
University of Bergen
Master Thesis

Challenges with Scaling Scrum to
Large-Scale Software Development:

A Case Study

Author:
Simen Jensen

Supervisor:
Prof. Bjørnar Tessem

A thesis submitted for the degree
Master of Information Science

in the Department of Information Science and Media Studies

May 31, 2017

Abstract

Agile software development methods have become popular since the intro-

duction of the Agile Manifesto in 2001. Agile methods, such as Scrum,

are originally created for small co-located teams but have been adopted

to large-scale development organizations. The accompanying challenges of

using Scrum in large-scale development are not fully explored and under-

stood.

This thesis aim to explore and identify challenges regarding large-scale agile

development in a global software development organization. The research

is done in form of a single case study, which empirically examine an orga-

nization’s use of the Scrum framework. The results are analyzed with a

congruence analysis of the case study, with basis in previous research on

large-scale agile development.

The thesis results in four hypothesis which are categorized into three main

problem areas regarding scaling Scrum in the organization: coordination,

communication, and processes. The results form a collective basis for an-

swering why large-scale Scrum is challenging to scale, and what Scrum char-

acteristics makes it challenging.

Keywords: Agile, Large-scale, Scrum, Case study, Software engineer-
ing

i

Preface

This master thesis is written in my final year of the master program In-

formation Science, at the Department of Information Science and Media

Studied at the University of Bergen.

The thesis is written i collaboration with an anonymous large-scale de-

velopment organization who have assisted the researcher, by providing an

organization environment to investigate. I am very thankful for this.

I would like to thank my supervisor Professor Bjørnar Tessem for valuable

guidance throughout the master course. I would also like to thank Kristoffer

Aalhus and Jørund Vedøy for their fruitful academic discussions.

I thank everyone involved in the research project, who were willing to par-

ticipate in interviews and/or observation sessions. I also thank my fellow

master students, Ole Andreas Krumsvik, Hanne Åserød, and Eivind Flobak

for their help and motivation.

ii

Contents

Abstract i

Preface ii

Table of Contents iii

List of Figures vi

List of Tables vii

Acronyms viii

1 Introduction 1
1.1 Project Background . 1
1.2 Research Problem . 2

1.2.1 Research Questions 2
1.3 Target Group . 3
1.4 Personal Motivation . 3
1.5 Research Method . 3
1.6 Scope and Limitations . 4
1.7 Thesis Structure . 4

2 Theory 6
2.1 Agile Methods . 6

2.1.1 Scrum . 7
2.1.2 Kanban . 11
2.1.3 Scrumban . 14

2.2 Scalability . 15
2.2.1 Inter-Team Coordination 17
2.2.2 Distributed Large Project Organization 19
2.2.3 Release Planning and Architecture 19
2.2.4 Large-Scale Agile Frameworks 22

2.3 Organizational Communication 25
2.3.1 Communication Channels 25

2.4 Organization Culture . 26

iii

3 Research Method 29
3.1 Case Study . 29

3.1.1 Case Study in Software Engineering 30
3.1.2 Case Study Criticism 31

3.2 Process Tracing . 32
3.2.1 Causal-Process Observations & Causal Inference . . . 33
3.2.2 Process Tracing Test-Evaluation 34

3.3 Congruence Case Study . 36
3.3.1 Congruence Analysis Inference 38
3.3.2 Explaining Outcome Congruence Studies 39

3.4 Research Ethics . 39
3.5 Research Approach . 40

3.5.1 Plan . 40
3.5.2 Design . 41
3.5.3 Prepare . 46
3.5.4 Data Collection . 48
3.5.5 Analyze . 52
3.5.6 Share . 53

4 Results 54
4.1 Nihil Case Context . 54
4.2 Generating the Hypotheses 55

4.2.1 Concept Operationalization 56
4.3 Hypotheses . 57

4.3.1 Nihil’s Scrum Structure Forms Coordination Issues . 57
4.3.2 Communication Distances in Nihil Create a Lack of

Individual Team Members’ Project Understanding . . 62
4.3.3 Rigid Processes in Nihil Impair Agility 67

5 Discussion 70
5.1 Research Question . 70
5.2 Hypotheses . 71

5.2.1 Nihil’s Scrum Structure Forms Coordination Issues . 71
5.2.2 Communication Distances in Nihil Create a Lack of

Individual Team Members’ Project Understanding . . 74
5.2.3 Rigid Processes in Nihil Impair Agility 76
5.2.4 Summary . 77

5.3 Evaluation of the Study . 79
5.3.1 Research Design . 79
5.3.2 Research Process . 82
5.3.3 Research Findings 82
5.3.4 Research Ethics . 83

6 Conclusion 84
6.1 Research Question . 84
6.2 Future Work . 86

Bibliography 87

iv

Appendix A Informed Consent Form I

Appendix B NSD Approval II

v

List of Figures

2.1 The Scrum framework . 9
2.2 Prescriptive vs adaptive scale 12
2.3 Example of a Kanban board 13
2.4 Key aspects of collaborative planning in large-scale agile or-

ganizations . 21
2.5 The LeSS framework . 23
2.6 The SAFe 4.0 framework . 24
2.7 Communication process . 25
2.8 Different channels’ ability to transmit rich information . . . 26

3.1 Process tracing: Types of tests 34
3.2 Mechanisms in congruence and process-tracing case studies . 37
3.3 Doing case study research: A linear but iterative process . . 40
3.4 Making inference: Two levels 45

4.1 Nihil’s team organization . 58
4.2 Scrum of Scrum of Scrums 60
4.3 Differentiation perspective 65
4.4 Scale for degrees of centralization and decentralization in or-

ganizations . 69

vi

List of Tables

2.1 Benefits of the Kanban approach 13
2.2 Differences and similarities between Scrum, Kanban and Scrum-

ban . 14
2.3 Suggested research agenda on large-scale agile software de-

velopment . 16
2.4 General effects on behavior 27

3.1 Case study tactics for four design tests 43
3.2 Data gathering techniques 48

4.1 Hypotheses . 56
4.2 Advantages and disadvantages connected to centralization

and decentralization . 68

5.1 Hypotheses’ strength . 78

6.1 Hypotheses . 85

vii

List of Acronyms

CoP Communities of Practice

CPO Causal-process observations

HQ Headquarter

JIT Just-in-time

LeSS Large Scale Scrum

MTS Multiteam system

NENT National Committee for Research Ethics in Science and Technology

NSD Norsk senter for forskningsdata

PO Product Owner

RUP Rational Unified Process

SAFe Scaled Agile Framework

SM Scrum Master

SoS Scrum of Scrum

SoSoS Scrum of Scrum of Scrum

WIP Work in Progress

XP eXtreme Programming

viii

Chapter 1
Introduction

This chapter gives a short introduction of the background for the project

and research problem. Further, the chapter describes the targeted audience

as well as the researchers personal motivation for the project. The research

method, with its scope, and limitations is described before listing the thesis’

structure

1.1 Project Background

Since the introduction of the Agile Manifesto in 2001, agile software de-

velopment has gained widespread interest [1]. The most popular method,

Scrum, is an agile framework that focuses on project management. Scrum

provides developers with an environment that focuses on communication

and collaboration between both customers and developers. Scrum is in

many companies the de facto standard for developing software [1].

One of the challenges related to Scrum, that was not specified when the

method was introduced, is how to scale up the method to larger projects [2].

Williams & Cockburn [3] states that agile methods are best suit collocated

teams of about 50 people or fewer, which offer challenges for large-scale

projects. Traditional Scrum is clearly specified and documented in most

areas, but there are unexplored challenges related to large-scale Scrum,

such as coordination across teams, and communication [4]. Teams in large-

scale projects must coordinate their work with each other to not create

impediments or other problems for the different teams.

In many cases, large-scale Scrum divides people into teams where each per-

son is given a different role with specific responsibilities. Common for the

1

Introduction Chapter 1

teams, regardless of the members’ role is that they must cooperate and

coordinate internally in the team. As projects grow, multiple people are re-

quired to finish the project, and the project’s complexity grows, providing

new challenges.

1.2 Research Problem

Since the entry of Agile Manifesto in 2001, several agile methods have ap-

peared with basis in the manifestos tenets [5]. Agile in large teams was the

dominant research question at the XP2010 conference [1]. Further, Dingsøyr

& Moe, in a workshop report state that fundamental assumptions in agile

development are strongly challenged when practiced in large-scale projects

[1]. There is much information and research about agile in small teams [6],

however there are few studies on large-scale agile, and the topic requires

further research [4]. Paasivaara et al. [7] explicitly suggest that further

empirical research is needed on how to tackle issues regarding large-scale

agile projects, since agile development highly involves people and interac-

tions.

The research in this thesis aims to contribute to an improved collective

knowledge based on empirical research about large-scale agile projects. By

identifying issues regarding large-scale agile development, one can further

build on this knowledge within similar contexts, or apply insight from the

results considering whether it is situationally relevant within e.g. a similar

organization.

1.2.1 Research Questions

The following research question is investigated in the thesis:

RQ - Why is scaling Scrum challenging for a large-scale development

organization?

The research question aims to investigate the reasons behind why an orga-

nization performing large-scale agile development has issues with using the

Scrum method. The question aims to provide answers to what characteris-

tics make Scrum difficult to scale up.

2

Introduction Chapter 1

1.3 Target Group

The thesis is aimed at people interested in large-scale agile development. It

is aimed at researchers within the field, students who are looking for inspi-

ration to their thesis or assignments, and for practitioners or organizations

in the industry within the same case specific context who can learn from

the studied organization’s challenges.

The reader is not required to have any prior knowledge to the field of soft-

ware engineering or agile methods, as the relevant topics are explained in

the thesis. Any experience in the field, however, comes in handy for further

reading and for their own inferences sake.

1.4 Personal Motivation

The use of agile methods in the industry is a relevant phenomenon for

my future in the software industry. The Scrum framework, which is origi-

nally designed for small teams, co-located teams, promote challenges when

adopted to large organizations. Since there is little knowledge about how

best to adopt the framework, I find it interesting to see how an organization

in the industry does this.

The reason for choosing the subject is because I knew little about it before.

By exploring the subject, I hope to contribute to the research field, by iden-

tifying and classifying empirical data from a case study, which can further

be investigated in the future.

1.5 Research Method

The research method used in this project is a single-case study, aiming

initially to apply process tracing as a within-case analysis. The case study

focuses on an organization’s use of Scrum in a large-scale context, and

goes in depth in the selected organization’s processes and general use of

the Scrum at scale. The method is used to observe the organization in its

natural setting and gain a holistic view of the different phenomena.

Process tracing is attempted to be used as a qualitative analysis tool for

describing and evaluating social phenomena. With use of the method, I

attempt to evaluate evidence to establish causal connection between events.

A central part of process tracing is to test diagnostic pieces of evidence,

3

Introduction Chapter 1

by performing process tracing tests based on the evidence’s sufficiency and

necessity to establish causation. Process tracing requires causal mechanisms

in the data. Due to lack of such, a wider approach was used.

The congruence case study method is used to evaluate the evidence in the

case, without explicit mechanisms being traced. This led to weaker causal

strength in the evidence. The congruence analysis still provides confirma-

tory or disconfirmatory claims of plausible causal relationships.

1.6 Scope and Limitations

The thesis addresses issues regarding large-scale agile development. Even

though there are many agile development methods, frameworks, and strate-

gies, the thesis focuses on Scrum. Other methods in Scrum’s vicinity, such

as eXtreme Programming (XP) are not included in the thesis, while others

such as Kanban are, due to them being relevant for the case. Traditional

methods such as Waterfall are outside the thesis’ scope.

The research is done in form of a single-case study. While this allows for a

deeper understanding of the specific case, it excludes a comparison towards

another case with the same research method. Cross-case synthesis across

multiple cases can make case-analysis easier, and strengthen the findings [8].

While there is some research regarding large-scale agile, there is not a lot

compared to traditional agile research [9]. This poses a challenge because

of the lack of basis for comparison.

Because of the master thesis limited time frame, I was unable to acquire

more data for the case study. The research is done in collaboration with

a globally distributed software development organization. This meant that

preferably, the researcher should have traveled to the organization’s different

development sites to acquire data from first hand sources. This was omitted

from the research design due to time and cost limitations.

1.7 Thesis Structure

The thesis is structured into six chapters:

Chapter 1. Introduction

Chapter 1 give a short introduction of the thesis, including project back-

ground, research problem, target group, personal motivation, research method,

4

Introduction Chapter 1

scope and limitations, and research contribution

Chapter 2. Theory

Chapter 2 presents the relevant literature for the thesis. The chapter intro-

duces terms and concepts connected to agility and agile methods. Further-

more, the chapter describes current literature and related work on some of

the dominant issues regarding scaling agile methods

Chapter 3. Research Method

Chapter 3 gives an overview of the research methods used in the thesis.

The chapter introduces relevant literature about the methods, as well as

the case. This includes an explanation of the studied organization, along

with execution of the research plan, design, and data collection.

Chapter 4. Results

Chapter 4 describes the case’s context, and how the thesis’ hypotheses were

generated. Further, the chapter describes each hypotheses in detail, with

basis in the data collection combined with relevant literature, and is there-

after summarized.

Chapter 5. Discussion

Chapter 5 resumes the research questions. The hypotheses are discussed

with basis in the research questions. Finally, the study’s design, process,

findings, and ethics are evaluated based on the conducted case study.

Chapter 6. Conclusion

Chapter 6 presents the key results found in the research. Further, the chap-

ter introduces possible future work based on the the research’s results.

5

Chapter 2
Theory

This chapter will present the relevant literature for the thesis. The chap-

ter introduces terms and concepts connected to agility and agile methods.

Furthermore, the chapter describes current literature and related work on

some of the dominant issues regarding scaling agile methods.

2.1 Agile Methods

Agile methods is a collective term used for the different methods that are

seen as agile. Common for the different methods is that they follow an agile

mindset. Agility is a term that is commonly used when describing animals

that are nimble, fast, or flexible. When we adapt the term to humans in a

software development context, the term keeps core meaning, that one can

adapt to an environment. Adaptation is at the core of agile methods and

is embedded in the values of the Agile Manifesto [10]. Agile development is

not a specific process one follows, but rather a way of working, that is built

on the agile philosophy [11]. The agile philosophy is way of thinking that in

2001, was described in the agile Agile Manifesto [10]. The manifesto consists

of four values and twelve principles that serves as a basis for the different

agile methods. The four core values in the Agile Manifesto are:

Individuals and interactions over processes and tool

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

The manifestos’ authors underline that the items on the left are more heavily

6

Theory Chapter 2

emphasized than the right ones. This does not mean that agile teams e.g.

disregard all documentation above working software, but rather that it is

valued more and thereby avoid documenting elements that do not increase

the product’s value [12].

Agile methods were introduced as a reaction to traditional software develop-

ment, which are often document driven and process oriented [6]. Traditional

development follow a high-level structure, where a set of requirements are

predetermined before the development starts, and followed and inspected

throughout the process. This practice has been criticized for being im-

possible to follow through due to the industry and technology moving too

fast [6]. One of the prominent factors to the creations of agile methods,

is organizations’ constant need to react to marked dynamics, technological

innovations, and new customer requirements [13].

Agile methods stress the principle of people interacting and working to-

gether to produce working code [14]. By promoting interactions between

individuals, sharing of information becomes an ordinary event that help peo-

ple learn and become better at their work. By interacting frequently with

customers, the process can be changed quickly when it needs to. This al-

lows the project to respond to unpredicted events and therefore change over

following a stipulated plan. Continuous interaction within the project also

compensates for minimizing documentation by making sure the involved

parts are up to date on coherent tasks [14]. One of the key principles of

agile methodology is to add business value to the customer by delivering

working software [5]. Documentation in itself does not add value to the

customer, and is therefore given a lower priority over e.g. working software

that the customer values more.

Traditional methodologies provide strict rules and regulations for handling

most situations [14]. Agile methods however, offer a minimum set of ac-

tions that must be completed to handle special situations. This promotes

individuals to find creative ways to handle their problems and adapting

them individually for each team. This way of thinking, that is in coher-

ence with agile principles and values, can be referred to as having an agile

mindset.

2.1.1 Scrum

Ken Schwaber and Jeff Sutherland developed a guide for Scrum, with roles,

events, artifacts, and rules, called The Scrum Guide [15]. Scrum is defined

7

Theory Chapter 2

as a lightweight agile process framework that is and has been used since the

1990s to manage product development.

Scrum facilitates for people to follow the three pillars of empirical pro-

cess control: transparency, inspection, and adaptation [15]. Transparency

refers to the process being visible to the people responsible to the outcome.

Inspection is required to detect undesirable variances and avoiding them.

Adaptation attributes to the ability to adjust unacceptable results by al-

tering the process or other relevant factors. Scrum provides four events

for inspection and adaptation: daily scrum, sprint planning, review, and

retrospective [15].

The central values in Scrum were stated by Schwaber and Sutherland as

commitment, courage, focus, openness, and respect [15]. They state that

Scrum depends on people following these values in order to achieve the goals

of the team.

Scrum team

A Scrum team consists of a scrum master, product owner, and a develop-

ment team. By following the Scrum values and working self-organized and

cross functional, the team choose self how best to carry out their work [15].

By following these principles, the team is designed to operate productively,

flexible, and creatively.

Scrum Master The Scrum Master (SM) role is responsible to help and

facilitate Scrum for the rest of the team. The SM ensures that the team

understand the process by presenting the team with relevant Scrum theory,

practice, and rules [15]. The SM also help people outside the team under-

stand the which interactions with the team are helpful and which are not.

SMs can also serve on an organizational level by leading and coaching the

organization in adapting, planning, or implementation Scrum. The role of

an SM is essentially facilitating and making the process go smoothly of all

involved parties in the Scrum process.

Product Owner The Product Owner (PO) is the person responsible for

maximizing the work and product being developed [15]. The PO’s main

responsibility is the product backlog, which is a list of the product’s needs.

The backlog needs to be clearly expressed, ordered, optimized, visible, trans-

parent, clear, and understood. All of the tasks can be done by anyone in

8

Theory Chapter 2

the team, but are ultimately the PO’s responsibility to maintain [15]. The

PO can typically get help from the SM with e.g. finding techniques for

managing or planning the backlog, since the roles are compatible.

Development Team The development team consists of a group of pro-

fessionals who work on the product that is being developed. The team is

self-organized and turn the product backlog into increments of a poten-

tially releasable functionality [15]. The team consists of three to nine team

members to achieve optimal productivity. The team must be large enough

to uphold internal team-interaction, but still small enough to be able to

coordinate efficiently. Scrum does not recognize other titles within the de-

velopment team, other than developer. The team may have specialized skills

or areas of responsibility, but the team as a whole is accountable for the

development [15].

Scrum Events

Scrum (illustrated in figure 2.1) prescribes events to minimize the need for

unforeseen meetings [15]. All events in Scrum are time-boxed, meaning

their maximum duration is predefined. The events in a sprint may end

when the purpose of the event is achieved, leading to less waste in the

Scrum-process.

Figure 2.1: The Scrum framework [16]

Sprint The sprint is the container for all other events in Scrum, and is the

core of Scrum [15]. Sprints last for one month or less, and during this time, a

product increment is developed to such an extent that it can be potentially

releasable. Sprints are conducted consecutively and continuously until the

product is completely developed.

9

Theory Chapter 2

Sprint Planning At the start or before every sprint, there is a sprint

planning event. The sprint planning is conducted by the entire Scrum team,

and is a collaboration to make the best possible plan [15]. Sprint planning

lasts for maximum eight hours. The sprint planning’s goal is to find out

what increment can be delivered in the upcoming sprint and how this work

will be achieved [15].

Daily Scrum Daily scrum is a meeting dedicated for the development

team to synchronize their activities until the next day. Daily scrum meetings

are designed to answers three questions [15]:

• What did I do yesterday that helped the development team meet the

sprint goal?

• What will I do today to help the development team meet the sprint

goal?

• Do I see any impediment that prevents me or the development team

from meeting the sprint goal?

The meeting is a key inspect and adapt meeting, meant to improve com-

munication, eliminate other meetings, identify impediments, highlight and

promote decision-making, and improve the teams’ knowledge [15].

Sprint Review Sprint reviews meetings are held at the end of the sprint,

and are meant to inspect the product increment and optimize its value

by collaborating and give feedback on the choices made during the sprint.

