by strong N winds on

the west side of the low pressure center, see fig. 7.1a) and 7.2c), a weaker low pressure
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system NW of Great Britain produced S winds further south, see fig. 7.1b) and 7.2d).

In that way, N swell, propagating south, was met by opposing S winds in the North

Sea and the southern Norwegian Sea.

The time series documenting the wind and wave conditions during ”Edda” have

been extended to the 16th of Dec., as the later period saw a new low pressure system

producing strong N winds. However, this time the strongest winds were found further

south, closer to the four chosen positions of observation, see fig. 7.2f).

Because of different geographical positioning, the results obtained at the Heidrun

platform will be analyzed separately from Gullfaks C, Troll A and Sleipner A. This is

done because the wave conditions of the three latter platforms were affected much by

the same winds within this period.

Local scale

Heidrun

The two wind speed measurements obtained at Heidrun, indicated by the red and

black line in fig. 7.3a), show at times large deviation. The HIRLAM-20 winds, seen

in green, are compared to the measurements having the best fit to the model, which is

the strongest measured wind. Opposed to the wind speed, the simulated and measured

wind direction, see fig. 7.3b), are very well correlated throughout the period.
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Figure 7.3: Wind speed and wind direction with corresponding scatter plots for the period 9th - 16th

of December 2003. Observations: sensor A(red line) and sensor B(black line). Model: HIRLAM(green

line). Scatter plots are based on the data of the sensor with best fit to the model. a),b): Heidrun.

Because the Heidrun platform was located more south than the ”Edda” it did not

experience the same wind speeds as found further north. From 00UTC the 10th until

noon the 12th average winds were of near gale force(13.9-17.1m/s) with shorter periods

of gale force(17.2-20.7m/s).
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The time period from 18UTC the 12th until 18UTC the 13th saw SE-SW winds

following a longer period of NW winds, see fig 7.3a). This confirm the large scale

synoptic observations mentioned above and correspond to the period of swell/wind-

sea interaction. The wind speed of this period is therefore of importance for the

later discussion. Notice how the average HIRLAM-20 winds are stronger than the

measurements within this period, with an exception found around 6UTC the 13th.

Fig. 7.3a) illustrates the scatter between the measured and modelled wind speed

covering the whole time series. Correlation is calculated to a poor 0.77. However,

acknowledge the deviation in wind speed at 18UTC the 14th. Because the correlation

is calculated using few data, an outlier will affect the coefficient significantly.

Gullfaks C, Troll A and Sleipner A

The measured and simulated winds obtained at the three subsequent oil rigs are pre-

sented in fig. 7.4. On average the data show good correlations illustrated by the

corresponding scatter plots. Only during smaller time periods, like 12UTC the 11th,

significant deviations are more evident.

Like Heidrun, the main focus will be made on the period where the wind had

backed approximately 180 degrees and was opposing the N swell. This is seen from

12UTC the 12th and 24 hours ahead on Gullfaks C and Troll A, with Sleipner A having

similar conditions from 9UTC the 12th until the 13th. The correlation in wind speed

is satisfactory for all three platforms within these time periods, with the exception of

a short period around the 13th at Gullfaks C.

7.1.2 Wave parameters: Hs & Tp

Heidrun

The measured and simulated significant wave height, Hs, and peak period, Tp, for

Heidrun, are illustrated in fig. 7.5.

Within the time period of SE-SW winds, no abnormal deviations between the sim-

ulated and measured Hs are found. The fit is rather better than worse compared to the

time periods prior to and after. However, around midday the 13th there are obvious

deviations in Tp, illustrated in fig. 7.5b). While the model indicates the peak period

to be 11.5s the measurements are closer to 7s. Such a striking difference in Tp most

often indicates the presence of two wave systems at the same time. The difference in

maximum energy level of each respective wave system may be very small, but enough

to distinguish a peak period. Both approaches, model and radar, represent the peak

most energetic according to their calculations. Interestingly, the model indicates the

swell to be the most energetic system, while the measurements indicate the wind-sea to

be more energetic. However, the difference is small, as the measurement also indicates
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Figure 7.4: Wind speed and wind direction with corresponding scatter plots for the period 9th - 16th

of December 2003. Observations: sensor A(red line) and sensor B(black line). Model: HIRLAM(green

line). Scatter plots are based on the data of the sensor with best fit to the model. a),b): Gullfaks C;

c),d): Troll A; e),f): Sleipner A.
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Figure 7.5: Significant wave height, Hs, and peak period, Tp , with corresponding scatter plots for

the period 9th - 16th of December 2003. Observations: MIROS-radar(black line). Model: WAM(green

line). a),b): Heidrun.

the peak period to be controlled by the swell around 12UTC the 13th, represented by

the spike in fig. 7.5b).

Last part of the time series is dominated by large deviations in Hs, peaking around

21UTC the 14th, where the model simulates Hs to be 7m and the measurement is closer

to 12m. Notice that this period coincides with the rather large misrepresentation in

the simulated local wind speed at the time, see fig. 7.3a).

Hs and Tp are summarized by scatter plots in fig. 7.5. Hs has an 0.91 correlation

coefficient, however the regression line indicates the model to systematically underesti-

mate the significant wave height. Tp shows a larger scatter and a weaker correlation of

0.80, affected by the presence of two equally energetic wave systems, explained above.

Gullfaks C, Troll A and Sleipner A

The significant wave height and peak period data for Gullfaks C, Troll A and Sleipner

A are illustrated in fig. 7.6. The most prominent deviations in Hs are located at Troll

A around 09UTC the 12th, see fig. 7.6c), and Sleipner A around 03UTC the 14th, see

fig. 7.6e). In both cases the difference between the model and radar is approximately

2m, however, of opposite signs. Otherwise, the comparisons of Tp show the model to

be low at all oil rigs the last part of the time series.

Within the period of N swell propagating against the wind, no significant deviations

in Hs are detected at any of the three stations. More interesting is the behavior of the

measured and simulated Tp. At Gullfaks C both approaches indicate the peak period

to be dominated by the wind-sea, seen by the sudden coinciding drop in Tp around

the 13th. At Troll A the measured Tp is clearly more fluctuating, representing both

swell and wind-sea, while the model indicates Tp to be controlled only by the wind-sea.
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Figure 7.6: Significant wave height, Hs, and peak period, Tp , with corresponding scatter plots for

the period 9th - 16th of December 2003. Observations: MIROS-radar(black line). Model: WAM(green

line). a),b): Gullfaks C; c),d): Troll A; e),f): Sleipner A.

At Sleipner A the measured Tp shows similar behavior found at Troll A, but here the

simulated Tp is dominated by the swell.



52 Results: Model vs Radar

Summary statistics for the simulated and measured Hs, Tp and U10 are presented

in table 7.1. The parameters used for the statistical comparison are all defined in

appendix A.0.7. The biases are with respect to observations. The model data are, as

mentioned, based on analyzed wind fields. However, the same comparison has been

carried through using simulations based on prognostic wind fields, +3h to +12h. These

results are summarized in tab. 7.2. In both cases individual and total statistics are

given.

Table 7.1: Summary statistics of significant wave height Hs, peak period Tp and wind speed U10,

based on analyzed wind fields for the time period 9-16th of December 2003. The bias is with respect to

measurements. SI is scatter index, RMS is root-mean-square error and Corr is correlation. Number

of entries are given in parentheses.

Hs[m] Tp[s] U10[m/s](scalar)

Position (entries) Bias RMS SI Corr Bias RMS SI Corr Bias RMS SI Corr

Heidrun(43) -0.71 1.25 0.22 0.91 -0.01 1.26 0.11 0.80 0.42 2.85 0.20 0.77

Gullfaks C(43) -0.23 0.48 0.10 0.96 -0.09 1.28 0.11 0.85 0.59 2.29 0.18 0.91

Troll A(43) -0.15 0.65 0.15 0.93 -0.13 0.71 0.06 0.96 0.62 2.80 0.22 0.86

Sleipner A(43) 0.16 0.65 0.18 0.94 0.52 1.92 0.19 0.81 0.83 2.22 0.20 0.92

Total(172) -0.23 0.81 0.18 0.91 0.07 1.36 0.12 0.85 0.61 2.56 0.20 0.88

It is worth noticing the increased bias in total wind speed comparing the analyzed

and prognostic statistics. The stronger local wind forcing found in the prognosis is

reflected in the reduced bias of the forecasted Hs. A slight improvement may also be

spotted in Tp.

Table 7.2: Summary statistics of significant wave height Hs, peak period Tp and wind speed U10, based

on prognostic wind fields, +3h - +12h, for the time period 9-16th of December 2003. The bias is with

respect to measurements. SI is scatter index, RMS is root-mean-square error and Corr is correlation.

Number of entries are given in parentheses.

Hs[m] Tp[s] U10[m/s](scalar)

Position (entries) Bias RMS SI Corr Bias RMS SI Corr Bias RMS SI Corr

Heidrun(43) -0.54 1.16 0.20 0.90 -0.19 1.11 0.10 0.85 1.02 3.11 0.22 0.76

Gullfaks C(43) -0.05 0.52 0.11 0.96 -0.21 1.10 0.10 0.90 1.42 2.50 0.19 0.93

Troll A(43) 0.09 0.82 0.19 0.91 -0.09 0.66 0.06 0.97 1.77 3.15 0.25 0.88

Sleipner A(43) 0.24 0.69 0.19 0.94 0.30 1.61 0.16 0.86 1.24 2.14 0.19 0.94

Total(172) -0.07 0.83 0.18 0.90 -0.05 1.17 0.11 0.89 1.36 2.76 0.22 0.89

Fig. 7.7 illustrates the evolution of bias and rms for Hs and U10 as a function of

forecast hour. Acknowledge that the correspondence between U10 and Hs is dispropor-
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tional for bias and rms within certain prognostic hours. E.g. from +12 to +30h the

bias in U10 is decreasing, while the bias in Hs is increasing.

  0  +6 +12 +18 +24 +30 +36 +42 +48 +54 +60
−0.5

0

0.5

1

1.5

2

Prognosis[h]

B
IA

S

  0  +6 +12 +18 +24 +30 +36 +42 +48 +54 +60
0

1

2

3

4

5

Prognosis[h]

R
M

S

Figure 7.7: Bias and RMS for wind speed (red line, [m/s]) and for significant wave height (black

line, [m]) for different forecast periods. Bias is with respect to measurements. Statistics are based on

a five day period, 10-15th of December 2003. Number of comparisons per forecast period, 0 - +60h,

are 44, 44, 40, 37, 36, 36, 32, 32, 28, 24 and 20 respectively.

