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Abstract. An open-source sea ice drift algorithm for

Sentinel-1 SAR imagery is introduced based on the combina-

tion of feature tracking and pattern matching. Feature track-

ing produces an initial drift estimate and limits the search

area for the consecutive pattern matching, which provides

small- to medium-scale drift adjustments and normalised

cross-correlation values. The algorithm is designed to com-

bine the two approaches in order to benefit from the respec-

tive advantages. The considered feature-tracking method al-

lows for an efficient computation of the drift field and the re-

sulting vectors show a high degree of independence in terms

of position, length, direction and rotation. The considered

pattern-matching method, on the other hand, allows better

control over vector positioning and resolution. The prepro-

cessing of the Sentinel-1 data has been adjusted to retrieve

a feature distribution that depends less on SAR backscatter

peak values. Applying the algorithm with the recommended

parameter setting, sea ice drift retrieval with a vector spac-

ing of 4 km on Sentinel-1 images covering 400 km× 400 km,
takes about 4min on a standard 2.7GHz processor with 8GB

memory. The corresponding recommended patch size for the

pattern-matching step that defines the final resolution of each

drift vector is 34× 34 pixels (2.7× 2.7 km). To assess the po-
tential performance after finding suitable search restrictions,

calculated drift results from 246 Sentinel-1 image pairs have

been compared to buoy GPS data, collected in 2015 between

15 January and 22 April and covering an area from 80.5 to

83.5◦ N and 12 to 27◦ E. We found a logarithmic normal
distribution of the displacement difference with a median at

352.9m using HV polarisation and 535.7m using HH polar-

isation. All software requirements necessary for applying the

presented sea ice drift algorithm are open-source to ensure

free implementation and easy distribution.

1 Introduction

Sea ice drift has a strong impact on sea ice distribution on dif-

ferent temporal and spatial scales. The motion of sea ice due

to wind and ocean currents causes convergence and diver-

gence zones, resulting in the formation of ridges and open-

ing/closing of leads. On large scales, ice export from the Arc-

tic and Antarctic into lower latitudes, where the ice eventu-

ally melts away, contributes to a strong seasonality of total

sea ice coverage (IPCC, 2013). Due to a lack of ground sta-

tions in sea-ice-covered areas, satellite remote sensing repre-

sents the most important tool for observing sea ice conditions

on medium to large scales. Despite the strong impact of sea

ice drift and the opportunities given by the latest satellite re-

mote sensing techniques, there is a lack of extensive ice drift

data sets providing sufficient resolution for estimating sea ice

deformation on a spatial scaling of less than 5 km.

Our main regions of interest are the ice-covered seas

around Svalbard and the east of Greenland. Characteristic of

this area are a large variation of different ice types (marginal

ice zone, first-year ice, multiyear ice, etc.), a strong season-

ality of ice cover and a wide range of drift velocities. Focus

was put on the winter/spring period, since the area of interest

experiences the highest ice cover during this time of the year.

Early work from Nansen (1902) established the rule-of-

thumb that sea ice velocity resembles 2% of the surface wind

speed with a drift direction of about 45◦ to the right (North-
ern Hemisphere) of the wind. This wind-driven explanation

can give a rough estimate for instantaneous ice velocities.

However, the respective influences of wind and ocean current

strongly depend on the temporal and spatial scale. Only about

50% of the long-term (several months) averaged ice drift in

the Arctic can be explained by geostrophic winds, whereas

the rest is related to mean ocean circulation. This proportion
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increases to more than 70% explained by wind, when con-

sidering shorter timescales (days to weeks). The wind fails to

explain large-scale ice divergence patterns and its influence

decreases towards the coast (Thorndike and Colony, 1982).

Using GPS drift data from the International Arctic Buoy

Program (IABP), Rampal et al. (2009a) analysed the gen-

eral circulation of the Arctic sea ice velocity field and found

that the fluctuations follow the same diffusive regime as tur-

bulent flows in other geophysical fluids. The monthly mean

drift using 12 h displacements was found to be in the order of

0.05 to 0.1m s−1 and showed a strong seasonal cycle with a
minimum in April and maximum in October. The IABP data

set also revealed a positive trend in the mean Arctic sea ice

speed of +17% per decade for winter and +8.5% for sum-
mer considering the time period 1979–2007. This is unlikely

to be the consequence of increased external forcing. Instead,

the thinning of the ice cover is suggested to decrease the me-

chanical strength which eventually causes higher speed given

a constant external forcing (Rampal et al., 2009b).

Fram Strait represents the main gate for Arctic ice ex-

port and high drift velocities are generally found in this area

with direction southward. Based on moored doppler cur-

rent meters mounted near 79◦ N 5◦W, Widell et al. (2003)
found an average southward velocity of 0.16m s−1 for the
period 1996–2000. Daily averaged values were usually in

the range 0–0.5m s−1 and on very few occasions above

0.5m s−1.
GPS buoys and current meters are important tools for mea-

suring ice drift at specific locations. However, to monitor sea

ice drift on medium to large scales, satellite remote sensing

represents the most important data source today. The polar

night and a high probability for cloud cover over sea ice limit

the capability of optical sensors for reliable year-round sea

ice monitoring. Unlike optical sensors, Spaceborne Synthetic

Aperture Radar (SAR) are active sensors, operate in the mi-

crowave spectrum and can produce high-resolution images

regardless of solar illumination and cloud cover. Since the

early 1990s SAR sensors have been delivering systematic ac-

quisitions of sea-ice-covered oceans and Kwok et al. (1990)

showed that sea ice displacement can be calculated from con-

secutive SAR scenes.

The geophysical processor system from Kwok et al.

(1990) has been used to calculate sea ice drift fields in par-

ticular over the western Arctic (depending on SAR coverage)

once per week with a spatial resolution of 10–25 km for the

time period 1996–2012. This extensive data set makes use

of SAR data from RADARSAT-1 operated by the Canadian

Space Agency, and from ENVISAT (Environmental Satel-

lite) ASAR (Advanced Synthetic Aperture Radar) operated

by ESA (European Space Agency).

To resolve drift details on a finer scale, a high-resolution

sea ice drift algorithm for SAR images from ERS-1 (Euro-

pean Remote-sensing Satellite from ESA) based on pattern

matching was introduced by Thomas et al. (2008), which al-

lowed drift calculation with up to 400m resolution. Hollands

and Dierking (2011) implemented their own modified ver-

sion of this algorithm to derive sea ice drift from ENVISAT

ASAR data.

To also provide drift estimates in areas where areal match-

ing procedures (like cross and phase correlation) fail, Berg

and Eriksson (2014) introduced a hybrid algorithm for sea

ice drift retrieval from ENVISAT ASAR data using phase

correlation and a feature based matching procedure that is

activated if the phase correlation value is below a certain

threshold.