The main goal of a sprint review is to revise the product backlog to meet

new challenges and opportunities [15]. Sprint reviews include the following

elements among others [15]:

• Attendees include the Scrum team and key stakeholders invited by

the Product Owner.

• The product owner explains what Product Backlog items have been

“Done” and what has not been “Done”.

• The development team discusses what went well during the sprint,

what problems it ran into, and how those problems were solved.

• The entire group collaborates on what to do next, so that the sprint

review provides valuable input to subsequent sprint planning.

10

Theory Chapter 2

Sprint Retrospective The sprint retrospective occurs between the sprint

review, and sprint planning. The goal of a retrospective is to create a plan

for the upcoming sprint for how it can be improved, based on experiences

and knowledge from the previous sprint. A retrospective is time-boxed to a

maximum of three hours. The key activities in a retrospective are:

• Inspect how the last sprint went with regards to people, relationships,

process, and tools

• Identify and order the major items that went well and potential im-

provements

• Create a plan for implementing improvements to the way the Scrum

team does its work [15]

The sprint retrospective provides the team with a formal opportunity to

increase productivity in the following sprints, by learning from previous

mistakes.

2.1.2 Kanban

The lean approach to software development has become increasingly popular

in recent years [17]. Kanban is a process tool which builds on the lean

mindset, and is meant to increase efficiency, by providing a framework with

a minimum set of constraints and guidelines for the user to work with [18].

The lean mindset originates from the manufacturing industry at Toyota,

aiming to deliver value to the customer by eliminating waste and delivering

only what is needed, when it is needed, and in the amount needed, also

known as just-in-time (JIT) [17].

Both Scrum and Kanban are less prescriptive than traditional methods,

meaning they have fewer constraints regarding what is allowed to do and/or

not allowed to do. Kanban is nevertheless a more adaptive tool compared

to Scrum, which means it has fever rules to follow than Scrum. Kanban has

only three constraints, while traditional methods such as RUP has over 120

constraints, as seen in figure 2.2.

11

Theory Chapter 2

Figure 2.2: Illustration of the amount of constraints in different
methods. Prescriptive vs adaptive scale [18].

One of the differences between Kanban and Scrum, is that Kanban does

not prescribe any roles. This does not mean that it does not allow roles.

Kanban allows you to add the roles that you need, based on the users needs.

However, Kniberg [18] states that the general mindset of Kanban is ”less is

more”, meaning that if you are uncertain, start with less. The same goes

for timeboxed iterations, they are not prescribed, but one can choose to add

the activities. This makes Kanban a more flexible framework compared to

Scrum, and allows for modifications based on the users needs.

The three prime principles of Kanban are: 1) Visualize the workflow, 2)

Set work in progress (WIP) limits, and 3) Measure the flow [17].

1) Kanban visualize the workflow in one single Kanban board, as shown an

example of in figure 2.3. Kanban boards does not have to look like this,

and can be modified in the way the team sees fit. The purpose of a Kanban

board is to create a smooth flow through the process and minimize lead

time [18]. Lead time refers to the average time it takes to complete one

item.

2) The WIP limit is the number items that can be worked on at the same

time. For example, in figure 2.3 two tasks can be worked on at the same

time in the ”Selected” column, while three can be worked on at the same

time in the ”Develop” column. This is done to evolve a culture of trying to

get items done before starting new items [18].

12

Theory Chapter 2

3) Measuring the flow is an important element in Kanban. Continuous

delivery of value to the customer should be emphasized. The main goal of

measuring the flow is to investigate opportunities that can increase the flow

which leads to delivering better value to the customer faster.

Figure 2.3: Example of a Kanban board [18]

Studies on using the Kanban approach show various benefits. The software

development process and management of the software process were reported

as the most prominent topics done in the studies [17]. Table 2.1 shows the

benefits of using Kanban in software development, based on 37 primary

studies on the Kanban approach [17].

Table 2.1: Benefits of the Kanban approach [17]

Benefits

Percentage

of Reported

Benefits

Enhancing visual control that facilitated and sup-

ported the decision-making process

45.9%

Facilitating the coordination of cross-functional

teamwork and imposing self-organization

37.8%

Empirically introducing quality circles and kaizen

events

29.7%

Reducing the cycle time/lead time
29.7%

Increasing customer satisfaction and realizing high

value

27%

Decreasing market and technical risks of the product
24.3%

Developing continuous improvements strategies
45.9%

13

Theory Chapter 2

Increasing the predictability in the delivery of the

final products with the constraint of changing cus-

tomer requirements

35.1%

Ensuring skills development and cohesiveness for

teams

16.2%

Driving and facilitating organizational change man-

agement and culture changes

32.4%

Enhancing quality of product, indicated by decreas-

ing the defects rate, increasing the quality assurance

pass rate, and reducing the number of bugs

16.2%

2.1.3 Scrumban

Scrumban has evolved as a framework for developing software over the years

[19]. However, it still does not have a guide or definition as e.g. Scrum

does. Scrumban is a mixed method consisting of a combination of Scrum

and Kanban. The method adopt elements from both methods with the aim

to integrate the task board workflow with Scrum concepts, and visualization

from Kanban [20].

Scrumban’s mixture of elements from both methods promotes Scrum struc-

tures such as, retrospectives, reviews, and daily updates, with the combi-

nation of Kanban’s WIP limits and clear execution of stages [20]. Table

2.2 compare and summarize the differences and similarities between Scrum,

Kanban, and Scrumban.

Table 2.2: Differences and similarities between Scrum, Kanban
and Scrumban [21]

Scrum Kanban Scrumban

Rules Very descriptive Not descriptive Descriptive

Boards
Reset for each

sprint

Used continu-

ously

Used continu-

ously

Roals
SM, PO, and

the team

Specialized

team

Specialized

team

Iterations 1-4 week sprints Need based Need based

Planning rou-

tines
sprint planning

On-demand &

release planning

On-demand &

bucket planning

14

Theory Chapter 2

Task estima-

tion

Done before

each sprint

During plan-

ning (optional)
Optional

Task assign-

ment

Assigned to the

team

Taken by team

members

Taken by team

members

Prioritization
By refined back-

log

By priority

columns

By priority

columns

Task limits
Limited by

sprints
Limited by WIP Limited by WIP

Meetings
Planned

mandatory

On-demand and

optional

On-demand and

optional

Performance

metrics
Burndown chart

Lead & cycle

time cumulative

flow

Lead & cycle

time, average

cycle time

New tasks in a

live iteration
Not allowed Allowed Allowed

The Scrumban method is believed to be especially suited for maintenance

projects, projects prone to programming errors, or projects with unexpected

user stories [22]. In these kind of projects, timeboxed sprints are unneces-

sary, whereas other Scrum events may still be useful [22].

Reddy [19] states that Scrumban over the years has been used to help or-

ganizations accelerate their transition to Scrum from other development

methods.

Scrumban is however not recommended for very large projects [19]. Scrum-

ban is suggested for projects with no more than five teams, because coor-

dination issues may becomes too big of a problem [19].

2.2 Scalability

As agile methods have become increasingly popular in the world of software

development, new challenges arise. Agile methods were originally designed

for small co-located teams [7], but are today used in large-scale contexts.

Problems with how to scale up agile methods to a large-scale have been

an issue that has not been fully considered when the methods were first

created. Most studies on scalability offer a selection of agile principles,

values, and industry best practices [2]. There are few empirical studies

with a theoretical underpinning that focuses on the scalability of Scrum

15

Theory Chapter 2

[4]. Furthermore, the top burning research question by practitioners at the

XP2010 conference, was “agile and large projects” [23]. This displays the

need for research on the topic.

Within the research community, there is disagreement on what can be con-

sidered as ”large-scale” agile development [4]. Projects that are “large-

scale” can e.g. refer to the project cost, number of teams, lines of code,

number of requirements. Dingsøyr et al. [9] argue that these some of these

factors are unreliable when defining what is large-scale. Costs vary across

projects and countries. Code can be generated by tools or be modifications

of an existing code. Requirements vary in implementation-time or other

variabilities. However, agile methods have a strong emphasis on communi-

cation. To achieve efficient communication, the number of people involved

in the development is therefore an appropriate measurement of the project’s

scale. Scrum allows multiple Scrum teams to work on different parts of the

same project. A project that includes multiple Scrum teams can therefore

be defined as ”large-scale” according to Dingsøyr et al. [9].

Roach [24] describes three dimensions of growing Scrum, scale, distribution,

and saturation. Distribution refers to a number of teams being located at

different geographic locations. Saturation means to which extent you have

Scrum pervaded in the organization, breaking down the traditional ”silo-

structure”. Scale is described as the number of coordinating teams working

on large projects. This definition matches Dingsøyr et al’s [9] definition on

scaling Scrum, and is what this thesis addresses when referring to ”scale”

or ”large-scale”.

At the workshop Agile2011, many academics meant that the themes that

should be further researched were: agile across projects and across organi-

zation, the ”core” of agile, distributed agile development, and the role of

architecture and knowledge management in agile development [5].

At the XP2013 workshop at the 14th International Conference on Agile

Software Development, participants answered what they thought was the

most important research challenges regarding large-scale agile development

[4]. The answers were analyzed and grouped into topics shown in table

2.3.

Table 2.3: Suggested research agenda on large-scale agile soft-
ware development [4]

Rank Topic Description

1
Inter-team coordi-

nation

Coordination of work between teams in large-

scale agile development

16

Theory Chapter 2

2

Large project orga-

nization / portfolio

management

What are effective organizational structures

and collaboration models in large projects?

How to handle a distributed organization?

3
Release planning

and architecture

How are large projects planned? How can

the scope be reduced? What is the role of

architecture in large-scale agile?

4
Scaling agile prac-

tices

Which agile practices scale and which do

not? Why and when do agile practices scale?

5
Customer collabo-

ration

How do product owners and customers

collaborate with developers in large-scale

projects?

6
Large-scale agile

transformation

How can agile practices be adopted efficiently

in large projects?

7
Knowledge sharing

and improvement

When is the whiteboard not enough? How

can communities of practice be established?

What measurements are relevant to foster

improvement?

8 Agile contracts

How can contracts change the mindset of cus-

tomers from upfront planning to agile prin-

ciples? What legal limitations exist in con-

tracts that reduce agility in large projects?

2.2.1 Inter-Team Coordination

An inter-team context present challenges as large-scale development require

coordination. Matheieu et al. via Scheerer et al [25] state that this usually

results in a hierarchical team of teams setup. Furthermore, the organi-

zational setup is defined as a multiteam system (MTS), which is defined

as:

Two or more teams that interface directly and interdependently

in response to environmental contingencies toward the accom-

plishment of collective goals [25] (p. 4780).

In an attempt to handle inter-team communication, the Scrum of Scrums

(SoS) technique was introduced to large-scale Scrum contexts. While it is

not a part of traditional Scrum, it is widely used in large-scale organizations

in the industry [7]. The technique facilitates an environment where the

different Scrum teams can coordinate and plan their progress together in

17

Theory Chapter 2

a single event. SoS’s are time time-boxed and have the same basic format

as daily scrum meetings. However, SoS meetings are commonly attended

by only one representative from each team [7]. SoS meetings are usually

conducted in the same format, where four questions are answered by every

team [7]:

1) What did you do since the previous meeting?

2) What will your team do by the next meeting that is relevant to other

teams?

3) What obstacles does your team have that affect other teams?

4) Are you about to put something in another teams’s way?

The meeting can be arranged from once a day, to 3 times a week, based on

the demand. Dingsøyr et al. [9] suggests coordination in large- (2-9 teams)

and very large-scale (10+ teams) teams can be conducted in forum such as

Scrum of Scrum meetings.

Ktata & Lévesque [26] state that it is more challenging to scale, than to

simply use approaches such as SoS. Scaling is about ”ensuring effective

knowledge sharing and making the right decisions” [26] (p. 63).

Scrum of Scrum ceremonies have been studied, and was in some instances

found to help manage inter-team coordination, especially in projects where

teams are not co-located [27]. However, other results from studies on SoS,

show that audience was too wide to keep everybody interested [7]. The

participants in the study [7] also had trouble knowing what was valuable

to report at the SoS meetings, and ended up not reporting anything. SoS

have been identified as extremely challenging regarding coordinating on a

inter-team level, in seven incidents [25], which show that research on these

types of issues are needed.

Events similar to SoS have been suggested to handle inter-team coordination

issues, such as Feature Coordination CoPs. This Community of Practice

(CoP) are meetings where a few teams working on a common feature, work

together with the same feature at the meeting [28]. Paasivaara et al. [28]

found this technique to be successful in their study on CoP in large-scale

agile development. Their research, however, show that SoS did not work in

the studied organization [28].

18

Theory Chapter 2

2.2.2 Distributed Large Project Organization

Large-scale projects and the distribution of teams are often interconnected.

When projects are of a large scale, organizations might have to employ

teams that are not co-located in order to achieve enough developers, com-

petency, reduce costs or similar factors [29]. A survey from 2008, show

that several respondents indicated that they were successfully applying ag-

ile development with over 200 people [30]. Furthermore, they also indicated

that they were applying distributed agile development. Ambler [30] points

to geographical and organizational distribution as two of the main factors

to consider when scaling agile methods. Geographical distribution refers

to persons or teams being located at different places, while organizational

distribution refers to teams or persons in different departments, divisions,

companies etc.

When conducting distributed agile development in several countries, the

chances of encountering different organizational cultures increase [31]. How-

ever, several studies show that differences in national culture are not the

dominant influential factor regarding cultural issues, but rather cultural

factors such as the role of values and norms, and attitudes towards bureau-

cracy and authorities [31]. Their work show that the implementation of

agile methods needs to consider the role of the relevant culture, or else its

implementation will likely prevent the team from performing optimally [31].

Difference in culture can affect a persons understanding of each other, their

values, or normative practices [32]. Bannerman et al.’s [32] work suggest

that this may lead to issues related to different perceptions of authority,

inconsistent work, lack of mechanisms for creating shared understanding,

and reduced cooperation. Issues regarding distribution can be divided in

three categories: temporal distance (time zones, synchronizing work), geo-

graphical distance (physical presence), and socio-cultural distance (persons

norms, values, and perspectives) [32].

2.2.3 Release Planning and Architecture

The way a lot of large-scale Scrum processes are organized, with self-orga-

nizing teams and SoS meetings, development teams should ideally have a low

degree of inter-team dependencies. A common way of defining coordination

is “management of dependencies” [33]. However, researchers found that POs

are often complaining about creating value of the customers and prioritizing

requirements due to coordination issues [34]. Scheerer et al. [25] recognize

19

Theory Chapter 2

incomplete and ever-changing requirements along with interdependencies

in requirements as some of the main problem areas in a large-scale agile

development context.

Large scale development increases the complexity of the organizational struc-

ture. Pernstal et al. [35] recognize problems with dependencies between

development tasks, and artifacts, leading to communication and coordina-

tion issues across departments at Volvo Car Corporation and Volvo Truck

Corporation. Pernstal et al. [35] argue that applying agile methods such

as Scrum as a standalone solution to handle these issues, would not work

[35]. However, lean practices and principles, building on lean product de-

velopment would work according to Hibbs et al. [36] and Petersen [37] via

Pernstal et al. [35]. This is because it can be applied to any scope, and

its holistic view is a prerequisite for scaling agile [35]. Even though there

is research on how lean principles and practices can be used in software

engineering, Pernstal et al. [35] argue that empirical evidence is needed

in a large-scale development context when looking at lean practices and

principles.

Evbota et al.’s [38] exploratory case study research on large-scale agile or-

ganizations resulted in a model (see figure 2.4) which gives an overview of

key aspects of collaborative planning in large-scale agile development.

20

Theory Chapter 2

Figure 2.4: Key aspects of collaborative planning in large-scale
agile organizations [38] (p.32)

Evbota et. al. [38] found that agile teams need to bring together the ability

to estimate required work, combine knowledge into a good plan for the com-

ing iteration(s), and prioritize with respect to business value as the most

important technical ability challenges, regarding planning for large-scale ag-

ile organizations. Communication is the main challenge regarding the three

factors, displayed in figure 2.4. Estimation ability involves challenges to

make a long-term estimate because of too much content in e.g. the product

backlog. Prioritization ability is the view of what is to be prioritized, which

often leads to disagreements, inconsistencies between backlogs, and lack of

transparency. Planning ability refers the transformation of priorities into a

concrete plan.

Further, Evbota et. al. [38] found challenges tied to the context of planning,

specifically team build-up, team spirit, and work environment. Team build-

up refers to the product owners and program leaders view of the team’s

capabilities to develop the product. Team spirit is the teams’ ability to work

together and function successfully after working together over a period of

time. Work environment refers to the general work area, how it is organized

in relation to information flow between teams and individuals.

Ceremonial agreement is specified as the room between the two domains

21

Theory Chapter 2

[38]. It includes issues related to information flow (described in subsection

2.3.1), and coordination (described in subsection 2.2.1)

2.2.4 Large-Scale Agile Frameworks

Industry organizations that use Scrum in a large-scale setting have recog-

nized issues related to the framework. This has lead to the development of

new frameworks, specifically tailored to large-scale development. Some of

the most well known frameworks are Large-Scale Scrum Framework (LeSS)

and Scaled Agile Framework (SAFe)

Large-Scale Scrum Framework (LeSS)

The LeSS framework (shown in figure 2.5) uses Scrum in large, which allows

for many teams to work together on one product [39]. It provides the users

with a set of rules and principles to follow. The authors of the framework

state themselves that LeSS is not a new and improved Scrum, but rather

about figuring out how to apply the different elements that LeSS provides

[39].

LeSS is not really about enabling an existing big group to ’do

Scrum at scale.’ Rather, LeSS is about descaling the organiza-

tion, and creating a design that systemically enables agility at

scale, with simple elements, to be LeSS Agile [39].

22

Theory Chapter 2

Figure 2.5: The LeSS framework illustration [39]

Compared with traditional Scrum, LeSS is a step in the other direction than

for example Kanban. The LeSS framework adds more rules and guidelines.

However, the framework is not very prescriptive compared to SAFe. The

authors state that it is a ”barely sufficient methodology”, in the same way

as traditional Scrum is [39].

Scaled Agile Framework (SAFe)

SAFe (shown in figure 2.6) is a framework that build on underlying agile

and lean principles [40]. The framework is prescriptive in the way that it

applies a lot of rules to every part of the process. The four main levels of

SAFe is team, program, portfolio, and value stream [40]. These levels are

explained in detail on how everything from team structure, to enterprise

strategy should be executed by the organization.

Ken Schwaber, one of the authors of the Scrum Guide, is however negative

23

Theory Chapter 2

to the SAFe framework due to its rigidness.

The boys from RUP (Rational Unified Process) are back. Build-

ing on the profound failure of RUP, they are now pushing the

Scaled Agile Framework as a simple, one-size fits all approach

to the agile organization. They have made their approach even

more complicated by partnering with Rally, a tools vendor. Con-

sultants are available to customize it for you, also just like RUP

[41].

Figure 2.6: The SAFe 4.0 framework diagram [40]

Both of the above-mentioned frameworks are more prescriptive than tradi-

tional Scrum. They attempt to handle issues related to scaling Scrum such

as inter-team coordination, release planning, and project organization by

applying rules and guidelines to the process.

Even though there are multiple techniques and frameworks that help scale

agile development processes, there is not a common ”best practice”. This

shows that there is need for empirical research on organizations’ use and

experiences with scaling agile methods.

24

Theory Chapter 2

2.3 Organizational Communication

Communication is among the most important processes in any organization.

Communication is defined as a process where persons or groups send or

exchange information, with focus on the transmission [42]. It can further

be specified to the transmission of not only information, but also ideas,

attitudes, feelings in the form of verbal or non-verbal signals. A simple

communication process between two actors is exemplified in figure 2.7.

Figure 2.7: Communication process [42] (p. 281)

Communication is decisive for both internal integration and external adap-

tation [42], and is therefore an important to any organization. Jacobsen &

Thorsvik [42] divide organizational communication into six subcategories

that specifies communication’s importance: Coordination, culture, deci-

sion making, learning, information retrieval, and information dissemina-

tion.

2.3.1 Communication Channels

A communication channels’ ability to transmit rich information is central

in communication research [42]. Four points can be defined for channel to

be able to give rich information, when it:

a) can transfer many different signals simultaneously

b) gives opportunity for fast feedback

c) gives the opportunity to utilize natural or oral language, and

d) ables the sender and receiver to personalize and adapt the message to

each other [42].