7.1.3 Integrated spectra: Hs,eq

High and Low frequencies

Heidrun

Fig. 7.8 illustrates the energy content contained by frequencies below and above

0.094Hz at Heidrun, represented by the equivalent significant wave height, Hs,eq. Out

of the two time series, the most prominent deviations are found in the low frequency

part, particulary at the beginning and the end of the time series.
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Figure 7.8: Hs,eq, deduced from the energy content below and above 0.094Hz, with corresponding

scatter plots for the period 9th - 16th of December 2003. Observations: MIROS-radar(black line).

Model: WAM(green line). a),b): Heidrun.
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In respect to the 24 hour period SE-SW winds were opposing the N swell, starting

18UTC the 12th, the energy content of both the low and high frequency part show no

signs of being affected by the mixed swell/wind-sea condition.

Now, focusing on the scatter plots of fig. 7.8, it is evident that the model under-

estimates Hs,eq on low frequencies compared to the measurements. Even with a weak

correlation coefficient for the high frequency part, equal to 0.78 , the regression line

supports the idea of higher model performance within this part of the spectrum.

Gullfaks C, Troll A and Sleipner A

For the three southernmost oil rigs, the high and low frequency separation is illustrated

in fig. 7.9. In general, the six corresponding scatter plots show that for each oil rig the

correlation coefficients are higher for the low frequency part of the spectra compared

to the high frequency part.

The most prominent deviations found in Hs, pointed out in section 7.1.2, are natu-

rally reflected in Hs,eq as well. While the mismatch in Hs at Troll A around 09UTC the

12th is only visible on low frequencies, see fig. 7.9c), the deviation in Hs at Sleipner A

around 03UTC the 14th is mostly evident in the high frequency part, but also on low

frequencies, see fig. 7.9e) and f).

Despite the different behavior in Hs comparing Heidrun and the three other oil rigs,

there is a high similarity between the low frequency Hs,eq of fig. 7.9 and fig. 7.8.

The period of N swell and opposing SE-SW winds does not seem to give any sig-

nificant effects in any of the two parts of the spectrum. All oil rigs are showing good

correlations within these periods.

Directional sectors

Heidrun

Fig. 7.10 illustrates Hs,eq deduced from the radar-sectors covering receding, 280◦−100◦,

and approaching, 100◦ − 280◦, wave energy at the Heidrun oil rig. Notice the much

improved correlation between the model and radar for the approaching sector compared

to the original Hs time series seen in fig. 7.5a). For the receding sector large deviations

between the model and measurements are particulary evident around the 12th and

15th. However, it should be acknowledge that the deviation is not caused by the lack

of energy in the radar, but an underestimation by the model.

The results are best summarized comparing the scatter plots of fig. 7.11a) and b).

With correlation coefficients equal to 0.38 and 0.96 respectively, the model performs

better simulating waves coming from the north, i.e. approaching wave energy relative

to the radar.
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Figure 7.9: Hs,eq, deduced from the energy content below and above 0.094Hz, with corresponding

scatter plots for the period 9th - 16th of December 2003. Observations: MIROS-radar(black line).

Model: WAM(green line). a),b): Gullfaks C; c),d): Troll A; e),f): Sleipner A.

Gullfaks C, Troll A and Sleipner A

Hs,eq, deduced from the approaching and receding sectors at the three southernmost

platforms, are illustrated in fig. 7.11. Compared to Heidrun the results show the
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Figure 7.10: Hs,eq, deduced from the wave energy receding and approaching the 180 degrees sector

the MIROS-radar illuminates at each respective oil rig, with corresponding scatter plots for the period

9th - 16th of December 2003. Observations: MIROS-radar(black line). Model: WAM(green line).

a),b): Heidrun

opposite trend, with correlations improved for the receding sectors.

Notice that all three stations have a mean radar-heading pointing southward, see

fig. 6.2. However, in this period a significant amount of energy was coming from the

north, generated by the northern situated low pressure systems.

Table 7.11 offers a summary statistics for the comparison between model and mea-

surements based on wave energy on high and low frequencies and two 180◦ sectors

covering approaching and receding energy relative to the radar-heading at each oil rig.

The calculations are represented for each respective oil rig and the total number of

entries.

Table 7.3: Summary statistics for Hs,eg, WAM-model vs MIROS-radar, deduced from wave energy

receding/approching the 180 degrees sector of the radar at each respective oil rig and energy above/below

0.094Hz in the time period 9-16th December 2003. The bias is with respect to measurements. SI is

scatter index and Corr is correlation. Number of entries are given in parentheses.

Hs,eq Hs,eq Hs,eq Hs,eq

(receding) (approaching) (f<0.094Hz) (f>0.094Hz)

Pos(entries) Bias RMS SI Corr Bias RMS SI Corr Bias RMS SI Corr Bias RMS SI Corr

Heidrun(22) -1.27 1.85 0.48 0.38 -0.13 0.68 0.17 0.96 -0.83 1.17 0.29 0.92 -0.16 0.63 0.16 0.78

Gullfaks C(22) -0.03 0.48 0.13 0.98 -0.60 0.74 0.27 0.94 -0.24 0.48 0.16 0.97 -0.19 0.36 0.10 0.95

Troll A(22) -0.17 0.63 0.21 0.97 -0.26 0.58 0.18 0.86 -0.32 0.69 0.24 0.95 0.13 0.48 0.15 0.88

Sleipner A(22) 0.28 0.70 0.23 0.95 -0.63 0.90 0.49 0.72 -0.21 0.59 0.26 0.95 0.41 0.60 0.24 0.93

Total(88) -0.30 1.06 0.32 0.85 -0.40 0.73 0.25 0.94 -0.40 0.78 0.25 0.94 0.05 0.53 0.16 0.87
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Figure 7.11: Hs,eq, deduced from the wave energy receding and approaching the 180 degrees sector

the MIROS-radar illuminates at each respective oil rig, with corresponding scatter plots for the period

9th - 16th of December 2003. Observations: MIROS-radar(black line). Model: WAM(green line).

a),b): Gullfaks C; c),d): Troll A; e),f): Sleipner A.
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7.1.4 Wave spectra: 1D & 2D

Heidrun

ai: Fig. 7.12, portraying the wave condition at Heidrun at noon the 11th, represents a

typical relation between the simulated and measured 1D spectrum in the time period

spanned by the 2003-case. On average the measured 1D spectrum has a more enhanced

peak compared to the corresponding simulations. Notice how the peak frequency is

much the same, but how the measured peak is more than twice as energetic as the

simulated peak. In more than 80% of all cases both spectra are available, this is the

trend found at Heidrun. However, when focusing on the color coding of the 2D spectra,

the simulated peak, going towards the SSE (150◦), is seen exceeding the energy level

of the measured peak. This seemingly contradiction can be explained by the different

spreading characteristics of the two approaches.
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Figure 7.12: Heidrun: 18UTC 11. Dec. 2003. Left: 2D spectrum(MIROS-radar) and measured

wind. Middle: 1D spectra with corresponding Hs and Tp, MIROS-radar(black) and WAM(green).

Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

bi, ci: At 00UTC the 13th the wind had turned SE and was picking up in strength

at Heidrun, see fig. 7.3a) and b). Fig. 7.13a) illustrates the simulated and measured

1D and 2D spectra at the time. At this stage the wind is blowing in the opposite

direction of the N swell, but neither the model nor the radar spectrum indicates any

wind-sea. Six hours later, at 06UTC the 13th, the measured 1D spectrum has a clear

two modal shape, while the simulation barely indicates any wind-sea, see fig. 7.13b).

However, the representation of the swell, indicated by the low frequency peak, shows

good correspondence between the model and radar. Prior to this point in time the local

wind speed is low, but increasing. On average the simulated winds are found stronger

than the measurements, see fig. 7.3a). Even though the spectra are substantially

different the deviation in total energy is only fractional, separating less than 0.3m in

Hs.

di: At 21UTC the 14th the measured Hs exceeds the corresponding simulation by

approximately 5m, see 7.5a). Fig. 7.14 illustrates the wave spectra obtained three
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Figure 7.13: Heidrun: a) 00UTC and b) 06UTC 13. Dec. 2003. Left: 2D spectrum(MIROS-radar)

and measured wind. Middle: 1D spectra with corresponding Hs and Tp, MIROS-radar(black) and

WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

hours earlier. Already at this point a clear distinction in energy can be made. Notice

the wider 1D spectrum of the measurements. And, once again the radar measurement

is having a more enhanced peak compared the model.
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Figure 7.14: Heidrun: 18UTC 14. Dec. 2003. Left: 2D spectrum(MIROS-radar) and measured

wind. Middle: 1D spectra with corresponding Hs and Tp, MIROS-radar(black) and WAM(green).

Right: 2D spectrum(WAM) and modelled wind(HIRLAM).
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Gullfaks C, Troll A and Sleipner A

ei, fi: Because the growing wind-sea was generated be S winds, Gullfaks C had condi-

tions of wind-sea opposing the N swell earlier than Heidrun. Fig. 7.15a) and b) show

the spectra obtained at 00UTC and 06UTC the 13th. Again the model represents a

less evolved wind-sea compared to the radar. This difference is especially pronounced

at 06UTC, see fig. 7.15b). However, prior to this point in time, the wind forcing the

model is some what weak compared to the measured wind, which may have influenced

the results slightly, see fig. 7.4a).
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Figure 7.15: Gullfaks C: a) 00UTC and b) 06UTC 13. Dec. 2003. Left: 2D spectrum(MIROS-

radar) and measured wind. Middle: 1D spectra with corresponding Hs and Tp, MIROS-radar(black)

and WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

The Gullfaks C and Troll A oil rigs are closely situated, see fig. 6.1 and table 6.2, and

should have close to similar wave conditions at any time. In case of model simulations,

this is more or less obvious as all calculations are closely connected, preventing any

large differences between any adjacent grid points. The radars are on the other hand

operating independently, making them more subjected to some variations.
gi, hi: Fig. 7.16 illustrates the spectra for Troll A corresponding in time to fig. 7.15.