The current generation of SAR satellites including

RADARSAT-2 and Sentinel-1 are able to provide images

with more than one polarisation. Komarov and Barber (2014)

and Muckenhuber et al. (2016) have evaluated the sea ice

drift retrieval performance with respect to the polarisation

using a combination of phase/cross-correlation and feature

tracking based on corner detection respectively. Muckenhu-

ber et al. (2016) has shown that feature tracking provides on

average around four times as many vectors using HV polari-

sation compared to HH polarisation.

After the successful start of the Sentinel-1 mission in

early 2014, high-resolution SAR images are delivered for

the first time in history within a few hours after acquisition

as open-source data to all users. This introduced a new era

in SAR Earth observation with great benefits for both sci-

entists and other stakeholders. Easy, free and fast access to

satellite imagery facilitate the possibility to provide prod-

ucts on an operational basis. The Danish Technical Uni-

versity (Pedersen et al., 2015, http://www.seaice.dk/) pro-

vides an operational sea ice drift product based on Sentinel-1

data with 10 km resolution as part of the Copernicus Marine

Environment Monitoring Service (CMEMS, http://marine.

copernicus.eu).

The sea-ice-covered oceans in the European Arctic sector

represent an important area of interest for the Sentinel-1 mis-

sion and due to the short revisit time in the Arctic, our area

of interest is monitored by Sentinel-1 on a daily basis (ESA,

2012).

This paper follows up the work from Muckenhuber et al.

(2016), who published an open-source feature-tracking algo-

rithm to derive computationally efficient sea ice drift from

Sentinel-1 data based on the open-source ORB algorithm

from Rublee et al. (2011), which is included in the OpenCV

Python package. We aim to improve the feature-tracking ap-

proach by combining it with pattern matching. Unlike Berg

and Eriksson (2014), the feature-tracking step is performed

initially and serves as a first guess to limit the search area of

the pattern-matching step.

From a methodological point of view, algorithms for de-

riving displacement vectors between two consecutive SAR

images are based either on feature tracking or pattern match-

ing.

Feature tracking detects distinct patterns (features) in both

images and tries to connect similar features in a second step

without the need for knowing the locations. This can be done
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in a computationally efficient manner and the resulting vec-

tors are often independent of their neighbours in terms of

position, length, direction and rotation, which can potentially

be an important advantage for resolving shear zones, rotation

and divergence/convergence zones. The considered feature-

tracking approach identifies features without taking the po-

sition of other features into account and matches features

from one image to the other without taking the drift and ro-

tation information from the surrounding vectors into account

(Muckenhuber et al., 2016). However, due to the independent

positioning of the features, very close features may share

some pixels and since all vectors from the resolution pyra-

mid are combined, the feature size varies among the matches,

which implies a varying resolution. In addition, the resulting

vector field is not evenly distributed in space and large gaps

may occur between densely covered areas, which can eventu-

ally lead to missing a shear or divergence/convergence zone.

Pattern matching, on the other hand, takes a small template

from the first image at the starting location of the vector and

tries to find a match on a larger template from the second im-

age. Simple pattern-matching methods based on normalised

cross-correlation often demand considerable computational

effort. Nevertheless, this approach is widely used, since it

allows the vector positions to be defined. For practical rea-

sons, a pyramid approach is generally used to derive high-

resolution ice drift. This speeds up the processing, but poten-

tially limits the independence of neighbouring vectors, since

they depend on a lower-resolution estimate (Thomas et al.,

2008).

The objective of this paper is to combine the two ap-

proaches in order to benefit from the respective advantages.

The main advantages of the considered feature-tracking ap-

proach are the computational efficiency and the indepen-

dence of the vectors in terms of position, length, direction

and rotation. The considered pattern-matching method, on

the other hand, allows better control over vector position-

ing and resolution, which is a necessity for computing di-

vergence, shear and total deformation.

The presented algorithm, all necessary software require-

ments (python including Nansat, openCV and SciPy) and the

satellite data from Sentinel-1 are open-source. A free and

user-friendly implementation shall support an easy distribu-

tion of the algorithm among scientists and other stakeholders.

The paper is organised as follows: the used satellite prod-

ucts and buoy data are introduced in Sect. 2. The algo-

rithm description including data preprocessing is given in

Sect. 3, together with tuning and performance assessment

methods. Section 4 presents the preprocessing, parameter

tuning and performance assessment results and provides a

recommended parameter setting for the area and time period

of interest. The discussion including outlook can be found in

Sect. 5.

Figure 1. Coverage of image pair Fram Strait that is used as repre-
sentative image pair to explain the algorithm approach. The dashed

rectangle depicts the area shown in Fig. 4 and illustrates the vector

distribution of the algorithm steps.

2 Data

The Sentinel-1 mission is a joint initiative of the Euro-

pean Commission and the European Space Agency (ESA)

and represents the European Radar Observatory for the

Copernicus programme, a European system for monitoring

the Earth with respect to environmental and security is-

sues. The mission includes two identical satellites, Sentinel-

1A (launched in April 2014) and Sentinel-1B (launched in

April 2016), each carrying a single C-band SAR with a cen-

tre frequency of 5.405GHz and dual-polarisation support

(HH+HV, VV+VH) also for the wide swath mode. Both
satellites fly in the same near-polar, sun-synchronous orbit

and the revisit time is less than 1 day in the Arctic (ESA,

2012). The main acquisition mode of Sentinel-1 over sea-

ice-covered areas is Extra Wide mode Ground Range De-

tected Medium Resolution (EW GRDM) and the presented

algorithm is built for processing this data type. The covered

area per image is 400 km× 400 km and the data are provided
with a pixel spacing of 40m× 40m in both HV and HH po-
larisation. The introduced algorithm can utilise both the HV

and HH channel. However, the focus of this paper is put on

using HV polarisation (mainly acquired over the European

Arctic and the Baltic sea), since this channel provides on av-

erage four times more feature tracking vectors in our area of

interest than HH (Muckenhuber et al., 2016), representing a

better initial drift estimate for the combined algorithm.

