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Abstract. 1. Fire is a widespread management practice used in the maintenance
of European heathland. Frequent prescribed burns in small patches have been
shown to benefit carabid communities; however, how fire favours specific life-
history traits is poorly understood.

2. In this study, we identify characteristic species of the successional stages
within heathlands, and find the traits which are characteristic of species in burnt
areas versus areas dominated by older heath stands.

3. We identify 10 species as indicator species for heathland in the pioneer
stage (0–5 years old); Amara lunicollis, Bembidion lampros, Calathus fuscipes,
Carabus problematicus, Cicindela campestris, Nebria salina, Notiophilus aquati-
cus, Poecilus cupreus, P. lepidus and P. versicolor. Dyschirius globosus is identi-
fied as an indicator for the building stage (6–14 years old), and Carabus
violaceus as an indicator for the mature stage (15–25 years old).

4. Moisture preference and diet are identified as traits that determine species
response to prescribed fire. Collembolan specialists and species with no moisture
preference are shown to be most abundant in burnt patches, whereas generalist
predators and species with a high moisture preference are less tolerant of fire.

5. Knowledge of species sorting along a prescribed fire gradient can provide
valuable information for heathland conservation.

Key words. Carabidae, coastal heathland, community assembly via trait selec-
tion, conservation management, ground beetle, indicator value, prescribed burn-
ing, Succession.

Introduction

The use of fire has a long history as a management tool
in European heathlands (Mallik & Gimingham, 1983;

Kaland, 1986; Webb, 1998). Primarily it has been used to
burn away older stands of heather, giving way to new,
more nutritious vegetation for grazers. Fire also causes
changes in floristic and faunistic compositions by tem-

porarily reducing the occurrence of dominant species

(Mallik & Gimingham, 1983). This can result in a more

bio-diverse landscape, if fires are controlled in such a way
that they create a mosaic of heath of different ages (Vand-
vik et al., 2005; Bargmann et al., 2015). Due to its wide-

spread usage and important role in determining plant and
animal assemblages, the effects of prescribed burning are
of considerable interest to heathland managers and scien-
tists alike.

There is extensive literature that focuses on the
response of heathland plants to prescribed burning (e.g.
Cl�ement & Touffet, 1981; Mallik & Gimingham, 1983;

M�aren & Vandvik, 2009; Velle & Vandvik, 2014), and
a number of studies have focussed on insect responses
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(e.g. Gardner & Usher, 1989; McFerran et al., 1995;
Bargmann et al., 2015; Brunbjerg et al., 2015). These
studies primarily focus on species diversity and abun-
dance, as well as the successional dynamics after burning.

Nevertheless, to be able to aid predictions for how species
traits are selected for by different environmental factors,
there has been an increased interest in trait-based

approaches, so that findings can be extended to areas out-
side the studied community (Lavorel & Garnier, 2002;
Violle et al., 2007). These approaches have, for example

been used to identify species traits in a wide range of spe-
cies, that are indicative of fragmentation (Driscoll & Weir,
2005), land use change (Vandewalle et al., 2010), flooding

(Lambeets et al., 2008) and other types of anthropogenic
disturbance (Carignan & Villard, 2002). Disturbance is an
important determinant of life-history traits in disturbance
prone environments (Southwood, 1977; Lytle, 2001; Rib-

era et al., 2001; Lambeets et al., 2008). Indicator species
analyses and trait-based approaches can therefore have
many practical applications in conservation, in the man-

agement of natural reserves (De C�aceres et al., 2010), and
in the monitoring of environmental disturbance (Carignan
& Villard, 2002), by providing information about how

species assemblages may change as a result of manage-
ment or natural and anthropogenic perturbations.
Insects in particular have been considered good indica-

tors of ecosystem integrity (Dufrêne & Legendre, 1997),

because they tend to be more closely associated with abi-
otic factors such as soil characteristics and moisture levels
(Usher, 1992; De Bruyn et al., 2001) than with biotic fac-

tors (Schoener, 1986; Carignan & Villard, 2002). This
study focuses on carabid beetles, which are often used as
indicator species, in part due to their well-known taxon-

omy, habitat requirements and life-history characteristics
(L€ovei & Sunderland, 1996; Rainio & Niemel€a, 2003; Koi-
vula, 2011; Kotze et al., 2011). Moreover, previous studies

have shown that carabid beetle distributions are driven
strongly by small-scale habitat and microclimate effects
(Gillingham et al., 2012). Although prescribed burns have
been shown to benefit carabid communities in general

