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Abstract 

Proteomics has become one of the main approaches for analyzing and understanding 

biological systems. Yet similar to other high-throughput analysis methods, the presentation of 

the large amounts of obtained data in easily interpretable ways remains challenging. In this 

review we therefore present an overview of the different ways in which proteomics software 

supports the visualization and interpretation of proteomics data. The unique challenges and 

current solutions for visualizing the different aspects of proteomics data, from acquired 

spectra via protein identification and quantification to pathway analysis, are discussed, and 

examples of the most useful visualization approaches are highlighted. Finally, we offer our 

ideas about future directions for proteomics data visualization. 
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Main text 

Background 

In recent years, mass spectrometry-based proteomics has undergone an immense 

technological progress and computational software tools have struggled to keep up with 

advancing high-throughput experimental methods [1]. In the previous decades, proteomics 

data analyses have mainly been performed with the goal to confirm a predefined hypothesis, 

whereas today the data itself is often the source from which the assumptions and conclusions 

originate. The focus has correspondingly shifted from mainly relying on a priori knowledge 

to a more unbiased data investigation, referred to as discovery proteomics, a move that is only 

partially counteracted by the emergence of targeted proteomics approaches [2, 3]. As a result, 

data analysis in proteomics has also moved increasingly towards data mining, in turn having 

direct implications on the way information is presented. 

Advances in computer hardware and graphics have supported this evolution, and have 

led to substantial progress in the field of computational proteomics, both for standalone and 

for web-based applications [4, 5]. The development of new community standard mass 

spectrometry (MS) data formats such as mzML and mzIdentML has furthermore made it 

much easier to exchange proteomics data [6, 7]. Yet despite this constantly improving 

technology, the increasing size and complexity of proteomics data still poses its challenges – 

not only to the researchers, but also to the developers of visualization tools [8, 9]. 

We here therefore present existing useful and innovative approaches to tackle the 

visualization challenges in the field of mass spectrometry based proteomics, and provide our 

ideas about necessary future developments in the field. Yet in order to keep the review to a 

reasonable length, we have to restrict the scope of this text. While very interesting in their 

own right, we therefore cannot discuss the visualization of data from data independent 
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acquisition [10], from MALDI imaging mass spectrometry [11, 12], or from structural 

proteomics [13] in any detail. Also, as our focus is on the end-user, statistical packages such 

as R (http://www.r-project.org), Matlab (MathWorks, MA,USA) and SPSS (IBM, NY, USA), 

are not covered here either. Finally, it should be noted that this review does not attempt to 

provide a complete overview of all available tools for proteomics data processing or analysis, 

see instead [14-17], but rather focuses on tools that do something visually interesting with 

proteomics data.  

The overall structure of this review is organized to follow the common workflow of 

proteomics experiments: from raw data, via identification and quantification, through pathway 

and network analysis, to whole proteome databases (Figure 1). 

 

Visualizing Raw Data 

The wet-lab part of proteomics experiments ends with the acquisition of raw data, i.e., 

the unprocessed data from the mass spectrometer, and it is vital to ensure that these data are of 

high quality and that any initial processing does not introduce deleterious effects. The 

instrument vendors have therefore developed their own tools to access, visualize and convert 

raw data, e.g., Thermo raw files can be viewed with Xcalibur (Thermo Scientific), and 

RawMeat (VAST Scientific and Thermo Scientific) can be used to visualize and compare raw 

files.  

However, the proprietary raw files are in a poorly accessible format, often not directly 

compatible with existing open source software [18]. Thus conversion to the open standard 

format mzML [6] is recommended in order to allow interaction with, visualization of, and 

downstream analyses of these data [19]. Most raw files can be converted to open source 

formats using MSConvertGUI from ProteoWizard [20].  

http://www.r-project.org/
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Quality control of samples and LC-MS performance 

Quality control of the raw data is essential in order to obtain reliable identification and 

quantification, and reproducible results [21, 22]. First, the total ion chromatogram (TIC) 

should be examined to verify satisfactory injection and ionization of the sample. Second, the 

MS1 spectra should be investigated to detect contamination and confirm high resolution with 

sharp peaks, and to ensure high performance of both the mass spectrometric and the 

chromatographic part. Third, the MS2 spectra should be checked to ensure proper 

fragmentation and resolution.  

Viewing the TIC is a quick way to ensure proper sample loading which can be 

inspected by SeeMS from the ProteoWizard package [23] (Figure 2A). Furthermore, while 

contamination by polymers and other non-peptide molecules can be detected in the TIC, the 

base peak intensity (BPI) is better for this purpose, as it shows the intensities of the most 

intense peaks in the MS1 spectra. Using MZmine [24] the typical 44 Da moieties of the 

frequent MS contaminant polyethylene glycol (PEG) [25] can be seen in a BPI 

chromatogram; such contaminants can also easily be visualized in 2D plots by viewing the 

m/z, retention time (RT) and intensity of the MS1 in the same chart (Figure 2B). Such 2D 

plots are also important to detect chromatographic shifts in RT introduced by poor 

chromatography. 