To illustrate the algorithm performance and explain the

individual steps, we use an image pair acquired over Fram

Strait. The acquisition times of the two consecutive im-

ages are 28 March 2015 07:44:33UTC and 29 March 2015

16:34:52UTC, and the covered area is shown in Fig. 1. This

image pair covers a wide range of different ice conditions

(multiyear ice, first-year ice, marginal ice zone etc.) and the

ice conditions are representative of our area and time period

of interest.
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To evaluate suitable search limitations and assess the po-

tential algorithm performance, we use GPS data from drift

buoys that have been set out in the ice-covered waters

north of Svalbard as part of the Norwegian Young Sea Ice

Cruise (N-ICE2015) project of the Norwegian Polar Insti-

tute (Spreen and Itkin, 2015). The ice conditions during the

N-ICE2015 expedition are described on the project website

(http://www.npolar.no/en/projects/n-ice2015.html) as chal-

lenging. The observed ice pack, mainly consisting of 1.3–

1.5m thick multiyear and first-year ice, drifted faster than

expected and was very dynamic. Closer to the ice edge, a

break up of ice floes has been observed due to rapid ice drift

and the research camp had to be evacuated and re-established

four times. This represents a good study field, since these

challenging conditions are expected in our area and time pe-

riod of interest. The considered GPS data have been collected

in 2015 between 15 January and 22 April, and cover an area

ranging from 80.5 to 83.5◦ N and 12 to 27◦ E. The buoys
recorded their positions either hourly or every 3 h. In the lat-

ter case, the positions have been interpolated for each hour.

3 Method

3.1 Data preprocessing

To process Sentinel-1 images within Python (extraction of

backscatter values and corresponding geolocations, reprojec-

tion, resolution reduction etc.), we use the Python toolbox

Nansat (Korosov et al., 2016), which builds on the Geospa-

tial Data Abstraction Library (http://www.gdal.org). As in

Muckenhuber et al. (2016), we change the projection of

the provided ground control points (latitude/longitude values

given for certain pixel/line coordinates) to stereographic and

use spline interpolation to calculate geographic coordinates.

This also provides a good geolocation accuracy at high lati-

tudes. The pixel spacing of the image is changed by averag-

ing from 40 to 80m, which is closer to the sensor resolution

of 93m range× 87m azimuth, and decreases the computa-
tional effort.

For each pixel p, the Sentinel-1 data file provides a digital

number DNp and a normalisation coefficient Ap, from which

the normalised radar cross section σ 0raw is derived by the fol-

lowing equation:

σ 0raw = DN2p/A2p. (1)

The normalised radar cross section σ 0raw reveals a logarith-

mic distribution and the structures in the sea ice are mainly

represented in the low and medium backscatter values rather

than in the highlights. Therefore, we change the linear scal-

ing of the raw backscatter values σ 0raw to a logarithmic scaling

and get the backscatter values σ 0= 10 · lg(σ 0raw) [dB]. A rep-
resentative backscatter distribution over sea ice is shown in

Fig. 2. Using a logarithmic scaling provides a keypoint distri-

bution for the feature tracking algorithm that depends less on

high peak values, while the total number of vectors increases.

To apply the feature-tracking algorithm from Muckenhu-

ber et al. (2016), the SAR backscatter values σ 0 have to be

converted into intensity values i with 0≤ i ≤ 255 for i ∈R.

This conversion is done by using Eq. (2) and setting all val-

ues outside the domain to 0 and 255.

i = 255 · σ 0− σ 0min

σ 0max− σ 0min

. (2)

The upper brightness boundary σ 0max is set according to

the recommended values from Muckenhuber et al. (2016),

i.e.−18.86 and−10.97 dB for HV and HH respectively. The
lower boundary σ 0min was chosen to be −32.5 dB (HV) and
−25.0 dB (HH), since this was found to be a reasonable range
of expected backscatter values. Figure 3 shows the image

pair Fram Strait after the conversion into intensity values.

For the sake of computational efficiency, the same intensity

value scaling is used for the pattern-matching step.

3.2 Sea ice drift algorithm

The presented sea ice drift algorithm is based on a combina-

tion of feature tracking and pattern matching, and is designed

to utilise the respective advantages of the two considered ap-

proaches. Computationally efficient feature tracking is used

to derive a first estimate of the drift field. The provided vec-

tors serve as the initial search position for pattern matching,

which provides accurate drift vectors at each given location

including rotation estimate and maximum cross-correlation

value. As illustrated in the flow chart in Fig. 4, the algo-

rithm consists of five main steps: (I) feature tracking, (II) fil-

ter, (III) first guess, (IV) pattern matching and (V) final drift

product.

(I) Feature tracking

The feature-tracking algorithm used in this work is an ad-

justed version from Muckenhuber et al. (2016), who intro-

duced a computationally efficient sea ice drift algorithm for

Sentinel-1 based on the ORB (Oriented FAST and Rotated

BRIEF) algorithm from Rublee et al. (2011). ORB uses the

concept of the FAST keypoint detector (Rosten and Drum-

mond, 2006) to find corners on several resolution levels. The

patch around each corner is then described using an modi-

fied version of the binary BRIEF descriptor from Calonder

et al. (2010). To ensure rotation invariance, the orientation of

the patch is calculated using the intensity-weighted centroid.

Muckenhuber et al. (2016) applies a brute force matcher that

compares each feature from the first image to all features in

the second image. The comparison of two features is done

using the Hamming distance, which represents the number

of positions in which the two compared binary feature vec-

tors differ from each other. The best match is accepted if the

ratio of the shortest and second shortest Hamming distances
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Figure 2. Histogram of (a) HV and (b) HH backscatter values σ 0 from image pair Fram Strait. The lower and upper brightness boundaries

for HV (σ 0min= −32.5 dB, σ 0max= −18.86 dB) and HH (σ 0min= −25.0 dB, σ 0max= −10.97 dB) are shown with blue lines and illustrate the
domain for the intensity values i.

Figure 3. Image pair Fram Strait in (a) HV and (b) HH polarisation after conversion (Eq. 2) from backscatter values σ 0 into intensity

values with range 0≤ i ≤ 255 using lower and upper brightness boundaries for HV: σ 0min= −32.5 dB and σ 0max= −18.86 dB and HH:
σ 0min= −25.0 dB, σ 0max= −10.97 dB.

is below a certain threshold. Given a suitable threshold (and

unique features), the ratio test will discard a high number of

false matches, while eliminating only a few correct matches.

Muckenhuber et al. (2016) found a suitable parameter set-

ting for our area and time period of interest, including a

Hamming distance threshold of 0.75, a maximum drift fil-

ter of 0.5m s−1, a patch size of 34× 34 pixels and a resolu-
tion pyramid with seven steps combined with a scaling factor

of 1.2. Due to the resolution pyramid, the considered fea-

ture area varies from 2.7× 2.7 to 9.8× 9.8 km and the result-
ing drift field represents a resolution mixture between these

boundaries.