(Gardner & Usher, 1989; Usher, 1992; Bargmann et al.,
2015; Brunbjerg et al., 2015), it has been suggested that
further research should focus on the indicator potential of

both rare and common species and specialist groups (see
Kotze et al., 2011), as well as how successional stages
favour specific life-history traits (Schirmel et al., 2012). A

number of studies have used carabids as model organisms
to measure trait-environment interactions and trait sorting
between habitats (e.g. Ribera et al., 2001; Schirmel et al.,
2012, 2015; Duflot et al., 2014; Pakeman & Stockan,

2014). They have demonstrated that carabid traits are
linked to land use change (Ribera et al., 2001), habitat
disturbance and hydrology (Gerisch, 2011), as well as

plant traits (Pakeman & Stockan, 2014). Nevertheless,
while there are studies that have investigated carabid
traits and their indicator value for heathlands in general

(e.g. Ribera et al., 2001; Schirmel et al., 2012; Borchard
et al., 2014), they most often compare two or three study

areas (i.e. different heath types) rather than investigate the
effect of fire or successional stages within the same heath
type.
As heathlands are of high conservation importance in

Europe (Usher & Thompson, 1993; Lindgaard & Henrik-
sen, 2011; Kaland & Kvamme, 2013), and fire is a com-
mon management measure used for their conservation, it

is important to obtain more detailed knowledge about
how prescribed burning selects for individual species and
species traits. This knowledge can have many practical

applications. For example it can be used to inform opti-
mal fire intervals, and to be able to quantify and predict
how species assemblages may change with fire regime.

Knowledge of how species sorting of carabids occurs in
each successional stage could therefore provide valuable
information for heathland conservation. In this study, we
ask whether there are carabid species that are characteris-

tic of each successional stage across a 23-year fire
chronosequence, and investigate whether there are pat-
terns in occurrence of certain species traits along this fire

gradient.

Methods

Study area

The study area is on the islands Lygra and Lurekalven
(60°420N and 5°50E), about 40 km north of Bergen in
western Norway (Fig. 1). The area has an oceanic climate

with a mean June temperature of 12 °C, a mean January
temperature of 2 °C and a mean annual precipitation of
c. 1600 mm (www.met.no). Both islands have acidic,

nutrient-poor soil, and are dominated by Calluna heath,
mires and mixed grass heaths, with some smaller patches
of forest (mainly Betula pubescens and Pinus sylvestris).

Moist heath tends to occur on deep soils in poorly
drained depressions or north-facing slopes, whereas dry
heath occurs on shallow soils on ridges or south-facing
slopes (Fremstad, 1997; Aarrestad & Vandvik, 2000). This

heathland is a cultural landscape that has been managed
by different traditional heathland farming methods such
as grazing, burning and turf cutting. Without such a

management regime, the area is expected to undergo sec-
ondary succession to forest, as is exemplified by neigh-
bouring islands. Prescribed burning, and grazing by sheep

were reintroduced to both islands in 1992. The grazing
pressure on the islands of Lygra and Lurekalven is
approximately one sheep per hectare (Velle, 2012), and is
relatively equal on both islands. Grazing was constant

over the study years. Burns are carried out in late winter
when the ground is frozen to avoid burning the soil.

Data collection

In 2012, we set a total of 180 250 ml plastic pitfall traps
in 60 groups of three near the centre of burn patches from
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1992 to 2012. The pitfall traps in each group were placed
in a triangle formation about 30 cm apart from each

other, and the samples from these were pooled to make
one sample. Burn sizes were variable, with patch size
ranging between 0.02 and 20 hectares. Due to prescribed

burns in February 2013 the locations of eight groups of
traps were burnt before the 2013 trapping season. The
trap locations were chosen in advance by placing GPS

points in the centre of the patches from different burn
years. Traps were set as close to these points as possible
in the field. All traps were set in dry heath, preferably on

top of ridges, as this is where this heath type is usually
found. The localities were chosen so that there was a good

spread over the stages of Calluna development. Stages
were defined based on age ranges of Calluna outlined in

Barclay-Estrup and Gimingham (1969) and were divided
into the following phases; pioneer (0–5 years), building
(6–14 years) and mature (15–23 years). In the pioneer and

early building stage, plant species diversity is higher rela-
tive to the later stages, but decreases towards the end of
the building- and the mature stage as the density of Cal-

luna increases (Barclay-Estrup & Gimingham, 1969), and
out-competes most herbs and grasses (Hobbs et al., 1984).
Due to burning done in 2013, and data being collected in

