
Vox et praeterea nihil

Kai Tverr̊a

June 3, 2004

Department of Informatics
University of Bergen

PB. 7800
N-5020 BERGEN

Acknowledgements

I would like to thank my supervisor, Professor Marc Bezem, for the help
and encouragement he has given me during the process of writing this thesis,
and for always asking the right questions.

A special thanks goes to Ole-Morten and Nils-Anders, for proofreading
and for all the technical expertise they provided and patience they showed
giving it.

Last, but not least, I would like to thank Kitty, for all her support and
encouragement, for being a bright light when all seemed dark, and for simply
being there when I needed her the most.

CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 What is VoiceXML? . 2
1.2 Why voice-browsers? . 3

2 VoiceXML 4
2.1 Form Interpretation Algorithm 5
2.2 Architectural Model . 7
2.3 Test application . 9

3 Directory Service 10
3.1 Methodology . 10
3.2 Operators . 10
3.3 Analysis . 11

3.3.1 Phase 1: Greeting . 12
3.3.2 Phase 2: Dialog/Input phase 12
3.3.3 Phase 3: Output . 13

4 Design Issues 15
4.1 Dialog Design . 15

4.1.1 Design Principles . 16
4.1.2 Design Styles . 16
4.1.3 Application-directed vs mixed-initiative 17

4.2 Prompt Design . 18
4.3 Grammar design . 20

5 The Application 21
5.1 Scenario . 21
5.2 Flowchart . 21
5.3 Possible extensions . 22
5.4 Technology and tools used . 24
5.5 The VoiceXML Platform . 25
5.6 Webserver . 25
5.7 Database . 25

6 Grammars 26
6.1 Grammar formats . 26

6.1.1 Speech Recognition Grammar Specification (SRGS) . . 27
6.1.2 Grammar Specification Language (GSL) 27
6.1.3 Input modes . 27

6.2 Grammar build-up . 28

i

CONTENTS CONTENTS

6.2.1 Rule syntax . 28
6.2.2 Scope of rules . 29
6.2.3 Recursion . 29
6.2.4 Special rules: NULL, VOID, GARBAGE and RESISTOR 30
6.2.5 Rule repetition . 31

6.3 Grammars in the application and possible extensions 32

7 Conclusions 33

A VoiceXML subset I

B VoiceXML XI
B.1 Root document . XI
B.2 Residential lookup . XIII
B.3 Business lookup . XV
B.4 Reverse lookup . XVII
B.5 VoiceXML document generated by PHP XVIII

C PHP XIX
C.1 Database query . XIX

D Grammars XXII
D.1 Name.gram . XXII
D.2 Addr.gram . XXIII

E Abbreviations XXIV
BibliographyXXVI

ii

LIST OF FIGURES LIST OF TABLES

List of Figures

1 Application build-up . 4
2 The phases of the Form Interpretation Algorithm 6
3 Architectural Model (from the VoiceXML standard [W3Cb]) . 9
4 VoiceXML conversation flow 22
5 Flow of VoiceXML dialogs in the application 23

List of Tables

1 A run of the main menu . 7
2 FIA interpretation of the test run made in table 1 8
3 A simple conversation . 12
4 Example of a too narrow search 12
5 Example of a too wide search 13
6 Phases of a call . 14
7 Application-directed call-flow 17
8 Mixed-initiative call-flow . 18
9 Step by step scenario walkthrough 22
10 Syntax of the right-hand side of GSL-rules 27
11 GSL and ABNF rules . 28

iii

1 INTRODUCTION

1 Introduction

For a long time, HTML and graphical browsing has been the way to surf the
World Wide Web. But now, with an increasing effort put into voice recog-
nition and speech synthesis, voice browsers bring the World Wide Web to
the telephones of the world, not as a competitor, but as a supplement to the
services and possibilities offered by graphical browsers. To ensure this expan-
sion The World Wide Web Consortium1 has created several working groups,
that are concerning themselves with different aspects of voice browsing, and
there is an ongoing process to create an open standard for creating voice
applications. This is VoiceXML — an XML2 hybrid — which is currently to
be found in version 2.0.

VoiceXML applications at its most basic level are easy to develop, much
like HTML, and can be deployed immediately, since the technology to sup-
port them is already in place. This is in stark contrast to the proprietary
interactive voice response (IVR) platforms that have been dominant up until
now, which require expensive equipment running proprietary formats, and
which need to be operated by specialists.

There are two main types of spoken language dialog systems; transaction
based and information provision systems. Transaction based systems let the
user conduct some kind of transaction, like buying or selling stocks, whereas
information provision systems provide some sort of information on request,
like weather information. This thesis will look into this new standard, and
make a test application to see what needs to be taken into consideration,
and what is necessary to make it a good application, especially from a user’s
point of view. The focal point of this paper will be the design process. The
test application will be an automatic directory service, i.e. an information
provision system, where a caller interacts with an information system through
a voice-to-text interface, and the system responds by means of text-to-speech.

Section 1 will be an introduction to voice-browsers and the VoiceXML
standard, which then will be dealt with in greater detail in section 2. In
section 3 a presentation and an analysis of the area of interest will be made,
which will be reflected over in section 4, where issues regarding the design
of the system will be treated. The resulting application will be presented in
section 5. A more in-depth presentation of grammars and different grammar
formats will be given in section 6. Section 7 concludes the paper by summing
up and reflecting over the experiences made.

1http://www.w3.org
2http://www.w3.org/XML

1

1.1 What is VoiceXML? 1 INTRODUCTION

1.1 What is VoiceXML?

VoiceXML is, in short, the HTML of voice-browsing, an open standard markup
language for voice-based interaction between man and machine. VoiceXML is
based on W3C’s Extensible Markup Language (XML), and is designed to give
the programmer extensive control over the flow of the dialog, which shows
that VoiceXML is more than just “voice HTML”, since HTML lacks this
kind of control feature. Whereas HTML assumes a graphical web-browser,
with display, keyboard and mouse, VoiceXML assumes a voice-browser, with
audio and keypad input — or Dual Tone Multi Frequency (DTMF) input
as it is also known — and audio output. The voice-browser, or voice in-
terpreter, relies on automated speech recognition (ASR) for the input, and
text-to-speech (TTS), speech synthesis, and recordings for the audio output.
The user is essentially interacting with the system by listening to prompts
and recordings, and directs the flow by means of spoken input.

Lately, there has been a shift from TTS to waveform concatenation, i.e.
speech generated from libraries of prerecorded waveforms to create a more
lifelike and seamless output. This shift of focus is mainly because tests show
that users judge voice applications on the basis of this very output, and the
judgement is passed swiftly, so there is a higher demand and expectancy in
this field than previously. Growing use, and therefore a greater range of poten-
tial users, is also a reason. This has led to an increasing effort put into making
the quality of the output better, instead of solely focusing on recognising the
input. This may, on the other hand, lead the user to perceive the computer
as more lifelike, and thus put undue confidence in the application’s ability to
comprehend and infer meaning, a process called anthropomorphism, which
we will come back to later.

Voice applications do not neccessarily need speech technology, but may
even be implemented using the keypad and prerecorded waveforms. This will,
of course, not require the same level of hardware and expertise, and might
as a result be more cost-efficient, but the applicability will in all probability
be somewhat limited. For instance, when ordering a taxi by telephone, an
automatic system could look up the address of each incoming call, and offer
the caller to send a taxi to this address, thereby bypassing the queue to
the manual operator. If the caller wants this, he can confirm by pressing the
keypad, or he can wait for an operator to answer his call. For most customers,
this will be what is needed, and the system, in its simplicity, is enough to
lessen the workload on the manual operator severely. This will also benefit
those customers with the need for a manual operator, since this may shorten
the wait for a manual operator.

2

1.2 Why voice-browsers? 1 INTRODUCTION

1.2 Why voice-browsers?

Voice-browser systems are handsfree, making them usable where handheld
devices would be awkward and perhaps impossible to use, e.g. in complete
darkness, or when operating in an environment that requires free use of both
hands, like driving. They are also low cost, and therefore a viable option
to expensive human operators. Voice-applications are also online twentyfour
hours a day, all year, without any additional cost.

They also extend the availability to groups that are excluded today —
partly or completely — from graphical web browsers, like the hard of seeing,
the blind, or even illiterates. And as telephones are far more common than
computers, voicebrowsing by telephone makes the Internet accessible to a
great number of people who are thus far not connected through computers,
thereby increasing the mass of potential customers, or recipients of informa-
tion, enormously, without incurring any additional cost through hardware
upgrades for the customers. The application is available from a hightec mo-
bile telephone in New York, or a payphone in Ouagadougou.

However, all that glitters is not gold. In noisy environments, voice-browsers
will be difficult to use, if not completely useless, and poor audio-quality in the
transmission could make it hard to navigate through the applications. Also,
limitations on speech recognition technology may make them poor choices
sometimes, e.g. if non-native speakers are trying to make reservations for
plane tickets on an automated system. The former may prove problematic
to remedy, but the latter can — in some cases — be helped through making
the application speaker-dependent. Other shortcomings of interest might be
that a voice-browser obviously does not support graphics, and they may not
be adequate in situations where privacy is needed, for instance when logging
into a system with user name and password.

Speaker dependence means to which degree the system requires the knowl-
edge of a speaker’s voice characteristics to successfully process speech. The
speech recognition engine can be taught how the individual user pronounces
sounds, words and phrases, and can accordingly be trained to the individ-
ual user’s voice. If the speech recognition system has to work on a large
vocabulary, this is a clear advantage to ensure recognition, and avoid possi-
ble pitfalls. But in the test application this is not feasible, because, firstly,
one cannot expect the users to spend the time and money needed to train
the system to their voice, and secondly, the administration of such a system
would be hard, if not impossible, simply because of the number of users.

Another way to minimise the latter problem is to make the application
multimodal, that is, to allow for alternate ways of navigation according to
where or how the application is to be used, or who is using it. Of course, one

3

2 VOICEXML

may then lose some of the advantages mentioned previously, but one gains
a higher chance of success. This means, in the case of non-native speakers
trying to order tickets, that providing touchi tone alternatives for destinations
and times, could be a possible circumvention of recognition problems. For a
person who is able to fully make use of all the available methods of input,
voice enabled interaction will only increase the usability, e.g. by making her
able to edit a document by voice, mouse or keyboard.

2 VoiceXML

A VoiceXML application is built up from one or more VoiceXML documents
that have the same application root document, and each document contains
various VoiceXML instructions for the application. The root document is
loaded whenever one of the application’s documents is loaded, and it re-
mains loaded as long as the application is active. The information in the root
document is available to all documents in the application.

