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Notation Legend
n Number of LP variables, dimension of SDP variables
m Number of constraints
µ Central path parameterisation variable
σ Centering parameter
α LP variables step length, primal SDP variable step length
β Dual SDP variables step length

X Diagonal matrix with the vector x on its diagonal.

x, X Primal LP variable
x, X Primal SDP variable
y, z, Z Dual LP variables
y, z, Z Dual SDP variables

The context will make it clear when the lowercase versions of these
variables pertain to LP or SDP.

b LP and SDP dual objective function vector
c LP primal objective function vector
C SDP primal objective function matrix
r Residual associated with Schur Complement Equation
e Vector of all ones

∆x, ∆X Variables associated with Newton method step equation.

hd, hp, hc Variables associated with dual, primal and complementarity
KKT conditions, respectively.

XP , XC Variables associated with predictor and corrector step,
respectively.

X̃ Variable computed inexactly.
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Introduction

Semidefinite programming (SDP), which can be considered a generalisation
of linear programming (LP), has been the topic of broad research the last
ten years. It can be applied to many different problems such as minimis-
ing the maximum eigenvalue of matrix, optimising a linear function subject
to convex quadratic constraints, control theory, logarithmic Chebychev ap-
proximation and obtaining tight bounds for hard combinatorial optimisation
problems, to name a few [15, 22]. Much of the previous research has been
concentrated on developing search directions for primal-dual interior-point
methods [1, 17, 13]. What we wish to do is try to modify such a method.
In other words, we are not so much interested in the aspect of modeling; we
assume that the semidefinite programming problem has been presented to
us in some standard form, and we are primarily interested in the process of
solving it.

Primal-dual interior-point algorithms are based on the application of
Newton’s method [7, 14]. Newton’s method takes an approximation to the
solution as input and refines it through iteration until it (subject to certain
conditions) converges to the solution sought. It is implemented through
solving a series of linear equation systems, each based on the solution to
the foregoing equations. What we wish to investigate is whether or not it is
beneficial to solve these systems, or at least some of them inexactly, that is,
to approximate their solution. Solving inexactly typically means less work
in the case of a single equation system, but we don’t know what effect this
has on a series of systems, where error propagation from one system to the
next as well as global convergence are important concerns. We expect that
some of the equation systems, probably the last few, will have to be solved
not by approximation but using direct methods which yield high-accuracy
solutions. The exact circumstances surrounding this are what we wish to
investigate. The motivation behind this idea is twofold.

First of all, it has been done in the field of unconstrained optimisation
[9, 14]. Secondly, this has also been tried for linear programming [5, 23],
which as mentioned is as special case of semidefinite programming. Our
question is if these ideas can be applied to semidefinite programming as
well.

Throughout, effort has been made to first introduce and state results
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for linear programming, and then to generalise them to semidefinite pro-
gramming. We hope that this will make the text understandable for the
reader familiar with linear programming, but not necessarily with knowl-
edge interior-point methods or semidefinite programming.

The rest of the text is organised as follows. In chapter 1 we first outline
what linear programming is, extend it to semidefinite programming, and give
an example of a semidefinite program. In chapter 2 we present an algorithm
for solving linear programs, and again extend to semidefinite programming.
The algorithm is more thoroughly described in chapter 3, and in chapter
4 we outline our ideas to improve it. Experimental results are presented
in chapter 5, and evaluated in chapter 6. The three appendices present
notation and terminology and outline the motivation behind the algorithm
of chapter 2 for the reader unfamiliar with these ideas, and list source code
we have used.
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Chapter 1

Introduction to Semidefinite
Programming

1.1 A special case — Linear Programming

In linear programming we are searching for a nonnegative n-vector x, such
that an objective (or cost) function, cT x, is minimised while satisfying m
linear constraints, which can be written Ax = b. In other words, we have
the problem:

min cT x
such that Ax = b

where x ≥ 0.

x ≥ 0 means that xi ≥ 0, i = 1 . . . n. This is often referred to as the primal
problem, or a problem in primal form. Associated with each primal problem
is its uniquely defined dual problem, given as:

max bT y
such that AT y + z = c

where z ≥ 0.