Notice the similarity in the model simulations at the two locations. The simulated swell

has almost the same amount of energy at Gullfaks C and Troll A for each respective

time step. The corresponding radar spectra show the swell to be more powerful at
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Gullfaks C than Troll A at 00UTC, while the opposite is found at 06UTC. Considering

the heading of the dying swell, propagating south, and the more southerly position of

Troll A, this observation seems possible.
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Figure 7.16: Troll A: a) 00UTC and b) 06UTC 13. Dec. 2003. Left: 2D spectrum(MIROS-radar)

and measured wind. Middle: 1D spectra with corresponding Hs and Tp, MIROS-radar(black) and

WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

The biggest difference between the radar spectra obtained at Gullfaks C and Troll

A is found in the representation of the wind-sea. At both time steps the wind-sea is

more energetic at Gullfaks C, even though the local wind is much the same at the two

adjacent locations, see fig. 7.4a)-d). This deviation is also reflected in the reduced

Hs of Troll A. However, the position of Gullfaks C is more to the north, giving the

wind-sea an increase of fetch compared to Troll A.
ii, ji, ki: Sleipner A was the first position being exposed to the southerly generated

wind-sea. Fig. 7.17 illustrates the wave condition from the very early stages of the

wind-sea at 18UTC the 12th and 12 hours ahead. At 18UTC the wind-sea is almost

nonexisting in the model simulations, even though the colored 2D spectra indicates its

presence.

The spectra obtained at Gullfaks C, Troll A and Sleipner A very much confirm the

findings made at Heidrun. The peak of the measured 1D spectra are on average more

energetic than the corresponding model simulations in conditions of opposing swell. In

addition, the downshift of the measured wind-sea peak is somewhat enhanced.
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Figure 7.17: Sleipner A: a) 18UTC 12. Dec., b) 00UTC 13. Dec. and c) 06UTC 13. Dec.

2003. Left: 2D spectrum(MIROS-radar) and measured wind. Middle: 1D spectra with correspond-

ing Hs and Tp, MIROS-radar(black) and WAM(green). Right: 2D spectrum(WAM) and modelled

wind(HIRLAM).

7.1.5 Saturation range

Fig. 7.18 illustrates the mean simulated and measured 1D spectrum based on all spectra

available from the four oil rigs during the 10-16th of December 2003. The simulations

are seen in green and the measurements are colored black. Stippled lines represent the

mean spectrum ±one standard deviation. In addition, an 0.0021f−4 relation, seen in

red, is complemented as a reference measure.
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Figure 7.18: The average simulated(WAM) and measured(MIROS) 1D spectra for Heidrun, Gullfaks

C, Troll A and Sleipner A for the period 9th-16th of December 2003. The 0.0021−4f-function is given

as a reference measure.

7.1.6 Discussion

Wind forcing the model

Highly accurate wind fields are an absolute necessity in wave modelling. The simulated

wave condition can be no better than the winds forcing the model. On the contrary, the

wind input term of the model, represented by eq. 4.14, has an U2
10 relation, squaring

any inaccuracies inherent in the wind forcing.

In this study the modelled winds are compared to four point measurements. How-

ever, the simulated wave condition at one grid point is affected by a much larger area

of the wind field than represented by the local wind. A high correlation between the

model and measurements locally does not guarantee similar results elsewhere within

the model area. This is well illustrated in fig. 7.7, by the nonproportional relation

between the bias and rms for Hs and U10. Notice how improved winds not necessarily

are reflected in the significant wave height. With this in mind, the quality of the wind

forcing will anyhow be judged based on these four positions, as no other quality-control

is feasible with the available data.

Now, at what degree of accuracy can the atmospheric model be expected to simulate

the winds forcing the wave model? Janssen et al. (1997) did a statistical study on

the performance of the WAM-model(cycle-4) driven by ECMWF winds for the year

1995. The model was compared to buoy measurements, comprising wind and wave

data, obtained at various locations in the Atlantic -and Pacific Ocean. Both regional

and global statistics were carried out. The wind speed statistics of the northeast

Atlantic and the U.S. west coast are summarized in table 7.4. The biases, also here

with respect to observations, are positive, indicating that the average simulated winds

were too strong. Similar calculations obtained from the 2003-case, based on far less
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observations, see table 7.1, show a higher positive bias. Unexpectedly, the lowest

bias is found at Heidrun, even though this was the area closest situated to the strong

gradients of the low pressure systems and shows the highest wind speed variability, see

fig. 7.3a). Notice how the bias is growing from north to south, being almost twice the

size comparing Heidrun and the southernmost platform, Sleipner A. The SI-indexes

are slightly higher compared to Janssen et al. (1997), which is expected because of the

fewer available observations, making the results more vulnerable to outliers. Because

the 2003-case was a period of highly unstable air masses and fluctuating winds, the

atmospheric model can be said to have simulated satisfactory wind speeds within this

period.

The wind direction measurements of the 2003-case, see fig. 7.3 and 7.4, show a

very good fit with the corresponding simulations, illustrated by the scatter plots of

fig. 7.4. Notice that the area spanned by the four oil rigs has close to stationary wind

directions during certain time periods, e.g. the last part of the time series where the

wind direction is steady NNW on all stations. The same stationarity is not found in

the wind speed. However, the three southernmost oil rigs, especially Gullfaks C and

Troll A, have highly correlated winds throughout the period.

One should bare in mind that the modelled and measured data used in this study

represent two different quantities. While the measurements are valid for only one

particular position, the simulated data are mean values representing a whole grid box,

illustrated by fig. 6.1. In certain situations of strong wind speed gradients, e.g. related

to deep low pressure systems, the WAM-model with a 50km grid spacing may not

properly resolve the wind field. This will affect the quality of the simulated wave

condition.

Wave parameters: analysis/prognosis

The primary mission of an operationally driven wave model is to calculate the main

wave parameters like the significant wave height, Hs, and the peak period, Tp. These

quantities are most frequently used simply because they comprehend the most basic

information describing the overall wave condition. The ability of the model to simulate

these parameters as precise as possible is highly desirable and an ongoing study.

The wave parameter statistics deduced from the 2003-case are given in table. 7.1.

As mentioned above, the average simulated winds were too strong. Consequently,

one would expect the significant wave height to be overestimated. However, with the

exception of Sleipner A, the simulated Hs is low on all stations. Notice how the bias

in Hs is proportional to the bias in wind. As the mean simulated wind forcing gets

stronger compared to the measurements going south, the simulated Hs behaves in

the same way. First assumption is to interpret this as an overall underestimation by

the model, indicating e.g. too strong dissipation, a too weak wind input term or an

inaccurate saturation range.
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In Janssen et al. (1997) the results for the northeast Atlantic were rejected for giving

a too large underestimation of the modelled Hs, possibly caused by a malfunction in the

buoys. The WAM-model performance for the northeast Atlantic and the U.S west coast

are presented in tab. 7.4. Notice how the bias in Hs differ by a factor of two comparing

the two geographical areas. However, later buoy improvements offered similar results

for the northeast Atlantic as the U.S west coast.

Table 7.4: Statistics for the WAM-model(cycle-4) performance compared to buoy measurement for

January 1995 - December 1995, from Janssen(1997).

Hs Tp U10(scalar)

Area (Number obs) Bias SI Bias SI Bias SI

Northeast Atlantic(8812) -0.53 0.14 - - 0.29 0.19
U.S west coast(7234) -0.27 0.15 -0.68 0.17 0.30 0.18

Comparing the total Hs statistics of the 2003-case to Janssen et al. (1997), see table

7.1 and 7.4, the WAM-model can be said to perform within satisfactory limits. Overall,

the underestimation in Hs found in Janssen et al. (1997), is confirmed by the 2003-case

taking into consideration the higher positive bias of the wind speed statistics. The

poorer results at Heidrun may have several explanations. First of all, one should bare

in mind the limited number of entries this statistics is based on. Shorter time periods

are more vulnerable to outliers and poor simulations, which always will be present to

some degree. For Heidrun the underestimation in the simulated Hs is much influenced

by the last part of the period, see fig. 7.5a), caused by the inaccurate wind forcing

at the time, see fig. 7.3a). Notice the strong gradients in the wind field at 12UTC

the 14th in the area around Heidrun, illustrated by fig. 7.2f). The 50km grid spaced

model, may have had difficulties simulating the wind field of this period and further

affected the wave model performance. This shortcoming is likely fortified by the fact

that the location of observation and grid point do not coincide very well at Heidrun.

Statistics based on the peak period, especially shorter time periods, will be highly

influenced by the fluctuating behavior of Tp found in situations when two equally

energetic wave systems are present. This is particulary evident in Tp during the first

part of the 13th at Sleipner A, see fig. 7.6f). Notice how the model represents the long

period swell around 13.5s, and how the radar switches between representing the swell

and the much shorter peak period of the wind-sea. In reality the difference between the

measurements and model are fractional, however the nature of the peak period may

cause for significant statistical deviation. Anyhow, comparing the Tp statistics for the

2003-case with that of Janssen et al. (1997), prove the simulated Tp to perform very
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well in this period.

Of the less accurate Tpsimulations, the biggest deviations are found at the three

southernmost located oil rigs around noon the 15th, see fig. 7.6b),d) and f). The

model is about 2s short compared to the measurements and consistent on all three

stations. This misrepresentation in Tp may have been related to the poorly simulated

U10 and Hs evident only hours earlier at Heidrun, see fig. 7.3a) and 7.6a). However,

the local wind speeds show good correlation on all three stations, see fig. 7.4. Most

likely the deviation in Tp was caused by too weak simulated winds further northwest,

giving a reduced downshift of the peak compared to the measurements. It should also

be mentioned that the peak period represented by the parametric format(type 2) of the

WAM-model, see section 4.3.3, does not carry through a three point weighting of the

peak, see eq. 6.5, which may have influenced the results by a poor frequency resolution.

The Hs and Tp statistics based on prognostic wind fields, +3h to +12h, do not

indicate a reduction in quality, see tab. 7.2. On the contrary, Hs has an improved bias

on all stations with the exception of Sleipner A. SI-indexes and correlation coefficients

are more or less the same for Hs. Tp biases are slightly weakened on Heidrun and

Gullfaks C, but improved on Troll A and Sleipner A. In addition, the SI-indexes for

Tp are improved on all stations. Knowing the statistics are based on a small amount

of data, one could expect these results to be a simple coincidence. However, similar

findings have been made in the past. Komen et al. (1996) explained it by the fact that

analyzed wind fields are a mixture of first-guess and measured data. Early prognostic

wind fields generally shape better when the atmospheric model is integrated in time.

