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a b s t r a c t

We quantify the percentage of sea surface covered by whitecaps
from images taken by a non-stationary camera mounted on a
moored buoy using an Adaptive Thresholding Segmentation (ATS)
method and an Iterative Between Class Variance (IBCV) approach.
In the ATS algorithm, the optimal value for the threshold is de-
termined as the last inflection point of the smoothed cumulative
histogram of the scene. This makes the method more effective in
finding the optimal value of the threshold and reduces the compu-
tational efforts compared to the conventional Automated White-
cap Extraction (AWE) technique. In the IBCVmethod, the optimum
criterion for determining the value of the threshold corresponds
to the measure of separability between the segmented water and
whitecap pixels. In our experiments, the fraction of each image cov-
ered by the whitecap is determined using the aforementioned dy-
namical thresholding techniques for images taken under complex
forcing and lighting conditions. Comparisons between different
techniques suggest the effectiveness of the proposed methodolo-
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gies, in particular the ATS algorithm to separate the whitecap fea-
tures from the darker water pixels.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For wind speeds higher than 3 m s−1, breaking of surface gravity waves ejects sea spray droplets
into the marine atmospheric boundary layer and entrains air into the water column in a broad ranges
of scales, from dissolving bubbles (with radii less than 100 µm) to the large buoyant and rising
bubbles near the ocean surface (Thorpe, 1982; Deane and Stokes, 2002). The surface whitecaps, which
constitute 2%–5% of the global coverage of the ocean surface (Blanchard, 1963) are themost important
manifestation of such enhanced interactions between atmosphere and ocean during the sea surface
breaking events (Melville, 1996; Scanlon and Ward, 2013). The ejection of droplets from breaking
waves, the bursting of bubbles floating on the sea surface, and several air–sea exchange processes
are closely linked to the fractional areas of the whitecap coverage at the sea surface. Within the
marine atmospheric boundary layer during high wind events, turbulent mixing carries the ejected
sea spray droplets up into the air where they are effectively transported over the sea surface and
possibly collide with fixed and floating offshore structures (Jones and Andreas, 2012). Formation and
evolution of surfacewhitecaps also influencemany air–sea exchange processes, such as gas- and heat-
transfer (Andreas, 1992), and wave energy dissipation into the water column (Hanson and Phillips,
1999). Therefore, quantifying the properties of whitecaps, in particular active whitecaps as strong
manifestations of wave breaking crests, substantially contributes to the detailed understanding of
several air–sea processes.

After the pioneering study of Monahan (1969) for the extraction of the areas of whitecaps from
film, and subsequently video images, several investigations have then focused on the determination
of the fraction of the sea surface covered by whitecaps in an attempt to link the whitecap fraction
to other measurable physical quantities, such as wind speed (Monahan, 1971). Various empirical
parameterisations of the whitecap fraction at the sea surface may be specified as a function of wind
speed at 10 m height, U10, i.e.

Wc(%) = W A
c (%)+W B

c (%) = α × (U10 − β)n, (1)

where Wc is the total whitecap fraction in %, and α, β , and n are tuneable coefficients which can
be determined by a curve-fitting technique (Stramska and Petelski, 2003). Several studies have
confirmed that the coefficients α, β , and n in Eq. (1) depend on the location of the measurements,
the specific experimental conditions, the source of wind speed data (e.g. sonic anemometer), the
temperature difference between air and sea, the sea-state conditions, and the atmospheric stability
in the lower layer of the marine atmospheric boundary layer (Monahan and O’Muircheartaigh, 1980,
2012; Salisbury et al., 2014; Paget et al., 2015). W A

c and W B
c indicate the active (highly reflective and

bright surface elements) and residual (less bright and thinner vertically than the active whitecaps)
whitecaps, respectively. While the active whitecaps are of importance for the parameterisations of
dynamical processes at the sea surface, such as momentum transfer, dissipation, and spume drop
production (Melville andMatusov, 2002), the residual whitecaps mainly influence heat exchange and
some bubble-mediated processes such as gas transfer (Andreas et al., 2008) and jet droplet production
(Woolf et al., 1987).