Here A ∈ Rm×n, c, x and z ∈ Rn, b and y ∈ Rm. A vector x ≥ 0 which
satisfies the constraints Ax = b is called a primal feasible solution. A pair
of vectors (y, z) which satisfy the constrains AT y + z = c and where z ≥ 0 is
called a dual feasible solution. The primal and dual problems have the same
objective value at the optimum, the primal approaching it from above, the
dual from below.

The optimal solution vectors (x∗, y∗, z∗) have the property that the pair-
wise products x∗

i z
∗
i = 0, i = 1 . . . n. Since all components in x and z are

required to be nonnegative, this is equivalent to the otherwise weaker prop-
erty that

(x∗)T z∗ = 0. (1.1)
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This property is referred to as complementarity of the vectors x∗ and z∗.
Necessary and sufficient conditions for optimality are satisfaction of the
primal, dual and non-negativity constraints, as well as complementarity [21,
14].

Linear Programming problems such as these can be solved in many ways,
two of which are the classical simplex method, described in any introductory
book on LP (for example [21]), or the younger class of so-called interior-point
methods. We shall be most concerned with the latter.

Reformulation of the Linear Program Consider the following inner
product between two n× n-matrices

A • B =

n∑

i=1




n∑

j=1

AijBij


 ,

that is, multiply the matrices entry-wise and sum all the elements of the
resulting matrix. We will call this the bullet product. It turns out to be
equal to trace(BT A). (Recall that the trace of a square matrix is the
sum of its diagonal elements.) When A and B are symmetric it is equal to
trace(AB). If x is a vector, then let the square diagonal matrix X be equal
to diag(x):

x =




x1

x2

x3


⇒ X =




x1 0 0
0 x2 0
0 0 x3


 .

If we name the matrix with the first row of A on its diagonal A1, the matrix
with the second row on its diagonal A2 and so on, we can write the primal
linear program as follows:

min C • X
s.t. Ai • X = bi, i = 1 . . . m

X � 0.

X � 0 means that X is positive semidefinite, that is vTXv ≥ 0, for all v.
This property follows from the fact that X is diagonal and that all its entries
are nonnegative. We can write the dual program as:

max bT y
s.t.

∑m
i=1 yiAi + Z = C
Z � 0.

To see that this makes sense, note that AT y is the linear combination of
the columns of AT with coefficients yi.

∑m
i=1 yiAi is therefore the same as

diag(AT y). The complementarity condition (1.1) becomes:

X ∗ • Z∗ = 0.
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1.2 Extension to Semidefinite Programming

So far all matrices involved have been diagonal. If we now allow them to
be general real symmetric matrices (let Sn be the space of real symmetric
n× n-matrices, see appendix A), we arrive at the general semidefinite pro-
gramming problem: (Note the slight change in notation as matrices are no
longer restricted to be diagonal.)

Primal SDP problem:

min C •X
s.t. Ai •X = bi, i = 1 . . . m,

X � 0.

Here {C, X, Ai, i = 1 . . . m} ∈ Sn, b ∈ Rm.

Dual SDP problem:

max bT y
s.t.

∑m
i=1 yiAi + Z = C,

Z � 0.

Here Z ∈ Sn, y ∈ Rm.
Necessary and sufficient optimality conditions are satisfaction of all the

primal and dual constraints as well as

XZ = 0.