Because the first few integrations only make minor adjustments to the analyzed winds,

the error is kept small. Focusing on table 7.1 and 7.2, this may seem as a contradiction

as the biases found in the forecasted winds are larger than those found in the analyzed

winds. However, these statistics are only based on local winds, which only proves the

wave condition to be influenced by a larger area of the wind field than represented by

the local wind.

High/low frequency separation

As a wave system evolves the nonlinear interaction continuously redistributes energy

to lower frequency components, evident by the downshift of the peak frequency, see

fig. 4.1. In the initial stages of a wind-sea the majority of wind energy is absorbed by

the shorter wave components, subsequently lower and lower frequencies are gradually

affected. This implies that high and low frequency components have slightly differ-

ent characteristics. The energy propagating with the shorter wave components are

subjected to higher variability, as these waves respond faster to changes in the wind

field. Because the low frequency components require a higher degree of enduring wind

forcing to get ’activated’, they can be said to be more stable and to represent the more

developed part of the spectrum.
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By separating the wave spectra into a high and low frequency part, deviations found

in the total energy content, Hs, discussed above, may be more effectively isolated. It

can also be an attempt to make a coarse separation of swell and wind-sea in those

periods two or more wave systems are present. However, the wave field is dynamic and

no constant frequency can distinguish swell from wind-sea in all situations. In this case

the spectra was parted at f=0.094Hz. This choice of frequency is based on the spectra

of fig. 7.15-7.17, which seems to fit more or less in between the peak of the wind-sea

and the swell.

The calculated Hs,eq based on total energy below and above 0.094Hz is illustrated

in fig. 7.8 and 7.9. Originally the Hs time series obtained at Heidrun, fig. 7.5a) differs

from the three other oil rigs, fig 7.6a), c) and e). However, when a low-pass filter is

applied, removing the high frequency components, Hs,eq for f<0.094Hz shows a similar

trend on all stations. There are two clearly defined maxima in the time series, with a

slight delay in the signal going south. Each maxima corresponds to the low pressure

activity at the time, see fig. 7.2. The strength and endurance of the winds related

to these two systems generated a significant amount of low frequency energy, while

their northerly positioning made sure the wave energy arrived at different points in

time at each oil rig, especially during the ”Edda”. The low frequency energy can be

said to make up the basis of the wave field in this period. Accordingly, all remaining

wave energy on higher frequencies are more locally dependent. This is illustrated by

the different variability seen in the Hs,eq deduced from the two parts of the spectrum.

Notice how the low frequency Hs,eq has a somewhat clearly defined shape, while the

high frequency counterpart is more irregular. If studying the wind speed at all stations,

fig. 7.3a) and 7.4a), c) and e), compared to the high frequency energy content, fig.

7.8a) and 7.9b), d) and f), there are obvious similarities.

As the high frequency components are subjected to higher variability, one could

expect the model simulations to be less accurate in this part of the spectrum. This

assumption is based on the fact that the model is forced by new wind fields every

three hours. In highly unstable conditions this might be too scarce to resolve rapid

changes in the wind field. However, focusing on the summary statistics given in table

7.3, there are no indications of a reduced model performance in the high frequency

part of the spectrum. On the contrary, compared to the low frequency part, the biases

are improved on all stations with the exception of Sleipner A. And, all SI-indexes are

found lower.

Approaching/receding waves relative to radar heading

The MIROS-radar is based on the assumption that opposite propagating wave systems

can not contain energy on the same frequencies (Grønlie 1999), i.e. the radar is unable

to represent similar frequency-direction bins with 180 degrees ambiguity. This limi-

tation is found in the construction of the radar, which only illuminates a 180 degrees
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sector, see chapter 3. However, in the open ocean opposing wave systems are a frequent

phenomenon. In these situations it can be expected that there will be a loss of wave

energy represented by the radar. Question arises whether the radar is more likely to

represent approaching than receding waves or viceversa? In other words, is the radar

sensitive to its heading or does it always sense the most energetic wave system inde-

pendent of its direction of propagation relative to the radar? And, how significant is

the energy loss?

Based on the performance of the model compared to the radar, discussed above,

the radar’s ability to measure approaching and receding waves may be analyzed. The

calculated Hs,eq for approaching and receding waves relative to the radar heading is

illustrated in fig. 7.10 and 7.11. The summarizing statistics are given in table 7.3.

Out of the four positions only the data obtained at Heidrun indicate the radar to

perform better measuring approaching waves. In return, the difference is profound,

with a bias close to -1.3m in the receding sector. Even when taking into account

the underestimation found in the simulated Hs at Heidrun, see table 7.1, the radar

measurements contain more energy in the receding sector compared to the model.

Now, if the radar was to be less reliable measuring receding waves an energy loss would

be expected rather than an energy gain relative to the model. It is therefore more likely

that the negative bias of the receding sector of Heidrun lay within the model results

and not the radar measurements.

The same calculations obtained at the remaining oil rigs offer opposite results com-

pared to Heidrun. Here, all statistics show better correspondence between the model

and the radar for the receding sector. However, the difference between the two sectors

are not as profound as seen at Heidrun. All in all, the deviating results of Heidrun

compared to the other oil rigs do not support the idea that the radar generally performs

better measuring either approaching or receding waves relative to its heading.

So far statistics based on the entire time period of the 2003-case have been discussed.

However, only smaller periods saw the presence of two opposing wave systems, which

probably reflects the condition the radar is most likely to perform dissatisfactory. Some

of the wave spectra given in section 7.1.4 lie within these time intervals. According to

the simulated 2D spectra of fig. 7.15, the two opposing wave systems are overlapping

at around 0.1Hz. Notice how the corresponding 2D spectra obtained by the radar

are unable to represent the tail of the N swell as indicated by the simulations. The

measured N swell is only represented in a very small frequency-interval. Because the

frequencies covering the tail of the swell are less energetic than that of the corresponding

frequencies of the wind-sea, the radar automatically represents the wind-sea. This

means the energy contained by the tail of the swell is not accounted for in the radar

measurements. The same scenario is illustrated in fig. 7.16 and 7.17 for Troll A and

Sleipner A. Notice how the measured N swell becomes narrow and more indistinct as the

peak of the wind-sea moves closer to the peak of the swell. However, the corresponding

1D spectra of fig. 7.15-7.17 do not seem to be highly affected.
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Now, how much does this shortcoming in the radar affects the total energy, or Hs,

of the measurements. Because the majority of energy is found near the peak of the

spectrum, a significant energy loss may only be present when two wave systems of 180

degrees ambiguity have approximately coinciding peak frequencies. This is not the case

in the 2003-case and therefore not easily tested.

Saturation range

The growth of wind waves are not infinite. At one point balance between the three

source terms, wind-input, dissipation and nonlinear interaction, is obtained. This is

evident in the tail of the spectrum, 1.5fp < f < 3fp, where the energy level is more

or less constant for a wind-sea. An universal relation expressing the slope of the tail

was first proposed by Phillips (1958) using a f−5 power law. Since then several studies

(Phillips 1985; Kitaigorodski 1983; Toba 1973; Forristall 1981) have shown a better fit

using an f−4 relation. However, this law will not apply to swell because swell often are

unsaturated wave systems, caused by the dispersion characteristic of ocean waves.

The 2003-case was dominated by high winds and well developed seas combined with

swell. Fig. 7.18 illustrates the average modelled and measured 1D spectrum for all four

positions for the entire period. As expected the model shows a good fit with the f−4

power law, represented by the red line. The measurements indicate a weaker decline,

fitting better a -3.8 exponent, giving it a more energetic tail compared to the model.

This difference in saturation range may explain some of the underestimation seen in

the simulated Hs. Liu (1989) examined more than 2200 well-developed wave spectra

during storm conditions in the Great Lakes and found the exponent to vary from -3.5

to -5.5, which clearly underlines the uncertainty of a f−4 power law.

Wind-sea growth in the presence of an opposing swell

During the 2003-case all four oil rigs experienced a period where the wave condition was

dominated by the presence of a swell and an opposing wind-sea. The N swell was the

last trace of the low pressure system ”Edda”. As the wind turned from N-NW to SE-

SW a new wind-sea evolved. Depending on location, this wind/counter-swell situation

took place around the 13th. A selection of measured and simulated wave spectra at

the time are presented in fig. 7.13b), 7.15, 7.16 and 7.17. Focusing on the 1D spectra,

a weak deviating trend between the simulated and measured high frequency wind-sea

system can be seen. The measured wind-sea is slightly more energetic and has a more

downshifted peak. Both effects indicate a higher degree of energy transference from air

to sea in the measurements compared to the simulations. This could possibly be the

result of an increased drag coefficient influenced by the opposing swell. As this effect

is not accounted for in the model, the simulated wind-sea system evolves accordingly.

However, there are several uncertainties connected to this finding.
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First, lets compare the developing wind-sea of the 2003-case with the work of Ard-

huin (Sub) shown in fig. 5.1c) and d). The wave conditions of these two cases are

comparable, however, obvious differences are found in the 1D spectra. Unlike the

2003-case the simulated wind-sea of Ardhuin (Sub) showed to be more evolved com-

pared to the corresponding measurements, see fig. 5.1c). This effect was explained by

the poorly parameterized dissipation-term of the WAM(cycle-4)-model, giving a too

strong wind-sea growth in mixed swell/wind-sea conditions, see chapter 5. Knowing

the models used in both cases are based on the same dissipation-term, the simulated

wind-sea of the 2003-case should behave in the same way relative to the measurements.

The fact that it shows the opposite trend, only fortifies this difference. However, there

are a few possible explanations for this behavior.

Besides having swell opposed by wind, the two cases are different in several ways.

First of all, the swell reported in Ardhuin (Sub) had a Hs ≈ 1m and Tp ≈ 10s.

Correspondingly, the low frequency Hs,eq of fig. 7.8 and 7.9, approximately representing

the wave height of the swell, is about 3m. In addition, the peak period of the swell is

12-15s, depending on position, see fig. 7.5 and 7.6. The possible effect swell may have

on the drag coefficient is likely to vary with different types of swell. The more energetic

swell of the 2003-case may have had an increased effect on the drag coefficient.