The goal of communicating in an organizational context is often to achieve

rich, precise, and fast communication. Several organizational communica-

25

Theory Chapter 2

tion researchers have found that employees prefer, and if given the ability

to choose, choose face-to-face communication, as they think this is the most

effective, especially relative to time [42]. Face-to-face communication facili-

tates for non-verbal communication trough body language which allows the

sender to receive information about interest, opinion, and status between

to parties. It also allows for transmission of feelings, which is important for

the receiver to interpret [42]. These points are some of the most important

losses of rich information, when communicating through for example text.

Figure 2.8 shows the degree of richness in the information, based how the

information is transmitted.

Figure 2.8: Different channels’ ability to transmit rich informa-
tion [42] (p. 286)

2.4 Organization Culture

Organization culture is the term used for describing cultural processes that

exist within an organizational context. In most definitions of organization

culture, there is an explicit focus on thoughts, experiences, and meanings

that are common for multiple persons in an specific social context [42].

One of the more popular definitions of organizational culture is Edgar

Schein’s:

Organization culture is a pattern of basic assumptions developed

by a given to a group as it learns to master its problems with

external adaptation and internal integration - as functions suffi-

ciently well until its considered as true, and therefore is learned

to new members as the right way to perceive, think, and feel in

relation to these problems [42] (p. 130)

26

Theory Chapter 2

Organization culture becomes an increasingly important factor to consider

when applying distributed agile development in areas with different culture,

as the management complexity rises. Jacobsen & Thorsvik [42] point out

that organizational culture is studied in order to find basis for whether there

is a joint experience of belonging and fellowship, as this is crucial for the

organization’s successfulness. Organizational culture can be described with

five general effects on behavior, explained in table 2.4.

Table 2.4: General effects on behavior [42]

Belonging and fellowship

Organization culture can give a basis for social fellowship and

belonging. Covering these basic needs, can contribute to reduce

uncertainty and insecurity. To many people, the organizational

culture will to a great extent define their identity, which can

cause less absence from work, better stability, and relations in

the work

Motivation

The experience of social fellowship and identity can contribute

to motivated employees. By allowing employees to feel that they

are working for something bigger than themselves has shown to

have a motivating effect.

Trust

The trust between management and employees, and employees

in different work-areas, depends largely on the strength of the

organization’s culture. By having a strong culture, the trust in-

creases, and there is less need for monitoring. Trust can in many

cases work as a substitute for information- and administrative

control.

Cooperation and coordination

All the previously mentioned effects are contributory to making

the cooperation between people, groups, and hierarchical lev-

els easier. By feeling a belonging, a fellowship, motivated and

trusted helps members of the same culture develop a common

language, a way of communicating that makes cooperation eas-

ier. Having a good culture impacts coordinating activities, since

it happens through a joint desire to cooperate, rather than being

forced to.

27

Theory Chapter 2

Management

Culture can specify what is appropriate behavior when a per-

son is going to complete a task on behalf of the organization. If

there is a lack of e.g. trust between employees and management,

the organization can introduce a forced bureaucratic manage-

ment culture. When an organization replace the use of forced

bureaucratic management, is this often called clan-management.

Research on the relationship between agility and organizational culture

mainly show that adoption of agile methods often is problematic [43]. This

is often due to factors such as incompatibility between development culture

and hierarchical culture orientation [43]. In large software organizations, it

is also common that subcultures appear. This is admittedly not necessar-

ily a negative thing as it can lead to a rich diversity in the organization

[42].

28

Chapter 3
Research Method

This chapter will give an overview of the methods used in the thesis. The

chapter introduces relevant literature about the methods, as well as the

case. This includes an explanation of the studied organization, along with

execution of the research plan, design, and data collection.

3.1 Case Study

Case studies focus on one instance of something that is to be investigated.

The case is comprehensively studied, typically using data generation meth-

ods such as interviews, observation, document analysis, and questionnaires

[44]. Case studies aim to gather rich and detailed information about the

specific case, its processes, and relationships. By gathering rich data about

the specific case, the researcher can explain how and why certain outcomes

occur in given situations. This allows the researcher to retain a holistic

and real-world perspective of specific case in both small group behavior

and on an organizational level [8]. Oates [44] identifies four features that

characterize case studies,

• Focuses on depth rather than breadth. The case is observed in detail,

and the researcher therefore gains in-depth data about the phenom-

ena.

• Natural setting. The case is explored in its natural setting and the

participants continue to “work as normal”. The researcher tries to

disturb the setting as little as possible.

• Holistic study. Complex relationships and processes are researched to

find out how they are connected to each other.

29

Research Method Chapter 3

• Multiple sources and methods. Data is gathered for multiple sources,

both qualitative and quantitative to gain exhaustive research data.

3.1.1 Case Study in Software Engineering

Case study is a research methodology often used in software engineering

research, to study various contemporary phenomena in its natural context

[45]. As empirical studies have become accepted in software engineering,

the knowledge within the field is growing continuously. Runeson & Höst

[45] points out, that in order to investigate complex real life issues involving

human interactions with technology, we have to move beyond analytical re-

search paradigms since the don’t provide sufficient insight [45]. The plan for

the data collection is characterized by the researcher being separated from

the participants, meaning that the researcher will not intervene in the teams’

or managements day-to-day work. The observational data is collected by

participating in formal and informal meetings as a passive observer, going to

lunch with the teams, listening to both formal discussions and casual chat-

ter. Data is also collected from interviewing different team members from

diverse teams, and relevant members of the company’s management

Case studies often serve different purposes based on what the researcher

want to achieve with the work. Runeson & Höst [45] distinguishes between

four types of case studies that each serve a different purpose.

• Exploratory – Finding out what is happening, seeking new insights,

and generating ideas and hypothesis for new research

• Descriptive – portraying a situation or phenomenon

• Explanatory – seeking an explanation of a situation or a problem,

mostly but not necessary in the form of a causal relationship

• Improving – trying to improve a certain aspect of the studied phe-

nomenon

The case study investigation at the organization was a mixture of ex-

ploratory and explanatory purpose, depending on the different stage of the

process. The study is exploratory in the way that I continuously gained

new knowledge about what is happening, and generating new hypothesis

throughout the study, both when observing new phenomena and finding

relevant causal connections. Furthermore, the case is explanatory in the

manner that every piece of data retrieved from the qualitative and quanti-

tative research was sought for an explanation in the form of causal relation-

30

Research Method Chapter 3

ship. The design of the case study can be described as a flexible case study

design. Runeson & Höst [45] describe flexible design as a process where the

key parameters of the study may change during the study, and that case

studies typically have a flexible design.

Case studies provide a high level of conceptual validity due to it being easy

to adapt to the intended context. This gives case studies an advantage over

quantitative methods when it comes to separating small pieces of relevant

data contra gathering large samples [46]. Case studies have a powerful way

deriving new hypothesis. The researchers qualitative and personal connec-

tion to participants in the study, allows the participants to explain events

or thoughts that were unforeseen for the researcher. For example: “Were

you thinking X when you did Y?”. “No, I was thinking Z” [46]. This form

of deriving new hypothesis is very different from quantitative research and

can provide valuable hypothesis within the relevant situation.

The way case studies examine individual cases in detail, allows for a deeper

exploration of causal mechanisms. A case study allows researchers to iden-

tify many variables or conditions that must be present to activate the causal

mechanism [46]. Case studies qualitative nature also supports modeling and

assessing complex causal relations within the specific case. Combining case

studies with process tracing evidence is required to document complex in-

teractions [46].

3.1.2 Case Study Criticism

The use of case studies in software engineering can be criticized for several

reasons. Case studies have criticized for being bias by the researcher, and

impossible to generalize from [45]. The results generated from case studies

are often very different from analytical and controlled experiments. This

type of critique can be met with rethinking the importance of statistical

significance up against deeper value of qualitative data understanding [45].

Allan [47] also emphasizes that case studies cannot generalize their findings,

but Robert Yin [8] defends the position that case studies lead to theory

building that is applicable for the world as a whole.

The case presented in this thesis shows a company in a distinctive case.

It is possible to generate broader conclusions that are relevant beyond this

specific case. The main types of generalizations that can be made from case

study research includes, theory, concepts, implications and rich insight, or

a combination of the aforementioned [44]. This generalization can be trans-

fered to cases in similar contexts, with comparable factors. For example

31

Research Method Chapter 3

cases where the organization’s agile structure is similar.

Case studies are by many researchers seen as a “soft” research method.

Researchers often confront the method by asking how to define the “case”,

how to determine what data is relevant, or what to do with the data [8].

This makes the researcher’s job of filtrating the relevant data exceedingly

important. Furthermore, cases are defined as a ”thing” that is to be inves-

tigated, either an organization, system, decision etc. [44]. The researcher

therefore has to define the case to such an extent, that it is well defined and

understandable by anyone not involved in the process (further described in

subsection 3.5.4).

3.2 Process Tracing

George and Bennet identifies advantages of combining process tracing with

case studies with, which provides a valuable combination for testing hypoth-

esis and developing theory in specific environments [46]. Process tracing is

a qualitative analysis tool, which can contribute to describing social phe-

nomena [48]. In order to help describe these phenomena, Beach et. al.

[48] points to the importance of careful description of the process as the

foundation of process tracing. Beach et al. [48] states that “Process tracing

inherently analyzes trajectories of change and causation, but the analysis

fails if the phenomena observed at each step in this trajectory are not ade-

quately described” (p. 823). Combining process tracing with a case study

therefore facilitates for a successful analysis of the observed phenomena, due

to the qualitative nature of case studies. Runeson & Höst [45] argues that

triangulation is important to increase precision of empirical research. By

triangulation several forms of data, both qualitative and quantitative, one

can obtain data from previously undiscovered areas. Blatter and Haverland

[49] identifies process tracing as a within-case method that concentrates on

specific mechanisms or processes of interest within the selected case.

Some of the advantages of using process tracing is according to Beach et al.

[48]:

(a) “Identifying social phenomena and describing them,

(b) evaluating prior explanatory hypotheses, discovering new hypothesis,

and assessing new causal claims, and

(c) gaining insight to causal mechanisms” (p. 824)

32

Research Method Chapter 3

The process tracing approach in the thesis, will in accordance with Beach

et. al.’s [48] points;

(a) identify social phenomena within the domain of agile software devel-

opment, with focus on scalability and describing them.

(b) look at previous literature regarding scalability in agile projects and

evaluate their hypotheses to look at their relevance towards the specific

case. Discover new hypothesis, and assess new causal claims.

(c) understand the causal mechanisms with basis in the data collection

and established literature.

The general process tracing approach is centered around “process induc-

tion” which involves observing apparent causal mechanisms and heuristic

rendering as potential hypotheses for future testing [50]. This inductive

approach attempts to map the different causal paths leading to scalabil-

ity issues in large-scale development. The project’s process induction can

therefore enrich the case study approach in a way that leads to a collection

of data that is thoroughly described and can thereby be examined for causal

evidence.

3.2.1 Causal-Process Observations & Causal Inference

The observed phenomena in process tracing is often referred to as Causal-

process observations (CPOs). CPOs are the diagnostic pieces of evidence

examined in within-methods such as process tracing [51]. Seawright and

Collier [49] explains CPOs as “an insight or piece of data that provides in-

formation about context, process or mechanism that contributes distinctive

leverage in causal inference. . . ” (p. 10). Blatter & Haverland [49] describes

it as “A cluster of empirical information that is used to e.g. determine the

temporal order in which causal factors work together to produce the out-

come of interest. . . ” (p. 10) Common for both definitions of CPOs, are that

they explain the importance of a distinct piece or pieces of data the that can

provide interesting information about the process or mechanism that can

lead to a causal explanation of a phenomenon. CPOs are the cornerstone

in process tracing, and are crucial to form the basis for drawing inferences

about causality. To define a causal effect, one do not need to understand

all the relevant CPOs or causal mechanisms involved, but one must define

the concept of causal effect to identify the causal mechanisms [50].

In order to draw causal inferences about processes, one has to have sufficient

evidence to able to provide a satisfactory explanation. The distinction be-

33

Research Method Chapter 3

tween correlation and causality can be hard to separate when working with

qualitative data since the researcher alone weighs the importance of each

piece of evidence, hypothesis, or process. There is no clear divider for when

a piece of evidence crosses the threshold from prediction to explanation.

Bennet and George [50] explains that it is possible to have non-predictive

explanations as well as non-explanatory predictions. Dion [50] goes as far

as to saying that “case study methods do not require causal relations of

necessity and sufficiency [...] case study methods offer stronger inferences

on the existence of such relations than on the equifinality or probabilistic

causality” (p. 13).

3.2.2 Process Tracing Test-Evaluation

Evaluating data with process tracing can be done according to four types

of empirical tests, which evaluate evidence in different ways (displayed in

figure 3.1) [51]. There are two criteria for establishing causal connection

between events; whether passing the test is “necessary” or “sufficient” for

establishing causal connection. Collier [51] argues that the criteria for neces-

sity and/or sufficiency should be seen as heuristic standards for discussing

evidence for causal evidence. Strong inference on existence of relations

in case study methods leads to probabilistic causality, which is adequate,

and means that causal relations of necessity and sufficiency is not required

[50].

Figure 3.1: Process tracing: Types of tests [51] (p. 3)

34

Research Method Chapter 3

Using process tracing can according to Collier [51] contribute to creating a

more complete picture of a systematized qualitative analysis.

Straw in the Wind Test

The Straw in the wind test is the weakest of the four tests explained in

figure 3.1. The test demand the least of the researcher’s knowledge and

assumptions due to it not providing neither necessary nor sufficient criteria

for rejecting or supporting a hypothesis [51]. The test itself is not decisive,

but can help increase the plausibility or raise doubts about a hypothesis.

The straw in the wind test is therefore a good basis for starting the process

of finding causal connections.

Hoop Test

The hoop test does not provide direct support for a hypothesis, but can

eliminate the hypothesis. The necessary criteria are met in the hoop test,

but it does not provide sufficiency. It is called a hoop test because “a

hypothesis must ‘jump through the hoop’ to remain under consideration,

but success in passing a hoop test does not affirm the hypothesis” [51] (p.

5-6). The test allows the researcher to come closer to a causal connection

between events due to its possibility to eliminate hypothesis.

Smoking Gun Test

The smoking gun test implies catching the suspect holding a smoking gun.

The smoking gun test greatly support the hypothesis, but does not reject

it if it fails. The test provide sufficiency, but not necessary confirmation

criteria [51].

Double-Decisive Test

The double decisive test is the only test that confirm a hypothesis and

eliminates all others. Collier [51] argues that for the test to work, the

researcher must identify all other hypotheses, and eliminate them.

35

Research Method Chapter 3

3.3 Congruence Case Study

Congruence case study method is in many ways similar to process tracing.

It is a within-case method, where the goal is to produce a form of mecha-

nistic evidence of causal process in a case [52]. While the two within-case

methods are similar in many ways, one of the most important differences

is that linking causes and outcomes, also called causal mechanisms, are

not explicitly theorized [52]. This means that the understanding of causal

mechanisms is seen minimalistic, and the causal process linking the cause

to the outcome is cut off [52]. This leads to congruence cases producing

within-case evidence without any explicit mechanisms being tracing [52].

This view on congruence case study is often represented by a ”black-box”,

since we do not explicitly know about the entities and activities, as shown

in figure 3.2.

36

Research Method Chapter 3

Figure 3.2: Mechanisms in congruence and process-tracing case
studies [52]

George & Bennett describes congruence as a ”very weak tool that only

provides evidence of correlations across values of X and Y” [52] (p. 352).

Further they state that:

. . . the investigator begins with a theory and then attempts to

assess its ability to explain or predict the outcome in a particular

case. The theory posits a relation between variance in the inde-

37

Research Method Chapter 3

pendent variable and variance in the dependent variable. . . The

analyst first ascertains the value of the independent variable in

the case at hand and then asks what prediction or expectation

about the outcome of the dependent variable should follow from

the theory. If the outcome of the case is consistent with the the-

ory’s prediction, the analyst can entertain the possibility that a

causal relationship may exist [52] (p. 352).

This statement raises questions about if we learn anything by identifying

casual relationships between X and Y. Beach & Pedersen [52] however state

that knowing the value of both X and Y variables is important in order to

select the appropriate case for a within-case analysis.

3.3.1 Congruence Analysis Inference

A congruence analysis approach provides empirical evidence for the rele-

vance or strength of a theoretical approach, by analyzing the evidence in

a case study [53]. Inference made using congruence analysis as a within-

method produces either confirmatory or disconfirmatory claims about the

existence or non-existence of a plausible causal relationship [52]. Com-

pared to process tracing, congruence case studies provides evidence that

is relatively weak. Process tracing relies on the confirmatory evidence to

make strong inferences that X is causally related to Y through observable

manifestations, as shown at the bottom of figure 3.2. Beach & Pedersen

[52] states that congruence case studies on the other hand find predicted,

and theoretically unique evidence. The mechanisms (black-box) are not

traced explicitly, and therefore make a relatively weak inference regarding

the causal relationship.

Evidence in congruence case studies overlaps with process tracing’s defini-

tion of CPOs (see subsection 3.2.1). Causal inference in congruence case

studies is separated by the above-mentioned differences. Congruence tests

can be split in two, singular test, and cluster tests, as shown in figure 3.2.

A singular test is a ”single proposition about potential evidence is assessed

multiple times during a temporal process or across space” [52] (p. 357). In

the cluster test, ”multiple non-overlapping propositions about evidence are

assessed empirically” [52] (p. 357).

38

Research Method Chapter 3

3.3.2 Explaining Outcome Congruence Studies

The term ”explaining outcome” congruence aims to to account for why a

particular outcome occurred [52]. The term can be used to assess causal re-

lationships in cases without aiming to generalize the results beyond the case

itself. Explaining outcome congruence cases can therefore be understood in

a more holistic fashion [52].

Cases are always too complicated to vindicate a single theory,

so scholars who work in this tradition are likely to draw on

a mélange of theoretical traditions in hopes of gaining greater

purchase on the cases they care about [52] (p.359).

Congruence cases often have many causal conditions involved which give

complex outcomes. Beach & Pedersen [52] state that scholars therefore

often question the benefits of generalizing from the studied case to other

cases.

3.4 Research Ethics

The company involved in this study, called Nihil, and actors involved in the

study has been anonymized to preserve the employees’ personal information,

thoughts, and other sensitive data. Information about Nihil has also been

anonymized to preserve the company’s technical and business information,

ideas, and other private or sensitive information. This means that some

of the information in the thesis is on purpose, generalized, imprecise or

otherwise undefined to preserve certain sensitive data.

The project is also reported to Norwegian Center for Research Data (NSD),

and approved (shown in appendix B). NSD is the Data Protection Official

for Research for all Norwegian universities, governed by the Ministry of

Education and Research. Furthermore, the research was done in accordance

with Oates’ principles of research ethics in relation to the law and research,

participants directly involved in the research, their right to; participate,

withdraw, informed consent, anonymity, and confidentiality [44]. These

points cover the most important aspects of the researcher’s relationship

regarding the participants and ethical research.

Informing participants, and giving them the ability to consent to the re-

search, ensure them that they:

a) understand the purpose of the project, and their role in the project

39

Research Method Chapter 3

b) can assess their own situation

c) can make an independent decision if they want to participate without

outer pressure on the basis of information and own preferences and

values

d) can freely communicate their decision [54]

Appendix A shows the information given to the participants engaged in the

research.

3.5 Research Approach

The case study research has been does according to Yin’s model (see figure

3.3) of how to conduct case study research, with usage of techniques de-

scribed in section 3.5.4. How the results of the case study was achieved, is

shown in the subsequent subsections: 3.5.1 - 3.5.6.

Figure 3.3: Doing case study research: A linear but iterative
process [8]

3.5.1 Plan

The planning phase was spent planning how to conduct the field work,

specifically, outlining a plan for how, where, and when to conduct the dif-

ferent data-generating events described in section 3.5.4.

40

Research Method Chapter 3

Research Questions Planning how to conduct the work, is largely de-

pended on the study’s research questions. Case studies are suitable for

answering research questions in form on how, and why.

The research questions aims to find out why the organization experience

challenges with scaling Scrum (RQ1), and identify the characteristics which

make large-scale Scrum difficult to execute (RQ2). The thesis addresses the

questions from a organization theoretical viewpoint, which includes both

formal and informal traits about the organization, as well as the people

which make up the organization. This gives a holistic view of Scrum in

large scale, as it includes several areas within the organization.