We adjust the algorithm from Muckenhuber et al. (2016)

by applying a logarithmic scaling for the SAR backscat-

ter values σ0 instead of the previously used linear scaling

(Sect. 3.1). In addition, we extract for each vector the ro-

tation information α, i.e. how much the feature rotates from

the first to the second image.
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Figure 4. The flow chart on the left depicts the five main steps of the
algorithm. The right column illustrates the evolution of the drift re-

sults using image pair Fram Strait in HV polarisation and a grid with

4 km spacing. (NB The part of the image pair that is depicted here is

marked with a dashed rectangle in Fig. 1.) Blue vectors are derived

by applying an adjusted version of the feature tracking algorithm

from Muckenhuber et al. (2016). Black vectors indicate the initial

drift estimate (first guess) based on filtered feature-tracking vectors.

The final drift product (yellow to red vectors) are derived from com-

bining the first guess with pattern-matching adjustment and apply-

ing a minimum cross-correlation value. A total of 4725 vectors have

been found on image pair Fram Strait with a MCC value above 0.4

in 4min.

Applying the adjusted feature-tracking algorithm provides

a number of unevenly distributed vectors (e.g. blue vectors in

Fig. 4) with start positions x1f, y1f on the first image (SAR1),

end positions x2f, y2f on the subsequent image (SAR2) and

corresponding rotation values αraw f. The index f represents

a feature-tracking vector and ranges from 1 to F , with F be-

ing the total number of derived feature-tracking vectors. For

the sake of computational efficiency, the vectors from all res-

olution pyramid levels are treated equally.

To avoid zero-crossing issues during the following filter

and inter-/extrapolation process (in case the image rotation δ

between SAR1 and SAR2 is close to 0
◦), a factor |180− δ|

is added to the raw rotation values αraw f using the following

equation:

αf =
{
αraw f+ |180− δ| if αraw f+ |180− δ| < 360

αraw f+ |180− δ| − 360 if αraw f+ |180− δ| > 360
. (3)

This centres the reasonable rotation values in the proxim-

ity of 180◦. After applying the filter and inter-/extrapolation
process, the estimated rotation α is corrected by subtracting

|180− δ|.
(II) Filter

To reduce the impact of potentially erroneous feature-

tracking vectors on the following steps, outliers are filtered

according to drift and rotation estimates derived from least-

squares solutions using a third-degree polynomial function.

Considering a matrix A that contains all end positions x2f,

y2f in the following form

A =

⎛⎜⎜⎜⎝
1 x21 y21 x221 y221 x21 · y21 x321 y321
1 x22 y22 x222 y222 x22 · y22 x322 y322
...

...
...

...
...

...
...

...

1 x2F y2F x22F y22F x2F · y2F x32F y32F

⎞⎟⎟⎟⎠ , (4)

we derive three vectors bx1 , by1 and bα that represent

the least-squares solutions for A and x1= (x11, . . . , x1F),

y1= (y11, . . . , y1F) and α = (α1, . . . , αF) respectively. The

starting position x1f, y1f and the rotation αf of each vector

can then be simulated using a third-degree polynomial func-

tion f (x2f, y2f, b) depending on the end position x2f, y2f and

the corresponding least-squares solution b = (b0, b1, b2, b3,
b4, b5, b6, b7).

f (x2f,y2f,b) = b0+ b1x2f+ b2y2f+ b3x
2
2f+ b4y

2
2f

+ b5x2fy2f+ b6x
3
2f+ b7y

3
2f (5)

If the simulated start position, derived from f (x2f, y2f, b),

deviates from the feature-tracking start position x1f, y1f by

more than 100 pixels, the vector is deleted. The same ac-

counts for rotation outliers. If the simulated rotation deviates

from the feature-tracking rotation αf by more than 60
◦, the

vector is deleted. We found a third-degree polynomial func-

tion to be a good compromise between allowing for small- to

medium-scale displacement and rotation discontinuities, and

excluding very unlikely vectors that eventually would disturb

the following steps. The parameters for the filter process, i.e.

100 pixels (displacement) and 60◦ (rotation), have been cho-
sen according to visual interpretation using several represen-

tative image pairs. Figure 5 illustrates the filter process by

depicting the results from image pair Fram Strait.

(III) First guess

The remaining feature-tracking vectors are used to estimate

the drift including rotation on the entire first image, i.e. es-

timated x2, y2 and α values are provided for each pixel on

SAR1 (Fig. 6). The quality of this “first guess”, however, de-

pends on the density of the feature-tracking vector field and

the local ice conditions.

Between the feature-tracking vectors, estimated values are

constructed by triangulating the input data and perform-

ing linear barycentric interpolation on each triangle. That
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Figure 5. Filter process applied to image pair Fram Strait in HV polarisation. The x axis represents the simulated start position and rotation,

derived from f (x2f, y2f, b) and the y axis represents the feature-tracking start position x1f, y1f and rotation αf. NB The image rotation is

δ = 129.08◦, which means the rotation was adjusted by 50.92◦ (Eq. 3). Red points were identified as outliers and deleted.

Figure 6. Example of estimated drift and rotation (first guess) based on filtered feature-tracking vectors using image pair Fram Strait in HV
polarisation. The three panels show the components x2, y2 of the estimated end positions and the estimated rotation α for each pixel on the

coordinate system x1, y1 of the first image (SAR1).

means the estimated values represent the weighted mean of

the three neighbouring feature-tracking values. The interpo-

lated value vp at any pixel p inside the triangle is given by

Eq. (6), where v1, v2, v3 represent the feature-tracking values

at the corners of the triangle and A1, A2, A3 are the areas of

the triangle constructed by p and the two opposite corners;

e.g. A1 is the area between p, and the corners with values v2
and v3.

vp = A1v1+ A2v2+ A3v3

A1+ A2+ A3
(6)

To provide a first guess for the surrounding area, values are

estimated based on the least-squares solutions using a linear

combination of x1 and y1. Considering a matrix C that con-
tains all start positions x1f, y1f in the following form

C =

⎛⎜⎜⎜⎝
1 x11 y11
1 x12 y12
...

...