A key tool in camera-based whitecapmeasurement is the automatic identification of the whitecap
covered areas from a sequence of images monitoring the sea surface. Callaghan et al. (2008)
and Callaghan and White (2009) proposed an Automated Whitecap Extraction (AWE) approach to
determine the total whitecap fraction value by themeans of intensity thresholding. They showed that
the uncertainty in determining the whitecap fraction is directly related to the number of images used
in the processing and the sampling frequency. Particularly, they suggested a minimummeasurement
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Table 1
The used parameters to generate the idealistic histograms.

n µ1 µ2 µ3 σ1 σ2 σ3

3 −10 0.0 10 2.5 2.5 2.5
2 −10 0.0 – 2.5 2.5 –
1 −10 – – 2.5 – –

frequency between 0.25 and 0.33 Hz to achieve a statistical uncertainty of 5% for each value of
Wc . Although the AWE technique is typically applied for calculation of the whitecap fraction, the
assumptions behind this method are violated in the presence of strong uneven illumination and
other atmospheric interferences. Therefore, we present two alternative fully automated techniques
to identify the fraction of whitecaps from the background non-whitecap areas based on the intensity
segmentation of each individual pixel. The optimal value of the threshold for each scene is obtained
based on the statistical information of the greyscale histogram, and the separability distance between
the two segmented classes, i.e. the water and the whitecap regions.

This paper is organised as follows. Section 2 presents the image processing background, and
Section 3 describes the experiment and themeasurement site. The results are presented and discussed
in Section 4. The last section will provide a brief summary and outlook.

2. Digital image processing

The common digital image processing technique to calculate the whitecap coverage consists of
several steps, e.g. Callaghan and White (2009):

1. The coloured images are converted into greyscale.
2. A threshold level is determined for each scene based on the sea surface brightness characteristics.

This allows for the identification of whitecap regions as pixels with bright intensities above the
determined optimal threshold.

3. The whitecap information are averaged over a certain number of images to determine statistically
certain estimates for the values of whitecap coverage.

Due to the environmental complexity, occlusion effects, sun-light reflection, non-stationarity
of whitecaps and change in the illumination at each scene, the principle assumption behind the
thresholdingmethods that there should exist a distinct distribution difference between thewater and
thewhitecap pixelsmay be violated. Therefore, it is essential to reduce the effects of such disturbances
by applying appropriate pre-processing and quality control procedures before starting the feature
extraction (Sugihara et al., 2007; Callaghan and White, 2009).

In order to validate the performance of methods, we discuss the application of the ATS and the
IBCV algorithms to the ideal composite histograms generated by the sum of the Gaussian probability
density functions as

hs(x) =
n

i=1

ai
√
2πσi

exp

−

(x− µi)
2

σ 2
i


, (2)

where hs(x) is the simulated histogram as a function of the bin value x, n denotes the number of
modes, ai (here = 1 for i = 1 · · · n) are the respective proportion, and µi and σi represent the mean
and standard deviation of the ithmode. Table 1 lists the parameters used for checking the performance
of the proposed threshold-detection algorithms.

2.1. Extraction of whitecap fraction

The population of pixels with intensity k is defined as

Jk =


(u,v)∈R

[I(u, v) == k], (3)
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where I(u, v) is the greyscale value of a pixel located at the point (u, v) in the image frame, and R
is typically a local image region including the defined Region-of-Interest (ROI). The percentage of
whitecap coverage is then calculated from

Wc(%) = 100×


k≥T

Jk
k≥0

Jk
, (4)

where T denotes the value of thresholdwhich is applied to divide the pixel space into thewhite objects
and dark background. After determining the threshold, each pixel in the image is labelled as 1 if it
corresponds to the object (whitecap) and 0 if it corresponds to the background (water). In the next
section, we present different methods to determine the optimum threshold value.

2.2. Automated image segmentation

Although there are awide range of sophisticated classification approaches, the pixel-based thresh-
olding schemes are still common due to the simplicity of their algorithms (Sugihara et al., 2007;
Callaghan andWhite, 2009). However, in images of the ocean surface in which scenes exhibit a strong
change of illumination, the thresholding-based techniques are no longer appropriate for mapping of
the pixel values due to particular surface events, i.e. the bursts of breaking crest and residual white-
caps. In such situations, the distinction between bright areas and the background water still remains
a computational challenge for the vision-based techniques.

The major issue in the thresholding method is the accurate choice of the threshold for the
separation between two groups of pixels, i.e. object (whitecap) and non-object pixels. A widespread
approach is based on the determination of the local minimum of the intensity frequency histogram
by assuming a bimodal histogram distribution, such as Otsu’s method (Otsu, 1979). However, in
a bimodal histogram where the valley between two peaks is wide and in the absence of strong
illumination effect, the local minimum strategy will results in a range of choices for the value of
the threshold instead of an optimal value. Furthermore, the histogram is not always bimodal and the
optimal schemes consequently predict poor values for threshold in such cases.