The research questions aim to evaluate alternative theories and build new

ones. The goals is to examine all factors in the case, and see which pre-

existing theory or models matches the findings in the case which may lead

to new theories [44].

3.5.2 Design

Every type of empirical research has a research design. The research design

is a plan for how to get from an initial set of questions to be answered,

to some set of conclusion about the questions [8]. Every research design

should include at least four problems: what questions to study, what data

are relevant, what data to collect, and how to analyze the results [8].

According to Yin [8], there are five components of a research design that

are especially important in case study research:

• a case study’s questions;

• its propositions, if any;

• its unit(s) of analysis;

• the logic linking the data to the propositions; and

• the criteria for interpreting the findings

Study Questions To answer the study’s questions, one have to chose a

method that will answer the right questions. Case study research is often

appropriate for answering ”why” and ”how” questions, such as the research

questions, described in section 1.2.

41

Research Method Chapter 3

Study Propositions Each proposition in the study directs attention to

something that is to be examined within the scope of the study [8]. However,

”why” and ”how” questions may not sufficiently point to what the study

is about. The thesis proposes that scaling the agile frameworks Scrum

to multiple teams, is challenging. Previous literature suggests that this

is a burning research question, with insufficient empirical knowledge, as

explained in section 2.2.

Unit of Analysis A case study is the study of a string of processes and

phenomenon. Defining the case is a fundamental problem in qualitative

research, and is one of the things case study research often is criticized for

[8].

The case examined in this thesis is a single-case study with Nihil as the orga-

nization to be studied. The study only examines some of the organization’s

departments, directly connected to their large-scale agile software develop-

ment. Departments such as sales, finance, strategy etc. is not included in

the study’s scope. Furthermore, the study also only addresses people and

teams related to the relevant product that is being developed.

Yin [8] points to the importance of bounding the case. These are other

clarifications outside the general definitions explained in the aforementioned

paragraph and subsection 3.5.4. Bounding the case helps determine the

scope of the data collection, especially how to distinguish data about the

subject from external data [8].

The context for the case study are people included in the development

teams, such as developers, POs, SMs, and relevant members of manage-

ment.

Linking the Data to Propositions The process of analyzing the data

from the case is heavily dependent on how the data is linked to the propo-

sitions. The analysis require the researcher to combine and assemble the

case data as a direct reflection of the study propositions [8]. This is done by

following the process tracing method explained in section 3.2, and running

temporary hypotheses through process tracing tests in an iterative process,

further explained in section 4.2.

Criteria for Interpreting the Findings An important part of case

studies is designing a strategy for identifying rival hypotheses to your find-

ings [8]. The more rival hypotheses that have been addressed and rejected,

42

Research Method Chapter 3

the stronger the found hypotheses are. It is important to think of this be-

fore the data collection has been completed, so that it becomes a part of

the study’s results, and not part of a further study [8].

In the initial phase of the case study, the design was considerably more

exploratory than in the later phases. This allowed the me to explore areas

that was not part of the initial research problem, but seemed interesting to

pursue, either to confirm or reject.

Quality of Research Design

To establish the quality of empirical social research, four criteria (often

referred to as tests) are commonly used. Yin [8] expresses that the tests

(see table 3.1) deserve explicit attention due to their importance throughout

the case study work. Therefore, case study research design may continue

beyond the initial design phase.

Table 3.1: Case study tactics for four design tests [8]

Tests Case Study Tactic
Phase of Research
in which Tactic
Occurs

Construct
validity

• Use multiple sources of evi-
dence

Data collection

• Establish chain of evidence Data collection
• Have key informants review
draft case study report

Composition

Internal
validity

• Do pattern matching Data analysis

• Do explanation building Data analysis

• Address rival explanations Data analysis

• Use logic model Data analysis

External
validity

• Use theory in single-case
studies

Research design

• Use replication logic in
multiple-case studies

Research design

Reliability • Use case study protocol Data collection

• Develop case study database Data collection

Construct Validity Construct validity refers to identifying the correct

operational measures for the concepts being studied [8]. One of the main

criticisms to case studies are according to Flyvberg and Ruddin [8], that “the

researcher fails to develop a sufficient operational set of measure and that

43

Research Method Chapter 3

subjective judgments - ones tending to confirm a researcher’s preconceived

notions - are used to collect the data” (p. 46).

The researcher needs to cover two steps, in order to meet the test of con-

struct validity [8].

1. Define neighborhood change in terms of specific concepts (and relate

them to the original objects of the study - see chapter 2)

2. Identify operational measures that match the concepts (preferably cit-

ing published studies that make the same matches - see section 2.2)

Internal Validity The Internal validity test seeks to establish a causal

relationship. The investigator tries to explain how and why an event (x)

leads to event (y). If the investigator fails to include all relevant factors

e.g. (z), the research design have failed [8]. The process of distinguishing

causal factors from false factors is only relevant in explanatory studies,

since descriptive and exploratory studies are not concerned about causal

relationships [8].

Furthermore, internal validity extends to making inference in case study

research [8]. The research design needs to consider rival explanations, and

analyze the evidence’s convergence and degree of truth in order to explain

the accuracy of the inference [8].

The research is designed to explore as many explanations as possible. This is

done by attending and observing both formal meetings and other informal

events. The research is exploratory organized for the initial phase, while

transitioning over to an explanatory fashion when sufficient data is gathered

about a phenomenon.

External Validity External validity tests handle the generalization of

the study’s findings. Yin [8] points to the importance of using theory or

theoretical propositions to help generalize the lessons learned from the case

study. The external validity of case studies are as mention in section 3.1.2,

one of the main critiques against the method. The generalization of case

studies can be split in to two categories: statistical, and analytical general-

ization.

In statistical generalization an inference is made about a population on the

basis of the empirical data collected [8]. This method is often used in sur-

veys, and is often less relevant when conducting case study research.

44

Research Method Chapter 3

Analytical generalization may be based on either: modifying, corroborating,

rejecting, or otherwise advancing theoretical concepts that is referenced in

the case study design, or new concepts that arose upon the completion

of your case study [8]. Either if generalizations are made from predefined

conditions, or uncovered at the conclusion of the study, the generalizations

will be on a conceptual level higher than the specific case [8], as shown in

figure 3.4. This can help define new research focusing on similar situations

in a similar context.

Figure 3.4: Making inference: Two levels [8] (p. 41)

The case presented in the thesis display a company within a distinctive con-

text. The case is essentially not generalizable to areas outside the described

context because of its distinctive characteristics. However, single elements

can be forwarded on a higher conceptual level, and thereby be generalizable

to some extent.

Reliability The goal of the reliability test is to minimize errors and biases

in the study. This means that if a researcher would follow the same strategy,

and conduct the same study, he or she should arrive at the same findings

and conclusions [8]. Poor documentation is a factor that can weaken the

reliability of the study, as is can not be reviewed. The suggested approaches

to handle documentation problems are case study protocols and case study

databases, as shown in table 3.1.

To minimize errors and biases in the study, observation-protocols were de-

signed and used to document observation events with specific elements, such

45

Research Method Chapter 3

as: date, time, type of activity, length of activity, location, participants and

general observation notes. Interviews were written in a semi-structured

fashion, and the general questions are replicable from the interview-guide,

while follow-up questions and clarifications are documented in form of in-

terview transcripts. By doing this, the study would arrive at approximately

the same results if it were conducted by someone else. The most problem-

atic feature regarding the research’s reliability, is that the case would be

hard to do over again, as there probably is a lot of specific features within

the company which may not exist in other companies.

3.5.3 Prepare

The preparation of a case study is a complex task which takes into account

challenges such as, gaining approval for the study, and show how human

subjects will be protected [8]. The preparation can according to Yin [8] be

split into five points:

1. Desired skills and values

2. Training for a specific case

3. Developing a protocol for the study

4. Screening candidate cases

5. Conducting a pilot case study

Desired Skills and Values Case study research is a demanding tasks

that requires a large set of skills and values. Yin [8] states that the demands

of a case study on the researchers intellect, ego, and emotions are far greater

than any other research method. Several elements skills are involved when

conducting case studies, such as ethical dilemmas, technical aspects of the

data collection, and mediating continuous interaction between theoretical

issues and the data collection, which require making a lot of judgment calls

[8].

I am new to case study research, and the skills required to conduct the

study was therefore accordingly. The most helpful process in preparing and

acquiring these skills, was reading other case studies, case study protocols,

and talking to others who had done it before.

Training for a Specific Case The goal of training for a specific case,

is to understand 1) Why the case study is being done, 2) What evidence

46

Research Method Chapter 3

is being sought, 3) What procedural variations can be anticipated, and

4) What would constitute supportive or contrary evidence for any given

proposition [8].

In the training for the case, I revealed several flaws in the case study design.

In the initial phase of the project, it became apparent that the research

questions were too broad to figure out in a relatively small project, such as

a masters thesis. Furthermore, the plan was to interview more people than

anticipated. Interviewing and transcribing appeared to be a more extensive

task than anticipated, and the number of interviewees was reduced from ca

fifteen to five.

Developing a Protocol for the Study A case study protocol is a doc-

ument describing the case which is to be studied. A case study protocol

should include the following sections [8]

A: An overview of the case study including objectives, issues, and relevant

literature about the selected topic

B: Data collection procedures for protecting human subjects, identifica-

tion, probable sources of data and logistic reminders

C: Data collection questions that must be kept in mind when collecting

the data

D: A guide for the case study report, with outline, format, presentation,

etc.

The case study protocol used for this project was a document which was

gradually transfered, rephrased into the thesis, as it corresponds with a

master thesis regarding content and structure.

Screening Candidate Cases The process of screening candidates for the

case study aims to make sure that the final candidates are identified, prior

to the formal data collection [8]. This was a fairly straightforward process,

because of the exploratory initial phase, with a lot of observation gave a

good indication of which candidates could contribute concerning large-scale

Scrum. For example, persons with inter-team responsibilities within the

organization had more knowledge about recurring issues, hence would often

be more suitable candidates for e.g. interviews.

Conducting a Pilot Case Study A pilot case study is a test of the case

study, which helps the researcher to refine the data collection plans [8]. A

47

Research Method Chapter 3

pilot case study was not conducted prior to the case study because of the

limited time frame available.

3.5.4 Data Collection

To improve our collective knowledge about software engineering, we need to

gather data about the field. Software engineering is an extremely people-

oriented activity and in order to gain knowledge about how the people work,

it is essential to conduct studies on real practitioners [55].

Table 3.2 shows an excerpt of the data collection techniques used in the

thesis’ field work with their goal, volume of data gathered from the technique

and alternative use.

Table 3.2: Data gathering techniques [55]

Technique Used by researchers
when their goal is to
understand:

Volume
of data

Also used by
software engi-
neers for

Direct tech-
niques
Interviews and
questionnaires

General information
(including opinions)
about process, product,
personal knowledge etc.

Small
to large

Requirements
and evaluation

Shadowing and
observation

Time spent of frequent
of tasks (intermittent
over relatively short pe-
riods), patterns of activ-
ities, some goals and ra-
tionale

Small Advanced ap-
proaches to use
case or task
analysis

Indirect tech-
niques
Fly on the wall Time spent intermit-

tently in one location,
patterns of activities
(particularly collabora-
tion)

Medium

Independent
techniques
Analysis of work
databases

Long-term patterns re-
lating to software evolu-
tion, faults etc.

Large Metrics gather-
ing

Documentation
analysis

Design and documenta-
tion practices, general
understanding

Medium Reverse engi-
neering

48

Research Method Chapter 3

Nihil Case

For this single case study, a company called Nihil was cooperating with

the researcher. Nihil conducted large-scale Scrum on a daily basis and was

interested in investigating it for improvement potential themselves. The

cooperation was aimed at understanding how the company applied large-

scale Scrum in practice, and look for case-specific peculiarities in relation to

e.g. previously researched studies. By doing this, I could be able to identify

causal connections to why scaling Scrum can be challenging.

Nihil is a cloud service business primarily located in western Europe. The

company develops, operates, and maintains cloud services for users all over

the world. The company has several million users worldwide. Nihil’s man-

agement and some of the development is located in Western Europe, while

other parts of the development is located in Asia, Eastern Europe, and

North America. The business is therefore affected by a diverging social

mixture from different organizational cultures.

The organization primarily uses Scrum as a management framework for de-

veloping software in the organization. Some of the development is based

on lean development methods such as Kanban, but is affected by the orga-

nization’s requirements regarding structure, and therefore have additional

events to ensure traceable processes and management overview among other

things.

The examined case’s context in this thesis was a continuation of an exist-

ing and ongoing development project. Nihil’s current project was mainly

focused on developing new features and adapt the product to both new

and existing users, as well as maintaining the product. The business has

worked with agile methods for about ten years, and the agile methods are

well incorporated in the business. Nihil can therefore be seen as an ex-

perienced agile business, and are will therefore not be afflicted by regular

adaptation problems with adopting agile methods such as, organizational

resistance, management apathy, and inadequate training regarding agile

methods [56].

The cooperation between the researcher and Nihil started in August 2016,

and ended May 2017. The data gathering process described in the subse-

quent sections and subsections, took place between October 2016 - March

2017. During the process, six formal interviews interviews took place (fur-

49

Research Method Chapter 3

ther described in section 3.5.4), as well as 14 structured observations events

and numerous unstructured observations (described in 3.5.4). Documents

were also found during the full duration of the thesis work (August 2016

- May 2017). The study can be described as a short-term, contemporary

study, which examines events that occur in the present [44]. The time limit

is one of the boundaries for the project. Yin [8] suggests the time and geo-

graphical limits are some of the main characteristics that describe a case’s

degree of completion.

Observation

Observation is the process of watching and paying attention to something

in order to analyze, form theories, make influence or impose meaning [44].

Passive participatory observation was used to collect data about the Nihil’s

agile process. Participatory observation is an approach where the researcher

is involved in a social setting for a limited amount to time to observe differ-

ent phenomena relevant for the study [57]. The level of interaction stretches

from fully active to fully passive, and refers to the degree of involvement the

researcher has in the observation. Passive observation means that the re-

searcher has a bystander role and does not involve himself in e.g discussions.

The observation-process in the the case, can be specified as overt observa-

tion, meaning that the participants know that they are being watched. The

case study included both participatory observation and non-participatory

observation, based on what event was ongoing. Typically, formal events

such as Retrospectives, Sprint reviews and Scrum of Scrum were passively

observed. Informal activities such as development, lunch breaks and ”office

chatter” was part of the participatory observation.

”Fly on the wall” is a technique where the researcher is an observer without

being physically present [55]. The ”fly on the wall”-technique was used on

some remote Scrum meetings. The main advantage of this technique, is

that it requires very little time from the participants. However, it requires

much time to analyze the data.

One advantage of being a passive observer rather than an active is that it is

easier to achieve objectivity and avoiding bias and influencing the partici-

pants in the study. By conducting the observation in a passive fashion, the

observed group acted in its natural environment and could promote their

meaning and attitude in a familiar environment. The observation-sessions

in the case study reached from unstructured to semi-structured, based on

if there was a underlying hypothesis that basis for the observation, or the

50

Research Method Chapter 3

sessions were of a more exploratory and thereby unstructured fashion.

Some of the observation-sessions were in the form of shadowing. When

shadowing, the researcher follows the participant around and records their

activities. The main difference between shadowing and observation is that

the researcher shadows one person at a time, but in observation, one can

observe many simultaneously [55]. Both the shadowing and observation

sessions were documented in an observation-protocol with details of where,

who, when, and what was going on during the session.

Interview

As mentioned earlier, interviewing is a common way of gathering qualita-

tive data about participants in a case study. Interviews are adaptable in

many contexts due to its flexible design. Interviews can be tailored to fit the

study’s design and can be either structured, unstructured, or in between.

The aim of qualitative interviewing is to evoke the respondent’s informa-

tion in form of their behavior, attitude, norms, beliefs, and values [57].

Semi-structured interviews were conducted in this study. Semi-structured

interviews are designed to allow the interviewer to follow a general inter-

view plan, but still have the opportunity to ask follow-up questions as new

information is learned during the interview [57].

One of the disadvantages with interviews are that they are cost inefficient

[55]. The researcher needs to schedule the meeting, and attend it. Further-

more, the data from interviews needs to be transcribed when it is recorded.

Additionally the participants’ reports of events may not reflect the real-

ity [55]. This is why it is an advantage to gather information of different

sources, to gain an overview of case. By doing this, the researcher can easier

understand if the participant is telling the truth, even though there is no

guarantee.

Documents

Documents can be an alternative source of data in addition to interviews

and observation. Oates divides documents into two types: found docu-

ments and researcher-generated documents [44]. Found documents are the

relevant documents that exists prior to the research. Researcher-generated

documents are documents that would not have existed if it was not for the

research task. The documents are organized and evaluated, and are used

51

Research Method Chapter 3

by the researcher as source of data in the analysis phase. Examples of this

are field notes, models and diagrams [44].

The documents used in this thesis’ research are a combination of found-

and researcher-generated documents from the case research at Nihil. The

found documents primarily consists of documents related to the Scrum pro-

cess, such as Scrum Boards, burndown charts, Scrum review notes, and

retrospective notes, as well as the organization’s wiki-page. Researcher-

generated documents such as notes were generated from attending meetings,

interviews, general observations and conversations with employees.

3.5.5 Analyze

There is no ”recipe” for analyzing data derived from case studies. The anal-

ysis of case study evidence is according to Yin [8], one of the least developed

aspects of doing case studies. Yin [8] suggests four general strategies for an-

alyzing a case study.

• Relying on theoretical propositions

• Working the data from the ”ground up”

• Developing a case description

• Examining plausible rival explanations

The original objectives and design of the case study was based on theoretical

propositions explained in section 3.5.2. This formed the case study, and

helped lay the theoretical basis for the case study analysis. Yin [8] points

to that this strategy further reflects on the case’s research questions, reviews

of the literature, and new hypotheses or propositions.

Working with the data from the ”ground up” is an inductive strategy which

can occur by ”playing with the data” [8]. This strategy is useful for in-

vestigating unexplored data for pieces of evidence. Yin [8] proposes that

this strategy can be the start of an analytical path, leading the researcher

towards possible unexplored areas of the data. This was done as an initial

part of the analysis (further explained in section 4.2).

Developing a case description is an alternative research strategy, if the

above-mentioned strategies are not used. The strategy aims to organize

the case study according to some descriptive framework [8].

Examining plausible rival explanations is a strategy that can be combined

with the three aforementioned strategies.

52

Research Method Chapter 3

The typical hypothesis in an evaluation is that the observed out-

comes are the result of a planned intervention. The simple or

direct rival explanation would be that observed outcomes were

in fact the result of some other influence besides the planned

intervention and that the investment of resources into the inter-

vention mat not actually have been needed [8] (p. 140).

Examining plausible rival explanations is an essential part of working with

process tracing. Testing rival hypotheses (explanations) is done by investi-

gating causal connections between events and evaluation its necessity and

sufficiency, explained in section 3.2.2. The more rival hypotheses that are

addressed and rejected, the stronger are the researcher’s findings [8].

3.5.6 Share

The case study is written in a linear-analytic structure, meaning the se-

quence of subtopics start with the issue being studied, followed by literature,

methods, data collected, analysis and findings, ending with a conclusion

[8].

Sharing the data from a case can be quite sensitive. There are a lot of factors

to consider, since they might identify the case or its subjects. Runeson &

Höst [45] state that the researcher must find a balance between what to

share and not, and foremost how to share it, in order to avoid identification

(see section 3.4)

Potential Audiences

The audience of a master thesis is fairly wide (see section 1.3). Case stud-

ies have according to Yin [8] more potential audiences than other types of

research. Each audience has a different need, and no report will satisfy

all audiences to the fullest extent. This leads to the thesis having sev-

eral sections, with a different degree of explanations, theory, and real-world

descriptions, to serve the different audiences.

53

Chapter 4
Results

This chapter describes the case’s context, based on the relevant contextual

factors regarding the results. The chapter explains how the hypotheses

were generated. Further, the chapter describes each hypotheses in detail

with basis in the data collection combined with relevant literature, and is

thereafter summarized.

4.1 Nihil Case Context

The studied organization in the case, is called Nihil. As mentioned in subsec-

tion 3.5.4, Nihil is a commercial actor, which performs large-scale Scrum de-

velopment in a distributed setting, extending over several geographical sites.

This means that the organization needs to be organized accordingly.