This is outlined in [15].
Matrix structure (that is, locations of zero elements) is important when it

comes to solving SDP problems, as we shall see. From the problem definition
above we can see that the structure of Z is determined from the structure of
the constraint matrices Ai, i = 1 . . . m and C. No such restrictions apply to
X, but given the nature of the bullet product, the only elements of X which
contribute to the objective function C • X are the ones that correspond
to nonzero entries in C. In other words, restricting X to have the same
structure as C does not affect the range of the objective function. However,
X must still satisfy the m constraints Ai • X = bi, i = 1 . . . m, so the
structure of X should be the union of the structure of C and Ai, i = 1 . . . m.

Typically, the matrices C and Ai will be block diagonal, or equivalently,
there will be a block diagonal pattern which encapsulates all their nonzero
elements. An example of a symmetric block diagonal matrix with block sizes
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one, three and two is:




a1

b1 b2 b3

b2 b4 b5

b3 b5 b6

c1 c2

c2 c3




.

1.3 Example of an SDP Problem

Many different problems can be cast as SDP problems, see for example
[22, 15]. We will give one example here, regarding undirected graphs. First,
we need some terminology about graphs.

An independent set is a set of mutually nonadjacent nodes, that is, a set
of nodes where no two members are neighbours. A clique is a set of mutually
adjacent nodes, that is, a set of nodes where all members are neighbours.
Given a graph G, then α(G) is the size of its largest independent set, and
χ̄(G) is the smallest number of cliques it takes to include all the nodes of
the graph. Both of these problems are NP-hard1 to solve, but we can obtain
an approximation to their solutions with the Lovász θ function, θ(G) [11].
It can be defined as the solution to the following SDP:

max eeT •X,

such that
I •X = 1,

where in addition Xij = 0 if there is an edge in G from node i to node j,
and

X � 0,

where e is a vector of all ones.
This is a maximisation problem, but can be turned into a minimisation

problem by instead minimising the negative of the objective function. The
requirement of zero elements in X can be enforced by constraints of the form

Ai •X = 0,

where each Ai forces a pair of elements in X to be zero. Noting that these
constraints only place restrictions on the structure of X, it is possible to
eliminate them and instead have the solution algorithm deal with structure
concerns. We will return to this possibility in chapter 2.

For a general graph G we have the following relation:

α(G) ≤ θ(G) ≤ χ̄(G).
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Figure 1.1: A perfect graph.

If the three are equal, G is said to be a perfect graph. A concrete example,
using the graph in figure 1.1 and numbering its nodes left to right, top to
bottom would give the following optimal solution:

θ(G) = eeT •




1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


 = 2.

The graph turns out to be perfect, as can be verified by inspection. The
maximum number of mutually nonadjacent nodes is two, as is the minimum
number of cliques to include all nodes, for example the clique of the two
upper nodes combined with the clique of the two lower nodes.

1.4 Duality Theory — LP vs SDP

If we use our definition of the primal and dual LP problems (and disregard
the very special case of infeasible problems which are their own dual), the
following statements about LP are true:

• If the primal problem has no feasible solutions, then the dual objective
function is unbounded.

• If the dual problem has no feasible solutions, then the primal objective
function is unbounded.

• If both the primal and dual problem have feasible solutions, then any
primal feasible solution corresponds to an objective function value

1More information on NP-hard and NP-complete problems can be found in [8].
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greater than or equal to all dual objective function values stemming
from dual feasible solutions. This is referred to as weak duality.

• If feasible solutions to both the primal and dual problems exist, then
their optimal objective function value is the same. This is referred to
as strong duality.

The first three apply to SDP as well, but unfortunately this is not necessarily
the case with the last statement. As discussed in [15], we may encounter
cases where the primal and dual problems have optimal objective function
values which are not the same. A theorem guaranteeing strong duality,
whose proof can also be found in [15], follows below. Let a primal feasible
point be an X ∈ Sn such that Ai • X = bi, i = 1 . . . m and X � 0, and a
dual strictly feasible point be a pair of (y, Z), y ∈ Rm, Z ∈ Sn such that∑m

i=1 yiAi + Z = C and Z � 0.