Figure 1: Application build-up

VoiceXML documents define applications as a set of dialog states, and the
user is, at any time, either in a state or being transitioned to a state. Every
dialog can be broken up into discrete dialog elements called forms or menus,
with every form or menu having a name, and being responsible for executing
some part of the dialog, and choosing which dialog state to transition to next.
For example, a menu presents the user with a set of choices, and based on
the choice made, the user is transitioned to another state. This goes on until
there are no more states to transition to, or the user explicitly chooses to
exit the application. A form defines an interaction that collects information
from the user, and then, based on this information, makes the transition to a
new state. Essentially, a menu is a form with only one piece of information to

4

2.1 Form Interpretation Algorithm 2 VOICEXML

gather, and will therefore not be treated separately, but implicitly together
with the forms.

So, every VoiceXML application or document constitutes a conversational
finite state machine, moving the user from one state to the next, each transi-
tion decided by the dialog element the user is in at the time. These transitions
are specified using Uniform Resource Identifiers (URI), which can point to
another form in the same document, another document, or to a document
in a completely different application. If the URI does not refer to a docu-
ment, the current document is assumed, or if no dialog item in the document
is specified, in which case the first dialog in the current document which
has not yet been visited, is assumed. Execution is terminated when a dialog
does not specify a successor, and all dialog elements in the current document
have been visited, or if an explicit exit command ends the dialog. All these
transitions are handled and controlled by the Form Interpretation Algorithm
(FIA).

2.1 Form Interpretation Algorithm

The Form Interpretation Algorithm (FIA) determines in which order the
different elements of a form are to be executed. Every form has one or more
form-items, which all have three common — but optional — attributes. They
may be named with the name attribute, given an initial value with the expr
attribute, and a guard condition may be explicitely specified with the cond
attribute. Form items are either control items, e.g. the <block> and <initial>
elements, field items, e.g.<field>, <transfer>, or subdialog elements.

The control elements are used to process data, or to initialise variables.
The <block> element, for instance, may execute an action, but does not
gather user input, while the field elements are used to prompt the user for
input. The input given must be in accordance with the active grammar set,
which defines the input allowed. If no input is given, or the input does not
match with a grammar, an event handler will be activated to solve the prob-
lem. All the field elements assign the user input to a local variable, whose
name matches that of the name attribute of the field item. Grammars will
presented in more detail in sections 4.3 and 6.

When the recogniser responds, the FIA searches for application-defined
executable code, contained within the <filled> elements. This element has
two optional attributes; namelist and mode, where namelist is a space-delimited
list of form items (informal variables) to which this <filled>-element applies.
The mode attribute is either defined as all or any, which refers to how many
form items in the namelist needs to be filled for the action to be carried out.
All would, as the name states, need all the items, while any will execute if

5

2.1 Form Interpretation Algorithm 2 VOICEXML

the last user input matched any of the items in the namelist.
The FIA can be divided into four phases: the initialisation phase, where

all variables and counters are reset, or set to predefined vaules, the selection
phase, that determines which form item to visit next, the collection phase,
which attempts to collect information from the selected item, and the pro-
cessing phase, which either transitions to a location specified, generates an
event, or executes the action specified by the <filled>-item. A menu can be
viewed as a form containing a single field whose grammar and <filled> action
are constructed from the <choice> elements.

Figure 2: The phases of the Form Interpretation Algorithm

Init: initialise all formal and informal variables, either to explicitely set
values by using the “expr” or “src” attributes, or to be undefined.
Prompt-counters, that increments each time a prompt is played, which
can be used for tapered prompting, are set to 1. If this form’s grammar
is visible outside the form, and the user entered by a match elsewhere,
the main loop is entered at the processing phase, since there is input
to process already.

Select: choose a form item to visit. If the last FIA main loop iteration ended
with a <goto nextitem>, the target form item is chosen, otherwise a
form item with an unsatisfied guard condition is chosen. If none exists,
an implicit exit is executed

Collect: The selected form item is visited. Prompts for the form item are
queued, the grammars for the form item are activated, and the form
item is executed. If a <field> item is selected, the user input is collected,
or if a <block> is chosen, then the block’s form item is set to a defined
value, thus ensuring it will not be executed again in this run of the
FIA, and the executable context of the block is run.

Process: If an event was thrown in the previous phase, this will be handled
first, e.g. <no match> or <no input> events. Next, the interpreter
identifies the context of the grammar that was matched. If the match
was made in a grammar other than the local form item grammar, FIA

6

2.2 Architectural Model 2 VOICEXML

exits and passes execution to a new form-item, else the execution will
proceed in the current form item. Finally, if the <filled> condition is
satisfied, the action defined therein is executed, else a new iteration of
the main loop will be made.

So, the VoiceXML interpreter is at all times in one of two states: waiting
for input or transitioning between form items in response to an input. For a
more detailed reading on FIA, read appendix C in the VoiceXML standard
[W3Cb]. In table 1 one can see an example of a caller interacting with the
main menu, choosing the residential lookup. In table 2, which is an example
of a complete run of the test application, one can see how the Form Inter-
pretation Algorithm interprets this input. The different phases are shown
according to the pseudocode in appendix C in the VoiceXML standard, and
the VoiceXML code that is used can be found in Appendix B.1.

Application: Welcome to Foo Automatic Listing Service (prompt1)
Please choose your service: Residential, business,
reverse lookup (prompt2)

Caller: Residential

Caller transferred to residential . . .

Table 1: A run of the main menu

2.2 Architectural Model

A VoiceXML-application is, as was previously stated, a collection of VoiceXML
documents, which in turn may contain one or more dialogs in the shape of
forms or menus.

A document-server (e.g. a web server) processes requests from a client ap-
plication — the VoiceXML interpreter — through the VoiceXML interpreta-
tion context. In reply to this, the web server produces VoiceXML documents,
which in turn are processed by the VoiceXML interpreter. The documents
need not all be situated on the same server, but will be accessible through
URIs whereever they may be situated. This is illustrated in figure 3.

The implementation platform is controlled by the VoiceXML interpreter
and by the VoiceXML interpreter context. The implementation platform gen-
erates events in response to user actions and system events, and some of these
events are acted upon by the VoiceXML interpreter itself, while others are
acted upon by the VoiceXML interpreter context. For example, if the user

7

2.2 Architectural Model 2 VOICEXML

Entering FIA for: <form id=’intro’>
Init: Initialise the block item at line 13 (block1)
Select: Guard condition for block1 is true

Select item block1
Collect: Set (informal) block form item variable block1 to true

Execute content for block1 (prompt1 is queued)
Process: Nothing to do, continue main loop

Select: Last iteration of FIA ended with a <goto next> item, therefore
its attribute is selected (#main)

Entering FIA for: <menu id=’main’>
Init: Initialise item main
Select: Guard condition for main is true

Select item main
Collect: Calculating queued prompts, current prompt counter is 1

Adding prompt2 to queued prompt list
Retrieving active grammars
Executing field item #main
Play prompt1: “Welcome to Foo Automatic Listing Service”
Play prompt2: “Please choose your service: . . . ”
Collect input from user (user chooses ’residential’ either by ASR or DTMF)

Process: Utterance is matched against the active grammar set (in this case the
three choices in the menu, with corresponding dtmf-values)
Transition according to the next-attribute to residential.vxml

Entering FIA for residential.vxml. . .

Table 2: FIA interpretation of the test run made in table 1

8

2.3 Test application 2 VOICEXML

gives a certain input, the VoiceXML interpreter context may transition the
user to another place in the dialog, or to a new dialog, like saying “main”
will bring the user back to the main menu in the test application.

Figure 3: Architectural Model (from the VoiceXML standard [W3Cb])

2.3 Test application

A test application was made for a commercial directory service, where the
callers can consult an automated telephone directory service by voice queries.
The application uses BeVocal’s online deployment environment, PHP and
PostgreSQL. PHP — or PHP Hypertext Preprocessor — is a simple, but
powerful open source scripting language, used to serve dynamic web content.
The test application uses PHP version 4.3.4. PostgreSQL is an open source
database, used to store the sets of test data, and PostgreSQL version 7.4.1
is used here. In building the test application, general principles of usability
and programming was emphasised. The test application will be dealt with in
greater detail in section 5.

The VoiceXML code in this paper is written in accordance with the
VoiceXML standard version 2.0 [W3Cb] and tested using BeVocal’s online

9

3 DIRECTORY SERVICE

programming environment3, taking care to avoid using proprietary tags and
options where possible.

A subset of VoiceXML has been defined (see Appendix A) to make this
paper more self-contained and to make the reading of this paper easier. It
also gives the reader the most commonly used VoiceXML elements, and may
serve as a springboard into VoiceXML proper.

3 Directory Service

The test application in this paper is an automated commercial directory
service. A directory service delivers the listed information related to phone
records, such as phone number, or information on who owns a particular
phone number, like name or address. This is normally done by operators
who specialises in querying a database, and who have been trained to extract
information from the database, as well as from the callers.

3.1 Methodology

To get a clearer understanding of what a directory service offers, and, in
particular, how the interaction between the service provider representative
— the operator — and the service user — the caller — goes, a study of such
a service provider has been conducted.

Several operators were interviewed, the routines on how a new operator
is trained, and what guidelines they follow, were scrutinised. Some time was
also spent listening to operators answering calls.

Talks with the technical staff were also carried out, to get a clearer un-
derstanding and overview of the underlying technology on which the service
is built.

3.2 Operators

Human operators play a key role in call-centers supplying directory services,
since they are the “interface” the customers meet. Even though efficiency and
reliability in finding the “correct information” is important, the behaviour
and professionalism of the operator is also part of the assessment the cus-
tomer makes of the service.

Most directory service providers can meet the two first requirements, and
the gap between the providers is in this respect miniscule. Therefore the

3http://cafe.bevocal.com

10

3.3 Analysis 3 DIRECTORY SERVICE

latter two play an increasingly important part. To ensure that these non-
measurable goals are met, new operators go through rigorous training.

Although template dialogs have been created, they can be seen as nothing
more than a guideline in the real world. Obviously, many calls follow a specific
pattern, making them suitable for a template, but many calls are also truly
original. The experienced operator knows how to handle these, and gently
navigates the caller through.

Most operators query the database as soon as they have some input, and
narrow or widen the search by deleting or adding more information depending
on the response from the database.

3.3 Analysis

A directory service offers the possibility to get listed telephone numbers by
giving information connected to a certain person or company. There are three
main categories of calls made: residential, business, and reverse lookup. The
first two are what traditionally is understood by directory service, one wants
to find a phonenumber of a person, a restaurant et cetera, but reverse lookup,
i.e. retrieving information associated with a phonenumber – such as name or
address – is becoming increasingly popular. Reverse lookup is in some coun-
tries prohibited by law, to ensure people protection of their privacy, whereas
other countries lay this choice with the individual person, in giving them a
choice to individually stating what information should be made available,
and under which circumstances. For example, one can allow for one’s phone
number to appear in a manual phonebook, but not a digitised phonebook or
directory service available through the Internet.

Through interviewing the operators, reading the work manuals, and train-
ing programs, an analysis of the directory service was made. This was done to
get a clear understanding of how a typical conversation between an operator
and a caller is, and also to see how an operator respond to deviations from
this norm. Based on these findings an analysis was made, and a straightfor-
ward, uncomplicated call was constructed, following the general principles
on dialog design as described on pp. 143–182 in [BM01] and [Shn98].