Nihil organize teams based on the project’s specific feature-areas. This

means that each team work with a high-level area of development e.g. user

experience, test tools, deployment etc. The teams each have one PO and

SM, while each PO and SM are responsible for multiple teams, making the

ratio unbalanced (further explained in subsection 4.3.1). Most teams are

traditionally organized in terms of size. Alpha team is the only team the

investigated section of the organization which is unconventionally organized

by having eighteen developers. The teams that are located at the same

sites are mainly co-located in terms of sitting next to each other, with some

exceptions. This does not include POs and SMs, as they are incorporated

in multiple teams.

Nihil is experienced in terms of conducting agile development, as they have

conducted agile development for more than ten years. Nihil performs all the

54

Results Chapter 4

traditional Scrum events with very few deviations from the Scrum guide (ex-

plained in subsection 2.1.1). The different sprints’ duration are decided by

each team based on how much work they contain, and how much time each

team needs. The teams coordinate using SoS. In addition, they maintain

formal communication in standard Scrum meetings and additional irregular

events, subsequently explained in hypothesis 4.3.1.

4.2 Generating the Hypotheses

The within-method process tracing focuses on tracing links between possi-

ble causes and observed outcomes [46]. The researcher analyzes documents,

interviews, observations and other pieces of data to see if he can establish

a probable hypothesis. Thereafter, the hypothesis is evaluated using pro-

cess tracing tests to determine the strength of their causal inference. It is

important to underline that the tests are used heuristically, and should not

be taken rigidly [48]. The process is extensive and demands high level of

insight to the data-material.

The process of generating hypotheses was a exhaustive process that took

basis in both relevant literature and the data gathered during the case study.

The hypotheses-generating process can be classified as iterative. A hypoth-

esis was initially explored by either being observed in the case, proposed by

other authors within the field, or by interviewing or talking to Nihil employ-

ees. From the initial hypotheses was thought of, until it was fully explored,

it underwent a series of tests to explore its relevance and strength. To try

to achieve sufficient data to establish the hypotheses’ causal inference, the

hypotheses was re-explored and re-tested through observation and inter-

views with different people with different points of view. For example, the

researcher could have had assumptions that a hypothesis was established

with a strong causation related to a phenomenon, only to later on be refuted

by a subsequent hypotheses. This underlines the importance of recurrently

revisiting previous hypotheses in qualitative case work, thereby making the

process iterative.

The iterative work with the hypotheses in this study is affected by the lack

of observable causal mechanisms, in form of sequential events. This lead

to a minimalistic understanding of the causal processes linking cause to

outcome. This kind of ”black-box” mechanisms (see figure 3.2) leads to a

less certainty of causal relationships, because the possibility of lacking some

variables, as explained in section 3.3. The results of this circumstance is

55

Results Chapter 4

further discussed in chapter 5.

In the case explained in this thesis, the following hypotheses were gener-

ated.

Table 4.1: Hypotheses (Subhypotheses are indented and marked
with a ”•”).

Hypotheses

Nihil’s Scrum structure forms coordination issues
• in multiple-team organization
• in single-team organization

Communication distances in Nihil create a lack of individual
team members’ project understanding
Rigid processes in Nihil impair agility

4.2.1 Concept Operationalization

This subsection aims to clarify some of the concepts that are not directly

measurable on their own. The goal is to make the concepts understandable

in their hypothesis’ context.

Coordination Issues Coordination issues refers to the problem of orga-

nizing different elements or activities to enable them to work together. Co-

ordination issues in multiple-team organization primarily addresses issues

regarding activities in an inter-team coordination context (both team-to-

team, and individual-to-team). Single-team coordination issues refers to the

problem of organizing activities and/or elements within a single team.

Project Understanding Project understanding involve individuals’ per-

ception of a project, or smaller parts of the project such as isolated pro-

cesses. Communication is tightly connected to the involved individuals’

understanding of the project.

Rigid Processes Rigid processes are opposites of the values of agile de-

velopment. Rigidness refers to an organizational or development process

being too inflexible to achieve the desired outcome (explained in section

2.1).

56

Results Chapter 4

4.3 Hypotheses

4.3.1 Nihil’s Scrum Structure Forms Coordination Is-

sues

Challenges regarding Nihil’s Scrum structure can be divided into two parts:

Multiple-team organization and Single-team organization. Scrum structure

refers to how Scrum events and team(s) are structured and carried out.

Multiple-team organization

Nihil’s Scrum development is organized in a way that is customized for ef-

ficient large-scale development. The development teams are relatively tra-

ditionally organized, but Product owners (PO) and Scrum Masters (SM)

are responsible for multiple teams simultaneously as shown in figure 4.1.

The organization’s POs are or have been responsible for two to three Scrum

teams at the same time. CPOs from the study indicate that POs that

are responsible for three Scrum teams, have issues handling the different

projects.

People involved in the different projects, with the same PO, indicate that

the PO’s level of involvement on the different projects are varying due to

factors such as: team size, previous PO’s product understanding, the scope

of the team’s responsibility-area, the team’s skills.

Having a product owner responsible for just one team, is too

little, three is too much, two is just right. The exception is

Alpha team, where one product owner would have more than

enough to do. - Nihil employee

Alpha team’s size is much larger than Nihil’s other Scrum teams, with over

the recommended size of three to nine people, this is why the employee

suggests that one PO is enough (further explained in subsection 4.3.1 -

Single-team organization).

57

Results Chapter 4

Figure 4.1: Nihil’s team organization

Having a single PO responsible for multiple teams makes communication

channels more complex. Nihil has implemented team-leads for every team.

Team-lead is not an official Scrum role, but serves a function as a mediator

between the PO and the rest of the team. With POs being responsible

for multiple teams, they have less time per team, which often lead to use

of alternative communication channels, providing poorer information (see

hypothesis 4.3.2).

At Nihil, SMs are in the same way as POs responsible of multiple teams.

The main difference is that they are generally responsible for even more

teams. The different teams’ SMs, and POs, have a lot of differences between

responsibility-areas and assignments. Case data show that SMs deviate in

the their perception of how the role is supposed to be carried out. Some

SMs involve themselves in how the product is made, instead of carrying

out their coach role. Some are more or less absent from their team, while

others are mostly interested in documenting the process. One would think

SMs had the same problems as POs regarding coordination, but this has

not shown to be a prominent factor in the study.

To coordinate the POs’ assignments, thoughts, ideas, and shared organi-

zational understanding, the POs meet once a week to discuss this in joint

meeting, which is not part of ”official Scrum”. The meeting reminds of a

Scrum of Scrum (SoS) meeting where all parties gives a high-level status

update of their progress, and is included in what the other teams are doing.

This means that the meeting is affected by both the positive and negative

effects of implementing such an extra event. The meeting helps the different

58

Results Chapter 4

POs gain an understanding of the other teams current work, issues, future

plan etc. This event weakens the hypothesis’ strength, as its structure helps

coordination between POs.

In order to handle coordination issues between teams, Nihil uses SoS meet-

ings. SoS is a technique where a representative for each team gathers in form

of a meeting and discusses their work. The questions answered by each team

is in standard SoS manner; 1) What have you done since last sprint?, 2) Are

you about to put something in another team’s way?, 3) Is anything slowing

your team down or getting in their way?, and 4) What will your team do

before we meet again? Some teams, often remotely located teams, attend

with their whole team, while team-lead for each team located at HQ attend

the SoS meetings to speak on behalf of the team. SoSs are carried out with

up to 26 teams, reporting their progress and future path.

The use of SoS in Nihil is useful in varying degree based which individual

is attending, their role, or their team’s role in the organization. Results

from Paarisvaara et al. [7] work, show that audience in SoS meetings can

be too wide to keep the involved parties interested. This is also reflected in

the Nihil case, both in SoS, and weekly PO meetings. Meeting attendees

who are invested in the development, show a lot greater interest in ”lower

level”-issues related to feature development, and do not pay much attention

to ”high level” and underlying goals. However, there are those who are

invested in multiple teams or are part of the organizations management.

This side is divided between wanting to know about both high-level goals,

and smaller product features.

Regarding Scrum of Scrum meetings, it is sometimes nice to

know what the organization is working with. Nevertheless, most

of the time, the teams work on the same feature or area, which

can be totally different from the what your team is working with.

This is not always so useful, and you can sometimes see people

being bored at the meetings, playing cards etc. - SoS-attendee

A suggestion to solve the issue regarding a varying audience in SoS meetings,

was Scrum of Scrum of Scrum meetings (SoSoS), which was suggested by

Cohen [58]. The concept of SoSoS is based on having multiple SoS meetings,

where each SoS sends one representative to a higher level meeting, as shown

in figure 4.2. The thought is to reduce size of the SoS meetings, to keep all

attendees interested.

CoPs is a another technique which can also tackle similar large-scale issues

[28]. In CoPs, teams working on the same feature work together in the

59

Results Chapter 4

meeting, and it is therefore easier to stimulate the attendees interests, as

they are likely to involved in the topic.

Figure 4.2: Scrum of Scrum of Scrums [59]

Single-team organization

The different teams in Nihil are organized in different ways. Some teams

have only three developers, while other teams, such as Alpha team, have up

to eighteen developers in the same team. Having more than nine developers

in the same team is not recommended because it is a high chance of coordi-

nation issues within the team [15]. Because of Alpha team’s area complexity,

the team was also distributed over five locations in three continents.

CPOs from the study show that traditional Scrum events did not fit the

team’s development style. The team had problems delivering shippable

increments within the sprints’ timebox. This, among other minor factors

lead to the decision that Alpha team changed development method from

Scrum to Kanban. Kanban removes the traditional timeboxed events that

you find in Scrum, to a continuous work-flow. Kniberg [18] encourages this

kind of experimental behavior in order to customize the agile process to

your environment.

Scrum and Kanban are both empirical in the sense that you

are expected to experiment with the process and customize it

to your environment. In fact, you have to experiment. Neither

Scrum nor Kanban provide all the answers – they just give you

60

Results Chapter 4

a basic set of constraints to drive your own process improvement

[18] (p. 17).

The tactic of changing to Kanban seems sensible based on research, which

reports that enhanced visual control that facilitates and supports the decision-

making process is increased with 45,9%, as well as 29.7% of Kanban users

reduce the lead time of tasks, as shown in table 2.1. David Anderson [17]

stated that ”Kanban is neither a software development life cycle nor a

project management methodology; instead, Kanban is used to incremen-

tally improve an existing process” (p. 1881).

The transition from Scrum to Kanban was nevertheless not fully complete.

Nihil require their teams to conduct events from Scrum, such as reviews

and retrospectives as well as estimation of backlog items. The development

method of Alpha team can therefore be described as Scrumban (explained in

subsection 2.1.3), a mixture between Scrum and Kanban. The researcher did

not have time to fully follow the transition to Kanban, as the data collection

process ended, and could have been explored further in detail.

I think it’s more important that you have a framework that

facilitates for flexibility, where you can make changes during the

process. This is much more important than using a framework,

just to use it. - Alpha team member

Wang et al. [22] states that Scrumban is especially suited for projects

with unexpected user stories, maintenance projects, or projects prone to

programming errors. One of the main advantages of Scrumban, according

to Wang et al. [22], is the ability to exclude time-boxed sprint, but still

keep other Scrum events such as daily scrum, retrospectives etc.

It turns out however, that at an earlier point of time, several teams in Nihil

used to perform Kanban development. Some teams teams switched over

to Scrum due to Kanban being too disorganized, and Scrum was supposed

to help ”clean up” the backlog by having stricter frames and guidelines.

Other teams switched because they simply did not manage to operate with

Kanban as a development method, due to the method’s lack of guidelines.

However, switching to Scrum did not work for several of the teams.

Both the Scrum and Kanban methods are self-learned by most of the em-

ployees at Nihil. Employees in the organization state that they have learned

the methods by reading literature, and/or participating in the organization’s

existing Scrum process.

61

Results Chapter 4

Hypothesis Summary

The diagnostic pieces of evidence from the Nihil case show that their Scrum

structure affects the scalability of Scrum in large-scale. The CPOs in the

case study clearly show that the organization of multiple-team can be im-

proved. POs have to allocate their time based on which team needs their

help the most. This can lead to other teams getting reduced help from their

PO, and can lead of lower efficiency in the team. However, a single PO per

team turns out to be inefficient time commitment, as there is not enough

work for a single PO.

Nihil’s use of SoS also has room for improvement in their large-scale Scrum

structure. The audience in the meetings proves to often be thematically

uninterested in the meetings mostly due to too large variety in content. A

change of SoS structure could help improve this issue, possibly in form of

suggested techniques such as SoSoS, or CoP.

Some of the teams in Nihil have trouble adapting to, and making Scrum

work. Scrumban was supposed to be the answer to this issue. Even though

experimental behavior can help with the process, it had for other teams

failed at an earlier point in time. Furthermore, it is unsure if the change of

method was successful, as the data collection ended before the researcher

could see the effects of Kanban in use.

4.3.2 Communication Distances in Nihil Create a Lack

of Individual Team Members’ Project Under-

standing

Communication is at the heart of agile development. The first value of the

agile manifesto promotes individuals and interactions over processes and

tools. However, communication is not an easy task to accomplish perfectly

when scaling up Scrum.

Communication is the most important when we are as spread

out as we are. It can always be improved, and I don’t think we

are where we should be. - Nihil management employee

Nihil uses several different communication tools and forums to distribute

information, and communicate both privately, and in community. In total,

Nihil uses twelve digital communication tools, and ten forums in form of

meetings, seminars, and group sessions. The different tools and forums

are used and work to different degrees. Some of them are nearly never

62

Results Chapter 4

used, while some are used every day. Multiple CPOs at Nihil shows that

communication is critical for the development to go smoothly.

In large development situations [...], a mismatch of adequate

communication mechanisms can sometimes even hinder the com-

munication [13] (p. 303).

Bannerman et al. [32] distinguishes between three types of distance: tempo-

ral, geographical, and socio-cultural. These distances can offer challenges,

especially regarding communication, and need to be overcome for agile soft-

ware development on a global scale to be realized [32].

Temporal Distance

Temporal distance, a measure of the dislocation in time between

two people wishing to interact, may create communication issues

such as reduced hours of collaboration, difficulties in holding

synchronous meetings, and response delays [32] (p. 5310).

Nihil operates in three different continents, and is therefore affected by tem-

poral distances within the organization. Based on the field work done in

the case study, I was not able to find any factors that suggested tempo-

ral distance was an evident issue. The field work did not extend beyond

one location, and the data was in many cases dependent secondary sources.

The few relevant CPOs from the study show that the temporal distance

between individuals in the organization was easily worked around by per-

forming recurring scheduled meetings weekly, where relevant topics were

reported.

Geographical Distance

Geographic distance, a measure of the effort required to visit

another person’s home site, makes communication difficult be-

cause of the reduced ability to hold face-to-face meetings [32]

(p. 5310).

Distribution of IT development is not a new phenomenon. Distribution of

software development refers to people developing software at different ge-

ographical location, either different cities, countries, or event continents.

Greater distances between peoples often come with challenges. Bannerman

et al. [32] state that lack of face-to-face meetings reduces informal com-

munication, which can lead to lack of critical task awareness, ”teamness”,

and reduced trust. Loss of direct contact to all levels of management also

63

Results Chapter 4

leads to demoralizing bad practices, which is likely to occur in distributed

settings [60].

A recognized problem at Nihil’s management, is the lack of informal com-

munication between employees not located at the same geographical loca-

tion. One of the greatest challenges in distributed teams is according to

Šteinberga & Šmite [60], creating and maintaining a relationship and a

sense of belonging between team members. The culture where people ca-

sually meet in the hallway or at ”the watercooler” is an important factor

for casually distributing information across the organization. Employees at

Nihil who are not located at the headquarter (HQ) struggle with this issue.

This issue may in worst case result in absence from work, instability at the

workplace, and poor work relations [42].

People who sit at the HQ experience the casual information,

where e.g. a person asks; - ”Have you seen the new transparency

models?” - ”No, i have not, what it that?”. People who sit

outside the HQ experience this issue, especially those who sit

alone, for example at a home office. - Nihil employee

In a response to this issue, Nihil tries to create points of contact, in form

of weekly and biweekly meetings, where people can receive this kind of

informal or casual information. This response helps create a culture where

the employees feel a belonging and fellowship to the organization, but will

not replace the benefits of face-to-face communication [42].

Geographical distribution can also lead to relational problems. Being geo-

graphically distributed involve practical issues related to meeting each other

and forming a personal relationships. Having a good relation to other team

members is important in agile development. The core values in Scrum are

commitment, courage, focus, openness and respect [15]. Several people at

Nihil state that they have not physically met everyone that they would

have wanted to meet, they have only ”met” via video-conferences or similar

communication channels. Most employees use Skype as their main commu-

nication tool, especially when communication with remote team members.

Several employees promote its instant messaging functionality as the main

advantage, providing them with the ability to make decisions fast. Others

feel that instant message services such as Skype, becomes a time thief and

a stress factor because it allows you to see the whole team’s discussions.

Furthermore, employees with roles who require a holistic overview of the

development process, such as POs, express that they miss meeting their

team members face-to-face. Their main reason for this is so that they can

more easily understand peoples opinions and values via rich interactions

64

Results Chapter 4

such as body language and gestures. Forming an impression and building a

relationship of their colleagues is valued among the employees, as it forms

a relationship built on safety and respect.

Socio-cultural Distance

Socio- cultural distance, a measure of a person’s understanding

of another’s values and normative practices, may create issues

relating to inconsistent work practices, different perceptions of

authority, and lack of mechanisms for creating shared under-

standing and avoiding misunderstandings and reduced coopera-

tion [32] (p. 5310).

Large scale agile organizations are often affected by socio-cultural distance

due to the organizations’ size and complexity. Nihil’s organization culture

fits into the differentiation perspective on subcultures. The cultural manifes-

tations is interpreted differently by the different groups in the organization,

which therefore creates subcultures which exists side by side in the orga-

nization [42], as show in figure 4.3. Even though different subcultures can

interpret things differently, Jacobsen & Thorsvik [42] points out that they

can work independently, and live live side by side without conflict.

Figure 4.3: Differentiation perspective [42] (p. 143)

The different subcultures within Nihil comes to light when comparing teams

across the different locations. CPOs show that teams at different loca-

tions act in various ways regarding their tasks. For example, teams located

in North America require accurate information, preferably from different

sources in order to work accordingly to what the central management wants.

If the information is uncertain or undercommunicated, they might interpret

things in their own way and pursue a path in different direction than the

management wants. Central European teams on the other hand, have a ten-

dency to cling on to information before passing it on to other. The teams

65

Results Chapter 4

try to perfect the information, which can be viewed as a taking pride in

their work. Ramesh et al. [31] points out that managers should perform

fine-grained adaptation of development methods, in order to adapt it to the

cultural context in which they are used to. A more gradual adaptation of

Scrum to other locations, with frequent coaching could thus have helped

reduce the cultural differences within the organization.

This kind of difference in behavior can be seen as different organizational

subcultures. However, it is not certain, and can be affected by other factors

such as the type of the work assignments, responsibility area, or other topics

which has not been explored by in the research due to the thesis’ scope and

limitations.

Poor communication often affect the inter-team coordination. For example,

when a team makes a decision, which at the time seems like a good idea,

the product is lead in one direction. At the same time, another team makes

a different decision, which leads the product a different direction. This

makes teams suboptimize their work, which could be solved with improved

communication.

Language is another factor which can inhibit effective communication. Ni-

hils work language is English, which everyone understands, but to various

degrees. The main problem with language is not that the employees do not

understand the language, but that nuances are lost in the translation. These

types of minor language barriers are common, especially in distributed agile

projects [61].

SoS meetings are one of the events which illuminates inter-team communi-

cation issues. The events intercept some of the communication problems

within the organization, but should not be the only technique, as they can

often be the last formal inter-team communication step before the teams

start working on the task.

I have for example seen that different teams have a differing

opinion of something, even though they have been in the same

SoS meeting, with the same PO. We can never be good enough

when it comes to communication - SoS attendee

Clarifying and eliminating communication errors before starting the devel-

opment can save organization a lot of time by eliminating duplicate work

or having to change something later in the process.

66

Results Chapter 4

Hypothesis Summary

Communication is one of the processes that has a lot of improvement po-

tential at Nihil. Central employees in the organization state that commu-

nication should be improved, and that communication can hinder project

effectiveness.