To obtain better data acquisition, statistics about charge distribution, spray current, 

target fill-times and m/z with charge distributions can be visualized and investigated. 

Visualization of the (MS1) electrospray ion current trace is exemplified by the software 

RawMeat comparing three different raw files (Figure 2C). 

Processing and comparison of raw data  
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Visual inspection and comparison of LC-MS runs is useful to uncover differences 

between runs. By selecting an MS1 feature in two different runs in the 2D view and 

inspecting them in detail in 3D, the differences become evident as illustrated by MSight [26] 

(Figure 2D). MSight also allows the manual measurement of distances in m/z and RT in the 

2D plot and displays the MS1 spectrum for the selected RT-window.  

Applying algorithms to remove noise in LC-MS data, centroiding of spectrum peaks 

and peak picking is important for downstream analyses, and visualization of these processes is 

useful to assess the impact of these steps. MZmine [24] enables visual interaction with the 

filtering prior to follow-up analyses. To reduce the file size and remove noise in the data, the 

beginning and end of LC-MS runs can be discarded, and the interactive visualization helps to 

set the thresholds (Figure 2E, left). 

To compare peak detection methods one can visualize raw data together with peak 

picking and identification results. Using MZmine, peak picking is performed in three steps 

(mass detection, chromatogram building and peak deconvolution) and each step can be 

visualized graphically. A preview of the mass detection with a given noise level threshold 

illustrates which peaks will be discarded if the process is executed (Figure 2E, right).  

Peak picking alters profile MS data in such a way that the volume of the peaks is 

represented by centroided peak height. The effect can be visualized in 3D using TOPPView 

from OpenMS [27] (Figure 2F). Viewing the peak-picked file can be useful to verify that low 

intensity peaks have been picked and that no artifacts have been introduced. TOPPView 

enables interactive visualization and comparison of two LC-MS runs at the MS1 (Figure 2G) 

and MS2 levels. 

Quantification and analytical work 
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During MS1 quantification it is important that the respective MS2 spectra are linked to 

the correct MS1 feature. The data from proprietary raw files (Thermo, AB Sciex and Bruker) 

or open source mzXML (the current standard mzML is not yet supported) can be viewed, 

searched and quantified in MaxQuant [14]. The tool allows viewing LC-MS data in 2D (RT, 

m/z and intensity) and the MS1 and MS2 spectra can also be viewed. Progenesis LC-MS 

(Nonlinear Dynamics) is commercial software for label-free quantification, with powerful 2D 

and 3D visualization of the LC-MS data (proprietary or open source files) similar to 

MaxQuant. The software updates the visualization of the LC-MS 2D map after alignment of 

the LC-MS runs to be compared, and the degree of alignment is indicated by color. The 

volumes of the MS1 peaks can also be compared visually after assigning peptide identities. 

In order to visualize and analyze chromatographic features and spectra in detail, the 

open source OpenChrom [28] tool allows users to implement their own methods, algorithms, 

filters, detectors or integrators, and supports manual interaction such as peak integration and 

quantification.  

 

Visualizing Proteomics Identifications 

The basis of any mass spectrometry based identification is a peptide to spectrum 

match (PSM), and most tools for analyzing proteomics data provide some form of spectrum 

viewer to visualize this match, allowing an expert to assess how well the peptide matches the 

spectrum, see for example [29-35]. A good spectrum viewer represents an excellent tool to 

check the quality of individual PSMs. Some viewers also go a step further by showing related 

details for the peptide to spectrum match, e.g., the spectrum viewer in PeptideShaker 

(http://peptide-shaker.googlecode.com) also includes a sequence fragmentation plot (Figure 

3A).  

http://peptide-shaker.googlecode.com/
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Comparing multiple PSMs 

In many cases it is necessary to look at more than a single PSM, for example to 

compare multiple PSMs mapping to the same peptide. And while it is possible to open one 

viewer per PSM, more advanced options are available. If two PSMs are to be compared, so-

called mirrored spectra can be used, where one spectrum is shown above the x-axis and 

another spectrum below the x-axis (Figure 3B). Mirrored spectra can be for instance be 

created in TOPPView, compomics-utilities [29] and MS Manager (Advanced Chemistry 

Development Laboratories), amongst others. 

If more than two PSMs are to be compared simultaneously, one option is to use PSM 

bubble plots [36], showing each fragment ion as a bubble where the size represents the 

intensity of the peak, the x-axis the m/z value and the y-axis the mass error (Figure 3C). With 

this approach it is possible to visualize hundreds of PSMs at the same time, e.g., to analyze 

fragmentation variability [37]. 

De novo sequencing 

A problem closely related to visualizing PSMs is the inspection of de novo results, i.e., 

the mappings between a (partial) peptide sequence and a spectrum. The most popular 

commercial software for this purpose is PEAKS [35]. Recently an open source alternative 

became available called DeNovoGUI [38], which contains an easily interpretable way of 

displaying the de novo annotations on the spectrum (Figure 3D). 