2.2.1. Segmentation using AWE method
Callaghan and White (2009) developed the AWE algorithm to determine a suitable threshold

intensity value to separate whitecaps from the background water pixels. This technique contains two
major components: an image structure as the fraction of pixels with intensities greater than a given
threshold; and an optimum threshold-selection system based on the first, the second, and the third-
order derivatives of the image structure. According to our analysis for the images taken from a non-
stationary camera, the image structure is controlled by the sunglint, sky reflection, and the strength of
uneven illumination, see also Callaghan andWhite (2009). These features add brightness and texture
to the vast majority of images used in our analysis and confine the identification of transition regions
between whitecaps and background water due to the erratic nature of the image structure. The
resulting disturbances in the image structure, especially when the threshold approaches the higher
intensity values, cannot be sufficiently counteracted by the conventional smoothing procedures such
as the iterative cropping methods or using contrast filtering techniques (Callaghan andWhite, 2009).
We found the variations ofWc(%) as a function of the threshold value less sensitive to the atmospheric
and platform motion-induced contaminations than the application of the image structure for our
images. Hence, to avoid further quality control protocols to omit the noisy portions of the image
structure, we replace hereafter the image structure in the AWE method by the percentage of the
whitecap coverage (Eq. (4)) as a function of the threshold, see also Sugihara et al. (2007). The optimum
threshold is then determined based on the first- or the second-order derivatives of the Wc(%) as a
function of threshold. This modification leads to a very robust detection algorithm with minimum
requirement to further image pre-processing operations.

In the AWE method used in this study, the percentage of whitecap coverage, Wc(%), is first deter-
mined over different normalised threshold values ranging between 0.01 and 1 (Callaghan andWhite,
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2009). A decision graph for Wc(%), relative to the threshold values, is then constructed to extract the
optimal threshold as a point atwhich the graph approaches a shallow tail (i.e. the last inflection point).
Although the technique is effective, it misidentifies the whitecap area under certain conditions, such
as strong pixel intensity and wave-induced camera motions, contamination from sunglint and sky re-
flection, raindrops, and uneven changes of illumination in the scene. These disturbances may lead to
a substantial reduction in the frequency of images used for the extraction ofWc(%).

2.2.2. Segmentation using ATS
Motivated by Callaghan and White (2009), we propose an optimal threshold determination

technique that utilises the information from a cumulative histogram of the greyscale images, see
also Kleiss and Melville (2011) and Schwendeman and Thomson (2015). In this method, i.e. ATS, the
threshold value is accomplished as the intensity value at which the curvature of the histogram graph
is maximal or the change in the slope of the cumulative sum approaches asymptotically to zero. It is
expected that using curvature informationwill result in a better estimation of the threshold compared
to the histogram-based threshold detection techniques, particularly in the situations where the scene
is multimodal or unimodal with weak well-separated peaks.

For the normalised (discrete) histogram h, the Cumulative Distribution Function (CDF) at point k
is defined by

H(k) =
k

i=0

h(i). (5)

Let H be a continuous function of variable x, the curvature of H is then given by

C(x) = H ′′(x)

1+ H ′(x)2

−3/2
, (6)

where H ′ and H ′′ are the first- and the second-order derivatives of H , respectively. If the curvature
approaches to zero at point x, an inflection point at x is achieved at which the cumulative sum finds
a change of slope and sign. In real maritime images without a clear gap between background and
foreground textures, C is very noisy and oscillatory in the vast majority of cases at the tail area.
This makes the detection of the correct inflection point very complicated. Therefore, to effectively
determine the inflection point of H (zero of C at the tail area), the following inequality needs to be
checked

min{x : |H ′′(x)| ≥ γ }, (7)
where | · | denotes the absolute value function, and γ > 0 is selected as a constant small number (here
γ = 10−4) or is determined adaptively to avoid the effects of noise at the tail of C(x) for each scene.
It is obvious that the efficiency of this method is directly controlled by the quality of the CDF graph to
avoid spurious threshold estimation. Consequently, we apply a four-point running mean to the raw
histograms prior to constructing the threshold-detection algorithm.

In this study, images mostly exhibit a long tail with whitecaps forming a rather weak peak
compared to the corresponding peak of the background water pixels. We can then determine the
optimum value of Topt using a triangle algorithm for H ′′(x) or H ′(x) (Zack et al., 1977). Since C(x),
H ′(x), and H ′′(x) share similar behaviour at the tail area, we apply the triangle algorithm to the graph
of H ′(x), which seems less noisier than other two functions, as follows:
1. Fit a line between the peak of H ′(x) at bin Tmax and the end of the longer tail of the H ′(x) graph at

bin Tmin.
2. Determine the perpendicular distance between the fitted line and every point in the graph ofH ′(x)

between Tmin and Tmax.
3. Set the point corresponding to the maximum distance as the optimum threshold, Topt .