Nihil uses a lot of different tools and forums with hopes to achieve good

communication, both in distributed- and co-located settings. The tools and

forums benefit the organization to various degrees.

Temporal distance is not a prominent issue at Nihil. However, geograph-

ical and socio-cultural distance present more issues. Being geographically

distributed challenge the core values of Scrum regarding personal relation-

ships, and the lacking face-to-face communication co-located employees ex-

perience. The Socio-cultural distance at Nihil contributes to differentiate

the teams’ understanding of processes, created by subcultures within the

organization. Further, the communication in the organization is affected by

minor language barriers which creates flawed communication flow.

4.3.3 Rigid Processes in Nihil Impair Agility

Nihil is a large organization with multiple teams working on the same prod-

uct simultaneously. This leads to challenges with keeping everyone informed

about the different pars of the product and processes. How to keep track

of the process is tightly connected to hypothesis 4.3.2, as communication

is at the core of informing the different parties in the development process.

Another common way of informing other parties about the process is by

documentation.

One of the core values in the agile manifesto is working software over com-

prehensive documentation [10]. Even though agile development values work-

ing software over documentation, it does not mean that one should not

document anything. Hunt [62] suggests that agile projects should have

”sufficient” documentation both in short, and long-term projects. Long-

lived projects will therefore need more documentation that short-lived ones.

”Sufficient” is a vague term which is up to each individual to interpret.

The challenge with an organization as big as Nihil, is that you

need a lot documentation, because things need to be searchable,

since you cannot keep everyone informed. The application is

also so big that there is no one who can manage to keep track

67

Results Chapter 4

of everything, so we have to document a lot - Nihil employee.

Nihil is a growing organization and as it grows, people are replaced. Man-

agement employees therefore state that they can no longer rely on the col-

lective memory of the employees, and the processes has to be documented

accordingly. Documenting the different processes is therefore one of the

things that has been prioritized. After the processes are described, and

possibly adapted if needed, they are presented to the relevant people.

One of the main issues with growing an organization is how to scale up

without losing the agile benefits of a smaller organizations. The question of

centralizing decisions is relevant at Nihil. Agile methods such as Scrum fa-

cilitates for self organizing teams which choose how best to accomplish their

work [15]. However, some of the advantages of being a large organization

might be lost when each employee choose their own way.

If you leave parts of the process to each individual to interpret,

the results can be good because most people will do it in a

pragmatic way. However, I think we can lose quite a lot of

efficiency when you work in such a large-scale as we do. - Nihil

management employee

Jacobsen & Thorsvik [42] summarizes the advantages and disadvantages of

centralizing and decentralizing the authority of decisions in organizations,

shown in table 4.2

Table 4.2: Advantages and disadvantages connected to central-
ization and decentralization [42] (p. 89)

Centralization Decentralization

Advantages • Clear management signals

• Clear responsibility

• Consistent practice

• Predictable practice

• Local adaptation

• Flexibility

• Motivating

• Speed

Disadvantages • Local information gets lost

in the hierarchy

• Low flexibility

• Demotivating

• Slow

• Lacking control and

suboptimization

• Unclear responsibil-

ity

• Differing practice

• Unpredictability

CPOs from the study shows that the organization had trouble keeping pro-

68

Results Chapter 4

cesses uniform and streamlined. Everyone had a different idea about how

things should be structured and formulated, and when several hundred em-

ployees do this in their own way, it can become chaotic. As the organization

grows, it seems that it moves from a decentralized structure towards a more

centralized. Several processes, such as Scrum reviews, Scrum team dash-

boards, and sprint goals are standardized, which creates consistency in the

organization, but deprives employees with the ability to make decisions.

The organization is far from extremity regarding centralization, but is nei-

ther decentralized to a full extent, but somewhere in between (see figure

4.4).

Figure 4.4: Scale for degrees of centralization and decentraliza-
tion in organizations [42] (p. 89)

Both the organization’s requirements for documentation some processes and

events, and streamlining processes can be viewed as impediments to the

workflow. Power [63] states that ”anything that obstructs the smooth flow

of work through the system and/or interferes with the system achieving its

goals” (p. 88). Impediments like these highly impacts the workflow in the

organization and are exact opposite of the first and second values of the

agile manifesto [10].

Hypothesis Summary

Nihil is a large organization with the need to inform the different parts of the

organization of events and artifacts. This is primarily done twofold, either

by performing extensive documentation or standardizing processes. The

organization recognizes that as people are replaced, they need to document

their knowledge. Furthermore, the tasks that teams do in various ways can

be more easily inspected if standardized.

Documentation and standardization is often seen as necessary in large or-

ganizations, but they are paradoxically opposites to agile values and prin-

ciples.

69

Chapter 5
Discussion

This chapter resumes the research question. The hypotheses are discussed

with basis in the research question. Finally the study’s design, process,

findings, and ethics are evaluated based on the conducted case study.

5.1 Research Question

The results from the study aim to answer the initial research question listed

below. The research question is based on previous literature within research

on large-scale agile projects, and aim contribute to the research field’s col-

lective knowledge about empirical large-scale agile research.

RQ - Why is scaling Scrum challenging for a large-scale development

organization?

The discussion will revolve around the resulting hypotheses from the study,

and have basis in the research question. The study will also be discussed

and evaluated in regards to the research method, and the overall research

process.

70

Discussion Chapter 5

5.2 Hypotheses

5.2.1 Nihil’s Scrum Structure Forms Coordination Is-

sues

Multiple-team organization

Nihil’s use of POs is structured to utilize resources in large-scale develop-

ment by having one PO responsible for multiple teams. While this is not

in conflict with Scrum ”rules” regarding either teams or roles, described

in The Scrum Guide [15], it presents challenges compared to traditional

Scrum. Scrum builds on values and principles from the Agile Manifesto,

including the following value

The most efficient and effective method of conveying information

to and within a development team is face-to-face conversation

[10].

Structuring several teams with less than one PO per team, leads to reduced

time spent by each PO per team. Further, communication gets conveyed

over different channels. These factors causes POs to have problems gain-

ing overview and handling the projects. In order to try to counteract these

problems, Nihil uses team-leads to ease the communication process between

the team and the PO. Although these measures are in place, the coordina-

tion is far from perfect. This suggests that structuring multiple teams with

a joint PO is a large part of the organization’s coordination issue.

The research could have more easily seen the effect POs and teams by con-

ducing a multiple case study with an organization within a similar context,

but with a one-to-one relationship between POs and teams. By performing

this kind of research, the researcher could further investigate the differences

between the POs areas of responsibility, and assignments, to see their effect

on how the Scrum teams are structured.

Scrum master and Product Owner are the two main roles which relates

to the teams’ daily work. Nihil’s SMs are generally responsible for more

teams than POs. In addition, they are inconsistent in the way the carry

out their work as explained in subsection 4.3.1. With these factors affecting

the SMs work, one would think the same kind of coordination issues would

be prominent in their work. However, there were few indications of these

kind of occurrences in the case. SMs’ role would be interesting to further

investigate in the same way as POs (as mentioned above), but with more

71

Discussion Chapter 5

focus on what enables the SM role to coordinate across multiple teams

without issues.

Two techniques are used at Nihil to try to increase the coordination between

teams, Scrum of Scrums, and PO meetings. Both types of meetings have

similar structure and are conducted weekly. SoS meetings are primarily

attended by team leads, while PO meetings are attended by only POs.

Common for the meetings are that the audience is quite large. SoS have

an audience of from ca 20 teams, with attendees varying from one to the

whole team. PO meetings include only the PO from each team, and has

an audience of ca 10 participants. Bass [27] states that there currently are

no agile ceremonies specifically designed towards large-scale agile software

development, and this is the reason why organizations experiment with

ceremonies such as SoS and PO meetings.

The techniques are both afflicted by some of the participants’ disinterest

in the meetings. The disinterest is usually a result of too varied topics in

the meetings. Based on this, several of the meeting’s attendees find the

meetings to be of low value to them. This phenomenon matches findings in

other studies on SoS [7, 38]. SoS meetings is one of the events at Nihil which

clearly can be improved. The meeting is meant to improved inter-team

coordination, but results in being unproductive and demotivating because

of the employees lack of interest in the content. This leads to the use of

SoS to be one of the factors which makes Scrum more challenging to scale

for the large-scale development organization. PO meetings suffer from the

same issue regarding disinterest as SoS meetings, even though the meetings

are conducted with less participants.

Both types of meetings are ”extra” events which are not part of traditional

Scrum. This means that the meetings are not in any way mandatory to

conduct in order to follow Scrum. Nihil can learn from Kniberg & Skarin’s

[18] suggestion about experimenting and customizing the process to your

environment. Scrum, according to the Scrum Guide [15], emphasizes on its

three pillars to uphold empirical process control; transparency, inspection,

and adaptation [15]. By implementing Scrum with more focus on these

three pillars, the organization will be better equipped against undesired

effects of e.g. SoS and PO meetings. By focusing of transparency, the orga-

nization will increase its common understanding of processes. With better

inspection, it can detect undesirable variances in the process. Adaptation

allows for adaptation of the process if undesirable aspects are found trough

inspection.

The CPOs affirming the hypothesis originate from multiple sources, which

72

Discussion Chapter 5

strengthen the claim. Most of the CPOs are also primary sources, in form

of observation or interview, which contain firsthand data about the sub-

ject which further help strengthen the hypothesis. The Scrum structure is

strongly validated as a reason which makes scaling Scrum a challenge for Ni-

hil. The structure of the PO role, as well as the coordination events across

teams, are regarded as the prominent characteristics which make scaling

difficult in the organization. The overall strength of the (sub)hypothesis is

based on these reasons, and is therefore strongly verified.

Single-team organization

The hypothesis has implications related to traditional Scrum development.

Elements from traditional Scrum, such as teams’ size, are built on princi-

ples known from psychology. Teams in organizations are rarely composed

of over ten people, since small teams often lead to high performance con-

cerning reaching the organization’s goals [64]. Nihil’s decision of equipping

Alpha team with eighteen developers in the same team, therefore seems con-

fusing, as it contradicts general team-research [64], and the Scrum Guide’s

suggestion [15].

The decision of changing development method to Kanban for Alpha team,

is bold based on the organizations history with Kanban use. Multiple teams

at Nihil has previously changed from Kanban to Scrum due to disorgani-

zation of requirements. The teams that previously moved from Kanban to

Scrum, had trouble, even with the improved rules and guidelines that Scrum

provides, contra Kanban. Switching to Kanban means, less guidelines and

structure for the team, hence the bold decision.

Vijayasarathy & Turk [56] summarize the main reasons for organizations’

choosing, and benefits of adopting agile methods. The research show that

Nihil’s reason for changing development method correspond with the study’s

respondents’ reasons for adopting agile methods. The study present project

turn-around time and complexity of software as the organizations main rea-

sons for use of agile methods [56]. Furthermore, the organizations state

that meeting customer needs in a better way, faster time to delivery, in-

creased flexibility in development, and improved software quality are the

most frequent experienced benefits of using agile methods.

Alpha team’s problems with timeboxing and meeting deadlines, correspond

with Al-Baik & Miller [17], and Vijayasarathy & Turk [56] results regarding

project turn-around time (lead time) and especially realization of faster time

to delivery. This indicates that Kanban could be a good choice for the team.

73

Discussion Chapter 5

However, since the adoption led to ”Scrumban” (explained in subsection

2.1.3), it is unsure if the transition will have had full effect. There is also

the additional element of a disadvantageous amount of developers in the

same team.

The decision to switch development method to Kanban raises questions

about the team’s probability of success due to the organizations earlier ex-

perience with the method. Even if the challenges with timeboxed events are

resolved, there is no guarantee that the team will not face problems, similar

to historical Kanban teams. There is however a slightly higher chance of the

process being successful than before, due to the inclusion of Scrum events

in Kanban (Scrumban), such as retrospectives, reviews, and estimation of

backlog items.

The hypothesis is largely dependent on second hand sources, where em-

ployees report on their own, or the organization’s earlier experience with a

phenomenon. These kind of reconstructed reports are not as reliable as data

from direct observation, due to it being hard to verify. This is one of the

factors that largely weakens the hypothesis. The CPOs also originate from

few separate sources, which further weakens the hypothesis’ claim. Further-

more, it is hard to conclude with anything, due to the project’s time limit

forcing the researcher to end the case study. The hypothesis is therefore

verified weakly, due to these varied factors.

5.2.2 Communication Distances in Nihil Create a Lack

of Individual Team Members’ Project Under-

standing

Good communication is essential for an organization to function well. Com-

munication is one of many elements which gets more complex as an orga-

nization grow in size. This entails that it might impact as a challenge of

scaling Scrum. Members of Nihil’s management recognizes that communi-

cation is a challenge for the organization. Lack of communication between

agile actors have been claimed to increase the inter-personal distance be-

tween actors involved in the process, and in some cases even lead to project

failure [13]

The lack of informal communication within the distributed organization

is a problem at Nihil. Several distributed employees face this challenge

daily. The measurement of this effect is not investigated in the thesis, but

it can in worst case lead to poor work relations, instability, and absence

74

Discussion Chapter 5

from work [42]. The Scrum framework facilitates for formal events such as

meetings, and relational dependencies between some roles. Formal events

are admittedly important for the organization’s formal communication, and

are easier to adapt considering the effects of geographical distribution in

a large-scale context. Scrum has no explicit events or artifacts for helping

informal communication, as the framework is designed for small co-located

teams [3]. This causes indirect communication to be one of the character-

istics which make scaling Scrum to a distributed large-scale development

difficult. Pikkarainen et al. [13] found in their study on agile practices,

that informal communication works as a factor which indicate less need for

documentation, and more productive software development.

Geographical distance further bring challenges regarding employees’ per-

sonal work-relationship in the large-scale organization’s utilization of the

Scrum framework. Distributed development often causes employees to com-

municate using digital tools as their main form of communication. This can

in many cases work fine, but can in other situations be troublesome. Com-

munication via e.g. text, and video are less rich communication channels

than face-to-face (see figure 2.8). This can lead to communication chal-

lenges, especially for employees with roles such as PO and SM, who require

a comprehensive overview of the development process, in form of inter-team

coordination and communication.

As a result of insufficient richness in the communication, employees can

encounter misunderstandings in other teams’ work, thus increase the lack

of the project’s understanding.

Nihil is a large organization, reaching over multiple continents. The chal-

lenges related to this is presented in form of socio-cultural differences, rather

than temporal distances, as presented in section 4.3.2. The socio-cultural

differences at Nihil can be identified as different organizational subcultures.

The subcultures work side by side without any inherent conflict, and can

even exist simultaneously without affecting one another. The different sub-

cultures behave in different ways based on different factors, as explained in

section 4.3.2. Although the teams’ behavior is differentiated based on the

teams’ geographical location, this does not seem like the most important

factor regarding their behavior. The different teams’ attitude towards au-

thorities seems to highly impact their behavioral patterns. Ramesh et al.

[31] summarizes findings from studies on cultural impacts in global software

development which show similar results. An example of this is North Amer-

ican teams’ need for reaffirmation of instructions, which indicate that they

consider the hierarchical structure of the organization as more horizontal

75

Discussion Chapter 5

than other teams.

The socio-cultural effects in the study are hard establish with certainty

because of the limitations of the study, further explained in section 5.3.

The results are nevertheless valid examples of reasons why scaling Scrum

to large-scale is challenging for an agile software development organiza-

tion. Vijayasarathy & Turk [56] found that incompatibility with develop-

ment culture as one of the main limitations of agile development. Inconsis-

tent practices with basis in socio-cultural differences between teams, lead

to difficulties for the management to communicate efficiently across cross-

cultural teams. Further research on global software development in large-

scale Scrum contexts could be interesting to investigate in depth, to find

more evidence of socio-cultural distance in global Scrum-based development

organizations.

The CPOs connected to the hypothesis are strongly verified based on the

type of evidence. Informal communication combined with socio-cultural

and geographical distance result in strong inference about the organiza-

tion’s communication issues, which directly influences the understanding of

the project. The evidence is largely obtained from multiple sources, and

the different CPOs show consistent data regarding the hypothesis. This

contribute to making the causal inference of the hypothesis strongly veri-

fied.

5.2.3 Rigid Processes in Nihil Impair Agility

The first value of the Agile Manifesto is ”Individuals and interactions over

processes and tools” [10]. This means that individuals and interactions are

valued over processes and tools. Processes and tools are definitely important

for the development to go smoothly, but they should not compromise agility

in form of valuing individuals and interactions.

Agile methods such as Scrum are developed for small co-located teams. This

is done to ensure agile development with focus on efficiency. This present

challenges as organizations grow, and development gets more complex. The

implications of scaling Scrum in the organization are varied, but are among

the aforementioned hypotheses, associated with the implementation of rigid

organization processes.

Documenting processes is frequently used at Nihil to ensure the traceability

of information within the organization. It is primarily done in form of writ-

ing reports or documents which are searchable for the organization. This

76

Discussion Chapter 5

is in addition to the traditional Scrum artifacts that are also used, such as:

user stories, sprint backlog, story points, estimates, and burn down charts.

Petersen & Wohlin [65] states that the use of documentation can be reduced

by physically moving people together, and increasing direct communication.

This is however challenging in large-scale organizations as teams can be for

example geographically distributed. It has also been suggested that new ag-

ile ceremonies are needed which could review and refine Scrum artifacts [27].

However, there is a risk that additional ceremonies and artifacts can distract

developers from the producing working code [27]. Documentation’s role in

agile development is rated as unimportant in studies on adoption of agile

methods [56], congruent with agile values, explained in section 2.1.

Together with a sizable focus of documentation, Nihil operates with cen-

tralizing processes in hopes of increasing efficiency within the organization.

Although centralization has several advantages (shown in table 4.2), such

as consistent and predictable practices, it is generally inconsistent with the

basic agile values. This lead teams to not being able to self-organize in

how to best accomplish their work. These kind of effects contribute to im-

pair the agility of the organization in a way that in worst case can hinder

technological innovations.

Nihil can be considered as an organization with ”growth-pains”, meaning

that it is in a state where the organization is increasing in size, but do not

know how to handle the accompanied changes.

The CPOs associated with the hypothesis show that the organization tries to

adapt to its large-scale environment. The use of documentation is increasing

in pace with the organization’s size, and therefore leads to more documen-

tation apart from what is normal in traditional Scrum. Centralization of

processes prove to be an increasing factor in large-scale development, which

reduce the agility in the organization. The CPOs related to the hypothesis

are a mixture of primary and secondary sources of information. The hypoth-

esis’ inference is moderately verified based on the evidence, showing that

several processes at Nihil are becoming increasingly rigid. The organization

is far from as rigid as organizations that are using traditional methods, but

it is somewhere in between. This further indicate that scaling Scrum to a

large scale becomes increasingly difficult based on organizational size.

5.2.4 Summary

The study aims to find out why scaling Scrum is challenging for large-scale

development organizations, and what characteristics make scaling difficult.

77

Discussion Chapter 5

The hypotheses are presented with different inferences of why scaling is dif-

ficult and what characteristics makes it difficult. The inferences are verified

individually, with varying strength, as seen in table 5.1.

Table 5.1: Hypotheses’ strength

Hypotheses Strength

Nihil’s Scrum structure forms coordination issues
• in multiple-team organization Strongly verified
• in single-team organization Weakly verified

Communication distances in Nihil create a lack of
individual team members’ project understanding

Strongly verified

Rigid processes in Nihil impair agility Moderately verified

Sub-hypothesis 4.3.1 present reasons for why scaling scrum is challenging

in the organization. Issues related to coordination, such as role distribution

across multiple teams and the adaptation of extra events such as SoS and

PO meetings are both indications of reasons why scaling is difficult in the

organization.

Single teams such as Alpha team have an untraditional structure, with a

high amount of developers in the team. The team also switched development

method to Kanban (Scrumban) despite other teams having trouble with

this earlier. The sub-hypothesis indicates that these factors can be some

of the reasons behind the organization’s scaling challenges. However, the

hypothesis has multiple uncertainties tied to it, and weak evidence, which

reduces its causal inference.

Communication pervades the organization in most ways. Issues regard-

ing communication in the organization, explained in hypothesis 4.3.2, is

strongly verified as a reason for why scaling becomes difficult. The evidence

is unambiguous and evident, and provide notable characteristics as to why

scaling Scrum is challenging in the organization.