Linking spectra, peptides and proteins 

The next step involves the visualization of the connections between spectra and 

peptides, and between peptides and proteins. This is complicated by the fact that a peptide can 

map to more than one protein, known as the protein inference problem [39]. The most 
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valuable approach is an interactive visualization combining tables and spectrum viewers, 

where the user can interact with the data by selecting the proteins, peptides and spectra to 

inspect. An example of this approach is found in PRIDE Inspector [30], which allows the user 

to select a protein to see all matched peptides, then select a peptide to see the spectrum itself, 

all inside the same display. PRIDE Inspector is particularly interesting as it allows this type of 

interactive visualization for both local data (in various standard formats) and for all the public 

data in PRIDE [40]. Loading local data is particularly interesting as a means of validating the 

file content before submitting the data to public repositories. Similar approaches are used by 

other tools, e.g., Proteome Discoverer (Thermo Scientific), Scaffold 

(http://www.proteomesoftware.com), PeptideShaker (http://peptide-shaker.googlecode.com) 

and the web-based MS-Viewer [41].  

Post-translational modifications 

Post-translational modifications (PTMs) and their site assignment scores can often 

assist the interpretation of biological activity [42]. Thus, when analyzing protein and peptide 

identifications the detection and visualization of PTMs are important, and the modification 

sites are usually visualized on the sequence or spectrum. For in depth analysis and 

visualization of PTM sites the Scaffold extension Scaffold PTM 

(http://www.proteomesoftware.com) can be used. 

Targeted identification 

For targeted LC-MS data the mass spectrometer vendors have developed commercial 

software to view the data, e.g., MultiQuant (AB SCIEX) and MassHunter (Agilent). However, 

Skyline [43] is the most frequently used free software to analyze and visualize selected 

reaction monitoring (SRM) data. The peaks can be investigated with respect to shape, 

http://peptide-shaker.googlecode.com/
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retention time of elution and intensity, and the results can be compared to previously 

identified spectra (Figure 3E).  

Repurposing raw data 

A final example in this section is an intriguing combination of raw data and peptide 

identifications. In large data sets, looking up the data for a particular identified peptide 

sequence can be time-consuming. Furthermore, if the expert decides upon visual inspection of 

these data that a second search should be carried out with additional options for post-

translational modifications (PTM) that were not included in the original search, this search 

would have to be carried out on the full data complement. Systems such as Slice 

(http://slice.ionomix.com) and DICE (http://research.ionomix.com/cptac) developed by 

Askenazi et al., therefore make it possible to quickly delve into the raw data supporting a 

particular peptide identification and, if required, to extract these data for targeted re-analysis. 

 

Visualizing Quantitative Proteomics 

Visualization of quantitative proteomics data concerns relating quantity and accuracy 

of the protein measurements, represented by the detected peptide MS1 or MS2 spectra [44], to 

the analyzed conditions in experimentally meaningful ways. Most software tools for protein 

quantification provide workflows containing graphical result representations, e.g., Progenesis, 

Proteome Discoverer (Thermo Scientific), MaxQuant [45] and IsobariQ [46] for discovery 

analyses; and Skyline [43], MultiQuant (AB SCIEX) and MassHunter (Agilent Technologies) 

for targeted analyses. However, post-processing steps using other software are often required 

to obtain conclusive quantitative results. We will here focus on the most common 

visualization techniques employed by such downstream software and show examples of how 

these can be used.  
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Protein ratio distributions 

Quantitative proteomics data have to be normalized in order to be comparable. This 

normalization process can be visualized through scatter plots where the protein quantity 

values (here ratios) for all proteins are shown before processing, after log transformation, and 

after normalization (Figure 4A). Proteins with extreme values, i.e., outliers, stand out in the 

scatter plot as indicated in the figure. If the distribution is uneven or appears as several 

subpopulations, there is most likely an issue with these data, resulting from either data 

recording, or data processing. A limitation of scatter plots is that a high number of quantified 

proteins will result in many data points, which can be difficult to separate visually.  

Histograms show how many values are present in predefined bin-intervals, and a 

continuous density plot presents a profile distribution of the ratios independent of pre-defined 

bins (Figure 4A). The histogram or density plot can visualize thousands of values, and can 

illustrate whether they are normally distributed. Normality can also be analyzed using Q-Q 

plots, comparing the actual probability quantiles (y-axis) to predicted quantiles (x-axis); if the 

two distributions are similar, the points will approximate the line y = x. Q-Q-plots can be 

generated in InfernoRDN (supersedes DAnTE [47]) and Excel. Histograms can be created 

using GProX [48], Perseus provided with MaxQuant [45] and the commercial software 

GraphPad Prism (GraphPad Software Inc.). Any statistical package such as R or SPSS will 

also be able to generate these visualizations. 

Boxplots can display the spread of data across replicates (including possible outliers) 

for a condition while simultaneously providing a comparison to other conditions [49]. The 

box ranges from the first quartile (Q1, 25%) to the third quartile (Q3, 75%) of the distribution 

and represents the interquartile range; the line across the box indicates the median. The 

whiskers are lines extending from Q1 and Q3 to the most extreme data points defined based 
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on statistical formulas, e.g. Tukey, Altman or Spear, the latter extends to the minimum and 

maximum values [49]. Boxplots can be generated using BoxPlotR [50] 

(http://boxplot.tyerslab.com), a free web-tool that uses R in the background to plot data from 

delimited text files (Figure 4B). The spread in the data can be visualized further by including 

the individual data points as a so-called bee swarm which also highlights outliers. Boxplots 

can also be created using GProX and GraphPad, amongst others. 