An example of a non-modal histogramsegmentationusing theATS threshold detection algorithm is
given in Fig. 1. Since the values of H ′′(x) and H ′(x) approach asymptotically to zero, the ATS threshold
voting-system adjusts the threshold through a few iterations from the triangle method so that the
value of |H ′′(Topt) − H ′(Topt)| for the optimum threshold Topt is within a small offset, Fig. 1(d). It is
worth to mention that the results in this study are less sensitive to this final adjustment.
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Fig. 1. Example of threshold detection of a unimodal histogram using ATS method. (a) Non-modal histogram as a function
of bin; (b) the CDF graph; (c) the graph of curvature C(x); and (d) graphs for the H ′(x), blue curve, and H ′′(x), black curve,
together with the triangle threshold detection phase of ATS. Green lines are the fitted lines and parameters used to generate
the histogram in Fig. 1(a) are given in Table 1 for n = 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

2.2.3. Iterative Between-Class Variance (IBCV) segmentation
This technique is similar to Otsu’s method for the selection of the optimal threshold. According to

Otsu’s method, the normalised grey level histogram is regarded as a discrete probability distribution
function p(i) = ni/M , where ni is the number of pixels at grey level i and M is the total number
of pixels in the ROI. By dividing the histogram into 2 classes using the threshold level T , the BCV is
defined as follows (Otsu, 1979):

BCV (T ) = p1(T )p2(T ) [m2(T )−m1(T )]2 , (8)

where p1 and p2 are the probabilities of the respective classes (water and whitecap regions), and m1
and m2 denote the corresponding mean intensity values of the two classes. The optimal threshold
can then be determined iteratively by maximising the BCV. It should be noted that the maximising
(minimising) problem can be extended for a multi-threshold methodology (Kittler and Illingworth,
1986). For example, if we divide the histogram into three classes separated by two thresholds T1 and
T2, the following Iterative BCV (IBCV) algorithm will approach to the optimal threshold value:

1. Initialise T1 and T2, e.g. the smallest and the largest possible values, respectively.
2. Divide an image into three regions using the values of T1 and T2: R1 (with all pixel value≤ T1), R2

(with all pixels values greater than T1 and less than T2), and R3 (with all pixel values≥ T2).
3. Calculate the average intensity valuesm1,m2 and m3 for each region.
4. Compute a new value of T1 and T2 as

T1 ←−
m1 +m2

2
; and T2 ←−

m2 +m3

2
.

5. Repeat steps above from 2 to 4 until the differences between two successive values of T1 and T2
become minimal.

6. Set T = α1T1 + α2T2
where α1 and α2 are weighted average coefficients (here set to 0.5). When the density distribution of
the histogram shifts towards the water background end, the variations of grey-level tend to alter the
modal shape of the histogram (i.e. unimodal shape) in a manner that the IBCV method fails to detect
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Fig. 2. Examples of threshold detection using the IBCV algorithm in the absence of illumination-correction phase for: (a)
Trimodal histogram; (b) bimodal histogram; and (c) unimodal histogram using the classical IBCV thresholding search. Here,
Topt is the optimal threshold estimated from the classical IBCV method, i.e. from the step 6 of the algorithm. Parameters used
to generate each histogram are given in Table 1. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

a good threshold. In order to increase the practicality of the IBCV algorithm, we shall incorporate an
automatic search threshold phase after step 6. The IBCV algorithm is then proceeded by the following
illumination-correction phase applied for the real images in this study:

1. Search from the histogram value at bin T (estimated from step 6) towards the end of the longer
(foreground) tail of the histogram.

2. Estimate the value for the whitecap fraction at each search bin.
3. Set as the optimal threshold, Topt , the bin atwhich the absolute error between two successive values

of the estimatedWc(%) at the sequence of the whitecap fraction is within a small fixed offset.

Fig. 2(a) shows an ideal histogramwith a trimodal distribution at which two adjacent distributions
with the same variance overlap heavily in the middle. It is observed that the IBCV technique results
in two equally good threshold values (vertical red lines) with less tendency to bias the true locations
of the thresholds. Fig. 2(b) shows a bimodal histogram for which the classical IBCV method makes a
decent estimate of the threshold value. Fig. 2(c) illustrates an application of the method when there
is an unclear modality pattern in the shape of the composite histogram. While the weighted average
of two determined thresholds provides the optimum threshold, the optimal value of the threshold
is highly sensitive to the disturbances induced by the uneven change of illumination at each real
maritime scene. In such cases, the method may effectively be converged to the optimum value by
utilising the illumination-correction stage, see also Section 4.4.