Theorem 1.1 If there exists a primal feasible point and a dual strictly fea-
sible point, then the optimal solution to the primal and dual problems are
the same.

Note the subtle difference that X should be positive semidefinite while Z
must be positive definite.

This is not as strict a requirement as it might seem, and for the remainder
of the text we shall assume strong duality when it comes to SDP.
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Chapter 2

Solving Semidefinite
Programs

In this chapter we introduce a method for solving linear programs called a
primal-dual interior-point method. We then extend it to semidefinite pro-
gramming, and briefly describe an algorithmic framework. The motivation
for the method is outlined in appendix B.

2.1 A special case revisited — Solving Linear Pro-
grams

A Note on the Simplex Method The simplex method [21, 14] is the
classical algorithm for solving linear programs. It makes use of the fact that
the boundary of the feasible region, on which the optimal solution lies, is an
n-dimensional convex polyhedron (or simplex ), e.g. a diamond in 3-space.
Because both the objective function and constraints are linear, the solution
lies at one of the vertices. The simplex method starts out at one such
vertex, and visits neighbouring vertices with decreasing objective function
values until it has reached the optimum.

In semidefinite programming however, the boundary of the feasible set is
not necessarily a polyhedron (that is, its surfaces are not necessarily linear)
[22]. Therefore the optimal value of the objective function is not necessarily
located at a vertex. If we want to generalise an LP algorithm to SDP, we
need a different approach.

2.1.1 Interior-Point Methods

Interior-point methods make use of the fact that the optimality conditions
for LP (known as the Karush-Kuhn-Tucker or KKT conditions) constitute
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a nonlinear system of equations:

AT y + z − c = 0,
Ax− b = 0,

xizi = 0, i = 1 . . . n,
(2.1)

where
(x, z) ≥ 0.

To solve this system we make use of Newton’s method [7, 14], which is given
as follows:

To solve
F (v) = 0, (2.2)

where v is a vector and v and F (v) belong to the same spaces, repeat

vi = vi−1 − J−1(vi−1)F (vi−1)

(where J is the Jacobian matrix of the function F and vi is the approxima-
tion to v after i iterations of Newton’s method) until a convergence criterion
is satisfied, ideally F (vk) = 0 for some k. This can be rewritten as a step
equation:

J(vi−1)∆vi−1 = −F (vi−1), (2.3)

so that
vi = vi−1 + ∆vi−1.

If we want to apply Newton’s method to our problem (2.1) it is again
useful to define X = diag(x), Z = diag(z) and e, a vector of all ones. Our
equation (2.2) becomes

F (x, y, z) =




AT y + z − c
Ax− b
XZe


 = 0, (2.4)

where
(x, z) ≥ 0.

To make the text more readable, we will from now on omit superscripts signi-
fying iteration number in step equations. Defining the shorthand hd = c− z −AT y
and hp = b−Ax, the step equation corresponding to (2.4) becomes




0 AT I
A 0 0
Z 0 X






∆x
∆y
∆z


 =




hd

hp

−XZe


 . (2.5)

hp, called the primal infeasibility is a measure of how close x is to satisfy
the constraints of the primal problem. hd is called the dual infeasibility, and
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is a measure of how close y and z are to satisfy the constraints of the dual
problem. We will use the term primal infeasibility for both hp and ‖hp‖,
and the term dual infeasibility for both hd and ‖hd‖. Both hp and hd are
zero if the current iterate is feasible.

The problem now is that Newton’s method doesn’t take the constraint
(x, z) ≥ 0 into account and may therefore very well converge to another
solution than the one desired. To try and solve this problem we will modify
the pure Newton method in two ways. First, starting with strictly positive
initial iterates x0 and z0, we will perform a line search along the proposed
search direction in order to keep x and z nonnegative. This modification
alone doesn’t help much, as we risk aiming for a point we are not allowed to
reach over and over again, and hence stagnate. We will therefore secondly
try to modify the Newton direction, guiding it towards the nonnegative
solution we seek.