Another way to illustrate quantitative proteomics data is to plot the fold change (using 

a log2 transformation) versus the p-value (-log10 transformed) for all the quantified proteins. 

This generates a so-called volcano plot, which highlights the proteins with high fold changes 

and low p-values, and is well-suited for illustrating changes in large datasets (Figure 4C). It 

also shows that proteins with high fold changes do not necessarily have low p-values and are 

not necessarily the most trusted candidates. On the other hand, small changes with high p-

values may be statistically better, but are not necessarily biologically interesting. For the 

generation of volcano plots tools such as GProX and Perseus can be used. 

Protein/sample sub groups 

Proteins with similar regulation between conditions are often biologically interesting. 

In Perseus, the expression level of proteins in different conditions can be presented as parallel 

line charts (conditions on the x-axis, expression level on the y-axis), and proteins with similar 

profiles will be visually linked. In order to extract proteins with similar profiles, a curve shape 

can be selected, and matching proteins listed (Figure 4D). Other software tools generating 

expression profiles are Progenesis and IsobariQ [46]. 

The individual expression levels of thousands of proteins across multiple conditions 

can be visualized by color intensity in heatmaps. A red-green color scheme (for down- and 

up-regulation) is often used, despite its obvious limits for colorblind people. Unsupervised 

http://boxplot.tyerslab.com/


 

13 
 

hierarchical clustering of the data enables grouping of conditions and/or proteins using 

dendrograms. In Perseus, it is straightforward to create heatmaps and investigate protein 

clusters using interactive dendrograms (Figure 4E). Progensis LC-MS and GProX are also 

capable of creating such heatmpas. 

By using unsupervised clustering, i.e., by not relying on previous knowledge, it is 

possible to find subgroups not otherwise considered, thus allowing the visualization to guide 

the data exploration. Principal component analysis (PCA) is a way to investigate underlying 

differences between replicates and conditions in quantitative proteomics results [51]. It is 

generally most useful to look at the first two principal components in a two dimensional 

scatter plot (Figure 4F), but 3D plots with three components are also used.  

PCA biplots illustrate whether replicates are reproducible, and if they differ in 

comparison to other groups. In Progenesis, features appearing close to a replicate in the PCA 

biplot have high abundance in that replicate, and features that cluster together have similar 

abundance profiles (Figure 4F). PCA plots can also be used to detect outliers. Other software 

generating PCA plots are Perseus and the Excel add-in Multibase 

(www.numericaldynamics.com). 

 

Protein sets and intersections 

It is often useful to use Venn diagrams to illustrate proteins that are uniquely present 

in one condition and not in others, or proteins only found in two or more conditions, e.g., to 

compare protein quantification lists based on accession numbers. There are 2n possible 

intersections for n conditions, meaning that visually Venn diagrams are limited to comparing 

four conditions (24=16 intersections) as discussed in [52]. Venny 

(http://bioinfogp.cnb.csic.es/tools/venny) is a simple online interactive tool for comparing up 

http://www.numericaldynamics.com/
http://bioinfogp.cnb.csic.es/tools/venny
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to four lists, and the common elements can easily be extracted for follow-up analysis (Figure 

4G). Other software capable of generating Venn diagrams are Scaffold and Perseus.  

Comparison of protein lists is also possible using Euler diagrams, a type of Venn 

diagram typically drawn with overlapping ellipses with their area proportional to the number 

of elements. Euler diagrams comparing three conditions can be created using eulerAPE [53] 

(http://www.eulerdiagrams.org). 

When creating Venn or Euler diagrams it is crucial to make sure that unique peptides 

are the basis for quantification, and that the accession number does not represent a protein 

group, as this will completely ruin the basis for the comparison. It is also worth mentioning 

that an unequal distribution and degree of PTMs between compared conditions could obscure 

quantitative comparisons of data sets [42]. Dedicated software, such as the Scaffold extension 

Scaffold PTM (http://www.proteomesoftware.com), therefore ought to be used to ensure 

correction interpretation of the data. 

 

Visualizing Pathways and Networks 

Proteomics analyses often result in a large amount of protein identifications, which, 

without a biological context, can be rather overwhelming. An additional refinement of the 

results is therefore needed to unravel the underlying biological knowledge. This section 

provides an overview of methods and visualization tools for the post-processing analysis of 

protein identification data.  

Functional annotation 

In general, protein identifications can be enriched by adding functional knowledge via 

protein identifiers commonly referred to as accession numbers. Various web resources and 

http://www.eulerdiagrams.org/
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databases exist for querying comprehensive meta-information that has been assigned to a 

magnitude of the protein accessions. One of these is the Gene Ontology (GO) database 

featuring three structured vocabularies (ontologies) describing biological process, cellular 

component and molecular function [54]. A protein can be assigned to one or more GO terms 

and frequency-based calculations can be performed. The standalone tool Ontologizer features 

a table and graph visualization of data linking to over-represented GO terms [55]. In the graph 

view, each of the terms is further connected to associated child terms (Figure 5A). The 

software also provides methods to search for GO term over-representation and to perform 

correction for multiple testing. 