2 years, the number of localities per stage varied in 2012
and 2013; pioneer (22/25 localities), building (20/22

Fig. 1. Map of the study area in western Norway showing the location of the pitfall traps along with the burn mosaic resulting in pre-

scribed burns between 1992 and 2013. Basemap sources: Esri, DeLorme, HERE, MapmyIndia.
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localities) and mature (18/13 localities). Data for the
2 years were pooled in the analyses.
Pitfall traps were filled about one-third with saturated

salt solution and a drop of dishwashing detergent, and

were covered by a metal lid to keep the trapping solution
from becoming diluted by rain or disturbed by sheep.
Traps were emptied every month between 10 April to 22

September in 2012 and 9 May to 19 September in 2013.
The 1 month delay in trapping in 2013 was due to a cold
spring, when the soil was still frozen in April. There was

very limited sample loss due to sheep disturbance (9 out
of 1620 traps over the two sample years). Samples were
filtered and material was stored in 70% ethanol until

identification.
Adult carabids were identified using both Lindroth

(1985, 1986) and Luff and Turner (2007), while nomen-
clature follows Luff and Turner (2007). The wing mor-

phology of all dimorphic species was noted. Other
species trait information (see Table 1) was taken from a
variety of sources; body size, dietary, life history and

activity pattern traits were taken from Ribera et al.
(1999) and Lindroth (1985, 1986). Where these sources
disagreed, Lindroth was used because it describes the

carabids of Fennoscandia. Missing trait data for Notio-
philus aquaticus, Poecilus lepidus and Trechus secalis was

taken from Ribera et al. (2001), Kegel (1990) and
Wallin (1989) respectively. Moisture preferences are
from Luff and Turner (2007). Information for the loco-
motion trait was taken from Forsythe (1983), where

‘runners’ are species whose leg measurements make
them fast runners but weak horizontal pushers, and
‘pushers’ are stronger horizontal pushers and slower

runners. ‘Digger’ refers to burrowing species.

Data selection

The data set contained a number of rare species; four

species were recorded only once (Agonum fuliginosum,
Leistus terminatus, Nebria brevicollis and Olisthopus rotun-
datus), five were recorded twice (Bradycellus caucasicus,
Notiophilus biguttatus, N. germinyii, Patrobus assimilis and

Pterostichus vernalis) and four were recorded between
three and five times over the 2-year sampling period
(Amara communis, Bradycellus ruficollis, Carabus coriaceus

and Cymindis vaporariorum) (See Bargmann et al. (2015)
for a full species list). As most analyses employed in com-
munity ecology can be biased in the presence of rare spe-

cies, we retained only the 23 remaining species with more
than five records (see Table 1).

Table 1. Species traits of the species included in the trait and indicator value analyses.