1 x1F y1F

⎞⎟⎟⎟⎠ . (7)

We derive three vectors dx2 , dy2 and dα that represent

the least-squares solutions for C and x2= (x21, . . . , x2F),

y2= (y21, . . . , y2F) and α = (α1, . . . , αF) respectively. The

estimated end position x2, y2 and rotation α at any location

can then be simulated using the linear function f (x1, y1, c)

depending on the start position x1, y1 and the corresponding

least-squares solution d = (d0, d1, d2).
f (x1,y1,d) = d0+ d1x1+ d2y1 (8)

As mentioned above, the rotation estimates α are now cor-

rected for the adjustment applied in Eq. (3), by subtracting

|180− δ|.
An example for the resulting first guess, i.e. estimated val-

ues for x2, y2 and α on SAR1, is shown in Fig. 6 (this fig-

ure illustrates the matrices that the algorithm considers as

first guess) and corresponding vectors are shown in black in

Fig. 4. Note that rotation α has already been corrected by

subtracting |180− δ|. It now includes both the relative im-
age rotation δ from SAR1 to SAR2 and the actual rotation

of the feature itself. The introduced algorithm also provides

the image rotation δ by projecting the left corners of SAR2
onto SAR1 and calculating the angle between the left edges

of SAR1 and SAR2. The actual rotation of the features can

easily be obtained by subtracting δ from α.
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(IV) Pattern matching

The estimated drift field derived from feature tracking pro-

vides values for x2, y2 and α at any location on SAR1. The

representativeness of this estimate however, depends on the

distance d to the closest feature-tracking vector. Therefore,

small- to medium-scale adjustments of the estimates are nec-

essary, depending on the distance d (NB The representative-

ness also depends on the variability of the surrounding vec-

tors, but for the sake of computational efficiency, we only

consider the distance d as representativeness measure). We

apply pattern matching at the chosen points of interest to ad-

just the drift and rotation estimate at these specific locations.

The used pattern-matching approach is based on the max-

imisation of the normalised cross-correlation coefficient.

Considering a small template t1 around the point of inter-

est from SAR1 with size t1s× t1s and a larger template t2
around the location x2, y2 (defined by the corresponding first

guess) from SAR2 with size t2s× t2s, the normalised cross-

correlation matrix NCC is defined as (Hollands, 2012):

NCC(x,y) =

∑
x′,y′

(
t ′1(x′,y′)t ′2(x + x′,y + y′)

)
√√√√ ∑

x′,y′

(
t ′1(x′,y′)2

∑
x′,y′

t ′2(x + x′,y + y′)
)2 (9)

t ′1(x′,y′) = t1(x
′,y′) − 1

t21s

∑
x′′,y′′

t1(x
′′,y′′) (10)

t ′2(x + x′,y + y′) = t2(x + x′,y + y′) − 1

t21s∑
x′′,y′′

t2(x + x′′,y + y′′) (11)

with t1(x
′, y′) and t2(x

′, y′) representing the value of t1
and t2 at location x′, y′. The summations are calculated over
the size of the smaller template, i.e. x′, y′, x′′ and y′′ go
from 1 to t1s. Template t1 is moved with step size 1 pixel over

template t2 both in the horizontal (x) and vertical (y) direc-

tion and the cross-correlation values for each step are stored

in the matrix NCC with size (1+ t2s− t1s)× (1+ t2s− t1s).

The highest value in the matrix NCC, i.e. the maximum nor-
malised cross-correlation value MCC, represents the location

of the best match and the corresponding location adjustment

is given by dx and dy.(
1+ t2s− t1s

2
+ dx,

1+ t2s− t1s

2
+ dy

)
= argmax

x,y (NCC(x,y)) (12)

To restrict the search area t2s to a circle, we set all values

of NCC that are further than t2s/2 away from the centre po-

sition to zero. This limits the distance from the first guess to

a constant value, rather than to an arbitrary value depending

on the looking angle of the satellite. To account for rotation

adjustment, the matrix NCC is calculated several times: tem-
plate t1 is rotated around the initially estimated rotation α

from α − β to α + β with step size �β. The angle β is the

maximum additional rotation and therefore represents the ro-

tation restriction. The NCC matrix with the highest cross-

correlation value MCC is returned.

To illustrate the pattern-matching process, an example

taken from image pair Fram Strait is shown in Fig. 7.

The described process demands the specification of four

parameters: t1s, t2s, β and �β.

The size of the small template t1s× t1s defines the consid-

ered area that is tracked from one image to the next and hence

affects the resolution of the resulting drift product. Sea ice

drift might be different on different resolution scales. This

is particularly an issue in the case of rotation. The feature-

tracking vectors provide the first guess and this vector field

should represent the same drift resolution as considered by

the pattern-matching step. In order to be consistent with the

resolution of the feature-tracking step and achieve our goal of

a sea ice drift product with a spatial scaling of less than 5 km,

we use the size of the feature-tracking patch of the pyramid

level with the highest resolution to define the size of t1. That

means we use t1s= 34 pixels (2.7 km).
The size of the larger template t2s× t2s restricts the search

area on SAR2, i.e. to what extent the first guess can be ad-

justed geographically, and the angle β restricts the rotation

adjustment of the first guess α. The three parameters t2s, β

and �β have a strong influence on the computational effi-

ciency of the drift algorithm, meaning that an increase of t2s,

β and a decrease of �β increase the computational effort of

the pattern-matching step. Based on the visual interpretation

of several representative image pairs, we found �β = 3◦ to
be a good compromise between the matching performance

and computational efficiency.

Since the representativeness of the first guess decreases

with distance d to the closest feature-tracking vector (an ex-

ample to illustrate the distribution of d is shown Fig. 8), the

search restrictions t2s and β should increase with d. Based

on the performed search restriction evaluation (Sect. 4), we

found the following functions to represent useful restrictions

for our area and time period of interest.

t2s(d) = t1s+ 2d dmin ≤ d ≤ dmax d ∈ N (13)

β(d) =
{
9 if d < dmax

12 if d ≥ dmax
(14)

The values for dmin, dmax, β and �β can easily be varied

in the algorithm to adjust, for example, for different areas,

drift conditions or a different compromise between matching

performance and computational efficiency.

(V) Final drift product

In the last step, the small- to medium-scale displacement ad-

justments from pattern matching are added to the estimated
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Figure 7. Pattern matching using initial drift estimate from feature tracking: The small template t1 (a) around the point of interest on SAR1
is rotated from α − β to α + β and matched with the large template t2 (b) from SAR2, which has its centre at the estimated end position x2,

y2. The right contour plot shows the normalised cross-correlation matrix NCC of the rotation β∗ that provided the highest maximum cross-
correlation coefficient MCC. The estimated end position x2, y2 of this example has to be adjusted by dx = −21 pixels, dy = 32 pixels to fit
with the location of MCC= 0.71. Rotation adjustment β∗ was found got be 3◦. NB x and y axes represent pixel coordinates.

Figure 8. Example to illustrate the distribution of distance d to the

closest feature-tracking vector using image pair Fram Strait in HV

polarisation. Values outside the range dmin≤ d ≤ dmax are set to

dmin= 10 and dmax= 100. The points with value dmin represent

the start positions x1f, y1f of the feature-tracking vectors on the co-

ordinate system x1, y1 of SAR1. The figure depicts the matrix that

the algorithm considers for the distribution of d.

first guess derived from feature tracking. Using buoy com-

parison, we found that the probability for large displace-

ment errors decreases with increasing MCC value (Sect. 4).