The web-based application DAVID [56] offers functional annotations based on GO 

terms, but also provides the visualization of proteins on BioCarta (http://www.biocarta.com) 

and KEGG pathway maps [57]. As an example of the tools offered on the DAVID website, 

the functional annotation clustering allows for the grouping of redundant annotation terms. 

Here, the reported associations between genes/proteins and terms can be inspected via a 

heatmap visualization (Figure 5B).  

Protein interactions and pathways 

An important prerequisite to understand cellular processes is the knowledge about 

proteins and their interaction partners. This information is available via various public 

protein-protein interaction databases [58, 59]. The STRING [60] database holds data on 

known and predicted protein-protein interactions, and the website displays uploaded proteins 

together with interacting entities in a network (Figure 5C). The commercial software 

Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, http://www.ingenuity.com) generates 

hypothetical protein-protein interactions based on a knowledge database and integrates data 

http://www.biocarta.com/
http://www.ingenuity.com/
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from various omics formats. The inferred proteins can also be visualized in protein-protein 

interaction networks and canonical pathways. 

An additional phylogenetic view enables insights on how well proteins are conserved 

in the taxonomy. Protein interaction and biological pathway analyses can be performed using 

the Reactome database [61], containing curated data and access to reaction-based 

relationships, mainly from Homo sapiens. The interactive website allows the detailed 

investigation of pathways and the analysis of user-supplied experimental data. One option is 

to submit a list of proteins (or genes), which can be used in an enrichment analysis to find 

enriched pathways in the supplied data. It is also possible to submit numerical expression 

data, resulting in color-coded nodes in the Reactome pathway display according to the 

quantitative values from the provided experimental data (Figure 5D). Expression data can 

also be visualized in tissues, e.g., via a human body visualization. 

The KEGG database integrates genomic, biochemical and functional data by focusing 

on intermediate pathways [57]. Identified proteins can be mapped to their corresponding 

KEGG ontologies by the KEGG Automated Annotation Server (KAAS) [62] and 

representative pathways are visualized directly on the website. The interactive pathway 

explorer iPath 2.0 [63] presents a web-based application to visualize and analyze data in 

several regulatory and metabolic pathway maps (based upon KEGG information). 

Going one step further in terms of customization capabilities, PathVisio [64] 

represents a useful stand-alone software package with the possibility to draw and edit 

biological pathways. The user can also load expression data and fully modify the visualization 

results. 

Graphs and networks 
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The standalone visualization platform Cytoscape allows for the visualization of 

biomolecular interaction networks and integration of related attribute data [65]. Cytoscape 

supports a plethora of plugins [66]: among the most popular is BiNGO for calculating 

overrepresented GO terms and displaying them in a network [67]. The software also includes 

access to various interaction databases by means of the Proteomics Standard Initiative 

Common QUery InterfaCe (PSICQUIC) web service [68] – providing the basis for protein-

protein interaction visualization. 

In general, protein data can be modeled and visualized as graphs to reflect the high 

degree of connectedness with external meta-information, such as pathways and ontologies. 

Graphs have the advantage of showing different types of information and their relations at the 

same time, whereas a representation using multiple tables will increase in complexity with 

each dimension. However, graphs with a high number of entities can be hard to read. As a 

consequence, data filtering and querying strategies are needed to present the given 

information in a useful way. Graphs can be directly visualized in tools such as Cytoscape or 

Gephi (https://gephi.org), for further data exploration.  

Cytoscape is currently the most used graph analysis software for biological data, 

mainly due to its numerous biology related plugins and its links to relevant ontologies and 

databases. Gephi on the other hand is a more general tool for displaying and exploring various 

types of networks and graphs, and is not as strongly linked to a specific use case. For example 

it provides a set of generic layout algorithms to change the shape of a graph during analysis, 

and includes various clustering and dynamic filtering options, allowing the user to work 

interactively with complex datasets. Both Cytoscape and Gephi are plugin-based and provide 

APIs (application programmer interfaces) for users wanting to create their own plugins.  

https://gephi.org/
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Another example where graphs can be useful is when exploring protein inference. 

Each peptide and protein can be represented as nodes in a graph with an edge added between 

a peptide and a protein if the protein can be inferred by the given peptide. In this way the 

complexity of protein inference issues can be visualized (Figure 5E). For an example of how 

this can be achieved using Cytoscape, see [69]. 

Note that in addition to choosing a useful visualization strategy, one should keep in 

mind the reliability of the underlying data and the often automatically inferred pathway 

information. A study by Müller et al. [70] demonstrated that suggested pathway information 

ought to be used with caution, as incorrect application of software may result in data 

misinterpretation. For further details on challenges related to pathway analysis, see [71]. 