The central path Let us modify (2.4) slightly and write it as follows:

F (x, y, z) =




AT y + z − c
Ax− b
XZe− µe


 = 0, (2.6)

where
(x, z) ≥ 0.

In other words, let the pairwise products xizi, i = 1 . . . n be equal to µ rather
than 0. The solution to (2.6) is uniquely defined as long as the set of strictly
feasible points, that is, feasible points where in addition x > 0, z > 0, is
nonempty [21, 14]. The solution lies within the feasible region, and if we
solve (2.6) for decreasing values of µ we see that the solutions follow a path,
the central path, which (for µ = ∞) has an endpoint at the center of the
feasible region and goes towards a solution of (2.4) as µ goes to zero (see
figure 2.1). The step equation corresponding to (2.6) is




0 AT I
A 0 0
Z 0 X






∆x
∆y
∆z


 =




hd

hp

−XZe + µe


 . (2.7)

At each iteration we now have two possible search directions. The so-
lution to (2.5) gives us the pure Newton or affine scaling direction, while
the solution to (2.7) is known as a centering direction. Instead of choosing
one over the other, we will introduce a centering parameter σ ∈ [0, 1] which
turns (2.6) into

F (x, y, z) =




AT y + z − c
Ax− b

XZe− σµe


 = 0, (2.8)
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where
(x, z) ≥ 0.

We see that if we set σ = 0 we obtain (2.4) and that σ = 1 gives (2.6). In
practice, a typical value for σ is 0.1. The step equation becomes




0 AT I
A 0 0
Z 0 X






∆x
∆y
∆z


 =




hd

hp

−XZe + σµe


 . (2.9)

If a full step is taken along the primal or dual search directions the corre-
sponding right-hand side hp or hd becomes and stays equal to zero. This is
because (in the case of hp)

A∆x = b−Ax,

so when we take a full step the new hp becomes

b−A(x + ∆x) = b−Ax− (Ax− b) = 0.

The same applies to hd, where a full step gives us

hd = c− (z + ∆z)−AT (y + ∆y) = c− z −AT y − (AT ∆y + ∆z) = 0,

since AT ∆y + ∆z = c− z −AT y.
At each interior-point iteration we set the µ-value we aim for to be

xT z/n. This value will be the current value of µ if we are on the central
path. The constant updating of µ however causes Newton’s method to aim
for a “moving target”, so we are unlikely to actually obtain an iterate on
the central path until we converge on the solution to the original problem
(2.4). This situation is not a problem, but part of the process of steering
the algorithm away from solutions which don’t satisfy the non-negativity
requirements regarding the variables x and z.

Outline of the Algorithm We can now describe a general algorithm for
an interior-point method:

Given (x0, y0, z0), where (x, z) > 0
While (not converged)

Solve (2.9), where σ ∈ [0, 1] and µk = (xk)T zk

n
.

Set (xk+1, yk+1, zk+1) = (xk, yk, zk) + αk(∆xk,∆yk,∆zk)
where αk is chosen such that (xk+1, zk+1) > 0.

Since we demand that (xk+1, zk+1) > 0 (which we have to, otherwise the
coefficient matrix in (2.9) might be singular), then even if we’re converging
on a solution, we will never produce an iterate which actually lies on the
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Primal feasible region and central path

Figure 2.1: The primal feasible region and points on the central path for
which µ = 50, 10, 1, 0.1 for the problem min−2x1 + x2, s.t. x1 ≤ 6.5, x2 ≤
6.5, x1 + x2 ≤ 10. The points have been interpolated with a cubic spline.
The change in curvature shown in this case typically not present. Each
point on the primal central path corresponds to a unique point on the dual
central path, and hence the path shown can be considered a projection of
the higher-dimensional central path containing all three variables x, y and
z.
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boundary of the feasible region, although the solution itself always will. All
feasible iterates will lie in the interior of the feasible region, and hence the
name primal-dual interior-point methods. The term “primal-dual” refers to
the fact that we solve both the primal and dual problems at the same time.