Therefore, vectors that have a MCC value below the thresh-

old MCCmin are removed. We found MCCmin= 0.4 to be
a good filter value, but this value can easily be adjusted in

the algorithm depending on the sought compromise between

number of vectors and error probability. The algorithm re-

turns the final drift vectors in longitude, latitude, the corre-

sponding first guess rotation α and the rotation adjustment β

in degrees and the maximum cross-correlation value MCC.

An example for the final product is depicted with yellow-to-

red-coloured vectors in Fig. 4. The colour scale refers to the

MCC value, indicating the probability of an erroneous vector.

3.3 Comparison with buoy data

Sentinel-1 image pairs have been selected automatically ac-

cording to the position and timing of the GPS buoy data

from the N-ICE2015 expedition. Each pair yielded more than

300 drift vectors when applying the feature-tracking algo-

rithm from Section 3.2 and had a time difference between the

two acquisitions of less than 3 days. Drift vectors have been

calculated with the presented algorithm starting at the buoy

GPS position with the least time difference to the acquisition

of the first satellite image. The distance D between the cal-

culated end position on the second image and the buoy GPS

position with the least time difference to the second satellite

acquisition has been calculated using the following equation:

D =
√

(u − U)2+ (v − V )2, (15)

where u and v represent eastward and northward drift com-

ponents of the displacement vector derived by the algorithm,

and U and V are the corresponding drift components of the

buoy.

4 Results

4.1 Search restriction evaluation

To find suitable values for restricting the size of the search

window t2s and the rotation range defined by β, we calcu-

lated drift vectors, which can be compared to the considered

GPS buoy data set, using restrictions that are computationally

more demanding than we anticipate for the recommended

setting, i.e. t2s= 434 pixels and β = 18◦. These values cor-
respond to a possible pattern-matching adjustment of up to

200 pixels (16 km) and 18◦ in any direction independent of
the distance d to the closest feature-tracking vector.

Based on an automatic search, we found 244 matching

Sentinel-1 image pairs (consisting of 111 images) that al-
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Figure 9. Considered buoy locations from the N-ICE2015 expedition that were used for comparison with algorithm results. Green and blue
colours indicate start locations (on SAR1) to which the algorithm provided vectors with a MCC value above and below 0.4 using (a) HV and
(b) HH polarisation.

lowed for comparison with 711 buoy vectors (buoy locations

are shown in Fig. 9). The distance D (Eq. 15) between the

buoy location at the time of the second image SAR2 and the

corresponding algorithm result represents the error estimate

for one vector pair. To identify algorithm results that are more

likely erroneous, vector pairs with a value D above 1000m

are marked with red dots in Figs. 10 and 11. Vector pairs with

D < 1000m are plotted with black dots.

Figures 10 and 11 show the resulting pattern-matching ad-

justment of location (dx, dy) and rotation (dβ) using the

computationally demanding restrictions. The values are plot-

ted against distance d to the next feature tracking vector in

order to identify the dependence of the parameters on d. The

blue lines in Figs. 10 and 11 indicate the recommended re-

strictions. This represents a compromise between computa-

tional efficiency and allowing the algorithm to adjust the first

guess as much as needed for our time period and area of in-

terest. The corresponding functions for t2s(d) and β(d) are

given in Eqs. (13) and (14) and the recommended boundary

values for distance d are dmin= 10 and dmax= 100.
4.2 Performance assessment

Using the recommended search restrictions from above, the

algorithm has been compared to the N-ICE2015 GPS buoy

data set (Fig. 9) to assess the potential performance after find-

ing suitable search restrictions for the area and time period

of interest. The automatic search provided 246 image pairs

(consisting of 111 images) and 746 vectors for comparison

for the considered time period (15 January to 22 April) and

area (80.5 to 83.5◦ N and 12 to 27◦ E). NB This is a higher
number of vectors than found for the evaluation of the search

restrictions, since the used search windows t2 are smaller and

vectors closer to the SAR edge may be included.

The results of the conducted performance assessment

are shown in Fig. 12. We found that the probability for a

large D value (representative for the error) decreases with

increasing maximum cross-correlation value MCC. There-

fore we suggest excluding matches with a MCC value be-

low a certain threshold MCCmin. This option is embedded

into the algorithm, but can easily be adjusted or turned

off by setting MCCmin= 0. Based on the findings shown
in Fig. 12, we recommend a cross-correlation coefficient

threshold MCCmin= 0.4 for our time period and area of in-
terest. Using the suggested threshold reduces the number of

vector pairs from 746 to 588 for the HV channel and to 478

for the HH channel.

The conducted performance assessment also reveals a log-

arithmic normal distribution of the distance D (Eq. 15) that

can be expressed by the following probability density func-

tion (solid red line in Fig. 12):

lnN(D;μ,σ) = 1

σD
√
2π

e
− (lnD−μ)2

2σ2 , (16)

with μ and σ being the mean and standard deviation of the

variable’s natural logarithm. We found the mean and vari-

ance of the distribution lnN to be μ = 5.866 and σ 2= 1.602
for HV polarisation and μ = 6.284 and σ 2= 2.731 for HH
polarisation (solid red lines in Fig. 12). The medians of the

logarithmic normal distribution are eμ = 352.9m for HV po-
larisation and eμ = 535.7m for HH polarisation (dashed red
lines in Fig. 12).

4.3 Recommended parameter setting

Based on the restriction evaluation, our experience with the

algorithm behaviour, and considering a good compromise be-

tween computational efficiency and high quality of the result-

ing vector field, we recommend the parameter setting shown

in Table 1 for our area and time period of interest. The corre-

sponding recommended values for t2s(d) and β(d) are given

in Eqs. (13) and (14).
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(a)

(b)

Figure 10. Pattern-matching location adjustment dx and dy in x and y direction vs. distance d to closest feature-tracking vector using

(a) HV and (b) HH polarisation. D represents the difference between buoy GPS position and algorithm result. The blue lines indicate the

recommended setting for t2s (Eq. 13) with dmin= 10 and dmax= 100.

Figure 11. Pattern-matching rotation adjustment dβ vs. distance d to closest feature-tracking vector using (a) HV and (b) HH polarisation.
D represents the difference between buoy GPS position and algorithm result. The blue lines indicate the recommended setting for β (Eq. 14)

with dmin= 10 and dmax= 100.