 

Visualizing Proteome Databases 

There are numerous repositories for proteomics data, for example: PRIDE, 

PeptideAtlas, the Global Proteome Machine Database (GPMDB), neXtProt, ProteomicsDB, 

and the Human Proteome Map [40, 72-76]. Common between all these repositories is that 

they contain large amounts of mass spectrometry generated proteomics data to be browsed 

and displayed in various ways. All of them display the proteins identified in the database, 

usually in tabular format, the peptide coverage and the MS/MS spectra associated with the 

identifications. In the following we focus on human data, as well as visualization options for 

large scale proteome data. PRIDE, GPMDB and neXtProt will not be discussed further as 

they have limited options for visualizing complex protein data, except through tabular 

formats. 

Mapping proteins to chromosomes 
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An interesting way of displaying a large gathering of data as found in these databases 

is by linking the proteins to the chromosome where their corresponding genes are located 

[77]. Such a view is useful to gain an overview of the density of identified proteins on a given 

area of a given chromosome, and could be used as a viewing tool in the chromosome-centric 

human proteome project (C-HPP) [78], where one of the goals is to identify at least one 

expressed protein variant of all human genes for each chromosome.  

A CircAtlas view, as used by the chromosome explorer in PeptideAtlas, is one way of 

making such a display. Here two circles are divided into the different chromosomes (genomic 

information) with PeptideAtlas density and observations plots in addition to SwissProt protein 

locations (Figure 6A).  

Another way of linking the identified proteins to the chromosomes is by using bar 

charts, as in ProteomicsDB [72] (Figure 6B), where each chromosome is divided into 

sections, and the number of the identified genes and proteins is displayed for each section. 

Common for both approaches is that they give a quick overview of the chromosome coverage 

and how many proteins have been found. The challenge in such views is to obtain more 

detailed information about individual identified or not yet identified proteins. 

Human body protein maps 

Another aspect of large proteome databases is how to visualize where in the (human) 

body the protein/proteoform(s) have been found, in what quantity, and under which 

conditions. Due to the immense complexity of the data, this presents an enormous challenge, 

but is of great importance as it would allow the researcher to use proteomics data in a more 

systematic way, e.g., in systems biology. The complexity of this task is indicated by having 

hundreds of cell types in the body, and inside each cell multiple subcellular compartments. It 

is estimated that up to one million proteoforms may exists, and the number of conditions is 
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also very high, considering gender, age, diseases, and other biological and environmental 

factors [76, 79]. Considering this great complexity, the limited annotation of the data present 

in the databases is a major hurdle for allowing broader and more detailed visualizations. In 

our opinion, proper data annotation is therefore a subject that should be given increased 

attention in the future. 

ProteomicsDB [72] has come up with a way to display some of this complex 

information through a human body heatmap (Figure 6C), represented by the amount of the 

selected protein observed from the proteomics experiments. The amount of protein in each 

location is based on iBAQ (intensity based absolute quantification) values calculated from the 

datasets, and gives the researcher a quick overview of where the protein has been observed in 

the body and approximately at which levels. They also give the users the option to select data 

from either males or females, and limit the selection to specific tissue, fluid or cell lines. 

Together this gives the researcher a quick overview of the complex collection of data.  

The Human Proteome Map [73] has a similar display for viewing the proteome 

information based on the body location and quantity using data from label-free analysis 

displayed through a heat map. Here it is also possible to see the peptide coverage and the 

individual peptide abundances for the 30 locations analyzed, which can be useful, for 

example, when selecting signature peptides for targeted proteomics assays (Figure 6D). 

Both these databases are based on gathering and storing raw data and results from 

mass spectrometry based proteomics experiments on human material, and covers observations 

of more than 90% of the human proteome (17-18 000 proteins). It should, however, be noted 

that the background data should be taken into consideration when determining what the 

displayed information really tells the user, what it can be used for, and how much trust one 
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can have in the displayed data. For example, a recent publication concluded that the 

experimental data from the two above-mentioned databases should be used with caution [80]. 

Protein size distributions  

CSF-PR (cerebrospinal fluid proteome resource) is another recently launched 

database, containing more than 3000 protein entries identified from human cerebrospinal fluid 

[81]. An interesting visualization option in this database is the viewing of the protein size 

distribution based on SDS-PA gels (Figure 6E), which gives a quick impression of the 

possible presence of proteoforms and truncation products. The estimated amount of protein in 

each gel fraction is visualized either based on the number of peptides or spectra observed, or 

the average precursor intensity. This display of the data thus provides easy access to 

information that can be very useful when selecting sample processing methods or proteotypic 

peptides for targeted proteomics experiments.  

 

Discussion 

 From the examples above it is clear that interactive visualization already plays a 

crucial role in proteomics data analysis. Due to the strong increase in the amount of data, plus 

its growing size and complexity, this will become even more important in the coming years. 