3. Experimental approach

In November 2013, a field cruise was conducted with the research vessel R/V Håkon Mosby to
Marstein Fyr, approximately 30 km southwest of Bergen, Norway (Fig. 3(a)). The objective of the
cruisewas the study of turbulent air–sea interaction processes in a coastal area. Several oceanographic
instruments were deployed on both moving (submerged buoys) and fixed (bottom frame) sea going
platforms. Moreover, a Furgo OceanorWavescan buoy wasmoored at themeasurement site to record
gravity wave statistics. In addition to the oceanographicmeasurements, a direct covariance flux (DCF)
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Fig. 3. (a) Map showing the deployment site (red square) at Marstein on the western coast of Norway. The inset shows the
experiment site location in Norway; and (b) pictures of the Wavescan buoy and its mast with the installed sensors and the
camera. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

system was mounted at both the front bow of the research vessel and on top of the Wavescan buoy’s
meteorological mast (Fig. 3(b)). The DCF system, consisting of a sonic Gill R3 anemometer and an
InertialMeasurement Unit (IMU), recorded atmospheric heat andmomentum fluxes at approximately
8 m (vessel) and 3.5 m (buoy) above the sea surface. A Campbell scientific CC5MPX digital network
camera was mounted next to the buoy’s DCF system for visual inspection of the sea surface gravity
waves and whitecapping events. The camera with the standard lens of 4–12 mm and a field of view
from 27° to 80° was mounted with a downward tilting angle of approximately 10° relative to the
horizon and programmed to collect snapshot images, 1 frame per second (fps), during daylight hours.
Each full colour image with the size of 992 × 1280 × 3 is cropped on all sides (i.e. 793 × 1081 × 3)
to reduce the atmospheric interferences depending on displacement from the vertical. The cropped
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Fig. 4. Environmental forcing during the experiment. Time series of (a) wind speed and direction at 10mheight from the ship’s
meteorological mast; and (b) the significant wave height, Hs , and the wave peak period, Tp , recorded from the Furgo-Oceanor
Wavescan buoy deployed nearby the ship station.

colour image is then converted to the greyscale and the colour depth is reduced to 8 bits resulting in
a normal greyscale image with 256 levels.

The weather and sea conditions encountered during the cruise are summarised in Fig. 4. Wind
speed and wave height varied considerably during the campaign, with maximum wind speeds
reaching 20 m s−1 and a significant wave height up to 6 m during a storm, which passed over the
deployment site on November 28. With the approach of the low pressure system, the wind direction
turned from northerly winds at the beginning of the campaign towards southeasterly and finally
westerly directions during the passage of the storm. Until November 26, and after the passage of
the storm, the sea-state was characterised by swell waves (Fig. 4(b)) and varying cloud cover which
provided acceptable conditions for the video camera to capture the wave field. During the storm, the
tilt angles of the buoy were too large and the recorded images could not be further processed.

4. Results and comparisons

This section presents the results for the determination of thewhitecap fraction using video images.
Here, we use the images taken from the camera mounted on the meteorological mast of the moored
buoy. While the algorithms have been rigorously tested for different sequences of images, we use a
six-minute series of images in this section which is sufficient for a proof of concept demonstration.

4.1. Image structure

Fig. 5 shows an example of the smoothed image structure (using a four-point running average) of
an image and its first- and second-order derivatives. The image structure shows the variation of the
Percentage Increase in number of Pixels (PIP) versus threshold at level j as

PIP(j) = 100×

j+1t
k=j

Jk
k≥j

Jk
, (9)

where Jk has been defined in Eq. (3), and 1t = 0.01 denotes the threshold increment (Callaghan and
White, 2009). It is observed that the shape of the image structure relies on the grey-level variations
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Fig. 5. The image structure of an image with strong non-uniform illumination pattern. (a) The original image; (b) the image
structure estimated from Eq. (9); and (c and d) the first and the second-order derivatives of the image structure.

which substantially alter the illumination pattern of the image, Fig. 5. Therefore, prior to applying the
detection algorithm, it is necessary to compensate the effects of the non-uniform illumination and
sunglint or discard those contaminated images from the image dataset (Callaghan and White, 2009).
However, a typical feature for almost all images used in this study is the strong uneven illumination of
the backgroundwater with intensity values comparable to the intensity values of whitecaps, Fig. 5(a).
This effect makes it very difficult to efficiently distinguish between the whitecap areas and water
pixels using the PIP and its derivatives, Fig. 5(b), (c), and (d). Our analysis based on the cropped
images suggests that the replacement of the image structure by Wc(%) in the AWE method may
result in a more robust procedure for images taken from a non-stationary camera in the presence
of contaminations induced by the sky reflection and uneven illumination. Hereafter, we use the AWE
methodbasedonWc(%) instead of employing the image structure, andpostpone further investigations
based on the image structure using this dataset elsewhere.