This analysis and basic template then served as a point of departure for
the VoiceXML dialogs. On a basic level all calls can be said to be broken into
three phases:

1. Greeting

2. Dialog/Input phase

3. Output

11

3.3 Analysis 3 DIRECTORY SERVICE

Operator: Welcome to Foobar Directory Service, how may I help?
Customer: The number of Hans Hanssen in Fooville please.
Operator: The number is 22 34 56 78

Call terminated . . .

Table 3: A simple conversation

3.3.1 Phase 1: Greeting

A short, explanatory welcome message to start the session, and to inform the
caller what services are available. It might also be prudent to notify the user
that help is available and how to get it, if it is needed. The welcome message
should make it clear that this is an automated service.

3.3.2 Phase 2: Dialog/Input phase

In this phase the caller gives the information she thinks neccessary for the
operator to conduct the search. The example shown in table 3 is an ideal
situation, and a large part of the calls handled is of this variety. But, un-
fortunately, not all, and one problem often encountered by operators is that
a query is too narrow, i.e. the information provided for the search is too
confined so that a match in the information system cannot be found. The
operators handle this case by selectively removing parts of the information
given by the customer4. This is exemplified in table 4. A usable query nor-
mally contains the last name combined with one other searchword, as a rule
first name or city.

Operator: Welcome to Foobar Directory Service, how may I help?
Customer: The number of Hans Wilhelm Hanssen, Barstreet 33c, Fooville.

[Operator selectively deletes parts of input]
Operator: The number is 22 34 56 78

Call terminated . . .

Table 4: Example of a too narrow search

Another problem is when the search criteria are too wide, and the query
generates too many possibilities. The operators then ask for additional infor-

4Parts that may be deleted in this case are: middle name, housenumber, and even street
name

12

3.3 Analysis 3 DIRECTORY SERVICE

mation — in most cases the city where the subscriber lives — thus narrowing
the search, as exemplified in table 5.

Operator: Welcome to Foobar Directory Service, how may I help?
Customer: The number of Hans Hanssen please.

[Operator executes query,
but gets too much response from the system]

Operator: Where does Mr. Hanssen live?
Customer: In Oslo

[Operator executes new query]
Operator: The number is 22 34 56 78

Call terminated . . .

Table 5: Example of a too wide search

The operator does not in all cases conduct a new query, but scans man-
ually through the hits the last query generated, in case the result is already
there. If the result of the query is very large, on the other hand, then refining
the query would greatly reduce the number of possible hits. This is still sim-
plified, but will serve as point of departure for an automated system, since
it covers a major part of the calls handled by a directory service.

While executing the query, the operator repeats the information. This is
to confirm to the caller that the request has been understood, and to avoid
silence, leaving the caller to wonder what is happening.

In cases where the caller only has scarce information, a skilled operator
knows how to collect pertinent pieces of information to get the “correct”
result. T his may be to imply that the number may be listed under a different
name (e.g. spouse), or, as mentioned earlier, omitting information that may
be erroneous.

3.3.3 Phase 3: Output

In this phase the result of the query is presented to the caller. If there are
multiple hits, the operator may try to group them according to a viable
criteria, like city, or the caller is given the opportunity to have them all.
In many cases, the caller is asked to provide more information to narrow it
down. If additional services are available, these may now be offered, else the
call is terminated with a “Thank you for calling” or something of this sort.

As seen in table 6 the boundaries between phase two and three can be a bit
blurry. Most calls follow a path similar to this, and some may even be more

13

3.3 Analysis 3 DIRECTORY SERVICE

Phase Agent Utterance
1: Operator: Welcome to Foobar Directory Service, how may I help?
2: Caller: I am looking for A. Smith

Operator: <enters “A. Smith” into the IS>
You are looking for A. Smith’s telephonenumber?
<being a quite common name, the IS gives too much
feedback for the operator too process, thus making
further inquiries neccessary>

Operator: Do you know A. Smith’s address?
Caller: Yes, it is “Nowherelane”

3: Operator: There are two A. Smiths in Nowherelane, do you want
both numbers?

Caller: Yes, please
Operator: The numbers are 555-55858 and 555-55859

Operator: Is there anything else I can do for you?
Caller: No thanks
Operator: Thank you for calling, have a nice day

Call terminated . . .

Table 6: Phases of a call

14

4 DESIGN ISSUES

compact. Some queries are so common, e.g. the helpdesk of a large company,
that the operator knows the answer by heart, being able to reply almost
instantaneously. A manual operator is also capable of inferring the correct
phone number out of a set of numbers, if for example the caller is asking
for a company which are listed with a lot of phone numbers, the operator
may infer which number is the one to the switchboard. For an automatic
service to be able to offer this kind of service, each record must be tagged to
reflect if it is a switchboard or if it is an “ordinary” phone number. Generally
though, a call takes thirty to forty seconds, something that must be taken
into consideration when creating prompts.

4 Design Issues

Making a directory service available for automatic voice queries presented a
host of design questions, ranging from optimal database design, voice inter-
faces and voice grammar choices, prompt design and creating data sources
for dynamic inputs.

4.1 Dialog Design

The analysis of the calls made it clear that a directory service was twofold:
acquiring information to provide a phone number, or provide a phone num-
ber and get the associated information. But another distinction also seemed
prudent, namely business versus residential lookups. This latter distinction
has to do with the database structure and creating separate queries for res-
idential and business, since business usually contains more information. By
separating them at an early stage, it may be easier to apply changes to these
if the need arises.

This means that a caller will first be presented with three choices: res-
idential, business, or reverse lookup. A help option will also be added, but
will – if the dialogs are carefully crafted – hopefully prove to be superflous.
Making the prompts clear, short, and offering few options will make this
possible. By making it a menu with three possible choices — apart from the
application-wide hotwords like “main”, and event-triggers like “repeat” —
minimal effort is required of the user.

Choosing one of these options will transfer the caller to a new dialog,
where information will be collected, analogous to form-filling in HTML and
XML. The dialogs will again need to be concise, and unambigous.

When the information is gathered, it will be submitted to another service
that will execute the lookup in the database, and which will create an answer

15

4.1 Dialog Design 4 DESIGN ISSUES

or require additional information from the caller. More on this later.

4.1.1 Design Principles

Design principles that need to be heeded are:

1. Minimise the cognitive load for the users, i.e. do not ask the user to re-
member too much. A general rule of thumb is that people can remember
“seven-plus or minus-two chunks” of information. It is therefore advis-
able to keep menu choices to a minimum, and keep information brief.
Having the key information as close as possible to the expected input
will also help.

2. Balance efficiency and clarity. In other words; do not sacrifice the clar-
ity of prompts and feedback to make them as short as possible. Short is
not neccessarily sweet, and longer prompts may not be more clarifying.

3. Ensure high accuracy. This may be done by clearly stating that help is
available and how the user can get it. Using tapered prompts will also
ensure this. Tapered prompting means to have different prompts if the
prompt needs to be repeated, e.g. if the system did not understand or
recognise the input, a more elaborate prompt is played. By gradually
expanding the prompt, giving more information and exemplifying the
expected input, the caller is coached to give the correct input. If this
does not help, the user should be transferred to a human operator.

4. Recover from errors gracefully. Use positive feedback or ask anew if
something is wrong. Do not let the users detect this unless it is un-
avoidable, but then communicate errors quickly and do not pass out
blame. It would also be a good idea to have the different prompts reflect
what went wrong, for instance if the system could not understand the
input, the system could prompt with “Sorry, did not get that. Please
repeat . . . ”, or if the system did not recognise the input, i.e. the input
was outside the allowed set of utterances, the prompt could be “Sorry,
did not recognise the input, please . . . ”.

4.1.2 Design Styles

It is important to remember that many people are not comfortable, nor at
ease with, speaking and dealing with machines. Nevertheless, it is important
to make it absolutely clear that they are — in fact — not dealing with a
person, but an automated service.

16

4.1 Dialog Design 4 DESIGN ISSUES

Making the interaction as brief as possible may be a way to deal with
this. Attempting to make the application more human — anthropomorphi-
cation — would in most cases only make matters worse, because it gives the
caller false expectations of what the system can do. The system does not
understand more by appearing more human. To enable the system to infer
meaning, it must be pre-programmed for the eventuality that a particular in-
cident will occur. A fair number of situations might be thought of, but only
“ordinary” extraordinaries, true one-in-a-million occurences will inevitably
cause the system to not understand the input. It will also be a matter of
cost. How much time and money is to be invested into something that is
very unlikely to occur? By making it obvious that this is an automated sys-
tem, these implications may be avoided, and it might be cheaper in the long
run, to transfer extraordinary cases to a human operator, possibly charging
the customer more for this service.

Creating an application that only heeds the needs of the technophobic
may also be a mistake. Providing touch tone shortcuts, and the possibility to
use “barge-in”, i.e. to cut prompts short by interrupting them, would increase
usability for the more technosavvy. This would of course increase the speed
of the searches done by intermediary and expert users, whilst novice users
would be able to use the slightly slower, but more comprehensible, full dialogs
and voice interaction.

4.1.3 Application-directed vs mixed-initiative

There are two ways of guiding users through automated services; application-
directed and mixed-initiative. By letting the application direct what is to
happen and when, one may reduce the risk of errors, but the users may
find this too confining and controlling, making them unwilling to use the
application.

System: Do you want residential, business or reverse lookup?
User: Residential
System: The name of the person you are looking for?

Table 7: Application-directed call-flow

In mixed-initiative, the caller will be more in charge, but the system will
have to infer the information from the input the caller gives, making it error-
prone.

A combination of both will be preferable, where for instance the user is
first given the opportunity to interact using mixed-initiative, but if something

17

4.2 Prompt Design 4 DESIGN ISSUES

User: I want the number of A. Smith living in London
System: You want the number of A. Smith, living in London, correct?
User: Yes
System: The number is: . . .

<or get more information>

Table 8: Mixed-initiative call-flow

goes amiss, the application-directed approach can be used, to safely steer the
user through. In some error-prone sections of the applications, letting the
application control the interaction will minimise the chance of errors, thus
giving the user a more reliable service. In the implementation of the test
application, the application-directed approach will be used.

Making an application mixed-initative would give the users a feeling of
being much more in control of the dialog, but probably only feasable in
smaller applications. In large applications this would be very expensive, if at
all possible. One would have to put severe limits on the input and limit the
application’s field of context. For example making an automatic switchboard
for a company might be possible, depending on the number of employees,
whereas creating a mixed-initiative automatic phone directory would in all
probability fail, simply because of the number of possible input values it
would have to contain. To correctly infer what information in the dialog the
system was to interpret as a valid input value would be difficult, because of
ambiguity: is the input valid, or simply “garbage”? “John Hopkins, please”
would be easy to interpret, but “Give me the phone number of the head
of John Hopkins, please. The hospital, not the university, I mean” would
perhaps be possible, but hard.