Species wing size ows lcd day breed mpe mpa diet loc moist

Amara lunicollis M 2 1 1 1 1 2 2 4 2 2

Bembidion lampros D 1 1 1 1 1 2 1 1 2 3

Calathus fuscipes B 3 2 2 3 3 2 2 2 2 2

Carabus nemoralis B 4 1 1 3 1 2 2 2 2 3

Carabus problematicus B 4 2 2 3 2 1 2 2 2 2

Carabus violaceus B 4 2 1 3 3 2 2 2 2 2

Cicindela campestris M 3 2 1 1 1 2 1 2 1 2

Cychrus caraboides B 3 2 2 3 3 2 2 2 2 2

Dyschirius globosus D 1 1 1 1 1 2 4 2 3 1

Harpalus latus M 2 1 1 3 2 2 4 4 2 3

Loricera pilicornis M 2 1 1 2 2 3 2 1 1 1

Nebria salina M 3 2 1 3 3 1 2 2 1 2

Notiophilus aquaticus D 2 1 1 1 1 2 2 1 1 1

Poecilus cupreus M 3 1 1 1 1 3 1 3 2 3

Poecilus lepidus B 3 2 2 1 2 3 2 2 2 3

Poecilus versicolor M 3 1 1 1 2 3 1 2 2 1

Pterostichus diligens B 2 2 1 3 1 3 1 2 2 1

Pterostichus melanarius B 3 2 2 2 3 1 2 2 2 2

Pterostichus nigrita M 3 2 1 3 1 2 2 2 2 1

Pterostichus niger M 3 2 1 3 3 1 2 2 2 1

Pterostichus strenuus M 2 1 1 3 1 2 1 2 2 2

Synuchus vivalis M 2 2 1 3 3 2 2 4 2 2

Trechus secalis B 1 2 1 3 3 2 2 1 2 1

Trait codes; wing (M = macropterous, B = brachypterous, D = dimorphic), size = body length in mm (1 = <4.5, 2 = 4.5–10, 3 = 10–20,
4 = 20+), ows = overwintering strategy (1 = adult, 2 = larva), lcd = life cycle (1 = 1 year, 2 = 2 years), day = activity period (1 = diurnal,

2 = both, 3 = nocturnal), breed = breeding season (1 = spring, 2 = summer, 3 = autumn), mpe = main period of emergence (1 = spring,

2 = summer, 3 = autumn), mpa = main period of activity (1 = spring, 2 = summer, 3 = autumn, 4 = whole year), diet (1 = collembola,

2 = generalist predator, 3 = mixed/omnivore, 4 = mostly plant matter), loc = locomotion (1 = runner, 2 = pusher, 3 = digger),

moist = moisture preference (1 = wet, 2 = no preference, 3 = dry).
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Statistical analysis

Characteristic species for each phase of Calluna regener-
ation after fire were determined by calculating Dufrêne-

Legendre indicator values using the indval function in the
labdsv package (and see Dufrêne & Legendre, 1997;
Roberts, 2013) in R version 2.15.3 (R Core Team, 2013).

These values are calculated from the relative abundance
and the relative frequency of occurrence of a species
within different groups, in this case, stages, of sites. The

value is maximal when all individuals of a species occur
in only one stage and in all sites of that stage. The analy-
sis was run with 999 iterations to calculate probabilities.

In the past, species traits have been largely neglected in
analyses of species diversity and environmental gradients,
because statistical methods to relate the two were rela-
tively limited (Ribera et al., 2001). This is due to the so-

called ‘fourth-corner’ problem (Legendre et al., 1997),
which refers to the difficulty in relating species traits to
habitat characteristics, given species presence or abun-

dance. There have, however, been various attempts at try-
ing to solve this issue, such as with RLQ analysis
(Dol�edec et al., 1996), the fourth-corner method (Legen-

dre et al., 1997) and community assembly via traits selec-
tion, or CATS (Shipley et al., 2006), which is equivalent
to generalised linear regression using species traits as pre-
dictor variables (Warton et al., 2015).

To determine trait responses to prescribed fire, we
extended the procedure in Warton et al. (2015) by apply-
ing a hierarchical Bayesian log-linear model that includes

the random contributions associated with the organisation
of the sampling regime (i.e. random effects associated with
sampling year, locality and species). The response variable

is the number of individuals of each species within a local-
ity. A negative binomial error distribution was assumed
as there proved to be an element of over-dispersion in the

data. The need for random contributions (sampling year,
locality and species) presents itself as the traps are each
sampled over 2 years, with each locality containing several
replicates of the response. Moreover, the expected number

of individuals sampled varies from species to species and
is related to the rarity/commonness of that species. In
addition to these random contributions, a species-specific

offset set to the logarithm of the relative proportion of
each species was included. This was done to account for
differences in the selection probabilities of the species, in

accordance with CATS in Warton et al. (2015). Fixed
effects in the full model were time since the last prescribed
burn and all 11 trait variables, as well as their interactions
with time since burn. Models were parameterised using

Integrated nested Laplace approximation (INLA) (Rue
et al., 2009; Fong et al., 2010) as implemented in the
INLA package for R (Rue et al., 2013). We used uninfor-

mative priors for the coefficients for each of the fixed
effects as well as for the parameters controlling the ran-
dom effects (the hyperparameters). To select the mini-

mally sufficient model, we performed a forward selection
of the fixed effects using the Deviance Information

Criterion (DIC) as the model performance criterion. Like
other information criteria, DIC is a measure of the mod-
el’s ability to predict the observed data with a penalty
applied for the model’s complexity, and can be interpreted

as the Bayesian equivalent of AIC (Spiegelhalter et al.,
2002). Although we have chosen forward selection, and
aim for the simplest model, there may be alternative mod-

els with biologically sound relationships that are hidden
by covariations with other factors. Nevertheless, we have
chosen this method because we did not want to bias the

selection procedure in favour of specific traits. The trait
variables are categorical and we apply the default contrast
in R (treatment contrast). Analyses were done in R ver-

sion 2.15.3 (R Core Team, 2013).