4.2. The AWE method

Fig. 6 illustrates a snapshot greyscale image including visible active whitecap events with a rela-
tively long lifetime. This plunging plume can be captured in a digital image-processing algorithm by
defining a global threshold to separate the background pixels (non-whitecapping) from thewhitecap-
ping pixels. In order to check the sensitivity of whitecap coverage to the threshold magnitude, three
different threshold values in the range of [0, 1] are applied to the original greyscale image. The area
of foam and the whitecap coverage are estimated by Eq. (4). In Fig. 6(b), the brightness of the binary
image is relatively high due to the sunlight, and the non-whitecapping areas are identified as part of
the whitecapping region with a coverage of approximately 80% for T = 0.3. By using a threshold of
T = 0.53 (Fig. 6(c)), the contributions due to the sunglint substantially decline in the upper part of
the image. Changing the value of threshold to 0.6 (Fig. 6(d)) results in further discrimination between
whitecapping and non-whitecapping regions.

Fig. 6 highlights the importance of choosing an appropriate threshold level to distinguish between
different illumination conditions. In Fig. 7, we show details of the optimal threshold-selection system
based on the AWE approach.
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Fig. 6. Picture ofwhitecaps variations as a function of threshold. (a) Original greyscale image; (b) the binary imagewith T = 0.3
andWc = 80%; (c) the binary image with T = 0.53 andWc = 19%; and (d) the binary image with T = 0.6 andWc = 15%.

Fig. 7. (a) Original grey scale image; (b) image histogram; (c) variation of Wc based on the AWE method and its smoothed
second-order derivative as function of the threshold, ∂2Wc/∂x2 , where x denotes the dummy variable related to the histogram
bin; and (d) the binary image with optimum threshold of 0.53. The threshold increments set to 0.01. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. (a) Original greyscale image; (b) image histogram; (c) variation of cumulative histogram, H , and its smoothed second-
order derivative as a function of grey level, ∂2H/∂x2 , where x denotes the dummy variable related to the histogram bin; and
(d) the binary image with the optimal value of threshold, normalised in the range of [0, 1], calculated from the ATS algorithm.

The histogram of the greyscale image illustrates a clear separation between bright and dark pixels.
The higher peak at T = 0.21 represents the pixel corresponding to the darker colour with the
larger intensity variation, and the information of the histogram at the valley between two peaks
may be captured by the peak-selection algorithm as the optimum value of the threshold (Fig. 7(c),
and Section 2.1). Fig. 7(c) illustrates the relationship between the threshold level and the fraction of
whitecap coverage for the greyscale image, with a threshold increment of 0.01. The whitecapping
coverage curve (red) remains flat until a threshold of approximately 0.15, before declining rapidly in
themid-section. Beyond the threshold value of T = 0.5, the curve asymptotically approaches towards
zero. Finally, the optimum value of the normalised threshold, Topt , is chosen as the last inflection
point of Wc which is calculated using the smoothed second-order derivative of Wc(%) (black line).
While in this example, the AWE method perfectly determines the separation between whitecaps
and water pixels, the histogram-based methods generally fail to successfully distinguish between
the whitecapping and the non-whitecapping segments due to the valley caused by the illumination-
induced contamination (Fig. 7(b)).

4.3. The ATS scheme

An example of using the ATS scheme for the extraction of bright pixels is shown in Fig. 8. This
adaptive technique attempts to pick up the largest value for the threshold by assuring the appropriate
detection ofwhitecap areas. The image greyscale histogramexhibits a valley region between two clear
peaks as a result of contaminations from the uneven illumination. In such situations, there are several
pixels in thewhitecap patchwhich share the similar intensity distributionwith the backgroundwater,
and there is no distinct difference between thewhitecap andwater areas (see also Fig. 9(c)). Therefore,
applying theOtsu’smethodwill result in a non-optimal value for the threshold (Fig. 8(b)). An outline of
the threshold selection procedure in the ATSmethod is shown in Fig. 8(c). After smoothing a greyscale
image (using four-point running mean) to remove the noise and very high frequency content, the
cumulative histogram, H , and its second-order derivative, ∂2H/∂x2, where x is the histogram bin
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Fig. 9. An example of applying the IBCV threshold algorithm for the images with strong inhomogeneous background intensity
distribution. (a) Original greyscale image; (b) image histogram and the threshold values from the standard IBCV algorithm (T1)
and themethod including the illumination-correction phase, Topt ; (c) the binary image obtained by the standard IBCV algorithm;
and (d) the binary image obtained by the illumination-correction version of the IBCV algorithm.

variable, are calculated from the smoothed image. The strong gradient of both whitecap and water
regions can then be separated using a proper selection of the threshold value as a point in which the
change in the ∂2H/∂x2 slope approaches zero.While the optimal point can be chosen using small value
of γ in Eq. (7), the optimum value for the threshold is objectively selected using the fully automated
triangle method presented in Section 2.2.2.