Probably the most important difference between the two cases is found in the wind

conditions, and at what degree these are possible to survey. While the work of Ardhuin

(Sub) was based on data obtained in nearly idealized fetch-limited conditions, the 2003-

case was not chosen with the same carefulness. The SE-SW wind-sea illustrated in fig.

7.13b), 7.15, 7.16 and 7.17 has no clearly defined fetch caused by the irregular coastline

found in the south, see fig. 6.1, and the wind field is no near stationary in the actual

time period, see fig. 7.3 and 7.4. The advantage of working with an idealized fetch-

limited case is found in the steady wave field this type of condition produces, that is,

assuming any distant generated swells are close to being stationary within the studied

area. A steady wave field allows for time averaging, offering more stable measurements,

as well as simulations. Besides, not only is a stationary wind field less subjected to

gustiness, effects of gust winds are more likely to be attenuated when the measured

wave field is averaged over some period of time. Because this random characteristic

of the wind field is uneasily simulated, its effect on the wave field is not accounted

for in the WAM-model. Therefore, in non-stationary wind conditions, when no time

averaging of the wave field may be carried through, a comparison of measured and

simulated wave spectra are more likely to show higher deviation caused by gust winds.

Komen et al. (1996) reported extra energy transference to waves in conditions of high

wind fluctuations. This effect may have influenced the results of the 2003-case.

An other source of error lays within the spacial and temporal resolution of the two

models. The model used in Ardhuin (Sub) had about a 1000 times higher resolution

in space and 15 times smaller integration time step, which obviously offer increased

accuracy in the wind forcing and wave simulations. Now, if the 2003-case had been
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obtained in stationary wind conditions, this factor would not have been of significant

importance. Since this was not the case, there are more uncertainties connected to the

accuracy of the wind forcing. For the 2003-case one can only rely on the local wind

comparisons between the model and simulations. However, as seen in fig. 7.4, the wind

does not indicate any larger gradients in space between the three southernmost oil rigs,

changing more or less uniformly with time. Especially the winds found at Gullfaks C

and Troll A tend to be highly correlated. Therefore, the poorer spacial resolution

of the WAM-model used in the 2003-case may not have reduced the accuracy of the

simulations significantly.

The difference between the simulated and measured wind-sea seen in the 1D spectra

of fig. 7.13b) and 7.17a) are striking. However, both measured spectra have a peak

frequency above 0.15Hz. When applying a JONSWAP-spectrum, it can be found that

with 20m/s wind speed, less than a 80km fetch is needed to generate a similar wave

system, see fig. 2.4. 80km does not even cover two grid boxes in the model, which

only proves that a small misrepresentation at one grid point is enough to influence the

results found in the 2003-case.

Despite all uncertainties attached to these data, the trend is the same for all po-

sitions, which somewhat strengthen the findings. Focusing on the Hs results given in

fig. 7.5 and 7.6, there are no indications of the integrated parameters being signifi-

cantly affected by the interaction of swell and wind-sea. This result corresponds to the

findings made in Ardhuin (Sub).
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7.2 8-12th of February 2000

7.2.1 Wind conditions

Synoptic scale

During the 2003-case the wave conditions were primarily dominated by ”local” atmo-

spheric low pressure systems. The majority of wave energy affecting the four oil rigs

was generated in the North -and Norwegian Sea, see fig. 7.2. In the following case, the

8-12th of February 2000, the wave conditions are to a higher degree also influenced by

more distant wind fields.

Norway finds itself some what in the corner of the Atlantic Ocean. In wintertime

the stretch of open ocean is limited by ice in the north, Greenland in the west and

Great Britain and mainland Europe in the south and southwest. WSW is the only

direction directly exposing the four oil rigs to vast stretches of open ocean, with maybe

the exception of Sleipner A. Heidrun has also increased exposure from the SW.

February the 9th 2000 all four radars measured peak periods exceeding 20 seconds,

an event not to often experienced in this area. Wavelengths of such magnitude demand

special wind conditions to be generated. Fig. 7.19 illustrates the wind fields of the

North Atlantic at 12UTC from the 5th to the 10th of Feb. 2000. Notice how the

majority of strong winds are coming from the SW. The color coding indicates that

the strongest winds nearly follow a thought developing SW wave system day by day,

continuously keeping it energetic or growing.

In the following analysis all data obtained at the four oil rigs are analyzed simul-

taneously, as the wave conditions of each position were influenced much by the same

wave systems.

Local scale

The measured and simulated winds at the four oil rigs are illustrated in fig. 7.20.

As seen in the 2003-case, the two wind sensors, indicated by the black and red line,

disagree at times in their wind speed representation. Once again the sensors measuring

the strongest winds are prioritized and make up the basis for the following discussion

and the corresponding scatter plots of fig. 7.20.

The main focus of the 2000-case will be made on the period where the powerful

WSW swell had moved into the area spanned by the four radars and a new wind-sea

was building. Depending on position the arrival of the swell varies slightly. Here, the

circled letters of fig. 7.20 mark the hours where measured and simulated 2D spectra are

presented in section 7.2.4, which correspond to the hours expected to have increased

swell/wind-sea interaction. Notice that these periods are mainly dominated by S-SW

winds, with the exception of Sleipner A where the wind direction is NW-SW. On

average the quality of the simulated winds prior to and within these periods are fairly
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Figure 7.19: Analyzed sea surface winds(10m) for the northern Atlantic at 12UTC the a)5th - f)10th

of February 2000. Data are obtained from NCEP-NCAR(http://ingrid.ldeo.columbia.edu/).

good. Of the four positions, the biggest deviation is found at Sleipner A around the 9th

where the simulated winds are too weak. At Heidrun, the 30 hour time period starting

at 18UTC the 9th, is dominated by high wind speed variability, where the simulated
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Figure 7.20: Wind speed and wind direction with corresponding scatter plots for the period 8th - 12th

of February 2000. Observations: sensor A(red line) and sensor B(black line). Model: HIRLAM(green

line). Scatter plots are based on the data of the sensor with best fit to the model. a),b): Heidrun;

c),d): Gullfaks C; e),f): Troll A; g),h): Sleipner A.
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wind speed is either too weak or too strong compared to the measurements.

The wind direction time series of the four oil rigs are illustrated in fig. 7.20b),

d), f) and h). Model and measurements are highly correlated on all stations, see the

corresponding scatter plots, with the poorest results found at Heidrun the around

18UTC the 10th(+42h forecast).

7.2.2 Wave parameters: Hs & Tp

Fig. 7.21 illustrates the simulated and measured Hs and Tp. Notice that the most

considerable deviation found in the simulated wind speed at Heidrun and Sleipner A,

noted above, are also reflected in the increased deviation of Hs at the time.

For Heidrun, see fig. 7.21, the measured Hs is increasing around 03UTC the 10th

despite weak local wind at the time, see 7.20a). This can only be explained by advected

wave energy in the form of swell. The corresponding simulated Hs is also growing, but

not at the same rate. Unfortunately, the simulated wind speed is not known at this

hour. However, if the simulated wind was to be as indicated by fig. 7.20a) one should

expect the simulated Hs to be at least the height of the measured Hs.

At the beginning of the time series representing Troll A, the Hs measurements ,

see fig 7.21e), bare proof of being influenced by some sort of malfunction in the radar.

Compared to the measurements made at the closely situated Gullfaks C, the significant

wave height seems unrealistically low. The deviation to the simulated Hs is obvious.

Several spikes in the signal underline the suspicion of something being wrong. At

Gullfaks C at 10UTC the 9th a similar spike is found in the measured Hs, coinciding

perfectly with a moment of calm wind, see fig. 7.20c). Besides obvious shortcomings in

the measured Hs, the quality of the Tp measurements do not seem affected at neither

of the two oil rigs.

Around midday the 9th, depending on oil rig, all radars indicate Tp to be above 20

sec, see fig. 7.21. As Gullfaks C and Troll are only 101km apart, they are subjected to

the same wave systems more or less at the same time. This is eveident in fig. 7.21d) and

f) where both radars show a coinciding jump in the Tp measurements around 09UTC.

Heidrun, situated further north, shows the same signal only six hours later. Knowing

the swell is coming from the WSW, illustrated in the 2D spectra of section 7.2.4,

Sleipner A is somewhat in the shadow of Great Britain and therefore not dominated

by the long period swell in the same way as the other three oil rigs. Most importantly,

the reader should acknowledge the difference in simulated and measured Tp at the time

the swell is present. The data deviate in the 3-4s range depending on position.

All in all table 7.5 summarizes the model performance compared to the radar for the

2000-case. As the quality of the Hs-measurements obtained at Troll A seem corrupt,

the total Hs-statistics are presented with and without theses data.
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Figure 7.21: Significant wave height, Hs, and peak period, Tp , with corresponding scatter plots for

the period 8th - 12th of February 2000. Observations: MIROS-radar(black line). Model: WAM(green

line). a),b): Heidrun; c),d): Gullfaks C; e),f): Troll A; g),h): Sleipner A
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Table 7.5: Summary statistics of significant wave height Hs, peak period Tp and wind speed U10 in

the time period 8-10th February 2000 , based on analyzed and prognostic wind fields. The bias is with

respect to measurements. SI is scatter index, RMS is root-mean-square error and Corr is correlation.

Number of entries are given in parentheses. The total Hs statistics are given with and without the

results obtained at Troll A.

Hs[m] Tp[s] U10[m/s](scalar)

Position (entries) Bias RMS SI Corr Bias RMS SI Corr Bias RMS SI Corr

Heidrun(11) -0.30 0.65 0.13 0.96 1.31 2.87 0.21 0.82 -0.71 2.22 0.22 0.94

Gullfaks C(11) 0.22 0.61 0.13 0.94 1.45 3.16 0.24 0.69 -0.19 2.10 0.19 0.92

Troll A(11) 0.66 1.65 0.48 0.68 0.65 2.50 0.20 0.77 1.15 1.82 0.18 0.97

Sleipner A(11) -0.24 0.62 0.15 0.91 -0.12 0.77 0.08 0.59 -0.48 3.87 0.28 0.76

Total(44) 0.09 1.00 0.23 0.85 0.82 2.51 0.21 0.79 -0.06 2.63 0.23 0.90

Total(33) -0.11 0.63 0.13 0.93

7.2.3 Integrated spectra: Hs,eq

Table 7.6 summarizes the comparison between the simulated and measured Hs,eq based

on energy above and below 0.094Hz and energy approaching and receding the radar.