Results

Over the two sampling years, 3384 adult carabids belong-
ing to 36 species were identified. Pterostichus niger was

the most common species found, followed by Poecilus
cupreus, Pterostichus melanarius, Nebria salina, Carabus
problematicus and C. violaceus.

The indicator species analysis identified ten species as
characteristic of patches that had been burnt 0–5 years
ago (i.e. the pioneer phase of Calluna development;
Table 2). These species included the very commonly

recorded N. salina (IndVal = 57.4) and P. cupreus
(IndVal = 52.5), as well as more rarely trapped species such
as Amara lunicollis (IndVal = 12.6) and Bembidion lampros

(IndVal = 17.0). Dyschirius globosus (IndVal = 21.1) and

Table 2. Indicator values for species with values of more than 10

in each Calluna stage (pioneer = 0–5 years, building = 6–14 years

and mature = 15–23 years).

Species Pioneer Building Mature P-value

Amara lunicollis 12.6 – – 0.031

Bembidion lampros 17.0 – – 0.004

Calathus fuscipes 21.1 – – 0.007

Carabus problematicus 36.6 15.9 14.8 0.019

Cicindela campestris 18.0 – – 0.015

Nebria salina 57.4 – – 0.001

Notiophilus aquaticus 16.2 – – 0.024

Poecilus cupreus 52.5 20.6 – 0.001

Poecilus lepidus 16.7 – – 0.036

Poecilus versicolor 24.3 – – 0.002

Dyschirius globosus – 21.1 – 0.003

Carabus violaceus – 26.0 33.8 0.026

Carabus nemoralis – 17.2 11.7 –
Harpalus latus 17.8 – – –
Pterostichus melanarius 20.6 30.4 27.0 –
Pterostichus niger 16.9 40.4 38.5 –

The indicator value is 100 when all individuals of the species in

question are observed in all the sites of only one group. Bold

numbers indicate where the indicator value is significant for that

stage. Dashes show where the indicator value <10 and the

P > 0.05 respectively.
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C. violaceus (IndVal = 33.8) came up as characteristic of
the building (6–14 years since fire) and mature stages (15–
23 years since fire) respectively.
The minimally sufficient model for trait response based

on DIC scores was one that included the traits moisture
preference and diet with their time since burning interac-
tions. The time since the last management burn did not

significantly affect the predicted species occurrence of
collembolan specialists with a preference for wet habitats
(i.e. the intercept traits; Fig. 2b). Beetles with no moisture

preference significantly reduce their abundance along the
time since burning gradient when compared to species
with a high moisture preference (Fig. 2a), whereas species

with a preference for dry habitats do not appear to differ
from moisture-loving species along the gradient. Accord-
ing to the model, generalist predators have a lower abun-
dance than collembolan specialists directly after burn (see

Appendix 1). Nevertheless, as the time since burning
increases, the abundance of generalist predators will catch
up and pass the abundance of the collembolan specialists.

Discussion

Our study identified diet and moisture preference as sig-
nificant traits determining carabid abundance after fire,
where collembolan specialists and species with no mois-

ture preference were predicted to be relatively more abun-
dant in recently burnt heathland. On the other hand,
generalist predators and moisture-loving species were

predicted to increase in occurrence as time since the pre-
scribed fire increased.
We found 12 of the 23 species in the indicator analysis

to be indicative of one of the three different stages after
fire. Ten carabid species were indicative of heath burnt

between zero and 5 years ago, and two species were
associated with longer times since prescribed burning.
Six of the ten species we have identified as characteristic
for recently burnt heathland are heathland or open

habitat specialists; A. lunicollis, C. campestris, N. salina,
N. aquaticus, P. lepidus and P. versicolor. Carabus prob-
lematicus is also considered a heathland species in

Fennoscandia (Lindroth, 1985), and both A. lunicollis and
C. problematicus have been found to be common in
heathlands in other Norwegian studies (Hatteland et al.,

2005, 2008). Pterostichus nigrita was the only heathland
specialist in the analysis not to be identified as characteris-
tic for recently burnt heath. This indicates that typical

heathland species have a particular affinity for heath
burnt less than 5 years ago, and suggests that heathland-
specific carabid assemblages generally tolerate relatively
short fire return cycles. We found very few species to be

characteristic of building and mature heathland (6–14 and
15–24 years since fire respectively). This suggests that
while recently burnt patches attract a particular assem-

blage of species that prefer these habitats over neighbour-
ing patches which are in later stages of succession, most
other species found in this landscape have no preferences

for a particular stage. It is also important to note that the
two species indicative of the building and mature phases,
D. globosus and C. violaceus, respectively, are generalists
both in terms of their diets and their habitat preferences.