One way of giving the users more control of the dialog, whilst using the
application-directed approach, would be to give them the possibility to nav-
igate through the menus, by enabling “key-words” like “back” and “main
menu”. The increase in programming cost would be low, but the increase
in usability would be substantial, without making the application too error-
prone.

4.2 Prompt Design

Prompts indicate that it is time for user input, and can be seen as turn-taking
cues, that is, the system prompts the user for some piece of information, and
waits for the user to give an input that has a match in the active grammar
set. Their purpose may therefore be said to be twofold: they prompt the user
to give an input, and may convey to the user what input is expected at this

18

4.2 Prompt Design 4 DESIGN ISSUES

point in the dialog. The main menu in the test application is a good example
of this, the user is asked to choose from one of the three alternatives, i.e.
the expected input for this dialog is “residential”, “business”, or “reverse
lookup”. This grammar set does not express all the allowed input, but only
the input that is relevant for this dialog.

It is essential that prompting is swift and efficient, but not at the expense
of clarity. Short prompts with few options are therefore preferable to long
prompts with many options. Preceding prompts with instructions, and only
repeating the prompts may ensure this. For example, by dividing the welcome
message from the menu prompts, the design makes sure that the user only
needs to hear the welcome message once, even though the input given to the
menu item is not recognised, or if the user makes a new query. This saves
the user time, and focuses on the expected input. By having key information
immediatly before the user is expected to give the input, it is made easier
for the user to understand what is the expected input.

By avoiding the pronoun “I” whereever possible, one may accentuate
that it is indeed an automated system, and that one is talking to a non-
person. In some cases, it is not possible to leave out the pronoun without
sacrificing what people perceive as “normal” conversation, and making the
prompts sound robotic. This is something that must be evaluated in each
independent case.

Even though TTS and waveform concatenation has improved the quality
of synthesised speech, it still cannot compare to real speech. This means that
using professionally recorded voice prompts, with voice pitch and intonation
reflecting the context it is to be used in, will make the application more flu-
ent. Mixing prerecorded prompts and synthesised speech in the same prompt
should be avoided, even though the voice is the same. This is to keep the
prompts as fluent as possible, and also to avoid too many comparisons be-
tween real speech and synthesised speech. In some instances this may result
in having to choose a solution with more synthesised speech than strictly
neccessary. For example “There was 1 hit. Kit Walker, Fastlane 83, 1000
Fooville with phone number 555-83389”. If the names, address and city are
generated by means of TTS, and the other parts are prerecorded playbacks,
the mix will be unfortunate, but making the whole output with generated
speech may not be an ideal situation.

Choosing what voice is to be used, is also of importance, both in TTS and
the prerecorded messages. Studies show that people tend to perceive male
voices as more authorative and more intelligible than female voices. On the
other hand, most users expect an operator to be female, which should also be
taken into consideration. If the application is application-directed, one may
soften the approach by using a female voice. It is also possible to use both

19

4.3 Grammar design 4 DESIGN ISSUES

a female and a male voice, where for instance the male voice can be used
for the help-features, whereas the other prompts are executed with a female
voice, but this should be used with care, so as not to make the application
seem haphazard and disorganised.

4.3 Grammar design

Everywhere the application is to have some sort of input from the user,
a set of possible values to be accepted needs to be declared. This is done
by using a grammar. A grammar is a set of rules or grammar classes that
defines the set of expressions that are to be accepted at a given place in
the dialog. Grammars may be trivial lists of possible words, or complex sets
of phrases, and grammars may be incorporated into the application code
— inline grammars — or they can be externally available grammar files.
The inline grammars are typically quite small and uncomplicated, like the
grammar in the link-element of the root document that only contains two
possible values, namely main and menu, whereas an external grammar is
usually used when the grammar is somewhat larger and non-trivial, like all
possible surnames in a company. Most VoiceXML gateways also support
compiling the grammar files, thus only having to do this once, instead of at
run-time, minimising the load on the voice-portal and making the application
faster.

By having the grammar file external, it is also possible to let several
applications use it, eliminating the need to maintain several large grammars,
that are identical, or close to it. Some grammars are so common, that they
have been incorporated into the VoiceXML interpreter, for example boolean
values, that should accept different forms of affirmatives, ranging from “yes”
to the rather informal “yep”. One problem with built-in grammars is that
they may be made for specific regions, e.g. the built-in phone-grammar, which
has ten digits, in contrast with Norway, which has only eight.

Another benefit of having the grammar external, is that no changes to the
VoiceXML code would be needed. Instead, upgrading the grammar file would
simply be a question of altering a grammar file, compiling it and copying it to
the correct position, thereby replacing the old grammar file, thus minimising
the application’s downtime. This is of great value if it is likely that the
grammar will change quite frequently, like e.g. the name-grammars in the
test application. It would also be possible to switch the grammar format
used, as long as the voice browser supports the grammar format. Grammars
will be dealt with in greater detail in section 6.

20

5 THE APPLICATION

5 The Application

The test application was built according to the VoiceXML standard version
2.0 [W3Cb], and tested using BeVocal’s online development platform It is a
fairly basic, bare-boned application, but it should serve well as a prototype,
and it should also be sufficient in exemplifying general concepts. The applica-
tion is a simple automated directory service, based on 10.000 generated test
data for residential and 200 generated test data for business. All informa-
tion about one person or business is called a record. The test data reside in
a PostgreSQL database, which the VoiceXML application queries indirectly
through a PHP-script. Based on the results of this query, the script generates
a VoiceXML-document, which it returns to the voice-interpreter.

5.1 Scenario

The scenario in table 5.1 describes how the interaction between the caller
and the test application system flows, and also tries to shed light on some of
the internal mechanisms in the system.

In addition to the gateway phone number, every application also has an
extension number, which identifies it. The voice gateway translates the exten-
sion to the corresponding URL, and requests through HTTP the VoiceXML
document specified from the web server that hosts the files. This means that
any web server can host the VoiceXML files, since all voice recognition and
speech synthesis is done by the Voice Gateway. An application can have its
files on one server, or spread on several web servers. When the web server
returns the corresponding VoiceXML document, it is run through the FIA,
which then generates the prompts, and handles the input. This is described in
detail in section 2.1. If there is no, or too many, records found, the exceptions
must be handled by the PHP. More on this is sectionapp:ext.

To summarize, the Voice Gateway routes the incoming call to the correct
VoiceXML dialog, runs the dialog by means of FIA, handles input by voice
recognition and DTMF, and plays output to the caller using speech synthesis
and prerecorded waveforms, and then transitions to the next dialog.

5.2 Flowchart

The flowchart shown in figure 5 is somewhat simplified, as it only refers “user
assistance” and it does not show in detail how exceptions like no or too many
records found will be handled. The flowchart was made to only show the flow
of the VoiceXML dialog in general, to give a feeling of how the application
is built.

21

5.3 Possible extensions 5 THE APPLICATION

1 Caller places call to VoiceXML gateway
2 The gateway translates the extension to a corresponding URL
3 The gateway (client) places a HTTP-request to the URL spefified
4 The target webserver responds with a VoiceXML document containing

a VoiceXML dialog
5 The gateway interprets the VoiceXML document, and interacts

accordingly by means of ASR and speech synthesis. The collected
input is then submitted by HTTP to the URI designated by the VoiceXML

6 The webserver containing the target URI processes the input, and
responds accordingly

Table 9: Step by step scenario walkthrough

Figure 4: VoiceXML conversation flow

5.3 Possible extensions

As stated, the application is simplfied. In this section, several possible exten-
sions and problems will be considered, and — in some cases — an outline of
a solution will be given.

In section 3 and 4 it was mentioned that the users input was repeated,
both to show that the input was understood, to indicate that it was being
processed, and to offer an opportunity to confirm that this was indeed the
correct input. As the test application was built on a text based system, recog-
nition was not an issue until the last testing. The tests showed that asking
confirmation for all input was awkward and irritating for the users. One way
to solve this problem would be to take advantage of the confidence scores

22

5.3 Possible extensions 5 THE APPLICATION

Figure 5: Flow of VoiceXML dialogs in the application

given by the ASR. When the system recognises input, it is put in a list and a
confidence score is given. Confidence scores are a number ranging from 0.0 to
1.0, where 0.5 indicates a 35% confidence that this is the correct result. The
confidence level to be accepted is an important consideration to make, setting
it too low would result in getting more false recognitions, whereas setting it
too high would increase the occurrence of no-match events. Instead of setting
the confidence level higher, one could make the system ask for confirmation
only if the confirmation score was too low, thus avoiding too many no-match
errors, and also unnecessary confirmations when the confidence score was
high. This would make the application more user friendly.

Another problem that still needs to be addressed is what to do when a

23

5.4 Technology and tools used 5 THE APPLICATION

query generates zero or too many possible hits. Both these problems would
have to be handled by the underlying system. In the case of the test appli-
cation this would mean PHP. If there where zero records found, one could
eliminate parts of the input — e.g. street name, first name or even city —
and see if this would generate some hits. If too many records were found, the
system could be programmed to ask for additional information, based on the
information that is given. An interesting question in this case is how many
records are too many to give to the caller? This would be dependent on how
it is presented, obviously, just giving 25 records in any order would be too
many, but 25 records sorted by city and offering the caller the possibility to
state which of the possible cities it is would perhaps be satisfactory. Enabling
the caller to navigate in the results, and breaking off system output, would
also make it possible to present more records to the caller.

In the flowchart in figure 5 no explanation is given to the term “user
assistance”, which would be needed everywhere the system fails to under-
stand, either because of a recognition-error, which would mean a failure by
ASR to recognise the input, or an error due to not understanding the input,
meaning the input was outside the grammar. It should be reflected in the
user assistance what is the reason that the prompt is played again, and it
would be preferrable not to play the same prompt over and over again. This
can be handled by setting a maximum number of times any prompt is to be
replayed, and transferring the caller to a manual operator if this occurs.

5.4 Technology and tools used

After a brief trial with Motorola and TellMe, BeVocal’s developer platform
was used to develop the VoiceXML part of the application. The former two
did not at the time (in their free-to-use online or desktop platforms) support
the new standard, whereas BeVocal does.

A web server – Apache/1.3.28 (Debian GNU/Linux) – was set up to host
the VoiceXML files. The web server also supports PHP, which is used for
communicating with the database – PostgreSQL 7.3.4 – containing the test
data.

All implicit and explicit variables that are used in VoiceXML are EC-
MAScript objects, but ECMAScript only provides light-weight general com-
puting capability to VoiceXML code, therefore it was decided to use PHP
for communication with the database and creating dynamic VoiceXML doc-
uments.