Rigid processes at Nihil are identified as a moderately verified reason to the

challenges with scaling Scrum. The rigid processes are classified and divided

into documentation and centralization. The organization still performs agile

development, but is affected by the need for systematic oversight, due to

its size and complexity. This is one of the reasons why scaling Scrum to

large-scale organizations can become challenging.

The resulting hypotheses can be categorized into three areas, based on their

main challenges toward large-scale agile development.

• Hypothesis 4.3.1 - Coordination

78

Discussion Chapter 5

• Hypothesis 4.3.2 - Communication

• Hypothesis 4.3.3 - Processes

The categorization is not a mutually exclusive division of the hypotheses,

as the topics overlap to a great extent. The resulting categories match

previously suggested research challenges in large-scale agile development

[4], shown in table 2.3.

The hypotheses combined form a collective basis for why scaling Scrum to

the large-scale agile development organization is challenging. The accom-

panied characteristics of the issue are identified as indicating factors of the

hypotheses.

5.3 Evaluation of the Study

The evaluation of the study is presented to give the reader an understanding

of study, and the choices made during the research process. This section

is meant to give the reader a justification of the choices made about the

research process.

5.3.1 Research Design

The research described in this thesis was initially thought to be a case

study with process tracing used as a within-method. Process tracing as a

within-method is according to Collier [48] hard to do well. Some of the

most prominent problems in process tracing is missing variables, measure-

ment error, and that probabilistic relationships are harder to address than

in quantitative research. Process tracing also gives close attention to the

sequence of variables [48].

The study is designed to identify and investigate of disaggregated causal

mechanisms in accordance with the description of process tracing (explained

in section 3.2). The analysis of the collected data in the case show after mul-

tiple iterations, that the data material lacked sequential events to analyze

for causal mechanisms. This led to the evidence in the study being ”mech-

anistic”, which is often weak in terms of enabling causal inference because

the causal mechanisms are not explicit [52]. The case’s lack of explicitly

theorized mechanisms led the within-case method to match a congruence

case study (explained in section 3.3). Congruence case studies do not have

to specifically identify entities and activities tied to the mechanism.

79

Discussion Chapter 5

Even though the advantages of using process tracing were lost in switching

the analytical method to a congruence case study, it is still valuable in

several research situations. Beach & Pedersen [52] argues that although

it might always seem logical to choose process tracing, congruence case

studies are typically less demanding in terms of analytical resources, and

the researcher only makes claims about plausible casual relationships within

the case [52]. This way of analyzing evidence, lay the foundation for the

most promising causal conjectures in the case, and can then be further

empirically investigated in a more rigorous way, using e.g. process-tracing

[52].

Further, Beach & Pedersen [52] state that in order to claim that one are

providing evidence of a causal process, one has to explicitly state the causal

processes by providing and explaining the causal mechanisms. One has to

differentiate between process tracing and congruence case study methods in

order to avoid confusing and/or contradictory statements about the meth-

ods [52]. ”We suggest that one should not claim to be doing process-tracing

when one is not actually tracing a causal process” [52] (p. 353).

The research design was according to Beach et. al.’s [48] points concerning

the advantages of using process tracing:

(a) identify social phenomena within the domain of agile software devel-

opment, with focus on scalability and describing them.

(b) look at previous literature regarding scalability in agile projects and

evaluate their hypothesis to look at their relevance towards the specific

case. Discover new hypothesis, and assess new causal claims.

(c) understand the causal mechanisms with basis in my data collection

and established literature.

Points (a) and (b) are still valid for the congruence case study, while point

(c) is disregarded due to the lack of causal mechanisms in the studied case.

The lack of causal mechanisms is reflected in the thesis’ limitations regarding

its time frame. The time frame of the thesis, combined with a novice case

study researcher led to the results, not being as exhaustive in terms of causal

inference, as first intended in the case study’s design.

Research Design Quality

Construct validity The study show a high degree of construct validity.

Several of the results in this study, correlate with previous findings in similar

studies, e.g. as discussed in section 5.2.1. Nihil also strive with issues which

80

Discussion Chapter 5

are suggested research topics by researchers within the agile community (see

table 2.3).

Internal validity The research was designed to explore as many rival ex-

planations as possible by initially being exploratory, as explained in section

3.5.2. Due to the time limitations of the study, all causal factors related to

the hypotheses were not explored. This weakens the internal validity of the

study. By not ruling out all rival explanations, one can not say that the

explanation is internally valid. The study have however, found the most

prominent traits regarding scalability issues in the organization, which can

be further explored, as further explained in subsection 5.3.3

External validity Congruence case studies can according to Beach &

Pedersen [52] be used to assess causal relationships in a case without the aim

to generalize the results beyond the case itself. The case presented in this

thesis aim to generalize toward organizations within similar contexts. For

example organizations with similar Scrum structure, organization of events,

or with other resembling factors in a large-scale development context. The

outcome explained in the case, can be perceived with a holistic view which

in other cases may not be generalizable because of the amount of distinctive

characteristics.

The thesis analyzes the case from a software engineering and organizational

theoretical point of view. The organizational point of view allows read-

ers which are unfamiliar with the technical aspects of software engineering

to more easily understand if the case is generalizable towards e.g. other

organizations’ context, as this often can be more recognizable.

Reliability Measures were made to ensure the reliability of the study,

explained in section 3.5.2. However, the study has implication concerning

its reliability. Evidence from the study would have had problems demon-

strating similar results under consistent conditions due to the organization

being dynamic. The results from the study with low verification due to

low amount of evidence, or secondary sources will have low reliability. The

results with high verification (see table 5.1) have higher reliability, due to

the strength of the evidence and especially their source. The mixture of

the evidence in the study, result in an overall moderate reliability of the

study.

81

Discussion Chapter 5

5.3.2 Research Process

The research process lasted eight months, and reached from August 2016

to May 2017. This included everything from planning and designing the

case, to executing it and writing the thesis. The time constraints were the

limitation which proved to impact the case to the greatest extent. The case

turned out to require more time to complete than first anticipated.

Process tracing as a within-case analysis method proved to require a profi-

ciency which extends beyond the researcher’s skill regarding qualitative re-

search. The thesis describe the work conducted by one researcher over a ten

month period at a master course. The work indicate that the researcher un-

derestimated the work needed to conduct a process tracing analysis, which

can further indicate that process tracing as an analysis method, is unfit for

smaller projects with novice researchers.

The need for explicit, and sequential events in process tracing, lead the

researcher to believe that the projects was also unfit for this type of analysis.

The project lacked a defined starting and end-point, as it was an continuous

development of an existing product.

5.3.3 Research Findings

The CPOs in the study have various degree of supporting evidence. Some

of the CPOs are highly supported by other findings, and therefore weighs

heavier than the ones without supporting ones. Findings from e.g. in-

terviews where the interviewee speaks of a phenomenon which only they

experienced, is for example hard to support with complementary evidence.

This leads to hypotheses being verified to various levels based on not only

the amount of evidence which points in its direction, but also the strength

of each individual piece of evidence. The sum of the hypotheses’ strength

is summarized in table 5.1.

The causal effect of an explanatory variable is defined by Bennet & George

[50] as ”the change in the probability and/or value of that dependent vari-

able that would have occurred if the explained variable had assumed a

different value” (p. 1). This is a troublesome definition of causal effect,

because it is highly connected to the reliability of the study. The problem

is that it is not possible to re-run history and change only one variable that

would allow us to observe the cause effect of that variable, in the same way

that it is impossible to redo the study with the exact same results [50].

82

Discussion Chapter 5

In the study, it proved to be harder to than expected to discover a sequence

of variables which could be sufficiently identified as causal mechanisms.

Due to time limitations in the study, some areas were not explored to a

full extent. For example, the researcher could have explored new areas

concerning the research question, or further investigated the aforementioned

hypotheses. The limitations of a congruence case study, contra process

tracing caused a lower degree of causal strength of the findings.

5.3.4 Research Ethics

The research described in this thesis is done according to the Norwegian Na-

tional Research Ethics Committee’s guidelines for research ethics in science

and technology (NENT), explained in section 3.4. NENT state that ”re-

search that involves research subjects raises special requirements regarding

respect for the individual subject” [54].

The data presented in the thesis is confidential, meaning that it is anonymized

to such an extent that the persons can not be identified by the information

presented in the thesis. This lead to issues regarding being able to suffi-

ciently describing persons with e.g. specific roles, areas of responsibility,

or similar features. The anonymisation process have to some extent pre-

vented extensive description of the case. This has made the case imprecise

in some areas, but is however considered more important than identifying

characteristics related to the subjects in the study.

83

Chapter 6
Conclusion

This chapter conclude the main results found in the research. Further,

the chapter introduces possible future work based on the the research’s

results.

6.1 Research Question

RQ - Why is scaling Scrum challenging for a large-scale development

organization?

The thesis aim to investigate reasons for why scaling Scrum is challenging

for a large-scale development organization, and what characteristics make

scaling Scrum difficult. The thesis aims to contribute to an increased col-

lective collective knowledge regarding challenges of large-scale agile devel-

opment.

As presented in the thesis there are multiple reasons for why scaling Scrum

is challenging for a large-scale development organization. The thesis result

in four hypothesis which include multiple characteristics which indicate why

scaling Scrum is difficult.

The resulting hypotheses (shown in table 6.1) are obtained from a congru-

ence case study conducted at a global software development organization

using Scrum on a large scale.

84

Conclusion Chapter 6

Table 6.1: Hypotheses (Subhypotheses are indented and marked
with a ”•”).

Hypotheses

Nihil’s Scrum structure forms coordination issues
• in multiple-team organization
• in single-team organization

Communication distances in Nihil create a lack of individual
team members’ project understanding
Rigid processes in Nihil impair agility

The results of why scaling scrum is difficult in the organization, can be

categorized into three main areas: Coordination, communication, and pro-

cesses. Neither of the three categories are isolated, and the results from

the study overlaps a lot in how they can be categorized. The hypotheses’

categorization matches previously suggested research challenges regarding

agile research, with topics such as: inter-team communication, large project

organization, and scaling agile practices [4].

Issues with coordination across multiple teams is seen as a strong factor to

why it is challenging for the organization to scale up Scrum. Multiple char-

acteristics related to structure and coordinating events, indicate that Scrum

is challenging to scale. Coordination in the way single teams are organized

is weakly verified as a reason, because of limitations to the study.

Communication is largely related to all the work in the organization, and

proves to be an important factor connected to the challenge of scaling Scrum

for a large-scale organization. Distinctive characteristics related to commu-

nication, such as indirect communication affects the organizations ability to

scale well, and present challenges in large-scale Scrum.

Rigid processes that get in the way of agile development suggest to be a

moderately contributing factor to why scaling Scrum is challenging in the

organization. Increased documentation and centralized decision making are

characteristics of rigid processes which indicate that scaling Scrum becomes

increasingly difficult at large scale.

The resulting hypotheses combined, create a collective basis for answering

the main reasons for why scaling Scrum is challenging in the organization.

The accompanied characteristics help indicate the reason behind the chal-

lenges.

85

Conclusion Chapter 6

6.2 Future Work

The thesis’ case study gives insight to some of the challenges regarding large-

scale agile development in the organization. The congruence case method

gives mechanistic evidence, which is weak in terms of enabling causal infer-

ence. It would be interesting to analyze a similar case with a real process-

tracing approach, with focus on events and activities throughout a project

with a well-defined start and end point. By performing a sequential pro-

cess tracing approach, the resulting evidences’ causal inference would be

stronger. A follow-up process tracing study, could base its approach on the

results from this thesis’ work.

The main cause for limitation to the thesis was its time constraint. Further

work on the same project as described in the thesis could lead to a deeper

and more exhaustive investigation of the phenomena in the case. The case

could be further investigated, with multiple new hypotheses which could

provide a larger basis for explaining the challenges behind scaling Scrum

in the organization. Such an investigation would also presumably identify

more rival hypotheses, which again would strengthen results.

86

Bibliography

[1] T. Dingsøyr and N. B. Moe, “Towards Principles of Large-Scale
Agile Development A Summary of the Workshop at XP2014 and a
Revised Research Agenda,” Agile Methods. Large-Scale Development,
Refactoring, Testing, and Estimation, vol. 199, pp. 1–8, 2014. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-14358-3 1

[2] A. Q. Gill, B. Henderson-Sellers, and M. Niazi, “Scaling for agility:
A reference model for hybrid traditional-agile software development
methodologies,” Information Systems Frontiers, pp. 1–27, 2016.
[Online]. Available: http://dx.doi.org/10.1007/s10796-016-9672-8

[3] L. Williams and C. Alistair, “Agile Software Development: It’s
about Feedback and Change,” IEEE Computer Society, vol. 36, pp.
39–43, 2003. [Online]. Available: http://ieeexplore.ieee.org/document/
1204373/

[4] T. Dingsøyr and N. B. Moe, “Research challenges in large-scale
agile software development,” ACM SIGSOFT Software Engineering
Notes, vol. 38, no. 5, pp. 38–39, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2507288.2507322

[5] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of
agile methodologies: Towards explaining agile software development,”
Journal of Systems and Software, vol. 85, no. 6, pp. 1213–1221,
jun 2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121212000532

[6] D. Cohen, M. Lindvall, and P. Costa, “An Introduction to Agile
Methods,” in Advances in Computers, 2004, vol. 62, no. C, pp.
1–66. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0065245803620012

[7] M. Paasivaara, C. Lassenius, and V. T. Heikkila, “Inter-team
coordination in large-scale globally distributed scrum: Do Scrum-
of-Scrums really work?” Empirical Software Engineering and
Measurement (ESEM), 2012 ACM-IEEE International Symposium on,
pp. 235–238, 2012. [Online]. Available: http://doi.acm.org/10.1145/
2372251.2372294

87

http://dx.doi.org/10.1007/978-3-319-14358-3_1
http://dx.doi.org/10.1007/s10796-016-9672-8
http://ieeexplore.ieee.org/document/1204373/
http://ieeexplore.ieee.org/document/1204373/
http://dl.acm.org/citation.cfm?id=2507288.2507322
http://www.sciencedirect.com/science/article/pii/S0164121212000532
http://www.sciencedirect.com/science/article/pii/S0164121212000532
http://linkinghub.elsevier.com/retrieve/pii/S0065245803620012
http://linkinghub.elsevier.com/retrieve/pii/S0065245803620012
http://doi.acm.org/10.1145/2372251.2372294
http://doi.acm.org/10.1145/2372251.2372294

Bibliography

[8] R. K. Yin, Case Study Research: Design and Methods, 5th ed. Sage
Publications, Inc, 2014.

[9] T. Dingsøyr, T. E. Fægri, and J. Itkonen, “What Is Large
in Large-Scale? A Taxonomy of Scale for Agile Software
Development,” in Product-Focused Software Process Improvement,
2014, vol. 8892, no. 7465, pp. 273–276. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-13835-0 20

[10] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “The Agile Manifesto,” 2001. [Online]. Available:
http://agilemanifesto.org/history.html

[11] S. Shore, James., Warden, The Art of Agile Development. California:
O’Reilly Media, Inc., 2008.

[12] R. Freedman, The Agile Consultant. Apress, 2016.

[13] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still,
“The impact of agile practices on communication in software
development,” Empirical Software Engineering, vol. 13, no. 3, pp.
303–337, jun 2008. [Online]. Available: http://link.springer.com/10.
1007/s10664-008-9065-9

[14] J. Highsmith and A. Cockburn, “Agile software development: the
business of innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.
[Online]. Available: http://ieeexplore.ieee.org/document/947100/

[15] K. Schwaber and J. Sutherland, “The Scrum Guide - The
Definitive Guide to Scrum: The Rules of the Game,” Scrum.
org, vol. 2, no. October, p. 17, 2011. [Online]. Available: http:
//www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf

[16] Scrum.org, “What is Scrum?” 2017. [Online]. Available: https:
//www.scrum.org/resources/what-is-scrum

[17] O. Al-Baik and J. Miller, “The kanban approach, between agility
and leanness: a systematic review,” Empirical Software Engineering,
vol. 20, no. 6, pp. 1861–1897, dec 2015. [Online]. Available:
http://link.springer.com/10.1007/s10664-014-9340-x

[18] H. Kniberg and M. Skarin, Kanban and Scrum-making the most of
both, D. Plesa, Ed. C4Media Inc., 2010, vol. 1. [Online]. Available:
http://www.infoq.com/minibooks/kanban-scrum-minibook

[19] A. Reddy, The Scrumban Revolution, 1st ed. Addison-Wesley
Professional, 2015. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2810092

[20] L. Tal, Agile Software Development with HP Agile Manager,
1st ed. Berkeley, CA: Apress, 2015. [Online]. Available: http:
//link.springer.com/10.1007/978-1-4842-1034-5

88

http://link.springer.com/chapter/10.1007/978-3-319-13835-0_20
http://agilemanifesto.org/history.html
http://link.springer.com/10.1007/s10664-008-9065-9
http://link.springer.com/10.1007/s10664-008-9065-9
http://ieeexplore.ieee.org/document/947100/
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
http://link.springer.com/10.1007/s10664-014-9340-x
http://www.infoq.com/minibooks/kanban-scrum-minibook
http://dl.acm.org/citation.cfm?id=2810092
http://dl.acm.org/citation.cfm?id=2810092
http://link.springer.com/10.1007/978-1-4842-1034-5
http://link.springer.com/10.1007/978-1-4842-1034-5

Bibliography

[21] D. Misevičiūtė, “Scrum vs. Kanban vs. Scrumban – What’s the
difference?” 2016. [Online]. Available: http://www.eylean.com/blog/
2016/08/scrum-vs-kanban-vs-scrumban-whats-the-difference/

[22] X. Wang, K. Conboy, and O. Cawley, ““Leagile” software development:
An experience report analysis of the application of lean approaches
in agile software development,” Journal of Systems and Software,
vol. 85, no. 6, pp. 1287–1299, jun 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2012.01.061

[23] S. Freudenberg and H. Sharp, “The Top 10 Burning Research Questions
from Practitioners,” IEEE Software, vol. 27, no. 5, pp. 8–9, sep 2010.
[Online]. Available: http://ieeexplore.ieee.org/document/5551011/

[24] P. Roach, “Scrum at Scale: Changing the Conversa-
tion,” 2014. [Online]. Available: https://www.scruminc.com/
scrum-scale-case-modularity/

[25] A. Scheerer, T. Hildenbrand, and T. Kude, “Coordination in
Large-Scale Agile Software Development: A Multiteam Systems
Perspective,” in 2014 47th Hawaii International Conference on
System Sciences. IEEE, jan 2014, pp. 4780–4788. [Online]. Available:
http://ieeexplore.ieee.org/document/6759189/

[26] O. Ktata and G. Lévesque, “Agile development,” in Proceedings
of the 2009 C3S2E conference on - C3S2E ’09. New York,
New York, USA: ACM Press, 2009, p. 59. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1557626.1557636

[27] J. M. Bass, “Artefacts and agile method tailoring in large-
scale offshore software development programmes,” Information and
Software Technology, vol. 75, pp. 1–16, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2016.03.001

[28] M. Paasivaara and C. Lassenius, “Deepening Our Understanding of
Communities of Practice in Large-Scale Agile Development,” in 2014
Agile Conference. IEEE, jul 2014, pp. 37–40. [Online]. Available:
http://ieeexplore.ieee.org/document/6910401/

[29] J. M. Bass, “Agile Method Tailoring in Distributed Enterprises:
Product Owner Teams,” in 2013 IEEE 8th International Conference
on Global Software Engineering. IEEE, aug 2013, pp. 154–163.
[Online]. Available: http://ieeexplore.ieee.org/document/6613080/

[30] S. W. Ambler, “Agile Software Development at Scale,” in
Balancing Agility and Formalism in Software Engineering, 2008,
pp. 1–12. [Online]. Available: http://link.springer.com/10.1007/
978-3-540-85279-7 1

[31] B. Ramesh, L. Cao, J. Kim, K. Mohan, and T. L. James, “Conflicts
and complements between eastern cultures and agile methods: an
empirical investigation,” European Journal of Information Systems,

89

http://www.eylean.com/blog/2016/08/scrum-vs-kanban-vs-scrumban-whats-the-difference/
http://www.eylean.com/blog/2016/08/scrum-vs-kanban-vs-scrumban-whats-the-difference/
http://dx.doi.org/10.1016/j.jss.2012.01.061
http://ieeexplore.ieee.org/document/5551011/
https://www.scruminc.com/scrum-scale-case-modularity/
https://www.scruminc.com/scrum-scale-case-modularity/
http://ieeexplore.ieee.org/document/6759189/
http://portal.acm.org/citation.cfm?id=1557626.1557636
http://dx.doi.org/10.1016/j.infsof.2016.03.001
http://ieeexplore.ieee.org/document/6910401/
http://ieeexplore.ieee.org/document/6613080/
http://link.springer.com/10.1007/978-3-540-85279-7_1
http://link.springer.com/10.1007/978-3-540-85279-7_1

Bibliography

no. June 2012, 2017. [Online]. Available: http://link.springer.com/
article/10.1057/s41303-016-0023-0

[32] P. L. Bannerman, E. Hossain, and R. Jeffery, “Scrum Practice
Mitigation of Global Software Development Coordination Challenges:
A Distinctive Advantage?” in 2012 45th Hawaii International
Conference on System Sciences. IEEE, jan 2012, pp. 5309–5318.
[Online]. Available: http://ieeexplore.ieee.org/document/6149537/

[33] N. B. Moe, H. H. Olsson, and T. Dingsøyr, “Trends in Large-Scale
Agile Development,” in Proceedings of the Scientific Workshop
Proceedings of XP2016 on - XP ’16 Workshops, no. 7465. New York,
New York, USA: ACM Press, 2016, pp. 1–4. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2962695.2962696

[34] A. Scheerer, S. Bick, T. Hildenbrand, and A. Heinzl, “The Effects of
Team Backlog Dependencies on Agile Multiteam Systems: A Graph
Theoretical Approach,” in 2015 48th Hawaii International Conference
on System Sciences, vol. 2015-March. IEEE, jan 2015, pp. 5124–5132.
[Online]. Available: http://ieeexplore.ieee.org/document/7070428/

[35] J. Pernst̊al, R. Feldt, and T. Gorschek, “The lean gap: A review of
lean approaches to large-scale software systems development,” Journal
of Systems and Software, vol. 86, no. 11, pp. 2797–2821, nov 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2013.06.035

[36] C. Hibbs, S. Jewett, and M. Sullivan, The Art of Lean Software De-
velopment: A Practical and Incremental Approach, 1st ed. O’Reilly
Media inc., 2009.