However, there are still obstacles that need to be solved in order to achieve a more 

streamlined use of available visualization techniques. The first set of challenges is related to 

the way the proteomics data is stored. There is a need for standard formats so that data can be 

easily shared between different tools. This point is gradually being addressed by the 

implementation of the new standard data formats in proteomics, such as mzML, mzIdentML 

and qcML [7, 19, 22], plus the development of common resources for sharing data in these 

standard formats such as ProteomeXchange [82].  
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But even though the new formats are optimized for capturing as much information as 

possible about proteomics experiments and results, they are not tailored towards visualization 

and interaction. The demand for easy-to-use interactive visualizations to explore the growing 

amounts of available proteomics data imposes a very different set of requirements for data 

storage and accessibility, e.g., the need for faster reading times [83]. One example is the so 

called in-memory database for quick data access used by ProteomicsDB [72]. Another 

example is the novel way in which the data is stored in tools such as Slice 

(http://slice.ionomix.com) in order to ensure rapid access to the information needed for the 

visualizations. 

 In addition to challenges in the way data is stored, hardware capabilities also come 

into play when visualizing very large proteomics data sets. Visualizing an entire proteomics 

data set in a single display is typically not feasible, unless one has access to very high 

performance computing infrastructure. One is therefore frequently left with one of two 

choices: either filter the data in some way or buy more powerful hardware. And while the 

latter in many cases will solve the problem, it is not always possible or desirable. 

Additionally, the software has to be capable of utilizing more powerful resources, which is 

not always the case. More clever ways of interacting with data are therefore needed, allowing 

the user to focus on those elements of the data that are interesting to their specific research 

questions, while at the same time not hiding any important data. Indeed, often it is too easy to 

focus too much on the question (or desired outcome), and thus forget about the bigger context, 

for instance in the case of pathway analysis tools that allow the user to filter the data to only 

display interactions related to a specific pathway. 

 Interactivity is a key element and is expected by most users experienced with modern 

visual interactive displays. Being able to interact with the visualizations and thus continue 

exploring the data is therefore essential. Interactivity dramatically increases the usefulness of 
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most visualizations, e.g., allowing the user to easily zoom in on interesting areas or simply get 

information about a specific data point in a plot. Linking multiple interactive visualizations 

based on the same data is therefore the next obvious step, i.e., allowing the user to see and 

interact with different aspects or elements of a dataset at the same time, for example by 

simultaneously displaying a PCA plot, a protein profile plot and a table representing a set of 

protein ratios comparing two or more groups. The user can then locate protein clusters in the 

PCA plot, select a cluster to inspect the related protein profiles, and finally see the table for 

details about the selected proteins. This type of interaction, a long-time feature of dedicated 

data analysis tools such as Spotfire (http://spotfire.tibco.com), is already supported in tools 

such as Perseus and the hope is that more tools will follow. 

Having sophisticated tools is not enough however, as proper visualizations also 

depend on high quality and well-annotated data. Requesting that data submitted to online 

proteomics repositories contains the required annotations [84] to make better use of the data 

should therefore be mandatory before publishing. With tools such as the ProteomeXchange 

submission tool [82] the annotation of information such as species is mandatory, but further 

information about the samples, e.g., gender, age, disease state, is not, and ought to be easier to 

annotate. Having such information available would greatly increase the value of the data and 

open up for new ways of visualizing and interacting with the data. It should however, also be 

noted that privacy issues or ethical concerns can stand in the way of thoroughly annotating 

patient-derived samples. 

 Visualizing proteomics data also results in new opportunities for crowdsourcing [85, 

86], i.e., "hiring" the crowd to participate in proteomics research. The most successful 

crowdsourcing project related to proteomics is Foldit (http://fold.it), an online puzzle game 

dedicated to protein folding. By visualizing three-dimensional protein structures and letting 

players interact with these to find the optimal fold (and beat other players to the best score!), 
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the project has already resulted in both improved teaching material related to protein 

structures [87] and led to novel scientific knowledge [88, 89]. This shows the huge (and 

largely untapped) potential of crowdsourcing, which in most cases starts with being able to 

visualize and interact with the data.  

 We have just started to see the huge potential of interactive visualizations in 

proteomics. Although the technology of instruments and computer hardware is improving 

rapidly, the visualization methods for proteomics data are still lagging behind their real 

potential. However, with the development of common data standards to simplify data sharing, 

more efficient hardware usage, smarter software based on multiple linked and interactive 

visualizations, plus potentially enrolling the crowd as part of the work, the future of 

proteomics will hopefully soon become even more interactive and more visually enticing.  
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Figure legends 

 

Figure 1: Visualizing Proteomics Data. An overview of the main topics covered in this 

review. 

 

Figure 2: Visualizing Raw Data. A) TIC from an LC-MS sample run on an Orbitrap 

instrument and analyzed with SeeMS (ProteoWizard [31]). The TIC is on average 1xE9 

which is in the upper limit of a proper peptide sample injection. B) Base peak intensity (BPI) 

and 2D plot of the MS1 from a PEG contaminated sample (MZmine [24]). C) Typical (MS1) 

electrospray ion current trace of three LC-MS runs illustrated by RawMeat (VAST Scientific 

and Thermo Scientific). D) MS1 feature comparison in 2D showing a peak with elution width 

of 0.7 min compared to a peak with 0.3 min elution. The respective peaks are shown in 3D 

enabling investigation of co-eluting peaks (MSight [26]). E) Filtering of LC-MS raw data by 

RT window and intensity level thresholds using MZMine [24]. F) 3D view of an LC-MS run 

before (left) and after peak picking (right) (TOPPView [90]). G) Illustration of a MS1 native 

peak (i) and a MS1 peak-picked (ii) by mirror view (left) and an overlay view zoomed in on 

one peak (right). The MS1 native peak has a bell-shaped curve and a peak width of 

approximately 0.02 Th (m/z) (TOPPView [90]). 