24

5.5 The VoiceXML Platform 5 THE APPLICATION

5.5 The VoiceXML Platform

As mentioned, BeVocal’s online development platform was used to develop
the VoiceXML-application. This platform simulates calls to the application
using graphical means — VocalScripter — obviously without requiring ASR
or TTS, making it easier to focus on the design and logic of the application.
The platform retrieves the files from any URL specified, and also offers to
compile external grammars, but only support GSL-formatted files today.

5.6 Webserver

By separating the application logic, which runs on a standard webserver, from
the voice dialogs, which are running on a telephony server, the availability of
voice applications are greatly increased. In particular since it enables devel-
opers to build phone services without having to buy or run the equipment
needed for ASR and TTS. This can be done by Voice Service Providers
(VSP), that are analogous to todays ISPs. A local Apache Webserver was
set up, containing all the vxml and php files, which is then available from
the developer platform. It is also possible to call the application through
BeVocal, but this requires the caller to have an user account and a pin-code.

5.7 Database

A PostgreSQL database was set up and 10.000 residential records and 200
business records generated and inserted into the database. The database was
chosen to have a flat, simple structure, meaning that all pertinent data was
contained within one table. This was done to emphasise speed in searches.
The table has ten fields, not all strictly neccessary in the prototype, but some
fields may come in handy if the scale of the database dictates the queries to
be more specific.

1. id A unique key for all records

2. user type The user type, differentiating between residential and busi-
nesses (possible values R or B).

3. first name The subscriber’s first and middle name (if any)

4. last name The subscriber’s last name

5. company name The company name, if the phone is registered to a
business.

25

6 GRAMMARS

6. street name The subscriber’s address

7. house no The housenumber

8. zip Zip code

9. city The location of the subscriber

10. phone no The phone number registered to the subscriber

Also, if a subscriber has more than one phone number, each is treated as
an individual record by the database. Again, this is done for efficiency, and to
minimise the load on the database. It may be possible, if deemed neccessary,
to emulate one-to-many relations by comparing the results and then group
them if they have similarities. This increases the load on the database, but
will offer greater functionality.

6 Grammars

As previously stated, grammars define sets of rules that declare what values
are to be allowed within the application. Here, grammars will be introduced
and presented in more detail, with examples from the test application, usually
the same example in the three formats, but occasionally only in GSL and
ABNF. Some comparison of the formats will be attempted, but not at great
depth, since that would be beyond the scope of this paper.

6.1 Grammar formats

At the present, there are several grammar formats available for creating the
grammar files needed in voice applications. The World Wide Web Consortium
is now working on a new standard grammar format, the Speech Recognition
Grammar Specification Version 1.0 (SRGS) [W3Ca], which was recently sub-
mitted for recommendation. New grammars for voice applications should
be made to conform with this standard, thus avoiding the proprietary for-
mats, like Nuance’s Grammar Specification Language (GSL) and Java Speech
Grammar Format (JSGF), that are in widespread use today. SRGS is in fact
built on JSGF, and therefore JSGF will not be handled separately here, but
indirectly through SRGS, even though they are not identical, but a step
further in evolution.

In voice enabled browsers to come, SRGS must be supported, whereas
GSL and JSGF may be supported. The grammar compiler on BeVocal’s
online development platform only supports GSL today, and therefore this
has been chosen as grammar format in the test application.

26

6.1 Grammar formats 6 GRAMMARS

Operator Name Usage Meaning
() Concatenation (A B C . . . D) A and B and C . . . and D
[] Disjunction [A B C . . . D] A or B or C . . . or D
? Optional ?A A is optional
+ Positive closure +A 1 or more repetitions of A
∗ Kleene closure *A 0 or more repetitions of A

Table 10: Syntax of the right-hand side of GSL-rules

6.1.1 Speech Recognition Grammar Specification (SRGS)

The World Wide Web Consortium’s (W3C) ongoing project in creating a
standard for the development of grammars to be used in voice-based appli-
cations, SRGS, can be built on two different forms, e.g. Augmented Backus-
Naur Form (ABNF) and XML Form. These forms are semantically map-
pable, thereby making it possible to build automatic transformations between
the forms. This means the forms can be used interchangably, as they both
either accept a given input or they both reject it, and they will also parse
any input string they have accepted identically.

6.1.2 Grammar Specification Language (GSL)

This is the proprietary format from Nuance, one of the leading companies in
the field of voice recognition. The syntax of the right-hand side of the GSL
rules are depicted in table 10, where A. . . D can be terminals, non-terminals,
or the expressions themselves. The syntax and other aspects will be dealt
with in greater detail in the following sections.

6.1.3 Input modes

There are two ways of communicating with a voice-browser, voice and DTMF.
The SRGS grammar formats are restricted to either recognising DTMF or
speech, not both, but GSL has no such restriction. This means that GSL
can have a mix of both DTMF and speech, enabling it to have “type-ahead”
shortcuts which would be impossible with ABNF and XML. For example, in
the testapplication, it would be possible to type the phonenumber and also
type ’2’ and ’1’ to take the user directly to the person lookup in the business
category, which would be a nice feature for novice and expert users.

27

6.2 Grammar build-up 6 GRAMMARS

non-terminal => right-hand side
right-hand side => expression as described in 6.1.2

for GSL, or the ABNF equivalents

Table 11: GSL and ABNF rules

6.2 Grammar build-up

A grammar is built up of one or more rules which specifies the input values
that are to be accepted. Each rule can consist of two parts; an optional
rulename that is unique within the grammar and which identifies it for use
in other rules, and an obligatory rule expansion part that defines the possible
values that can be uttered.

As inline grammars ABNF and XML must have a top level rule — root-
rule — that is an explicit starting point of the grammar, but if the grammars
are external, this is optional. GSL, on the other hand, always takes the first
publicly scoped5 rule to be the root. It is also possible to specify which rule
to use in particular, to directly reference the rule needed, if this rule has
public scope. This is not the case when using precompiled grammars, which
must have a root-rule. If no rule is specified when referencing the grammar,
the root-rule is assumed.

6.2.1 Rule syntax

The syntax of the rule names differ between the various grammar formats. It
is to be noted that names starting with a capital letter in GSL is a reference
to another rule, whereas ABNF would use a “$rulename” to indicate a rule
reference, and XML would use <ruleref uri=“rulename”/ >. So, “Example”
would mean a rule reference in GSL, and “example” would be a terminal,
while in ABNF both would denote the same, e.g. a terminal. In XML this
would be handled by the use of the appropriate tags.

The way the rules are declared also differ slightly. Whereas XML handles
the declarations by means of tags and their attributes, GSL and ABNF rules
are built as depicted in table 11.

In the examples below, the grammar rule lang gives three alternatives;
prolog, standard ml or voicexml. On the right-hand side of GSL and ABNF
the name of the rule is given, e.g. “Lang” for GSL, and “$lang” for ABNF.
In XML this is done by an attribute id. These are the names used when
referencing the rules.

5See section 6.2.2 for more on this.

28

6.2 Grammar build-up 6 GRAMMARS

GSL: Lang = [prolog (standard ml) voicexml]

ABNF: $lang = prolog | (standard ml) | voicexml

XML: <rule id=“lang“>
<one-of>

<prolog>
<(standard ml)>
<voicexml>

< /one-of>
< /rule>

6.2.2 Scope of rules

Each rule that is defined has a scope, either public or private. If nothing is
specified, the scope is set to private by default. A rule with public scope
is also visible outside its grammar, as opposed to a grammar with private
scope, that is confined to be visible inside the grammar in which it has been
defined. This means, a public scoped rule may be referenced explicitly in the
ruledefinitions of other grammars, but a private-scoped rule cannot, being
only accessible from within the same grammar in which the rule is declared.
The syntax of how scope is declared is shown below.

ABNF: private/public $rulename = choice1| . . . |choicen

GSL: Rulename:public = [choice1 . . . choicen]
XML: <rule id=“rulename” scope=private/public>

<one-of>
<item> choice1 < /item>
<item> · · · < /item>
<item> choicen < /item>

< /one-of>
< /rule>

In GSL there is no special syntax for marking the scope of a rule as
private. If no rule in the grammar is marked public, then all rules in the
grammar are implicitly public. But if one or more rules are marked public,
then all rules not marked public have private scope.

6.2.3 Recursion

Both GSL and SRGS6 permit rules to directly or indirectly reference them-
selves, thus giving them the expressive power of context-free grammars (CFG).

6SRGS is here short for both grammar forms (ABNF and XML)

29

6.2 Grammar build-up 6 GRAMMARS

But, one should note that it is not required for the form grammar proces-
sor to support recursive grammars, and that it is simple right recursion and
embedded recursion that is supported. Simple left recursion is made illegal,
to ensure that the interpreter does not enter an infinite loop. In this section
only ABNF and GSL examples are shown.

This means, that while
ABNF: $Digits = $Digit | ($Digit $Digits)

$Digit = 0|1|. . . |9
GSL: Digits [Digit (Digit Digits)]

Digit [0 1 2 . . . 9]
is allowed, this is not

ABNF: $Digits = $Digit | ($Digits $Digit)
GSL: Digits [Digit (Digits Digit)]

It is also possible for rules to indirectly reference themselves, by referenc-
ing a rule that has as one of its subcomponents a reference to the originating
rule itself.

ABNF: $NounPhrase = $Noun | ($Noun $PrepositionalPhrase);
$PrepositionalPhrase = $Preposition $NounPhrase;

GSL: NounPhrase (Noun ?PrepositionalPhrase)
PrepositionalPhrase (Preposition NounPhrase)

One should also take care to avoid left-recursion when indirectly referring
to rules, because the left-recursion is less obvious in these cases, as exemplified
below.

ABNF: $a = ($b $c);
$b = ($c b b);
$c = ($a c);

GSL: A (B C)
B (C b b)
C (A c)

6.2.4 Special rules: NULL, VOID, GARBAGE and RESISTOR

The grammar formats also contains some special rules. Two which they all
have in common: VOID and NULL, and apart from that, ABNF and XML
have one other they share GARBAGE, and GSL has one called RESISTOR.

NULL: Defines a rule that matches if the user is silent, for example using
the following grammar rule Lang = ([NULL standard] ml) to match
“standard ml” or just “ml”. This may in many cases also be solved
using optional constructs, i.e. Lang = (?standard ml).

30

6.2 Grammar build-up 6 GRAMMARS

ABNF: $lang= ($NULL ml) | (standard ml)
GSL: Lang = [NULL standard] ml
XML: <rule id=“lang”/ >

<one-of>
<item><ruleref special=“NULL”/ > ml< /item>
<item> standard ml < /item>
< /one-of>
< /rule>

VOID: Defines a rule that does not match anything that may be spoken,
making the sequence in which it is put unspeakable.
ABNF: $VOID
GSL: VOID
XML: <ruleref special=“VOID”/ >

The NULL and VOID rules can be used to decide if a rule is active
or not, without having to completely change the grammar, which would be
awkward to maintain. For example, assume an application that offers weather
reports. In summer it also offers watertemperature and opening hours for
water resorts, and in winter it answers questions about amount of snow at
different skiresorts. These alternatives should not be available at the same
time, and the VOID and NULL rules can be used to create a grammar where
these rules are easily turned on and off.