[37] K. Petersen, “Is Lean Agile and Agile Lean?” in Modern Software
Engineering Concepts and Practices. IGI Global, 2011, no. Beck
2000, pp. 19–46. [Online]. Available: http://services.igi-global.com/
resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-215-4.ch002

[38] F. Evbota, E. Knauss, and A. Sandberg, “Scaling up the
Planning Game: Collaboration Challenges in Large-Scale Agile
Product Development,” in Agile Processes, in Software Engineering,
and Extreme Programming: 17th International Conference, XP
2016, 2016, vol. 251, pp. 28–38. [Online]. Available: http:
//link.springer.com/10.1007/978-3-319-33515-5 3

[39] The LeSS Company B.V., “Large Scale Scrum (LeSS),” 2017. [Online].
Available: https://less.works/less/framework/introduction.html

[40] Scaled Agile Inc., “Scaled Agile Framework,” 2017. [Online]. Available:
http://www.scaledagileframework.com/

[41] A. Elssamadisy, “InfoQ,” 2013. [Online]. Available: https://www.
infoq.com/news/2013/08/safe

[42] D. I. Jacobsen and J. Thorsvik, Hvordan Organisasjoner Fungerer,
4th ed. Bergen: Fagbokforlaget, 2013.

90

http://link.springer.com/article/10.1057/s41303-016-0023-0
http://link.springer.com/article/10.1057/s41303-016-0023-0
http://ieeexplore.ieee.org/document/6149537/
http://dl.acm.org/citation.cfm?doid=2962695.2962696
http://ieeexplore.ieee.org/document/7070428/
http://dx.doi.org/10.1016/j.jss.2013.06.035
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-215-4.ch002
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-215-4.ch002
http://link.springer.com/10.1007/978-3-319-33515-5_3
http://link.springer.com/10.1007/978-3-319-33515-5_3
https://less.works/less/framework/introduction.html
http://www.scaledagileframework.com/
https://www.infoq.com/news/2013/08/safe
https://www.infoq.com/news/2013/08/safe

Bibliography

[43] J. Iivari and N. Iivari, “The relationship between organizational
culture and the deployment of agile methods,” Information and
Software Technology, vol. 53, no. 5, pp. 509–520, may 2011. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2010.10.008

[44] B. J. Oates, Researching Information Systems and Computing. Lon-
don: SAGE Publications Ltd., 2006.

[45] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, apr 2009. [Online]. Available:
http://link.springer.com/10.1007/s10664-008-9102-8

[46] J. Seawright, “Case Studies and Theory Development in the Social
Sciences. By Alexander George and Andrew Bennett. (MIT Press,
2005.),” The Journal of Politics, vol. 70, no. 1, pp. 276–278, jan
2008. [Online]. Available: http://www.journals.uchicago.edu/doi/10.
1017/S0022381607080231

[47] G. Allan, “A critique of using grounded theory as a research method,”
Electronic Journal of Business Research Method, vol. 2, no. 1, pp.
1–10, 2003. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.129.9102

[48] D. Collier, “Understanding Process Tracing,” PS: Political Science &
Politics, vol. 44, no. 04, pp. 823–830, oct 2011. [Online]. Available:
http://www.journals.cambridge.org/abstract S1049096511001429

[49] J. Blatter and M. Haverland, “Case Studies and (Causal-) Process
Tracing,” SSRN Electronic Journal, no. October, pp. 1–27, 2014.
[Online]. Available: http://www.ssrn.com/abstract=2390618

[50] A. Bennet and A. L. George, “Process Tracing in Case
Study Research,” MacArthur Foundation Workshop on Case
Study Methods, Belfer Center for Science and Interna-
tional Affairs (BCSIA), Harvard University, pp. 104–105,
1997. [Online]. Available: https://www.uzh.ch/cmsssl/suz/dam/jcr:
00000000-5103-bee3-0000-000059b16b9d/05.19.bennett george.pdf

[51] D. Collier, Process Tracing: Introduction and Exercises. De-
partment of Political Science, University of California, Berkeley,
2010. [Online]. Available: http://dmeforpeace.org/sites/default/files/
Collier ProcessTracing.pdf

[52] D. Beach and R. Pedersen, Causal Case Study Methods. Ann
Arbor, MI: University of Michigan Press, 2016. [Online]. Available:
http://www.press.umich.edu/6576809

[53] J. Blatter and M. Haverland, “Congruence Analysis,” in Designing
Case Studies. London: Palgrave Macmillan UK, 2012, pp. 144–204.
[Online]. Available: http://link.springer.com/10.1057/9781137016669
4

91

http://dx.doi.org/10.1016/j.infsof.2010.10.008
http://link.springer.com/10.1007/s10664-008-9102-8
http://www.journals.uchicago.edu/doi/10.1017/S0022381607080231
http://www.journals.uchicago.edu/doi/10.1017/S0022381607080231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.9102
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.9102
http://www.journals.cambridge.org/abstract_S1049096511001429
http://www.ssrn.com/abstract=2390618
https://www.uzh.ch/cmsssl/suz/dam/jcr:00000000-5103-bee3-0000-000059b16b9d/05.19.bennett_george.pdf
https://www.uzh.ch/cmsssl/suz/dam/jcr:00000000-5103-bee3-0000-000059b16b9d/05.19.bennett_george.pdf
http://dmeforpeace.org/sites/default/files/Collier_Process Tracing.pdf
http://dmeforpeace.org/sites/default/files/Collier_Process Tracing.pdf
http://www.press.umich.edu/6576809
http://link.springer.com/10.1057/9781137016669_4
http://link.springer.com/10.1057/9781137016669_4

Bibliography

[54] The National Committee for Research Ethics in Science
and Technology (NENT), Guidelines for Research Ethics in
Science and Technology, 2nd ed., 2016. [Online]. Avail-
able: https://www.etikkom.no/en/ethical-guidelines-for-research/
guidelines-for-research-ethics-in-science-and-technology/

[55] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
Empirical Methods for Software Engineering Research,” in Guide to
Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D. I. K. Sjøberg, Eds. London: Springer London, 2008, vol. 53,
no. 9, pp. 285–311. [Online]. Available: http://link.springer.com/10.
1007/978-1-84800-044-5 11

[56] L. R. Vijayasarathy and D. Turk, “Agile software development:
A survey of early adopters,” Journal of Information Technology
Management, vol. XIX, no. 2, pp. 1–8, 2008. [Online]. Available:
http://www.aom-iaom.org/jitm pdfs/jitm 08/article3.pdf

[57] A. Bryman, Social research methods, 4th ed. Oxford: Oxford Univer-
sity Press Inc., 2012.

[58] M. Cohn, “Advice on Conducting the Scrum
of Scrums Meeting,” 2007. [Online]. Avail-
able: https://www.scrumalliance.org/community/articles/2007/may/
advice-on-conducting-the-scrum-of-scrums-meeting

[59] L. Faria, “Scrum of Scrums: Running Agile on Large Projects,”
2013. [Online]. Available: https://www.scrumalliance.org/community/
articles/2013/june/scrum-of-scrums-running-agile-on-large-projects

[60] L. Šteinberga and D. Šmite, “Towards a Contemporary Under-
standing of Motivation in Distributed Software Projects: Solution
Proposal,” Scientific Papers, Computer Science and Informa-
tion Technologies, Vol. 770, vol. 770, pp. 15 – 26, 2011.
[Online]. Available: https://dspace.lu.lv/dspace/bitstream/handle/7/
2266/LUR-770-Datorzinatne.pdf?sequence=1{&}isAllowed=y

[61] S. Dorairaj, J. Noble, and P. Malik, “Effective Communication
in Distributed Agile Software Development Teams,” in Agile
Processes in Software Engineering and Extreme Programming,
2011, vol. 77, pp. 102–116. [Online]. Available: http://
link.springer.com/chapter/10.1007/978-3-642-20677-1 8{%}5Cnhttp:
//link.springer.com/content/pdf/10.1007/978-3-642-20677-1 8.pdf

[62] J. Hunt, “Agile Methods and the Agile Manifesto,” in Agile Software
Construction. London: Springer London, 2006, pp. 9–30. [Online].
Available: http://dx.doi.org/10.1007/1-84628-262-4 2

[63] K. Power, “A Model for Understanding When Scaling Agile Is
Appropriate in Large Organizations,” in Agile Methods. Large-Scale
Development, Refactoring, Testing, and Estimation: Revised Selected
Papers of the XP 2014, 2014, pp. 83–92. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-14358-3 8

92

https://www.etikkom.no/en/ethical-guidelines-for-research/guidelines-for-research-ethics-in-science-and-technology/
https://www.etikkom.no/en/ethical-guidelines-for-research/guidelines-for-research-ethics-in-science-and-technology/
http://link.springer.com/10.1007/978-1-84800-044-5_11
http://link.springer.com/10.1007/978-1-84800-044-5_11
http://www.aom-iaom.org/jitm_pdfs/jitm_08/article3.pdf
https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
https://www.scrumalliance.org/community/articles/2013/june/scrum-of-scrums-running-agile-on-large-projects
https://www.scrumalliance.org/community/articles/2013/june/scrum-of-scrums-running-agile-on-large-projects
https://dspace.lu.lv/dspace/bitstream/handle/7/2266/LUR-770-Datorzinatne.pdf?sequence=1{&}isAllowed=y
https://dspace.lu.lv/dspace/bitstream/handle/7/2266/LUR-770-Datorzinatne.pdf?sequence=1{&}isAllowed=y
http://link.springer.com/chapter/10.1007/978-3-642-20677-1_8{%}5Cnhttp://link.springer.com/content/pdf/10.1007/978-3-642-20677-1_8.pdf
http://link.springer.com/chapter/10.1007/978-3-642-20677-1_8{%}5Cnhttp://link.springer.com/content/pdf/10.1007/978-3-642-20677-1_8.pdf
http://link.springer.com/chapter/10.1007/978-3-642-20677-1_8{%}5Cnhttp://link.springer.com/content/pdf/10.1007/978-3-642-20677-1_8.pdf
http://dx.doi.org/10.1007/1-84628-262-4_2
http://link.springer.com/10.1007/978-3-319-14358-3_8

Bibliography

[64] G. Kaufmann and A. Kaufmann, Psykologi i organisasjon og ledelse,
4th ed. Bergen: Fagbokforlaget Vigmostad og Bjørke AS, 2009.

[65] K. Petersen and C. Wohlin, “The effect of moving from a plan-
driven to an incremental software development approach with agile
practices,” Empirical Software Engineering, vol. 15, no. 6, pp.
654–693, dec 2010. [Online]. Available: http://link.springer.com/10.
1007/s10664-010-9136-6

93

http://link.springer.com/10.1007/s10664-010-9136-6
http://link.springer.com/10.1007/s10664-010-9136-6

Appendix A
Informed Consent Form

Forespørsel om deltakelse i forskningsprosjektet

Skalering av smidige programvareutviklingsprosjekter:

en case studie

Bakgrunn og formål

Forskningsprosjektet er en masteroppgave ved Universitetet i Bergen, institutt for informasjons- og

medievitenskap. Prosjektet tar opp utfordringer med å skalere utviklingsprosjekter av typen Scrum fra

et til flere teams. I prosjektet vil det bli analysert data fra flere kilder for å finne årsakssammenhenger

til hvorfor skalering er problematisk i det aktuelle prosjektet. Prosjektet gjennomføres i samarbeid med

itslearning.

Utvalg av deltagere til forskningsprosjektet blir gjort på grunnlag av hvilket utviklingsprosjekt den

enkelte deltaker er involvert i.

Hva innebærer deltakelse i studien?

Studien vil innebære datainnsamling i form av intervju og observasjon. Observasjonsdelen av studien

krever ingen aktiv deltakelse, mens intervju krever aktiv deltagelse fra personene som ønsker å delta.

Intervjuspørsmålene vil i hovedsak omhandle deltakerens engasjement og deltakelse i

utviklingsprosjekter. Spørsmålene vil være rettet mot tanker og synspunkter ol. angående måten

utviklingen foregår på. Data fra intervju registreres i form av lydopptak og notater.

Hva skjer med informasjonen om deg?

Alle personopplysninger vil bli behandlet konfidensielt. Kun student og veileder til masteroppgaven

vil ha tilgang til personopplysninger. Notater og lydopptak lagres sikkert på en digital lagringsenhet.

Prosjektet vil anonymiseres, og deltakere i prosjektet vil ikke kunne gjenkjennes i publikasjon av

oppgaven.

Prosjektet skal etter planen avsluttes 01.06.2017. Datamaterialet anonymiseres etter prosjektslutt.

Frivillig deltakelse

Det er frivillig å delta i studien, og du kan når som helst trekke ditt samtykke uten å oppgi noen grunn.

Dersom du trekker deg, vil alle opplysninger om deg bli anonymisert.

Dersom du har spørsmål til studien, ta kontakt med:

Simen Jensen på epost simen.jensen@uib.no / tlf. 904 78 039,

eller veileder Bjørnar Tessem på epost bjornar.tessem@uib.no / tlf. 555 84 103

Studien er meldt til Personvernombudet for forskning, NSD - Norsk senter for forskningsdata AS.

Samtykke til deltakelse i studien

Jeg har mottatt informasjon om studien, og er villig til å delta

--

(Signert av prosjektdeltaker, dato)

I

Appendix B
NSD Approval

Bjørnar Tessem

Institutt for informasjons- og medievitenskap Universitetet i Bergen

Fosswinckelsgate 6

5007 BERGEN

Vår dato: 31.10.2016 Vår ref: 50358 / 3 / ASF Deres dato: Deres ref:

TILBAKEMELDING PÅ MELDING OM BEHANDLING AV PERSONOPPLYSNINGER

Vi viser til melding om behandling av personopplysninger, mottatt 03.10.2016. Meldingen gjelder

prosjektet:

Personvernombudet har vurdert prosjektet og finner at behandlingen av personopplysninger er

meldepliktig i henhold til personopplysningsloven § 31. Behandlingen tilfredsstiller kravene i

personopplysningsloven.

Personvernombudets vurdering forutsetter at prosjektet gjennomføres i tråd med opplysningene gitt i

meldeskjemaet, korrespondanse med ombudet, ombudets kommentarer samt

personopplysningsloven og helseregisterloven med forskrifter. Behandlingen av personopplysninger

kan settes i gang.

Det gjøres oppmerksom på at det skal gis ny melding dersom behandlingen endres i forhold til de

opplysninger som ligger til grunn for personvernombudets vurdering. Endringsmeldinger gis via et

eget skjema, http://www.nsd.uib.no/personvern/meldeplikt/skjema.html. Det skal også gis melding

etter tre år dersom prosjektet fortsatt pågår. Meldinger skal skje skriftlig til ombudet.

Personvernombudet har lagt ut opplysninger om prosjektet i en offentlig database,

http://pvo.nsd.no/prosjekt.

Personvernombudet vil ved prosjektets avslutning, 01.06.2017, rette en henvendelse angående

status for behandlingen av personopplysninger.

Vennlig hilsen

Kontaktperson: Amalie Statland Fantoft tlf: 55 58 36 41

Vedlegg: Prosjektvurdering

50358 Skalering av smidige programvareutviklingsprosjekter: en case studie
Behandlingsansvarlig Universitetet i Bergen, ved institusjonens øverste leder
Daglig ansvarlig Bjørnar Tessem
Student Simen Jensen

Kjersti Haugstvedt
Amalie Statland Fantoft

II

Appendices Chapter

Personvernombudet for forskning

Prosjektvurdering - Kommentar
Prosjektnr: 50358

INFORMASJON OG SAMTYKKE

I følge meldeskjemaet skal deltakerne i studien informeres skriftlig og muntlig om prosjektet og samtykke til

deltakelse. Informasjonsskrivet er godt utformet.

METODE

I meldeskjemaet har dere krysset av for at dere skal innhente personopplysninger gjennom intervjuer og

observasjon. Personvernombudet forutsetter at alle som observeres informeres og samtykker til deltagelse,

dersom det skal registreres personidentifiserende opplysninger fra observasjon.

INFORMASJONSSIKKERHET

Personvernombudet legger til grunn at dere behandler alle data og personopplysninger i tråd med Universitetet i

Bergen sine retningslinjer for innsamling og videre behandling av forskningsdata og personopplysninger.

PROSJEKTSLUTT OG ANONYMISERING

I informasjonsskrivet har dere informert om at forventet prosjektslutt er 01.06.2017. Ifølge prosjektmeldingen

skal dere da anonymisere innsamlede opplysninger. Anonymisering innebærer at dere bearbeider datamaterialet

slik at ingen enkeltpersoner kan gjenkjennes. Det gjør dere ved å slette direkte personopplysninger, slette eller

omskrive indirekte personopplysninger og slette digitale lydopptak

III

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Project Background
	Research Problem
	Research Questions

	Target Group
	Personal Motivation
	Research Method
	Scope and Limitations
	Thesis Structure

	Theory
	Agile Methods
	Scrum
	Kanban
	Scrumban

	Scalability
	Inter-Team Coordination
	Distributed Large Project Organization
	Release Planning and Architecture
	Large-Scale Agile Frameworks

	Organizational Communication
	Communication Channels

	Organization Culture

	Research Method
	Case Study
	Case Study in Software Engineering
	Case Study Criticism

	Process Tracing
	Causal-Process Observations & Causal Inference
	Process Tracing Test-Evaluation

	Congruence Case Study
	Congruence Analysis Inference
	Explaining Outcome Congruence Studies

	Research Ethics
	Research Approach
	Plan
	Design
	Prepare
	Data Collection
	Analyze
	Share

	Results
	Nihil Case Context
	Generating the Hypotheses
	Concept Operationalization

	Hypotheses
	Nihil's Scrum Structure Forms Coordination Issues
	Communication Distances in Nihil Create a Lack of Individual Team Members' Project Understanding
	Rigid Processes in Nihil Impair Agility

	Discussion
	Research Question
	Hypotheses
	Nihil's Scrum Structure Forms Coordination Issues
	Communication Distances in Nihil Create a Lack of Individual Team Members' Project Understanding
	Rigid Processes in Nihil Impair Agility
	Summary

	Evaluation of the Study
	Research Design
	Research Process
	Research Findings
	Research Ethics

	Conclusion
	Research Question
	Future Work

	Bibliography
	Appendix Informed Consent Form
	Appendix NSD Approval