Once again the total statistics are given with and without the data obtained at Troll

A.

Table 7.6: Summary statistics for Hs,eg, WAM-model vs MIROS-radar, deduced from wave energy

receding/approching the 180 degrees grazing sector of the radar at each respective oil rig and energy

above/below 0.094Hz in the time period 8-10th February 2000. The bias is with respect to measure-

ments. SI is scatter index, RMS is root-mean-square error and Corr is correlation. Number of entries

are given in parentheses. Total are given with and without the results obtained at Troll A.

Hs,eq Hs,eq Hs,eq Hs,eq

(receding) (approaching) (f<0.094Hz) (f>0.094Hz)

Pos(entries) Bias RMS SI Corr Bias RMS SI Corr Bias RMS SI Corr Bias RMS SI Corr

Heidrun(11) 0.07 0.72 0.17 0.97 -0.57 0.79 0.32 0.22 -0.23 0.81 0.20 0.95 -0.16 0.40 0.13 0.93

Gullfaks C(11) -0.52 0.80 0.27 0.75 0.59 0.91 0.25 0.90 0.37 0.63 0.18 0.93 -0.09 0.34 0.11 0.97

Troll A(11) -0.21 1.13 0.72 -0.30 0.76 1.43 0.47 0.78 0.57 1.04 0.49 0.75 0.55 1.48 0.59 0.55

Sleipner A(11) -0.07 0.56 0.17 0.84 -0.38 0.49 0.20 0.97 -0.30 0.58 0.28 0.80 0.17 0.54 0.16 0.86

Total(44) -0.18 0.83 0.28 0.88 0.10 0.96 0.33 0.82 0.09 0.79 0.27 0.88 0.12 0.83 0.27 0.77

Total(33) -0.17 0.70 0.20 0.91 -0.12 0.75 0.26 0.88 -0.07 0.68 0.22 0.91 -0.03 0.43 0.14 0.92
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7.2.4 Wave spectra: 1D & 2D

Heidrun

li: The wave condition of the 2000-case is of special interest first and foremost for

being dominated by a very long period swell. Fig. 7.22a) illustrates the simulated

and measured wave spectra for Heidrun at 12UTC the 9th. This is the last time both

spectra are available before the high energy swell propagates into the area with full

force. As seen in fig. 7.21b), the peak period is not yet dominated by the swell.

However, already at this point the simulated spectra indicate the arrival of the swell,

without being evident in the measurements. In addition to the WSW swell, a weaker

NNW swell with peak frequency around 0.1Hz can be recognized in both data.

The wave spectra illustrated in fig. 7.22a) are very much representative for the wave

condition found at Heidrun the preceding 24 hours, a period dominated by moderate

wave heights and the absence of any wind-sea systems.
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Figure 7.22: Heidrun: a) 12UTC and b) 18UTC 9. Feb. 2000. Left: 2D spectrum(MIROS-radar)

and measured wind. Middle: 1D spectra with corresponding Hs and Tp, MIROS-radar(black) and

WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

mi: At 18UTC the 9th, the situation does not seem significantly altered focusing on

the simulated 2D spectra of fig. 7.22b). However, the change in coloration of the WSW

swell represents an increase of energy. This becomes more evident in the corresponding

simulated 1D spectrum.
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In fig. 7.22a) the WSW swell is absent in the measurements. At this stage, the swell

is clearly defined by an abrupt energy shoot-up in the 1D spectrum, see fig. 7.22b).

Also notice the altered appearance of the measured 2D spectrum compared to that

obtained 6 hours earlier.

The measured 1D spectrum portraits a distant generated wave system. A probable

long passage made sure the swell ’cleaned up’ before reaching the area of observation,

creating the narrow shape of the spectrum. This is caused by the dispersive character-

istic of ocean waves, expressed by eq. 2.7. The width of the spectra can in that way

reflect the distance covered by the wave system and say something about its origin.

ni, oi, pi: At 00UTC the 10th, fig. 7.23a), the modelled and measured WSW swell

are almost coinciding, with the model being slightly more energetic. A new wind-sea

is appearing in the radar measurements centered around 0.13HZ, but is nonexisting in

the model. Six hours later, see fig. 7.23b), the swell is dropping while the wind-sea seen

previously in the measurements start to appear in the simulations. However, comparing

the two representations the measured wind-sea is clearly more evolved. Another six

hours later, see fig. 7.23c), the swell is still dropping and the wind-sea has reached,

and slightly exceeded, its energy level. The swell is barely visible on the low frequency

side of the 1D spectra. At this stage, the simulated wind-sea has finally caught up

with the measurements and fit very well.

Generally the wind, illustrated by the red arrows of the 2D spectra, is going

with/across the direction of the swell in the period spanned by fig. 7.23. In addition,

it should also be noted that the measured 2D spectra do not indicate the presence of

the N swell, seen in the corresponding simulations.

Gullfaks C

qi, ri, si: The modelled and measured wave spectra representing the wave condition

at Gullfaks C at 18UTC the 9th show high similarity, see fig. 7.24a). Notice that the

heading of the swell is more straight W compared to Heidrun. The building SSW wind-

sea is not obvious in the 1D spectra, but is well illustrated in both 2D spectra. Unlike

the 2D spectra obtained at Heidrun, the N swell is better represented at Gullfaks C.

And, the simulated long period swell is now more energetic than the measured swell.

At 00UTC the 10th, the 1D spectra fit very well, see fig. 7.24b). Both peaks,

swell and wind-sea, are coinciding and do not differ significantly in energy. Six hours

later, illustrated in fig. 7.24c), the energy level is somewhat deviating, caused by a

broader wind-sea representation by the model. However, the peaks are still coinciding

in frequency.

As observed at Heidrun, the wind direction of this period is going with/across the

heading of the swell.
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Figure 7.23: Heidrun: a) 00UTC, b) 06UTC and c) 12UTC 10. Feb. 2000. Left: 2D

spectrum(MIROS-radar) and measured wind. Middle: 1D spectra with corresponding Hs and Tp,

MIROS-radar(black) and WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

Troll A

ti, ui: Fig. 7.25 illustrates the wave spectra obtained at Troll A at 18UTC the 9th and

00UTC the 10th. Notice the significant difference between the measured and modelled

wind-sea in the latter 1D spectra. In this period the wind is almost perpendicular to

the W swell.
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Figure 7.24: Gullfaks C: a) 18UTC 9. Feb, b) 00UTC 10. Feb and c) 06UTC 10. Feb. 2000. Left:

2D spectrum(MIROS-radar) and measured wind. Middle: 1D spectra with corresponding Hs and Tp,

MIROS-radar(black) and WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

Sleipner A

The wave spectra illustrating the wave condition at Heidrun, see fig. 7.22 and 7.23,

indicate the origin of the long period swell to be WSW. This puts Sleipner A in the

shadow of Great Britain, see fig. 6.1, not directly exposing the oil rig to the wave

system. However, some of the energy is refracted and affects the waters surrounding

Sleipner A.

vi: Fig. 7.26a) illustrates the wave condition at Sleipner A at 12UTC the 9th, which

is just prior to the arrival of the long period swell. At this stage the wave condition is
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Figure 7.25: Troll A: a) 18UTC 9. Feb. and b) 00UTC 10. Feb. 2000. Left: 2D spectrum(MIROS-

radar) and measured wind. Middle: 1D spectra with corresponding Hs and Tp, MIROS-radar(black)

and WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

highly mixed, best illustrated by the modelled 2D spectra. There is the N swell and a

wind-sea turning from the SW to NW, see fig. 7.20h). And, looking closely one can see

the first sign of the long period swell indicated by the small blue-colored dot coming

from the WNW. However, the wind-sea is dominating and clearly more energetic in

the measurements, focusing on the 1D spectrum.
wi: At 12UTC the 9th, fig. 7.26b), the measured wind-sea is decreasing, while the

corresponding simulated wind-sea is more or less the same as 6 hours earlier. The long

period swell has propagated into the area, indicated by a much reduced peak around

0.05Hz in the 1D spectrum. Compared to the data obtained at the more northerly

located oil rigs the energy travelling with the swell is now only fractional. Observe

how the wind is going in the same directions as the swell. The simulated wind-sea is

slightly more downshifted compared to the measurements, however less energetic.
xi: 6 hours later, see fig. 7.26c), the measured 1D spectrum clearly separates three

wave systems, also evident in the simulated 2D spectrum. There are still two swells

and a turning wind-sea present. Recognize the fact that the most energetic peak of the

simulated 1D spectrum is the sum of two wave systems, the N swell and the wind-sea.

Worth noticing is the behavior of the wind-sea observed in the time period spanned

by fig. 7.26. While the model maintains a fairly steady peak and moderate decrease
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Figure 7.26: Sleipner A: a) 06UTC, b) 12UTC and c) 18UTC 9. Feb. 2000. Left: 2D

spectrum(MIROS-radar) and measured wind. Middle: 1D spectra with corresponding Hs and Tp,

MIROS-radar(black) and WAM(green). Right: 2D spectrum(WAM) and modelled wind(HIRLAM).

of energy, the measurements show a much more rapid reduction in energy and a peak

going towards higher frequencies with time.

7.2.5 Saturation range

Fig. 7.18 are based on the same calculations made in the 2003-case, see section 7.1.5.

However, the Troll A data are excluded.
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Figure 7.27: The average simulated(WAM) and measured(MIROS) 1D spectra for Heidrun, Gullfaks

C and Sleipner A for the period 8th-12th of February 2000. The 0.0021−4f-function is given as a

reference measure.

7.2.6 Discussion

Wind forcing the model

The 2000-case is poorly documented in regard to model simulations. All available

time series are based on increasing prognostic wind fields. Statistically the quality of

these winds will deteriorate with time and reduce the accuracy of the simulated wave

data. However, as the prognostic performance of the HIRLAM-model will vary from

time to time, sometimes being better than others, it is necessary to analyze each case

independently. Like the 2003-case, the locally simulated U10-winds are compared to

corresponding measurements obtained at the four oil rigs, illustrated in fig. 7.20.

For the 2000-case, the wind evaluation is more complicated by the fact that the

model results are only available every second time step, i.e. every sixth hour. In that

way it is impossible to obtain a complete picture of the wind forcing the model locally.