GARBAGE: Defines a rule that matches anything until the next rule match,
the next terminal or the end of the input. This is not available in GSL,
only in ABNF and XML.

ABNF: $GARBAGE
XML: <ruleref special=“GARBAGE”/ >

RESISTOR: Changes the probability that a rule can be spoken. This is
only available with GSL.

6.2.5 Rule repetition

Sometimes it is necessary to allow for an expression to be repeated any
or a particular number of times. This is solved quite differently in SRGS
and GSL. As depicted in section 6.1.2, GSL has three operators that handle
repetitions. In SRGS this is done by means of giving a number n to say how
many repetitions are needed, with n ∈ N ∪ {0}, or a range n − m, with
m, n ∈ N ∪ {0}, n ≤ m, is specified.

31

6.3 Grammars in the application and possible extensions6 GRAMMARS

Format Syntax Meaning Example
ABNF <0-1> Optional $answer = yes please<0-1>;
XML repeat=“0-1” yes <ruleref id=“please”

repeat=“0-1”/ >
GSL ? Answer (yes ?please)

ABNF < n > n repetitions $pin = $dig<4>;
XML repeat=“n” n = 4 <ruleref id=“dig”

repeat=“4”/ >
GSL none Pin (Dig Dig Dig Dig)

ABNF < n − m > repeat between $topping = $top<2-6>;
XML repeat=“n − m” n to m <ruleref id=“top”

times repeat=“2-6”/ >
GSL none Topping (Top Top ?Top

?Top ?Top ?Top)

ABNF < n− > repeat zero
XML repeat=“n−” or more times
GSL *
GSL + one or more

6.3 Grammars in the application and possible exten-
sions

A grammar that can be used in a real-life directory service will be costly to
build and to maintain, since it must contain all possible values, e.g., all the
possible names in the directory service. In this paper a small set of data was
created and the grammars made to suit them.

Even though the grammars of the test application are quite trivial, they
are external. This was done deliberately, for readability and ease of updating
the grammars. It would have been possible to extend the grammars quite
dramatically, but the intention of the test application was to show how easy
it can be to develop VoiceXML-applications, and to make it as generic as
possible. As it stands now, the test application can be used as a framework
for many kinds of automated directory service.

One extension to the grammars that would be advisable would be to
group the input where this is possible. That is, group elements that have
the same semantic content, like “doctor, general practioner, GP”, “twenty,
20”, and the aforementioned boolean epxressions “yes, yep, yes please” and
so on, and return one representation of these, e.g. “doctor”, “20” and “yes”.

32

7 CONCLUSIONS

This is called slot-filling commands in GSL, or tags in SRGS, and is an
interpretation of the semantic content that was recognised. If this is used,
the voice interpreter will return the value that is defined in the slot or tag.

ABNF: $color = blue | marine {color=“blue”};
XML: <item>blue <tag>color=“blue”< /tag>< /item>

<item>marine <tag>color=“blue”< /tag>< /item>
GSL: Color [[blue marine] {color blue}]

It is also possible to use weight on the elements, i.e. indicating the like-
lyhood of an element occurring. For instance, when dealing with cities, a
big city is more likely to occur than a small one. By logging the number
of times the specific elements occur, one can also create weights that reflect
probability. This can be reflected in the grammars as indicated below.

ABNF: /0.25/(Baton Rouge) | /3.14/(Washington DC);
XML: <item weight=“0.25”>Baton Rouge< /item>

<item weight=“3.14”>Washington DC< /item>
GSL: [(Baton Rouge) 0.25 (Washington DC) 3.14]

Another thing that might make a automatic directory service more us-
able is the possibility to mark the way certain elements are to be pronounced,
either in external lexicon documents or changing the language that are as-
sociated with a rule expansion, i.e terminal, rule reference, or a combination
of both. The prior is not supported by BeVocal today, and the latter only
supports US or British English.

It would be a daunting task to try to have all the names of people and
streets to be correctly pronounced, but this should nevertheless be strived for.
Foreign names, or even foreign-sounding names, are a challenge. The SRGS
formats allow for tagging names with a language marker that specifies how
it is to be understood, so that recognition is more certain. But even if this
is possible, it would mean that someone would have to tag all these words
appropriately. For this to be feasible, the number of elements to be tagged in
this manner would have to be fairly small, and not likely to change too often.
The SRGS formats support this kind of tagging, whereas GSL does not.

7 Conclusions

As this is a fairly new field, a field which is of growing interest and which
is rapidly expanding, it is also “work in progress”. This applies both to
VoiceXML and to SRGS, which the World Wide Web Consortium makes

33

7 CONCLUSIONS

an effort to keep up to speed with what users and the industry want at any
given time. This is reflected in the regular updates that are made to the
standards.

Testing VoiceXML has shown that the specifications sometimes actually
exceed what the voice service providers (VSP) offer today. This is particu-
larly the case with regard to SRGS, which for example support both external
pronunciation lexicons and language tagging of the grammar rules. BeVocal,
on the other hand, does only support limited language support and no pro-
nunciation lexicons yet.

VoiceXML is easy to use, like its counterpart HTML, and it requires
little training, and hardly any hardware, to develop an application. All that
is needed is a webserver to serve the vxml-documents and a VSP to handle
interpretation. So anyone can make their own voice-application. This paper
has tried to shed light on some important aspects one needs to keep in mind
when creating voice-enabled applications, in a hope to help future VoiceXML-
developers.

Much of the work put into creating a VoiceXML application, goes into
creating the underlying system which produces the dynamic VoiceXML doc-
uments, and handles the logic of the application. VoiceXML is more or less
only a way of presenting the data, much like its graphical equivalent HTML.
Therefore good design is paramount in creating userfriendly applications.

Having a text based environment for testing made it easier to focus on
the dialog flow and prompt design, because even though the quality of ASR
and TTS has improved lately, it still leaves a lot to hope for. And before this
is better, many users will avoid using automated services, even if it is saving
them time and money.

For those expecting voice-interaction with computer systems like in Star
Trek or even in 2001: A Space Odyssey in the near future, well, they will have
to wait longer. It is also important to keep in mind that voice-recognition
systems are just that, they recognise input and generate output, “Vox et
praeterea nihil” — a voice and nothing more. To some extent they may
also try to infer semantic meaning in the given input, but this is still only
feasable within a given domain with a restricted context, largely due to the
fact that this is language specific. This would imply that languages spoken
by relatively few people would not have semantic interpreters developed for
their language, since this is not interesting from an economical point of view.
The only hope here would be linguistic enthusiasts from the open-source
communities.

34

A VOICEXML SUBSET

A VoiceXML subset

These are the elements actually used in the test application, with a short
explanation. It is important to note that this is not an exhaustive list of
VoiceXML, but only a subset. Most elements have more attributes, legal
parents, and legal children, but they have been removed for easier reading.
For the complete syntax of VoiceXML, see section 1.4 in the VoiceXML
Standard Version 2.0 [W3Cb].

To make it easier to see how the code is built up, an EBNF7 representation
of the elements used in the test application has been made. {} indicates
zero or more repetitions, [] denotes an optional construct, | divides different
choices, and () groups the elements contained within.
VXML ::= <vxml ATTR> [MENU LINK] {FORM} < /vxml>

FORM ::= <form ATTR> [BLOCK FILLED] {FIELD}< /form>
MENU ::= <menu ATTR> [PROMPT HELP] {(CATCH|CHOICE)} < /menu>
LINK ::= <link ATTR> GRAMMAR< /link>

FIELD ::= <field ATTR> GRAMMAR PROMPT< /field>
FILLED ::= <filled> {VAR} [IF] ACTION < /filled>
BLOCK ::= <block>TEXT GOTO< /block>
CHOICE ::= <choice ATTR> TEXT< /choice>
HELP ::= <help>TEXT ACTION TEXT< /help>
CATCH ::= <catch ATTR> {(ACTION|TEXT)}< /catch>
GRAMMAR ::= (<grammar ATTR>[TEXT]< /grammar>)|

(<grammar src= ”TEXT”/ >)
IF ::= <if ATTR> ACTION [ELSE]< /if>
ELSE ::= <else/ > TEXT ACTION
ACTION ::= GOTO | SUBMIT | <exit/ > | <reprompt/ > | <enumerate/ >
GOTO ::= <goto next= ”TEXT”/ >
SUBMIT ::= <submit next= ”TEXT” namelist= ”TEXT”/ >
VAR ::= <var name= ”TEXT” expr= ”TEXT”/ >
ATTR ::= See below for possible attributes

<block>

A form item that contains executable code that will be executed if the block’s
form item is undefined and the cond attribute evalutes to true. Blocks are
typically only executed once per form invocation.

7It is important to note that EBNF and ABNF are not the same. Look in Appendix E
for more on this

I

A VOICEXML SUBSET

Attributes

name The name of the form item variable that determines if this block
is to be executed or not. This will only happen if this variable is
undefined. Defaults to an inaccessible internal variable.

expr The initial value of the form item variable. By default this is
undefined. If initialized to a value, then the form item will not
be visited unless the form item variable is cleared.

cond A boolean condition that must evaluate to true for the element to
entered.

Legal parents

<form>

Legal children

<enumerate>, <exit>, <goto>, <if>, <prompt>, <submit>, <var>

<catch>

Containts the markup to execute when the specified event is thrown

Attributes

event The event, or events, that will trigger the catch. A list of
events may be specified, indicating that this element catches
all the events named in the list. In case of multiple events,
a separate event counter is maintained for each event.

Legal parents

<field>, <form>, <menu>, <vxml>

Legal children

<enumerate>, <exit>, <goto>, <if>, <prompt>, <reprompt>, <submit>

<choice>

Defines an item in a menu selection, forming an implicit grammar for that
the menu.

II

A VOICEXML SUBSET

Attributes

dtmf The touchtone sequence for this choice. It is equivalent to a
simple DTMF ¡grammar¿.

next The URI this choice will transition to. Only one must be specified
otherwise an error event is triggered.

Legal parents

<menu>

Legal children

<enumerate>, <grammar>

<if>

These elements are used for conditional logic, and they are processed if the
specified condition evaluates to true.

Attributes

cond A boolean test, that needs to evaluate to true for the section
to be executed. If an <else> element is present, this will execute
in all other instances, whereas <elseif> has a condition of its
own to fulfill.

Legal parents

<block>, <catch>, <filled>, <help>, <if>

Legal children

<else>, <elseif>, <enumerate>, <exit>, <goto>, <if>, <prompt>, <reprompt>,
<submit>, <var>,

<enumerate>

Vocalises the choices of a menu in the sequence they are given.

III

A VOICEXML SUBSET

Legal parents

<block>, <catch>, <choice>, <enumerate>, <field>, <filled>, <help>,
<if>, <menu>, <prompt>

Legal children

<enumerate>

<exit>

Ends a session, terminating all loaded documents.