In accordance with this study, N. aquaticus and
C. problematicus have previously been identified as indica-
tive of fire (Brunbjerg et al., 2015). While McFerran et al.

(1995) also trapped more individuals of N. salina in burnt
areas, they found more individuals of C. problematicus in
unburnt patches. Nevertheless, there are three subspecies

of C. problematicus in Scandinavia (Lindroth, 1985), and
it is possible that the subspecies found at our study site

(a) (b)

Fig. 2. Expected species abundances over the fire gradient (a). Solid lines show diet traits and dashed lines show moisture traits. Black

lines are the traits in the intercept (collembolan specialist and wet moisture preference), and grey lines are the traits which are significantly

different from the intercept traits (generalist predator and no moisture preference). Posterior densities of the effects in the minimally suffi-

cient model (b). Dots and vertical lines show the 99% and 95% highest posterior density (HPD) respectively. The burn variable is centred

and scaled to zero mean and unit variance. We use treatment contrast to define the model matrix.
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has different habitat preferences. Calathus fuscipes is
another species found to be indicative of fire in this study.
But it has also been identified as an indicator of trampling
(Brunbjerg et al., 2015), which indicates that this species

may prefer disturbed habitats in general. Furthermore,
sheep generally prefer younger stages of heath because the
vegetation there is more nutritious, making it more diffi-

cult to separate the potential effects of trampling and
burning in this study area.
Two of the four collembolan specialists in our trait

analysis, B. lampros and N. aquaticus, were identified as
species preferring recently burnt patches. Although it did
not come up as an indicator species, another collembolan

specialist, Loricera pilicornis, was also only caught in the
pioneer stage. Since collembolans are known to appear
very early on in succession (H�agvar, 2010), this explains
the preference of collembolan specialists to recently burnt

heath over heathland in later successional stages. The
remaining indicators of newly burnt heath were generalist
predators, apart from A. lunicollis, which feeds mostly on

plant matter. If fire selects for diet traits in the same way
for all species, and since we have shown a general trend
for generalist predators to increase in abundance with

time since fire, prey availability is probably not a factor
that determines the occurrence of these species in recently
burnt heath. Apart from P. versicolor, these species all
either have a preference for dry habitats or no moisture

preference at all, which in this study is shown to be a pre-
dictor for high abundance in recently burnt patches. On
the other hand, D. globosus, a generalist predator which

has a preference for wet habitats, is characteristic of the
building phase of Calluna (6–14 years after fire). This sug-
gests that moisture preference may be a more important

trait than diet in determining abundance in post-fire
heathland, if the species in question is a generalist preda-
tor. Nevertheless, C. violaceus is a generalist predator with

no moisture preference, but characteristic of the mature
phase (15–23 years since fire), highlighting that this is not
a pattern that is applicable for all species. Although this
is a large species, it is possible that it is limited by its dis-

persal ability, as large, brachypterous species have been
suggested to have a low power of dispersal in mosaic
landscapes (Den Boer, 1970). This may be due to their

preference for unmanaged, upland habitats (Blake et al.,
1996; Ribera et al., 2001). Furthermore, species in the
Carabus genus are known to have a preference for larger

prey such as earthworms and gastropods (Evans & For-
syth, 1985; Hatteland, 2010), which may be more abun-
dant in unburnt heathland.
Another important point to keep in mind with respect

to the response of species with wet moisture preferences is
that since this study was restricted to dry heath, the nega-
tive effects of burning on species living mostly in wet

heath are likely to be more pronounced. On the other
hand, wet heaths are much less flammable, and fires set in
them are also less likely to burn away vegetation. This

may mean that although species that prefer wet habitats
are more likely to be negatively affected by fire in general,

their moisture preference may exclude them from particu-
larly flammable habitats. Nevertheless, it would be of
interest to investigate trait responses within wet heath as
well.