This shortcoming becomes apparent when studying the wind speed e.g. at Heidrun at

03UTC the 10th, see fig 7.20a). At this stage the simulated wind is not represented by

the actual wind forcing the model, but by a linear interpolation deduced from the wind

three hours prior and latter. The deviation between the simulated and measured wind

speed is significant, however most likely not representative. Therefore, when studying

the wave spectra -and parameters around this hour they can not be properly tested for

wind inaccuracies caused by this deficiency in the data. One way of dealing with the

problem is to evaluate the wind solely based on the scatter plots of fig. 7.20 and the

statistics of table 7.5, which are deduced only from the hours the simulated winds are

available.

In fact all wind speed correlations representing the 2000-case are improved com-

pared to the 2003-case, with the exception of Sleipner A, see fig. 7.3, 7.4 and 7.20. The
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summary statistics of the two cases, see table 7.1 and 7.5, show that the quality of the

simulated local winds are much the same in both cases. However, one point should be

made. Focusing on the total wind speed statistics for the two cases, it is evident that

the simulated winds of the 2003-case are stronger compared to the measurements than

the 2000-case, with a total bias of 0.61 and -0.06 respectively.

As noted before, accurate wind at one grid point does not necessarily reflect the

situation elsewhere within the model area. And, when the majority of wind fields

forcing the wave model are based on prognosis, this uncertainty increases. Therefore,

besides local comparisons, earlier statistical verifications of prognostic HIRLAM-model

simulations should be taken into consideration. Komen et al. (1996) stated that simu-

lations reaching 12-24 hour forecasts are often of the same quality or even better than

the analysis, explained in section 7.1.6. Here, the +24h forecasts, corresponding to the

10th at 00UTC, cover most of the interesting part of the 2000-case. Besides, a long

period swell of the dimension seen in the 2000-case, is depending on long lasting wind

duration much prior to its actual arrival. This means slightly inaccurate local winds

most likely will not change the simulated swell significantly. On the other hand, any

wind-seas are more vulnerable to poorly simulated local winds. However, as stated

above, the simulated winds seem satisfactory.

Wave parameters

The wave condition of the 2000-case is first and foremost unique for the presence of

a long period swell propagating in from the WSW. Of the four independent radars,

all indicate the peak period to be in the 21-23s range, depending on the position of

observation, see fig. 7.21. This consistency in the radar measurements underlines their

accuracy, that is, assuming MIROS’s signal analysis is precise. However, compared

to the measurements the simulated peaks are off by 3-4 seconds at Heidrun, Gullfaks

C and Troll A, see fig 7.21b),d) and f). What may be the reason for this significant

mismatch?

According to the dispersion relation, see eq. 2.8, the phase speed corresponding

to a 22s wave period equals 34.3m/s in deep water and has a wavelength exceeding

750m. Only persevering strong winds are able to activate wave components of this

magnitude. To put this into perspective, the PM-spectrum (Pierson and Moskowitz

1964), representing a fully developed wind-sea, see eq. 2.27, requires a 30m/s wind

speed to generate a wave system of Tp = 22s. When applying a 30m/s wind speed and

a 22s peak period to the JONSWAP-spectrum (Hasselmann et al. 1973) it is found that

a 1600km fetch is needed. However, according to the manual wave forecasting diagram

developed by Gröen and Dorrestein (1976) a fetch twice this distance is required, with

a 72 hour duration. It should be noted that the PM-spectrum, JONSWAP-spectrum

and the wave diagram are assuming stationary wind conditions. Even though these

numbers are slightly speculative it leaves little doubt that a wave system with a 22s
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peak period demands winds of high speed and long durability working over a long

stretch of water(fetch).

The above mentioned numbers are based on a wind-sea. Once the wave system no

longer is forced by the wind and becomes, by definition, swell, the different wavelengths

disperse according to eq. 2.8. The longer the wave system propagates without external

forcing, the more spread out the wave components become, changing the appearance

of the wave spectrum. Different parts of the spectrum will arrive at different times,

giving the spectra a more narrow shape, illustrated in the 1D spectrum of fig. 7.22b).

The longest and fastest wave components will arrive first, followed by the shorter ones.

This is evident by the decreasing Tp seen in fig. 7.21 around 12UTC the 9th. This

dispersive characteristic waves inherent implies that the peak period of a swell not

necessarily correspond to that of the original wind-sea system. It might be slightly

longer. However, the difference will be small. Consequently, the peak of the original

wind-sea system of the 2000-case might have been smaller than indicated by the swell,

but still long enough to demand more or less the same conditions as discussed above.

Focusing on fig. 7.19, there is no evidence of the wind reaching 30m/s. When

taking the required duration into account, discussed above, the wind fields prior to

the arrival of the long period swell seem weak. Since fig. 7.19 only illustrates the

condition at 12UTC, the winds must have been stronger in between these hours. Most

likely the wave system was absorbing energy irregularly over a much longer distance

than required in stationary conditions. Fig. 7.19 shows how the North Atlantic was

dominated by SW winds throughout the period. A distant generated wave system may

have been kept energetic and growing over a vast stretch of open ocean.

The WAM-model run at met.no is limited to a geographical area, illustrated by

fig. 7.28, and all boundaries are set to zero. A closed basin with no energy exchanges

across the boundaries will suffer from misrepresentations in the model simulations. Any

distant generated swells propagating into the area of operation are going to be absent

in the simulations, while a wind-sea generated across the boundaries will be treated

as a fetch-limited case, restricted by the boundary, giving a reduction in energy and a

reduced downshift of the wave spectrum. In most cases only the area adjacent to the

boundaries suffer from this kind of model implementation. However, in conditions of

steady wind directions, any misrepresentations made at the boundaries may be kept

significant and advected, in this case, all the way to the coast of Norway. Therefore,

there may be reason to believe this was the cause for the 3-4s offset found in the

simulated Tp during the 2000-case. A possible swell track is illustrated in fig. 7.28,

which equals a distance of about 5000km. Then again, inaccurate simulated winds may

have played an equally important part in the deviating results.

Of the four oil rigs, Sleipner A is less dominated by the WSW swell than the three

other oil rigs. Only during two shorter periods, around 18UTC the 10th, the swell is

evident in the Tp-measurements, see fig. 7.21. The remainder of the swell reaching

Sleipner A is affected by the position of the oil rig. By being in the shadow of Great
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Figure 7.28: The possible propagation track of the long period swell observed the 9th of Feb. 2000.

The original wave system may have been generated outside the geographical area of the WAM-model

boundaries as indicated by the red arrow.

Britain, energy is lost as the swell refracts around land. In addition, Sleipner A finds

itself in more shallow water, see table 6.1. In that way the extremely long wavelengths

will interact with the bottom, also loosing energy be friction.

The Hs-measurements obtained at Troll A, see fig. 7.21e), are in the first part of the

time series clearly affected by some sort of malfunction. Such behavior is often related

to periods of weak winds. This is seen at Gullfaks C at 10UTC the 9th where the spike

in the Hs-measurement coincides with the calm wind at the time, see fig. 7.6c) and

fig. 7.4c). Because the radar relies on the presence of capillary waves at the surface

to obtain a sufficient reflected signal, a minimum of wind is required, often said to be

around 3m/s. However, the data of Troll A show sufficient wind to generate capillary

waves within the period of inaccurate Hs measurements, meaning the malfunction

must lie elsewhere. This is confirmed by the seemingly unaffected Tp at Troll A, see

fig. 7.21f). A possible explanation may be found in the signal processing unit of the

radar. However, this will only be speculations. Here, it is only acknowledged that the

Troll A Hs measurements are inaccurate and therefore not taken into consideration in

the total statistics of table 7.5 and 7.6.

Approaching/receding waves relative to radar heading

For the 2000-case there are few signs of the radar performance being affected by the

direction of waves relative to the 180 degrees sector of the radar. This is based on

the very much similar results found in Hs,eq for the two sectors given in table 7.6.
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The difference in the radar’s ability to measure receding and approaching waves is

marginal and does not indicate a significant loss of energy when representing integrated

parameters such as Hs.

However, the 2D spectra offer some vague proof that the radar is vulnerable in

situations of opposing wave systems. This becomes evident at Heidrun, illustrated

in fig. 7.23, where the N swell is not represented in the measurements. Interestingly,

around the same time the 2D spectrum obtained at Gullfaks C, see fig. 7.24a), indicates

the N swell to be present. This again affects the representation of the SW wind-sea,

showing a gap in the 2D spectrum at those frequencies corresponding to the N swell,

see fig. 7.24a). However, the energy content of both the N swell and SW wind-sea are

so small compared to the WSW swell, that the total energy will not be significantly

affected.

The different 2D-representations of the N swell at Heidrun and Gullfaks C may be

explained by the fact that the opposing wind-sea is stronger relative to swell at Heidrun

and viceversa at Gullfaks C. This offers some proof that the radar always represents

that of the two directional-frequency bin of 180 degrees ambiguity having the most

energy.

Saturation range

The 2000-case is more dominated by periods of pure swell conditions than the 2003-

case. This affects the average simulated and measured spectrum illustrated in fig. 7.27.

Because of the dispersive characteristic of ocean waves, a distant swell is not considered

fully developed. Compared to the 2003-case, the average spectra have a slightly less

energetic tail, which is to be expected. This is evident by the different amount of energy

found in the simulated and measured tail relative to the f−4 power law(red line) given

in each case.

The increased irregularity and standard deviation of the mean spectra obtained

from the 2000-case are caused by the reduced numbers of available spectra. However,

with some goodwill the measurements can be said to have a tail slope closer to the f−4

power law in this case compared to the 2003-case.

Once again the average simulated tail is found less energetic compared to the mea-

sured tail, which may indicate the need for an improved and more flexible parametriza-

tion of the saturation range of the simulated spectrum.

Wind-sea growth in the presence of swell going in/across the direction of

the wind

During the 9th and 10th of Feb. 2000 the wave conditions at the four oil rigs were

dominated by energetic swell activity and a building wind-sea. The combined wave

systems are illustrated in the spectra of fig. 7.23-7.26. Unlike the 2003-case, this

time the wind shifted between going in and across the direction of the dominating
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long period swell. According to the works of Donelan et al. (1993),Drennan et al.

(1999) and Kudryavtsev and Makin (2004) the drag coefficient is reduced in these

types of conditions compared to conditions of wind opposing swell. Therefore, it may

be expected that the measured wind-sea is less evolved relative to the simulated wind-

sea in the 2000-case compared to the 2003-case.