<field>

A field specifies an input item to be gathered from the user.

Attributes

name The form item variable in the dialog scope that will hold the
result. The name must be unique among form items in the form.

expr The initial value for the field variable, undefined by default
If initialized to a value, then the form item will not be visited
unless the form item variable is cleared.

cond An expression that must evaluate to true after conversion to boolean
in order for the form item to be visited, or if the attribute is not
specified.

type The type of field, i.e., the name of a builtin grammar.
Platform support for builtin grammar types is optional.

Legal parents

<block>

Legal children

<catch>, <enumerate>, <exit>, <filled>, <grammar>, <help>, <link>

<filled>

This element specifies an action to perform when some combination of input
items are filled.

IV

A VOICEXML SUBSET

Attributes

namelist A list of input that will trigger the action. This attribute
may not be used if the <filled> element is inside a
<field>

Legal parents

<field>, <form>

Legal children

<clear>, <enumerate>, <exit>, <goto>, <if>, <prompt>, <reprompt>,
<submit>

<form>

Form items are the key component of VoiceXML documents, that represnts
a single dialog.

Attributes

id The name of the form, a unique identifier
scope The default scope of the form’s grammars

Legal parents

<vxml>

Legal children

<block>, <catch>, <field>, <filled>, <grammar>, <help>, <link>, <var>

<goto>

Transitions to a new dialog, either in the current document, or an external
file. Can contain only one of next, expr, or nextitem.

Attributes

next The URI of the dialog to transition to
expr An ECMAScript expression that generates the URI
nexitem The name of the next form item to visit in the current form

V

A VOICEXML SUBSET

Legal parents

<block> <catch>, <filled>, <help>, <if>

Legal children

—

<grammar>

Provides a grammar that specifies the set of input that may be given.

Attributes

src The URI specifying where to find an external grammar
scope Defines the area where the grammar is active, either

document or dialog.
type The MIME type of the grammar. If none is given, the interpreter

will try to determine this automatically.

Legal parents

<choice>, <field>, <form>, <link>

Legal children

—

<help>

Provides markup to execute when an utterance in the standard help grammar
is matched. This element is a shorthand for <catch event=“help”>.

Attributes

count How many times this event must occur before this element
is entered. Default is 1.

cond A boolean condition that must be satified for the element
to be entered.

Legal parents

<field>, <form>, <menu>, <vxml>

VI

A VOICEXML SUBSET

Legal children

<enumerate> , <exit> , <goto> , <if> , <prompt> , <reprompt>

<link>

Specify a transition common to all dialogs in the link’s scope.

Attributes

next The URI of the dialog to transition to
expr An ECMAScript expression to dynamically generate the URI

Legal parents

<field>, <form>, <vxml>

Legal children

<grammar>

<menu>

A dialog for choosing amongst alternative destinations, may be seen as a form
with a single field element, where the choices form the dialog’s grammar..

Attributes

id The name uniquely identifying the menu
scope Defines the area where the grammar is active, either

dialog (default) or document.
dtmf If this is set to true, an implicit DTMF is made, based on the

position of the choices.

Legal parents

<vxml>

Legal children

<catch>, <choice>, <enumerate>, <help>, <prompt>

VII

A VOICEXML SUBSET

<prompt>

Queue speech synthesis and audio output to the user

Attributes

bargein Whether a user can interrupt a prompt. Default if true.
cond An ECMAScript expression that must be satisfied for the prompt

to be spoken.
count The minimum of times this prompt for this item must already have

been spoken before this particular prompt is used.

Legal parents

<block>, <catch>, <field>, <filled>, <help>, <if >, <menu>

Legal children

<enumerate> , <value>

<submit>

Submits the information collected to the document server.

Attributes

next The URI to which the query is sent
expr An ECMAScript expression that generates the URI to visit
namelist The list of variables to send. All field item variables

are sent by default, unless otherwise specified by this attribute

Legal parents

<block>, <catch>, <filled>, <help>, <if>,

Legal children

—

<value>

Inserts the value of an ECMAScript expression in a prompt.

VIII

A VOICEXML SUBSET

Attributes

expr The expression to evaluate

Legal parents

<block>, <catch>, <choice>, <enumerate>, <field>, <filled>, <help>,
<if>, <menu>, <prompt>

Legal children

—

<var>

Declares a variable.

Attributes

name The name of the variable that will hold the result, and the
scope of the variable is determined from the position in

5B the document at which the element is declared.

Legal parents

<block>, <catch>, <filled>, <form>, <help>, <if>, <vxml>

Legal children

—

<vxml>

Top-level element in each compliant VoiceXML document.

IX

A VOICEXML SUBSET

Attributes

version The version of the VoiceXML of this document. This field
is required.

xmlns The designated namespace for VoiceXML (required). The
namespace for VoiceXML is defined to be
http://www.w3.org/2001/vxml.

application For multiple-document applications, this is the URI of
root document.

X

B VOICEXML

B VoiceXML

B.1 Root document

1: <?xml version= "1.0"?>
2: <!DOCTYPE vxml PUBLIC "-//W3C/DTD VoiceXML 2.0//EN"
3: "http://www.w3.org/TR/voicexml20/vxml.dtd">
4:
5: <vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">
6: <!-- Enables the user to return to the menu (#main) at any time -->
7: <link next="kai.vxml#main">
8: <grammar>[main menu]</grammar>
9: </link>
10:
11: <!-- Welcome message -->
12: <form id="intro">
13: <block>
14: <!-- Can also play a prerecorded message here -->
15: Welcome to Foo Automatic Listing Service.
16: <goto next="#main"/>
17: </block>
18: </form>
19:
20: <!-- If caller wants to make multiple queries, this is the reentry point -->
21: <menu id="main">
22:
23: <prompt>
24: Please choose your service: <enumerate/>
25: </prompt>
26:
27: <choice dtmf="1" next = "residential.vxml">residential </choice>
28: <choice dtmf="2" next = "business.vxml">business</choice>
29: <choice dtmf="3" next = "phone.vxml">reverse lookup</choice>
30:
31: <help>Please choose <enumerate/>, or say repeat to repeat your choices</help>
32: <catch event="repeat nomatch noinput"> <reprompt/> </catch>
33: </menu>
34:
35: <!-- The generated vxml points here -->
36: <form id="again">
37: <field name="cont" type="boolean">
38: <prompt>
39: Do you want to make a new lookup?

XI

B.1 Root document B VOICEXML

40: </prompt>
41: </field>
42:
43: <filled>
44: <if cond="cont">
45: <goto next="#main"/>
46: <else/>
47: Thank you for calling, have a nice day
48: <exit />
49: </if>
50: </filled>
51: </form>
52: </vxml>

XII

B.2 Residential lookup B VOICEXML

B.2 Residential lookup

1: <?xml version="1.0"?>
2: <!DOCTYPE vxml PUBLIC "-//W3C/DTD VoiceXML 2.0//EN"
3: "http://www.w3.org/TR/voicexml20/vxml.dtd">
4:
5: <!-- Collects the information needed for searching the database
6: $Id: residential.vxml,v 1.8 2004/03/16 13:50:31 kait Exp $ -->
7:
8: <vxml version="2.0" application="kai.vxml"
9: xmlns="http://www.w3.org/2001/vxml">
10:
11: <form id="residential">
12: <block>
13: Please provide the information neccessary to complete the search
14: </block>
15:
16: <field name="first">
17: <grammar src="compiled:grammar/ogc-935678538"/>
18: <prompt>
19: The first name of the person you are looking for
20: </prompt>
21: </field>
22:
23: <field name="last">
24: <grammar src="compiled:grammar/ogc-935678538"/>
25: <prompt>
26: The last name of the person you are looking for
27: </prompt>
28: </field>
29:
30: <field name="str">
31: <grammar src="compiled:grammar/ogc-138932948"/>
32: <prompt>
33: Street
34: </prompt>
35: </field>
36:
37: <field name="city">
38: <grammar src="compiled:grammar/ogc-138932948"/>
39: <prompt>
40: City
41: </prompt>
42: </field>

XIII

B.2 Residential lookup B VOICEXML

43:
44: <filled>
45: <var name="type" expr="’R’"/>
46: <submit next="../php/db2.php" namelist="type first last str city"/>
47: </filled>
48: </form>
49: </vxml>

XIV

B.3 Business lookup B VOICEXML

B.3 Business lookup

1: <?xml version="1.0"?>
2: <!DOCTYPE vxml PUBLIC "-//W3C/DTD VoiceXML 2.0//EN"
3: "http://www.w3.org/TR/voicexml20/vxml.dtd">
4:
5: <!-- Collects the information needed for searching the database
6: $Id: business.vxml,v 1.4 2004/04/30 13:04:58 kait Exp $ -->
7:
8: <vxml version="2.0" application="kai.vxml" xmlns="http://www.w3.org/2001/vxml">
9:
10: <form id="intro">
11: <block>
12: Please provide the information neccessary to complete the search
13: <goto next="#compmenu"/>
14: </block>
15: </form>
16:
17: <menu id="compmenu">
18: <prompt>
19: Do you want to search by person or company
20: </prompt>
21: <choice dtmf="1" next="#person">person</choice>
22: <choice dtmf="2" next="#company">company</choice>
23: </menu>
24:
25: <form id="person">
26: <field name="first">
27: <grammar src="compiled:grammar/ogc--935678538"/>
28: <prompt>
29: The first name of the person you are looking for
30: </prompt>
31: </field>
32:
33: <field name="last">
34: <grammar src="compiled:grammar/ogc--935678538"/>
35: <prompt>
36: The last name of the person you are looking for
37: </prompt>
38: </field>
39:
40: <field name="city">
41: <grammar src="compiled:grammar/ogc-138932948"/>
42: <prompt>

XV

B.3 Business lookup B VOICEXML

43: City
44: </prompt>
45: </field>
46:
47: <filled>
48: <var name="type" expr="’B’"/>
49: <submit next="../php/db2.php" namelist="first last city type"/>
50: </filled>
51: </form>
52:
53: <form id="company">
54: <field name="company">
55: <grammar src="compiled:grammar/ogc--935678538"/>
56: <prompt>
57: Company name
58: </prompt>
59: </field>
60:
61: <field name="city">
62: <grammar src="compiled:grammar/ogc-138932948"/>
63: <prompt>
64: City
65: </prompt>
66: </field>
67:
68: <filled>
69: <var name="type" expr="’B’"/>
70: <submit next="../php/db2.php" namelist="company city type"/>
71: </filled>
72: </form>
73: </vxml>

XVI

B.4 Reverse lookup B VOICEXML

B.4 Reverse lookup

1: <?xml version= "1.0"?>
2: <!DOCTYPE vxml PUBLIC "-//W3C/DTD VoiceXML 2.0//EN"
3: "http://www.w3.org/TR/voicexml20/vxml.dtd">
4: <vxml version="2.0" xml:lang="no" xmlns="http://www.w3.org/2001/vxml">
5: <!-- type="phone" does not work and must most probably be interchanged
6: with a new grammar fitted for this applications specific needs -->
7:
8: <form id="rev">
9: <field name="phone_no">
10: <prompt>
11: <grammar src="compiled:grammar/ogc-1791348435"/>
12: Please provide phone number.
13: </prompt>
14:
15: <filled>
16: <submit next="../php/db2.php" namelist="phone_no"/>
17: </filled>
18: </field>
19:
20: </form>
21: </vxml>

XVII

B.5 VoiceXML document generated by PHP B VOICEXML

B.5 VoiceXML document generated by PHP

This is the resulting VoiceXML document if inserting these parameters into
a residential query: first name “kit”, last name “walker”, street “fastlane”,
and city “fooville”.