4.4. The IBCV method

We perform an analysis as shown in Fig. 9 to demonstrate the ability of the IBCV algorithm for an
image with a strong background illumination pattern. It is observed that in the presence of strong
inhomogeneous background conditions, the standard IBCV algorithm exhibits poor performance to
capture the optimal value of the threshold. This may be attributed to the modulation of the image
intensity histogram by the sudden and uneven changes of the image illumination, and nonuniform
reflected sky conditions (Fig. 9(b) and (c)). While there are several approaches to handle the uneven
illumination effects, we have found the IBCV method less vulnerable to the uneven illumination
changes for each scene (Fig. 9(d)). It should be noted that we use the IBCV method together with the
illumination-correction phase to obtain the optimal value of the threshold for all of maritime images
in this study.

4.5. Comparisons and performance analysis

A comparison of the different approaches used in the whitecap detection process is shown in
Fig. 10. Here we show the results from the AWE (Fig. 10(b)), the ATS (Fig. 10(c)), and the IBCV
(Fig. 10(d)) techniques. All techniques determine suitable thresholds to separate between whitecaps
and unbroken background water under uneven light conditions. While most of the whitecap pixels
have been detected, none of the techniques could identify several sparse residual whitecaps in the
scene. This is because these pixels have intensity values between the estimated threshold value and
the intensity of the dark water pixels which may not be easily recognised by using the conventional
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Fig. 10. The comparison between different Wc extraction techniques. (a) Original greyscale image; (b) the binary image
estimated by the AWE method; (c) the binary image obtained from AST approach; and (d) the binary image estimated by
the IBCV method.

thresholding-based techniques. Application of clustering algorithms, such as the k-mean algorithm,
prior to the threshold-based segmentation may mitigate this drawback.

From Fig. 11, it can be seen that there is high positive correlation between the optimum thresholds
estimated from two automated techniques and one from the ground truth analysis, which is deter-
mined manually using the thresholding-based technique. Generally, there might be some situations
in which the ATS and the AWE schemes may result in erroneous values for the threshold when get-
ting shifted towards the lower values of intensity. This can happenwhen the scene contains low noise
levels and the cumulative spectrum does not exhibit any gradient response. However, such situations
were not observed in the images used in this study.

In order to provide more insights into the accuracy of the linear regression and correlation coef-
ficients (ρ), we conduct statistical testing of the significance such as the goodness-of-fit of the linear
model (e.g. y = a0x + b0) by calculating the error bound, and the significance of correlation coeffi-
cient by calculating the p-value and t-test. By assuming that both the ground truth and the estimated
thresholds are Gaussian distributed, the t-value (i.e. Student’s t-distribution) for the threshold values
is determined using the following t-statistic as tcalc = ρ


(N − 2)/(1− ρ2), where N is the number

of images used for the inferential analysis (Emery and Thomson, 2001). The correlation coefficient is
then significant if tcalc is greater than the critical t-value, tcrit , (for the significance level of 0.05 and
N − 2 degrees of freedom). The p-value for all threshold-detection methods is approximately zero,
suggesting that the correlation coefficient is significant. Accordingly, the t-test confirms further the
statistical significance of all methods for the significance level of 0.05, i.e. tcalc ≫ tcrit . Table 2 in-
cludes estimates for the standard deviation of the error in predicting the observed threshold at 5%
level of significance. While all methods suggest nearly identical information on the accuracy of the
threshold-detection procedure, the ATSmethod gives overall better improvement in predicting of the
true threshold compared to the other techniques.

The superiority of the ATS and IBCV techniques relative to the AWE method used for this study
is that they do not need any prior information about the values of the threshold and Wc(%) to
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Fig. 11. The scatter plot between the normalised predicted thresholds, from the AWE method, the ATS scheme, the IBCV
method, and the manually segmented ground truth data for 261 images. ρ1 , ρ2 , and ρ3 indicate the values for the correlation
between the observed and the predicted normalised thresholds.

Table 2
The results of statistical testing based on linear regression and correlation coefficient. a0 and b0 denote the slope and intercept of
the linearmodel, respectively, ρi is the correlation coefficient for the ithmethod, the confidence interval error for the significant
level of 0.05 is presented by Error (95%), the significance of the correlation analysis is given by p-value, and tcalc and tcrit are the
t-test statistics.

Method a0 b0 Error (95%) p-value ρi tcalc tcrit

AWE 0.72 0.14 0.0331 0.0 0.67 14.49 1.65
ATS 0.77 0.12 0.0323 0.0 0.70 15.83 1.65
IBCV 0.75 0.13 0.0330 0.0 0.68 15.09 1.65

generate the optimal threshold. Therefore, thesemethods are able to predict the optimumvalue of the
thresholdwith less computational complexity than the AWEmethod, while preserving the same level
of accuracy. Fig. 12 illustrates the computational performance of three presented threshold-detection
methods implemented on a MAC OS X 296 10.9.5 with Intel Core i7 3 GHz CPU, and 16 GB 1600 DDR3
RAM. According to Eqs. (4) and (9), we conclude that the conventional AWE method (i.e. Callaghan
and White, 2009) and the one used in the present study have approximately identical computational
complexity. Consequently, using the ATS and the IBCV methods cause considerably less CPU usage
than the time spent by the conventional AWE method to detect the optimum value of the threshold
for each image.