Non of the two analyzed cases of this thesis may be considered idealized. Winds

are not stationary and the developing wind-seas are not fetch-limited. To further

complicate the matter, an additional swell is present during the 2000-case. This N swell

propagates on average in the opposite direction of the wind. As debated above, this

may have the effect of increasing the wind-sea growth. However, the energy content

of the N swell is significantly smaller than the WSW swell and only well defined in

the simulated 2D spectra, illustrated in fig. 7.23-7.26. The measured 2D spectra

are inconclusive and do not give a clear representation of the N swell. Therefore, it is

assumed that the effect of the N swell on the growth of the wind-sea is minor compared

to the effect imposed by the WSW swell.

Out of the four oil rigs, the results obtained at Heidrun are the least encouraging,

see fig. 7.23a) and b). Here, the measured and simulated wind-sea highly resemble

the findings made in the 2003-case. Again the measured wind-sea clearly exceeds

the development of the simulated wind-sea, which does not correspond well with the

expected result. However, this behavior may have been influenced by poorly simulated

winds. Large fluctuations in the wind field at Heidrun prior to this event may have

been improperly resolved by the HIRLAM-20, see fig. 7.4. In addition, the northern

displacement of the radar compared to the corresponding grid point, see fig. 6.1, will

enable any S wind-sea to evolve over a longer distance compared to the simulations,

assuming an uniform wind within this area.

In contrast, the spectra obtained at the three southernmost oil rigs, see fig. 7.24-

7.26, indicate a change in the measured and simulated wind-sea relation compared

to the 2003-case. Focusing on Gullfaks C, see fig. 7.24, the peak of the simulated

and measured wind-sea almost coincide. At Troll A and Sleipner A, see fig. 7.25b),

7.26b) and c), the energy carried by the measured wind-sea is reduced compared to the

simulation, also affecting the deviation in Hs. In addition, the peak of the measured

wind-sea is less downshifted. Both effects indicate a reduction in the measured wind-

sea growth compared to conditions of wind-sea opposing swell, seen in the 2003-case.

However, as mentioned above, statistically the simulated wind speeds of the 2000-case

are weaker compared to the 2003-case, which may have contributed to fortify this

behavior of the wind-sea.

All in all, the different behavior of the measured spectra relative to the correspond-

ing simulations of the 2000-case and 2003-case may be the result of a swell-dependent

drag coefficient, as this effect is not accounted for in the Sin source-function of the

WAM-model. However, as debated in section 7.1.6, there are considerable uncertain-

ties connected to these data, where the quality of the wind forcing the model always
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will be a big questionmark.



Chapter 8

Conclusions and Future thoughts

In this study data obtained by the MIROS microwave wave-radar have been compared

to the third generation wave model WAM(cycle-4), driven by HIRLAM-20 10m winds,

run operationally at met.no. Four radars, installed on the Statoil rigs; Heidrun, Gull-

faks C, Troll A and Sleipner A, located in the North -and Norwegian Sea were chosen

for the study. The analyzed data were collected during two severe swell events; 10-16th

of December 2003 and 8-12th of February 2000. First case was related to two adjacent

deep low pressure systems producing significant wave heights above 12m, while the

second case was dominated by a WSW swell with a peak period reaching 23s.

The focus of the thesis have been made on the performance of both model and radar

in situations of swell. Possible shortcomings are addressed and discussed. In addition,

the growth properties of wind-sea are examined in the presence of swell. It should be

noted that the amount of data analyzed are sparse and do not offer a statistical valid

evaluation. Therefore, the findings of this work will primarily apply to the particular

case itself, but may also offer a support to developing theories. The following results

and future thoughts were made;

Model performance: Wave parameters

Previous studies have shown the WAM-model to underestimate key parameters such

as Hs and Tp (Janssen et al. 1997). The overall statistics based on the 2003-case

shows similar results for Hs. In spite of having on average too strong winds forcing

the model locally, the simulated Hs was on three out of four positions too small. All

in all the model had a bias equal to -0.23cm. A possible explanation may be found

in the saturation range of the simulated spectrum. On average the energy content of

the simulated tail was found low in both cases, which may indicate an improvement

potential for the saturation range of the model. The Tp-statistics was generally of high

quality.

The WAM-model at met.no is implemented as a ’closed basin’. In general, the sim-

ulations near the boundaries are mostly affected by this kind of model set-up. However,
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when powerful wave systems are generated outside and across the boundaries and kept

energetic by stable winds within the geographical area of the model, inaccurate simu-

lations at the boundaries may be advected, in this case, all the way to the Norwegian

coast. When these misrepresentations concern powerful swells with peak periods above

20 seconds, this becomes of special importance to e.g. offshore constructions. Large

oil rigs have maximum response around these periods, making accurate forecasting

important to obtain a safe operation. There are two simple ways of improving the

simulations. First, by expanding the modelled area, the model is able to ’see’ more of

the wind field influencing the wave conditions in Norwegian waters. However, this will

only partially solve the problem. Distant swells may still propagate unnoticed across

the boundaries. A more permanent solution will be to nest the model into a global

model, in that way improving the boundaries.

Approaching/receding waves relative to radar-heading

The MIROS-radar is constructed to scan 180 degrees of open ocean. Its ability to detect

approaching as well as receding waves offers an indirect scan covering 360 degrees.

However, the signal analysis is restricted to represent only one out of two directional-

frequency-bins of 180 degrees ambiguity at the same time.

First, statistically there were found no indications in these data of the MIROS-radar

measuring approaching or receding waves more precise than the other. In that way,

the radar is thought to be insensitive to its heading and may be placed in an arbitrary

direction without the possibility of reducing the quality of integrated parameters, such

as Hs.

Second, it should be noted that none of the two cases discussed here had exactly

opposing wave systems with coinciding peak frequencies, a situation where the MIROS-

radar seems most likely to perform at its worst. In this context, it may be argued that

the position of the radar, which in this case was close to the Norwegian coast, rarely

make them exposed to these conditions, as powerful wave systems seldom are coming

from the coast. However, the radars installed on Gullfaks C, Troll A and Sleipner A

can be thought to be vulnerable in an N-S direction, where a polar low producing a

N swell may be accompanied by a S swell generated by a more southern situated low

pressure system. Therefore, in ocean areas more exposed to swell activity from all

directions, the radar may perform less satisfactory.

Even though the 1D spectrum or Hs did not show signs of being significantly affected

in theses data, the appearance of the 2D spectra were somewhat deteriorated compared

to the model. All in all, it may be concluded that the radar is insensitive to its heading,

but may be vulnerable to its positioning.
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Wind-sea growth in the presence of swell

A number of studies have had the purpose of finding those factors affecting the drag

coefficient at the ocean surface. So far, the dependence of CD on wave age, cp/u∗, have

been established in conditions of pure wind sea(Donelan et al. (1990); Smith et al.

(1992); Donelan et al. (1992)). However, in the open ocean, where most wave systems

are close to being fully developed, the variation in wave age is small and becomes

of less importance. Thus, swell has been proposed as a possible contributing factor

to altering the growth rate of wind-sea in mixed wave conditions. In this context, the

relative direction between wind and swell is crucial (Donelan et al. 1993; Drennan et al.

1999; Kudryavtsev and Makin 2004).

Of the two cases analyzed in this study, the 2003-case had wind opposing swell,

while the 2000-case had wind going with and across the direction of the dominating

swell. As the model parametrization does not account for possible effects of swell, the

evolution of wind-sea is unchanged whether a swell is approaching or receding the wind.

Therefore, the relative behavior between the measured and simulated spectra may be

used to search for effects of swell.

The results of this study were somewhat inconclusive, but intriguing nevertheless.

In conditions of wind opposing swell the peak of the measured wind-sea was slightly

more shifted towards lower frequencies compared to conditions of wind going with

or across the direction of swell. This behavior corresponds to the results obtained by

Donelan et al. (1993); Drennan et al. (1999) and Kudryavtsev and Makin (2004), which

concluded the drag coefficient to increase in conditions of opposing swells. However,

integrated parameters, like Hs, showed no signs of being significantly affected. There-

fore, based on these data, it may be concluded that the effect of swell on wind-sea

growth primarily affects the appearance of the wave spectrum.

A critical question should be raised concerning the method used in this study. There

are considerable uncertainty connected to these type of simulations when searching for

effects of this small magnitude. First and foremost, accurate wind fields forcing the

model are crucial, but never easy to monitor. This is why similar work in the future

should follow the example of Ardhuin (Sub), where only special cases with close to

stationary wind conditions, clean single swell and clearly defined fetches are chosen.

And, a 50km resolution model is probably going to be too coarse. Still, this type of

approach will most likely not be accurate enough to calculate the magnitude of the

effect.

These days several experiments are carried through in well supervised laboratories,

where conditions can be made idealized. However, question arises whether small-scale

experiments are representative for the large-scale open ocean or not. Probably the

best way of answering this problem is obtained through extensive stress measurements

accompanied by the 2D wave spectrum. Only then the effect may be fully understood.



Appendix A

Appendix

A.0.7 Statistics

Correlation, corr

corr(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

√

[
∑n

i=1(Xi − X̄)2
] [

∑n
i=1(Yi − Ȳ )2

]

(A.1)

Bias

bias(meanerror) =

∑N
i=1(Xi − Yi)

N
(A.2)

Root mean square error, rms

rms =

√

∑N
i=1(Xi − Yi)2

N
(A.3)

Scatter Index, SI

SI =
rms

X̄
(A.4)

rms error normalized by the mean observed value of the reference quantity.
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Donelan, M. A., B. LeMéhauté, and D. Hanes (1990). Air-sea interaction . The sea,

Vol. 9. Ocean engeneering science. John Wiley and Sons. ISBN-0471528560.

Donelan, M. A., M. Skafel, H. Graber, P. Liu, D. Schwab, and s. Venkatesh (1992).

On the growth rate of wind-generated waves. Atmos.-Ocean 30, 457–478.

Drennan, W., H. Graber, and M. Donelan (1999). Evicence for the effects of swell

and unsteady winds on marine wind stress. J. Phys. Oceanogr. 29, 1853–1864.

Forristall, G. (1981). Measurements of saturated range in ocean wave spectra. J.

Geophys. Res 86, 8075–8089.

Geernaert, G. and W. Plant (1990). Surface waves and fluxes. Kluwer. ISBN-

0792308093.
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