4.4 Computational efficiency

The processing time depends on the parameter setting and

the chosen vector distribution. Using the recommended pa-

rameter setting from Table 1 allows for high-resolution sea

ice drift retrieval from a Sentinel-1 image pair within a few

minutes. Figure 4 depicts calculated ice drift vectors for the

image pair Fram Strait on a grid with 4 km (50 pixels) spac-
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Figure 12. Calculated ice drift using recommended search restrictions compared to buoy GPS data using (a–c) HV and (d–f) HH polar-
isation. Light grey represents vectors with maximum cross-correlation values MCC< 0.4 and results after using the suggested threshold

MCCmin= 0.4 are shown in black. (a, d) MCC values against distance D (Eq. 15) between algorithm and buoy end position. The blue line

indicates the recommended setting for MCCmin= 0.4. (b, e) Logarithmic histogram of distance D with 100 bins between 10 and 105 m

including two logarithmic normal distributions that were fitted to all results (grey) and to the filtered results with MCC> 0.4 (solid red line).

(c, f) Comparison of drift distance derived from the algorithm against buoy displacement for the filtered results with MCC> 0.4.

Table 1. Recommended parameter setting for sea ice drift retrieval from Sentinel-1 using the presented algorithm.

Parameter Meaning Recommended setting

[σ 0min, σ 0max] (HH) Brightness boundaries for HH channel [−25, −10.97 dB]
[σ 0min, σ 0max] (HV) Brightness boundaries for HV channel [−32.5, −18.86 dB]
t1s Size of template t1 34 pixels (2.7 km)

[dmin, dmax] Boundaries for distance d [10, 100 pixels]
MCCmin Threshold for cross-correlation 0.4

�β Rotation angle increment 3◦

ing. The corresponding processing times are shown in Ta-

ble 2. The calculations have been done using a MacBook Pro

from early 2013 with a 2.7GHz Intel Core i7 processor and

8GB 1600MHz DDR3 memory. The total processing time

for 4725 vectors with a normalised cross-correlation value

above 0.4, is about 4min. This can be considered a represen-

tative value for an image pair with large overlap, good cov-

erage with feature-tracking vectors and 4 km grid spacing.

The initial process in Table 2 “Create Nansat objects from

Sentinel-1 image pair and read matrixes” takes the same

amount of computational effort for all image pairs consist-

ing of Sentinel-1 images with 400× 400 km coverage.
The process (I) feature tracking depends on the setting of

the feature-tracking algorithm and varies strongly with the

chosen number of features. Using the recommended setting

from Muckenhuber et al. (2016), which includes the number

of features to be 100 000, the presented computational effort

can be considered representative for all image pairs, inde-

pendent of chosen points of interest and overlap of the SAR

scenes.
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Table 2. Processing time for sea ice drift retrieval from image pair Fram Strait on a grid with 4 km (50 pixels) spacing using HV polarisation
(Fig. 4). Representative for an image with large overlap and good coverage with feature-tracking vectors.

Process Time [s]
Create Nansat objects from Sentinel-1 image pair and read matrixes 70

(I) Feature tracking 66

(II)–(V) Pattern matching and combination 107∑
Sea ice drift retrieval 243

The process (IV) pattern matching, however, depends on

the considered image pair and the chosen drift resolution.

The computational effort is proportional to the number of

chosen points of interest. Given a evenly distributed grid

of points of interest, the computational effort increases with

overlapping area of the SAR scenes, since pattern-matching

adjustments are only calculated in the overlapping area. The

effort potentially decreases with a higher number of well-

distributed feature-tracking vectors, since the size of the

search windows t2 (and slightly the range of the angle β)

increases with distance d to the closest feature-tracking vec-

tor.

5 Discussion and outlook

To estimate the potential performance of the introduced al-

gorithm for given image pairs, given ice conditions, given

region and given time, we compared drift results from

246 Sentinel-1 image pairs with corresponding GPS posi-

tions from the N-ICE2015 buoy data set. We found a loga-

rithmic error distribution with a median at 352.9m for HV

and 535.7m for HH (Fig. 12). The derived error values rep-

resent a combination of the following error sources:

– Timing: buoy GPS data were collected every 1–3 h and
the timing does not necessarily match the satellite ac-

quisition time.

– Resolution: the algorithm returns the drift of a pattern
(recommended size= 34 pixels; see Table 1), whereas
the buoy measures the drift at a single location.

– Conditions: the ice conditions around the buoy are not
known well enough to exclude the possibility that the

buoy is floating in a lead. In this case, the buoy trajec-

tory could represent a drift along the lead rather then the

drift of the surrounding sea ice.

– Actual error of the algorithm.

A main advantage of the combined algorithm compared to

simple feature tracking is the user-defined positioning of the

drift vectors. The current algorithm set-up allows the user to

choose whether the drift vectors should be positioned at cer-

tain points of interest or on a regular grid with adjustable

spacing. Constricting the pattern-matching process to the

area of interest minimises the computational effort accord-

ing to the individual needs.

The recommended parameters shown in Table 1 are not

meant as a fixed setting, but should rather act as guidelines

to estimate the expected results and the corresponding com-

putational effort. The parameters can easily be varied in the

algorithm set-up and should be chosen according to avail-

ability of computational power, required resolution, area of

interest and expected ice conditions (e.g. strong rotation).

The presented combination of feature tracking and pattern

matching can be applied to any other application that aims to

derive displacement vectors from two consecutive images in

a computationally efficient way. The only restriction is that

images need to depict edges that can be recognised as key-

points for the feature-tracking algorithm, and the conversion

into intensity values i (Eq. 2) needs to be adjusted according

to the image type.

The remote sensing group at NERSC is currently develop-

ing a new preprocessing step to remove thermal noise on HV

images over the ocean and sea ice. First tests have shown a

significant improvement of the sea ice drift results using this

preprocessing step before applying the presented algorithm.

This is ongoing work and will be included in a future version

of the algorithm.

The European Space Agency is also in the process of im-

proving their thermal noise removal for Sentinel-1 imagery.

Noise removal in range direction is driven by a function that

takes measured noise power into account. Until now, noise

measurements are taken at the start of each data acquisi-

tion, i.e. every 10–20min, and a linear interpolation is per-

formed to provide noise values every 3 s. The distribution of

noise measurements showed a bimodal shape and it was re-

cently discovered that lower values are related to noise over

ocean while higher values are related to noise over land. This

means that Sentinel-1 is able to sense the difference of the

earth surface brightness temperature similarly to a passive

radiometer. When the data acquisition includes a transition

from ocean to land or vice versa, the linear interpolation fails

to track the noise variation. The successors of Sentinel-1A/B

are planned to include more frequent noise measurements.

Until then, ESA wants to use the 8–10 echoes after the burst

that is recorded while the transmitted pulse is still travelling

and the instrument is measuring the noise. This will provide
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noise measurements every 0.9 s and allows the noise varia-

tions to be tracked in more detail. In addition, ESA is plan-

ning to introduce a change in the data format during 2017

that shall remove the noise shaping in azimuth. These efforts

are expected to improve the performance of the presented al-

gorithm significantly (N. Miranda, personal communication,

January 2017).