None of the dispersal-related traits (locomotion, body
size and wing morphology) came up as significant in our
analysis, however, prey type has previously been strongly

linked to morphology traits, where leg measurements were
highly correlated with diet (Ribera et al., 1999). It is also
important to note that, in our study, the diet traits often

co-occurred with particular body sizes. Specifically,
collembolan specialists were small or very small, whereas
generalist predators tended to be larger. Thus, although

our minimally sufficient model did not include body size,
it may well be an important trait to consider. No other
traits co-occurred significantly with particular diet or
moisture preferences. On the other hand, wing morphol-

ogy, while it did not end up in our minimally sufficient
model, was dependent on size, overwintering strategy, life
cycle duration and leg morphology. Unsurprisingly,

breeding season also coincided more often with particular
overwintering strategies and the main period of
emergence.

Wing morphology has been linked to disturbance,
where brachypterous individuals are more frequent in
undisturbed sites, and macropterous individuals are more
abundant in fragmented and heterogeneous landscapes

(De Vries et al., 1996; Ribera et al., 2001). Nevertheless,
as dispersal power has been shown to be an important
determinant of carabid presence in fragmented habitats

(Wamser et al., 2012), and because many of the species
we found within recently burnt patches are considered
poor dispersers (A. lunicollis, N. aquaticus, P. lepidus,

P. versicolor (Den Boer, 1990)), the fact that these traits
do not seem to affect species occurrence over the fire gra-
dient indicates that our fire patches are small enough to

be unproblematic for poorly dispersing species. Likewise,
there were no patterns in life-history traits; overwintering
strategies and activity periods were all more or less
equally distributed between stages. In other words, in the

given range of patch sizes, species habitat preferences,
rather than any other life-history traits or morphology,
determine species abundance. It is important to keep in

mind, however, that larger patch sizes may select for spe-
cies traits differently, and dispersal traits may become
more important as individuals must travel farther to reach

preferred habitats.
With pitfall trap data, it is important to keep in mind

that the species caught represent activity density in addi-
tion to actual abundance, and that this means that more

active species are overrepresented (Greenslade, 1964;
Baars, 1979). Approximately one-third of the species
trapped in this study occurred five times or less, and four

of these are considered heathland specialists (C. vaporario-
rum, B. caucasicus, B. ruficollis and O. rotundatus). It is
problematic that we are not able to determine the

response to fire of species that are characteristic of heath-
lands, but our trait analysis may give some indication as
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to how these species can be expected to respond. Based
on our findings, there is probably no reason for concern
in the case of O. rotundatus, as it is a good disperser (Den
Boer, 1990), and a generalist predator with a preference

for dry habitat. The two Bradycellus species prefer dry
habits and preferentially consume plant matter, however,
both species are rather small and brachypterous, and thus

probably have limited dispersal abilities (Den Boer, 1990).
These species may therefore be sensitive to fire if pre-
scribed burns are too large. Cymindis vaporariorum is a

generalist predator that prefers moist habitats. Thus,
according to our findings, this is a species that may be
sensitive to burning. In fact, the three times that C. vapo-

rariorum was caught, it was trapped in patches where
burning had occurred at least 5 years previously, giving
some support for the fire sensitivity of this species.
This study has found that diet and moisture preference

are the two carabid traits that most affect species sorting
after prescribed burning, indicating that habitat prefer-
ences are more important than life history and morphol-

ogy traits in determining carabid species presence, at least
at the scale of this study. The burn patches in this study
area were relatively small, as is typical for prescribed fire

in Norwegian heathlands, but it is important to consider
that larger burns may be more limiting to dispersal and
other potentially fire-sensitive life-history traits. We find
that diet is an important determinant for species abun-

dance of collembolan specialists in recently burnt heath-
land, but that the occurrence of generalist predators is
probably determined by moisture preference. In general,

heathland specialists are indicative of recently burnt
patches (0–5 years since fire). When determining fire inter-
vals for the optimal management of characteristic heath-

land species, however, it should be kept in mind that not
all species of carabids or even other taxa may be as toler-
ant of fire. There is a need to study less mobile species

that may be more fire sensitive, or respond to disturbance
at different spatial scales (Carignan & Villard, 2002;
Cameron & Leather, 2012).
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Appendix 1. Posterior densities of the effects in the minimally

sufficient model, with unscaled burn. Dots and vertical lines show

the 99% and 95% highest posterior density respectively.
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