 

Figure 3: Visualizing Proteomics Identifications. A) Sequence fragmentation plot, linking 

the intensity of the detected fragment ions to the amino acid sequence of the identified 

peptide. B-ions in blue blow the sequence and y-ions in red above the sequence. 

(PeptideShaker, http://peptide-shaker.googlecode.com). B) Mirrored spectra with asterisks 

indicating unique peaks (compomics-utilities [29]). C) Bubble plot showing two peptide-

spectrum matches for the same spectrum (FragmentationAnalyzer [36]). D) De novo sequence 
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annotation in DeNovoGUI [38]. E) The peak curves and areas of three SRM transitions 

(overlaid) for quantifying the respective peptide in three different conditions (Skyline [43]). 

 

Figure 4: Visualizing Quantitative Proteomics. A) Scatter plots illustrating transformation 

and normalization of a proteomics data set (Microsoft Excel), the same data set alternatively 

viewed as histogram (GraphPad Prism, GraphPad Software Inc.) and density plot. B) 

Boxplots comparing three different conditions (top), and with the data points presented as a 

bee swarm (bottom) (BoxPlotR [50]). C) Volcano plot showing the distribution of quantified 

proteins according to p-value and fold change, indicating significance level with a red line and 

color coded degree of fold change (Microsoft Excel). D) Line chart illustrating unsupervised 

clustering of protein expression profiles for four different conditions. The proteins in red fit 

the user-selected expression profile and can be investigated further (Perseus, 

http://www.perseus-framework.org). E) Heatmap showing the expression levels of the 

proteins and unsupervised clustering of the conditions (x-axis) and proteins (y-axis) as 

dendrograms. E.g., the proteins that group together (asterisk) are upregulated in condition 2 

and 3 and not in 1 and 4, contributing to that 2 and 3 are more similar and group together in 

the dendrogram (Perseus, http://www.perseus-framework.org). F) PCA biplot showing 

peptide features as a cloud and replicates from the same condition as filled color-coded 

circles, enabling detection of outliers (Progenesis LC-MS, Nonlinear Dynamics). G) Venn 

diagram comparing the accession numbers of proteins identified in four different conditions 

(A, B, C, D) illustrating the intersections between the proteomes (Venny, 

http://bioinfogp.cnb.csic.es/tools/venny).  
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Figure 5: Visualizing Pathways and Network. A) Ontology graph view in the Ontologizer. 

Overrepresented GO terms are shown in green. The example shows a test dataset attributed to 

the small molecule metabolic process ontology (Ontologizer [55]). B) Heatmap view in the 

DAVID functional classification tool. The green boxes represent reported associations 

between annotation terms and proteins (DAVID [56]). C) STRING protein-protein interaction 

display (with known and predicted functional partners), showing the WNT7a signaling 

protein with interaction partners (STRING [60]). D) Pathway diagram view from Reactome, 

showing expression data on the metabolism of nucleotides: Ecto-5-prime-nucleotidase 

(CD73) catalyzes the conversion of purine 5-prime mononucleotides to nucleosides. A color 

range is used to distinguish the user-supplied numerical expression values, from yellow 

(highest values) to dark blue (lowest values) (Reactome [61]). E) Protein inference 

visualization in Cytoscape, showing the inference of proteins (in red) from peptides (in blue).  

 

Figure 6: Visualizing Proteome Databases. A) CircAtlas interactive view from the 

chromosome explorer in PeptideAtlas, where two circles are divided into chromosomes 

(genomic information) with the ratio PeptideAtlas/UniProt density (blue) and the number of 

PeptideAtlas observations (green). A chromosome (the circled numbers) can be 

investigated in detail and a specific area of interest (pink highlight) chosen by the user. 

Clicking a specific protein or peptide  opens the respective data in UniProt or PeptideAtlas 

(PeptideAtlas [74]). B) ProteomicsDB has divided the chromosome into sections, and the 

number of genes and proteins identified is displayed as bar charts (ProteomicsDB, 

https://www.proteomicsdb.org). C) Heatmap of the protein expression in the human body 

from ProteomicsDB, here exemplified by serum albumin (ProteomicsDB, 

https://www.proteomicsdb.org). D) The Human Proteome Map visualizing information 

about the peptide coverage and the individual peptide abundances for the 30 locations 
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analyzed (Human Proteome Map [73]). E) CSF-PR displays information about the size 

distribution of CSF proteins from an SDS-PA gel. Fraction number (from heavy to light) on 

the x-axis, peptide count on the y-axis. Blue bars represent molecular weight standards, 

peptides in green. Top: Apolipoprotein B-100, bottom: Secretogranin-1.(CSF-PR [81]) 

  



 

34 
 

Figure 1 

 

 

  



 

35 
 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

  



 

39 
 

Figure 6 

 

 