1: <?xml version="1.0"?>
2: <!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 2.0//EN"
3: "http://cafe.bevocal.com/dtd/vxml2-0-bevocal.dtd">
4:
5: <vxml version="2.0"
6: application="http://patrician.rexta.net/~kait/vxml/kai.vxml"
7: xmlns="http://www.w3.org/2001/vxml"
8: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
9: xmlns:bevocal="http://www.bevocal.com/">
10:
11: <form>
12: <block>
13: There where 1 hit
14: </block>
15:
16: <block>
17: Kit Walker, Fastlane 83, 1000 Fooville, with phone number 555-83389
18: </block>
19:
20: <block>
21: <goto next="http://patrician.rexta.net/~kait/vxml/kai.vxml#again"/>
22: </block>
23: </form>
24: </vxml>

XVIII

C PHP

C PHP

PHP (now a recursive acronym for “PHP Hypertext Preprocessor”, but orig-
inally “Personal Home Page Tools”), is a widely used open-source program-
ming language used primarily for server-side applications.

C.1 Database query

The PHP code contains several print-lines. These are neccessary to create
the VoiceXML document that are sent back as response to the query that
results from the interaction between the user and the application. To make
the code prettier, it is possible to create a PHP-module that one can include
into the code, as is done in the case of the database-connection.

1: <?php
2: print ("<?xml version=\"1.0\"?>\n");
3: print (" <!DOCTYPE vxml PUBLIC \"-//BeVocal Inc//VoiceXML 2.0//EN\"\n");
4: print (" \"http://cafe.bevocal.com/libraries/dtd/vxml2-0-bevocal.dtd\">\n");
5: print ("\n");
6:
7: print ("<vxml version=\"2.0\"\n");
8: print (" application=\"http://patrician.rexta.net/~kait/vxml/kai.vxml\"\n");
9: print (" xmlns=\"http://www.w3.org/2001/vxml\"\n");
10: print (" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
11: print (" xmlns:bevocal=\"http://www.bevocal.com/\">\n");
12:
13: include ’/home/kait/hf/code/db/connect_pg.php’;
14:
15: $dbh = @connect_pg("fooListing");
16: $stm = createStm();
17: $sth = pg_query($dbh, $stm)
18: or die ("Statementhandle error: " . pg_last_error($dbh));
19: $hits= pg_num_rows($sth);
20:
21: print (" <form>\n");
22: createReply ($hits, $sth, $_GET["type"]);
23: print (" </form>\n</vxml>");
24:
25: function createStm () {
26: $first = $_GET["first"]; #First name
27: $last = $_GET["last"]; #Last name
28: $str = $_GET["str"]; #Street
29: $h_no = $_GET["h_no"]; #House number

XIX

C.1 Database query C PHP

30: $zip = $_GET["zip"]; #zip-code
31: $city = $_GET["city"]; #City
32: $phone = $_GET["phone"]; #Phone number
33: $type = $_GET["type"]; #Type of record business, residential or reverse
34: $comp = $_GET["company"]; #Company name
35:
36: #Build query
37: if ($type == "R") {
38: $query = "SELECT first_name,last_name,street_name,house_no,zip,city,phone_no
39: FROM simple WHERE ";
40: } elseif ($type == "B") {
41: $query = "SELECT first_name,last_name,company_name,phone_no FROM simple WHERE ";
42: }
43:
44: $query_elements = array();
45:
46: # builds a query from existing elements
47: if($first) { $query_elements[] = "first_name ILIKE ’$first’"; }
48: if($last) { $query_elements[] = "last_name ILIKE ’$last’"; }
49: if($str) { $query_elements[] = "street_name ILIKE ’$str’"; }
50: if($h_no) { $query_elements[] = "house_no ILIKE ’$h_no’"; }
51: if($zip) { $query_elements[] = "zip=’$zip’"; }
52: if($city) { $query_elements[] = "city ILIKE ’$city’"; }
53: if($phone) {
54: $f = substr($phone,0,3);
55: $l = substr($phone,3,5);
56: $query_elements[] = "phone_no=’$f-$l’";
57: }
58: if($type) { $query_elements[] = "user_type ILIKE ’$type’"; }
59: if($comp) { $query_elements[] = "company_name ILIKE ’$comp’"; }
60:
61: $tmp = implode(" and ",$query_elements);
62: $query = $query.$tmp;
63: return $query;
64: }
65:
66: function createReply ($hits, $sth, $type) {
67: # To display the result
68: if ($hits > 1) {
69: writeBlock ("There were $hits hits");
70: } elseif ($hits == 1) {
71: writeBlock ("There was $hits hit");
72: } else {

XX

C.1 Database query C PHP

73: writeBlock ("No hits");
74: }
75:
76: if ($hits > 5) {
77: writeBlock ("Too many hits to read them all");
78: } else {
79: if ($type == "R") {
80: while ($row= pg_fetch_array($sth, NULL, PGSQL_NUM)){
81: $name = "$row[0] $row[1]";
82: $addr = "$row[2] $row[3], $row[4] $row[5]";
83: $phon = "$row[6]";
84:
85: writeBlock ("$name , $addr with phone number $phon");
86: $no++;
87: }
88: } else {
89: while ($row= pg_fetch_array($sth, NULL, PGSQL_NUM)){
90: $name = "$row[0] $row[1]";
91: $comp = "$row[2]";
92: $phon = "$row[3]";
93:
94: writeBlock ("$name , working for $comp with phone number $phon");
95: $no++;
96: }
97: }
98: }
99: writeBlock (" <goto next=\"http://patrician.rexta.net/~kait/vxml/kai.vxml#again\"/
100: }
101:
102: function writeBlock($msg){
103: print (" <block>\n");
104: print (" $msg\n");
105: print (" </block>\n");
106: }
107: ?>

XXI

D GRAMMARS

D Grammars

D.1 Name.gram

;GSL2.0
NAME
[
[(?FName LName)]
[(FName ?LName)]
[CName]
]

FName
[
[jack jill ron bob barbara kit eddie cindy hermione harry

anthony nemo rob evil ronald bill sue drew peggy]
]

LName
[
[smith potter jones foo walker scotch tape owen meany

kenievel johnson robson keegan smith baggins holmes]
]

CName
[
[foorox foosoft easyfoo acme (acme pizza) fooburger mcfoo fooking]
]

XXII

D.2 Addr.gram D GRAMMARS

D.2 Addr.gram

;GSL2.0
ADDR
[
[(STREET ?CITY)]
[(?STREET CITY)]
]

CITY
[
[fooville foocreek hogwarts barville foobarcity barking mad]
]

STREET
[
[bourbonstreet highstreet fastlane (tranquil gardens) (grimauld place)

(company lane) foostreet]
]

XXIII

E ABBREVIATIONS

E Abbreviations

This list of abbreviations and explanations is by no means complete, but it
will hopefully be of some help trying to navigate through this paper.

ABNF Augmented Backus-Naur Form extends the basic Backus-Naur Form,
and is documented in RFC 2234.

ASR: Automatic Speech Recognition

BNF: Backus-Naur Form is a metasyntax for formally describing formal
languages, i.e. to express context-free grammars.

DTMF: Dual Tone Multi Frequency, the standard set of tones produced
by the keys on a telephone handset

EBNF: Extended Backus-Naur Form is any variation on the basic Backus-
Naur Form (BNF) notation used to describe the syntax of languages
with the help of the following constructs: “[. . .]” for optional items, “*”-
suffix to denote Kleene closure (zero or more repetitions of an element),
“+”-suffix for one or more repetitions and curly brackets enclosing a
list of alternatives. Super- or subscripts can be used to indicate a range
of repetitions, i.e. between n and m occurences o f an element. EBNF
is defined in ISO 14977.

ECMAScript: A standard script format defined by the European Com-
puter Manufacturers Association. It is described in ECMA-262, which
can be found here: http://www.ecma-international.org/publications/
standards/ECMA-262.HTM

FIA: Form Interpretation Algorithm, described in detail in section 2.1.

GSL: Grammar Specification Language, Nuance’s proprietary format for
defining grammars to be used in voice-applications.

IS: Information System, typically a database system.

IVR: Interactive Voice Response systems are computerised systems that
allows a person to select an option from a voice menu and otherwise
interact with a computer system by voice, usually by means of a tele-
phone.

Multi-modal: Combined simultanous text and speech input in a system

XXIV

E ABBREVIATIONS

PHP: is now a recursive acronym for “PHP Hypertext Preprocessor”, but
originally “Personal Home Page Tools”. This is a widely used open-
source scripting language used primarily for server-side applications

PostgreSQL: is an free object-relational database server.

SRGS: Speech Recognition Grammar Specification

TTS: Text To speech

URI: Uniform Resource Identifier, a unifying syntax for the expression of
names and addresses of objects on the network as used in the World
Wide Web. Details can be found in RFC 2396

URL: Uniform Resource Locator is a standardised address for some re-
source, for example a document or image, on the Internet. The current
form are detailed in RFC 2396.

XXV

REFERENCES REFERENCES

References

[BM01] Bruce Balentine and David P. Morgan. How to Build a Speech Recog-
nition Application. EIG Press, 2001.

[DD03] Korry Douglas and Susan Douglas. PostgreSQL - A comprehen-
sive guide to building, programming, and administering PostgreSQL
databases. Sams Publishing, 2003.

[Lou97] Kenneth C. Louden. Compiler Construction - Principles and Prac-
tice. PWS Publishing Company, 1997.

[Set96] Ravi Sethi. Programming Languages - Concepts and Constructs.
Addison-Wesley, 1996.

[Shn98] Ben Shneiderman. Designing the User Interface - Strategies for
Effective Human-Computer Interaction. Addison-Wesley Longman,
1998.

[ST03] David Sklar and Adam Trachtenberg. PHP Cookbook. O’Reilly,
2003.

[W3Ca] World Wide Web Consortium W3C. Speech Recognition Gram-
mar Specification Version 1.0. Website. http://www.w3.org/TR/

speech-grammar/.

[W3Cb] World Wide Web Consortium W3C. VoiceXML Stan-
dard Version 2.0. Website. http://www.w3.org/TR/2004/

PR-voicexml20-20040203/.

XXVI