Having a computationally efficient algorithm with ad-

justable vector positioning allows not only the provision of

near-real-time operational drift data, but also the investiga-

tion of sea ice drift over large areas and long time peri-

ods. Our next step is to embed the algorithm into a super-

computing facility to further test the performance in differ-

ent regions, time periods and ice conditions and evaluate and

combine the results of different polarisation modes. The goal

is to deliver large ice drift data sets and open-source opera-

tional sea ice drift products with a spatial resolution of less

than 5 km.

This work is linked to the question of how to combine the

different timings of the individual image pairs in a most use-

ful way. Having more frequent satellite acquisitions, as we

get with the Sentinel-1 satellite constellation, enables to de-

rive displacements for shorter time gaps and the calculated

vectors will reveal more details, e.g. rotational motion due

to tides. As part of a scientific cruise with KV-Svalbard in

July 2016, we deployed three GPS trackers on loose ice floes

and pack-ice in Fram Strait. The trackers send their position

every 5–30min to deliver drift information with high tem-

poral resolution. These efforts shall help us to gain a better

understanding of short-term drift variability and by compar-

ison with calculated sea ice drift, we will investigate how

displacement vectors from subsequent satellite images relate

to sea ice displacements with higher temporal resolution.

The focus of this paper in terms of polarisation was put on

the HV channel, since this polarisation provides on average

four times more feature-tracking vectors (using our feature-

tracking approach) than HH and therefore delivers a finer

initial drift for the first guess. We found our area of inter-

est covered with HV images, but other areas in the Arctic

and Antarctic are currently only monitored in HH polarisa-

tion. Considering the four representative feature-tracking im-

age pairs from Muckenhuber et al. (2016), the relatively bet-

ter HH polarisation performance (i.e. most vectors from HH,

while at the same time fewest vectors fromHV) was provided

by the image pair that had the least time difference, i.e. 8 h

compared to 31, 33 and 48 h. Therefore, we assume that the

HV polarisation provides more corner features that are better

preserved over time. And more consistent features could po-

tentially also favour the performance of the pattern-matching

step, but this is only an assumption and has not been tested

yet. Another argument is that the presented feature-tracking

approach identifies and matches corners, which represent lin-

ear features. The linear features on HH images are more sen-

sitive to changes in incidence angle, orbit and ice conditions

than the linear features on HV images. This could explain

the better feature-tracking performance of the HV channel.

However, pattern matching is less affected by changing lin-

ear features and more sensitive to areal pattern changes. This

could potentially mean that the HH channel performs bet-

ter than HV when it comes to pattern matching. However, at

this point, these are just assumptions and will be addressed

in more detail in our future work.

Utilising the advantage of dual polarisation (HH+HV) is
certainly possible with the presented algorithm, but increases

the computational effort. A simple approach is to combine

the feature tracking vectors derived from HH and HV and

produce a combined first guess. Pattern matching can be per-

formed based on this combined first guess for both HH and

HV individually and the results can be compared and even-

tually merged into a single drift product. Having two drift

estimates for the same position, from HH and HV pattern

matching respectively, would also allow us to disregard vec-

tors that disagree significantly. However, this option would

increase the computational effort by two, meaning that the

presented Fram Strait example would need about 8min pro-

cessing time.

After implementing the presented algorithm into a super-

computing facility, we aim to test and compare the respective

performances of HV, HH and HH+HV on large data sets to
identify the respective advantages.

The current setting of the feature-tracking algorithm ap-

plies a maximum drift filter of 0.5m s−1. We found this to be
a reasonable value for our time period and area of interest.

However, when considering extreme drift situations in Fram

Strait and a short time interval between image acquisitions,

this threshold should be adjusted.

As mentioned above, we deployed three GPS tracker in

Fram Strait and they recorded their positions with a temporal

resolution of 5–30min between 8 July and 9 September 2016

in an area covering 75 to 80◦ N and 4 to 14◦W. Considering
the displacements with 30min interval, we found velocities

above 0.5m s−1 on a few occasions, when the tidal motion
adds to an exceptionally fast ice drift.

The GPS data from the hovercraft expedition FRAM2014-

2015 (https://sabvabaa.nersc.no), which was collected with

a temporal resolution of 10 s between 31 August 2014 and

6 July 2015, did not reveal a single 30min interval dur-

ing which the hovercraft was moved by ice drift more

than 0.45m s−1. The hovercraft expedition started at 280 km
south from the North Pole towards the Siberian coast, crossed

the Arctic Ocean towards Greenland and was picked up in the

north-western part of Fram Strait.

In case the estimated drift from feature tracking reaches

velocities close to 0.5m s−1, the pattern-matching step might
add an additional degree of freedom of up to 8 km, which

could eventually lead to a higher drift result than 0.5m s−1,
depending on the time interval between the acquisitions. The

smaller the time difference, the larger the potentially added

velocity. In order to be consistent when combining the drift

information from several image pairs with different timings,

The Cryosphere, 11, 1835–1850, 2017 www.the-cryosphere.net/11/1835/2017/



S. Muckenhuber and S. Sandven: Open-source sea ice drift algorithm for Sentinel-1 SAR imagery 1849

one should apply a maximum drift filter on the final drift

product of the presented algorithm that has the same max-

imum velocity as the feature-tracking filter. The correspond-

ing function is implemented in the distributed open-source

algorithm. As an alternative, one could adjust the search win-

dow according to the time span. However, this would add ad-

ditional complexity to both the algorithm and the parameter

evaluation and needs more research on how the search win-

dow should be adjusted depending on the time span. For the

sake of computational efficiency, we suggest the simple ap-

proach of removing final drift vectors above the maximum

speed.

Data availability. The presented sea ice drift retrieval method
is based on open-source satellite data and software to ensure

free application and easy distribution. Sentinel-1 SAR images are

distributed by ESA for free within a few hours of acquisition

under https://scihub.esa.int/dhus/. The algorithm is programmed

in Python (source code: https://www.python.org) and makes use

of the open-source libraries Nansat, openCV and SciPy. Nansat

is a Python toolbox for processing 2-D satellite Earth obser-

vation data (source code: https://github.com/nansencenter/nansat).

OpenCV (Open Source Computer Vision) is a computer vision and

machine learning software library and can be downloaded under

http://opencv.org. SciPy (source code: https://www.scipy.org) is a

Python-based ecosystem of software for mathematics, science and

engineering. The presented sea ice drift algorithm, which includes

an application example, is distributed as open-source software as

supplement to this paper.

The Supplement related to this article is available online
at https://doi.org/10.5194/tc-11-1835-2017-supplement.
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