To further assess the accuracy and performance of the automated segmentation techniques, we
calculate the evaluation metrics for each image by comparing its segmented binary image with the
manually segmented ground truth, which is, of course, subject to human error and the inter-observer
variability. The information of a Confusion Matrix (CM) for each scene is used to estimate the number
of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) pixels (Fig. 13(b),
(c), and (d)). The calculated metrics are then used to estimate the precision and recall given by:

Precision =
TP

TP+ FP
; Recall =

TP
TP+ FN

, (10)

where TP = CM(1, 1), FP = CM(2, 1), FN = CM(1, 2), and TN = CM(2, 2). Fig. 13 represents an
example of the CM information estimated from themanually segmented image and the corresponding
binary image obtained by applying the AWE, ATS, and IBCV techniques, respectively. The results
show that the optimal threshold from the AWE method results in a high value for the true positive
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Fig. 12. Elapsed time of three threshold-detection methods for a sequence of images.

Fig. 13. The comparison between the estimated confusion matrix for different segmentation techniques compared with the
manually (threshold-based) segmented ground truth: (a) Original greyscale image; (b) the AWE method; (c) the ATS method;
and (d) the IBCV scheme. The performance metrics are defined as: T-Positive (TP): the whitecap pixel (foreground) is correctly
identified as whitecap pixel; F-Positive (FP): the water pixel (background) is incorrectly diagnosed as the whitecap pixel; T-
Negative (TN): the water pixel is correctly diagnosed as the water pixel; and F-Negative (FN): the whitecap pixel is incorrectly
identified as the water pixel. The diagonal elements in the CM matrix correspond to the correct classifications and the off-
diagonal elements denote the incorrect classifications.

rate with the false negative rate of approximately 1.48% (Fig. 13(b)). The value of the FN rate is
completely reduced by using the ATS and IBCV methods which preserve the higher values of TP
rates than that of from the AWE method for this sample. Generally, the ATS classifier with 99% true
positive rate and 0.43% false negative rate achieves better performance than the other automated
segmentation techniques (see also Fig. 11). Furthermore, the implementation of the performance
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test for three segmentation schemes over 261 images shows that all automated techniques achieve
a high level of performance with an approximate value of 98% for both precision and recall, with
respect to the manually segmented ground truth. It should be noted that although promising, the
performance analysis is constrained to the choice of the ground truth datasets, the general limitations
of the thresholding methods, and the uncertainty of using a non-stationary camera in the evaluation-
scheme. Investigation of such uncertainty resources is beyond the scope of the present study and will
be addressed in more details elsewhere, i.e. (Bakhoday-Paskyabi et al., submitted for publication).

5. Summary

In this study, we analysed a sequence of images acquired from a non-stationary camera mounted
on a moored Wavescan buoy to measure the coverage of whitecaps at the sea surface. We proposed
two threshold-based algorithms to discriminate between thewhitecap andnon-whitecap populations
at each maritime scene with no need to know the camera’s intrinsic and extrinsic parameters. The
first method is an Adaptive Thresholding Segmentation (ATS) technique which uses the cumulative
histogram information to extract the value of the optimal threshold as the last inflection point of the
smoothed cumulative sum. From the implementation of thismethod, we observed that this technique
not only makes it possible to efficiently divide each image into whitecap and non-whitecap classes,
but also demonstrated that it is computationally very fast and robust relative to the conventional
Automated Whitecap Extraction (AWE). Furthermore, we used another automated multi-thresholds
algorithm to determine the optimal threshold bymaximising the between-class variance (BCV) of the
whitecap and the water pixels. An iterative strategy used in this algorithm allowed an efficient and
robust bi-level segmentation of images with less computational demand and higher accuracy than
the conventional Otsu’s search method. A correction phase was further calculated in the standard
Iterative BCV (IBCV) method to avoid the influence of image distortion by the uneven illumination.
Comparisons between different techniques showed that the ATS method gives an overall better
performance than the IBCV and the AWE methods.

Although the accuracy of the algorithms were precisely checked by using the confusion matrix
entries, the analysis needs yet to be proven based on more accurate ground truth images less
affected by the human errors and limitations of the conventional segmentation techniques. Since the
investigation on the accurate choice of an empirical relation between thewind andWc(%) and the best
approach to the elimination of the contaminations induced by the non-stationary camera are beyond
the scope of the present work, we will address them elsewhere.
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