2.2 Extension to Semidefinite Programs

Extending the interior-point formulation for LP to SDP can be quite labou-
rious. There are a few considerations to be made, as well as a few tricks to
be employed. The KKT conditions for SDP are [15]:

∑m
i=1 yiAi + Z −C = 0,

Ai •X − bi = 0, i = 1 . . . m,
XZ = 0,

(2.10)

where as before
X � 0 and Z � 0.

The SDP equivalent of (2.6), which defines the central path is:

F (X, y, Z) =




∑m
i=1 yiAi + Z − C

A1 •X − b1
...

Am •X − bm

XZ − µI




= 0. (2.11)

From these equations we wish to derive a step equation resembling (2.9), but
we have to deal with the following problem first: While the matrix XZ is
diagonal on the central path, it in general is neither diagonal nor symmetric.
If we differentiate (2.11) to obtain a step equation of the form (2.3) and
subsequently iterate, we will obtain X-iterates which are not necessarily
symmetric. (Z on the other hand is forced to be symmetric by the first
KKT condition.) In other words, v and F (v) in (2.2) won’t necessarily
belong to the same space and Newton’s method is therefore not applicable.
In order to be able to use Newton’s method we replace

XZ − µI = 0

with
SP (XZ)− µI = 0,

where SP is a symmetrisation operator given as:

SP (A) =
1

2
(PAP−1 + P−T AT P T ). (2.12)

This reformulation guarantees symmetric X-iterates. The choice of the ma-
trix P here is important. Different P s lead to different search directions
with different properties. We will use P = Z

1

2 , which results in the HKM1

1Helmberg-Rendl-Vanderbei-Wolkowicz, Kojima-Shindoh-Hara, Monteiro.
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search direction. Numerical results [18] have shown the HKM direction to
converge faster (that is, use less CPU time) than other well-known direc-
tions such as the AHO (P = I), NT and GT directions. (The NT and GT
directions correspond to less obvious choices of the matrix P [18].) Using
the symmetrisation operator to modify (2.11) we get:




∑m
i=1 yiAi + Z −C

A1 •X − b1
...

Am •X − bm

Z
1

2 XZ
1

2 − µI




= 0. (2.13)

Here we have used the fact that Z (and therefore also Z
1

2 and Z− 1

2 , see ap-
pendix A) is symmetric to eliminate the need for matrix transposes. Adding
a centering parameter σ as discussed in the previous section, the step equa-
tion for the HKM direction is defined as the equations [13]:

m∑

i=1

∆yiAi + ∆Z = −
m∑

i=1

yiAi − Z + C, (2.14)

Ai •∆X = −Ai •X + bi , i = 1 . . . m, (2.15)

which are shared by all the aforementioned step directions, and in addition
the equation

Z
1

2 (X∆Z + ∆XZ)Z− 1

2 + Z− 1

2 (∆ZX + Z∆X)Z
1

2 = 2(σµI − Z
1

2 XZ
1

2 ).
(2.16)

Although neat on paper, these equations are impractical when it comes
to computing the desired ∆-variables. It is much easier to solve equations
where the variables are vectors rather than matrices. This we can do, and to
arrive at such a formulation we need to introduce a few operators originally
introduced by Alizadeh, Haeberly and Overton [1].

The operator svec Let svec be an operator from Sn to Rn2

, where

n2 =
n(n + 1)

2
,

that is, the number of distinct elements in an n× n real symmetric matrix.
svec stacks the columns of the lower (or upper, depending on the imple-
mentation) triangle of the matrix in a vector, and multiplies the off-diagonal
entries by

√
2 so that

svec(A)T svec(B) = A • B,

for A,B ∈ Sn.
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The operator smat Let smat be the inverse operator of svec, that is the
operator from Rn2

to Sn which takes a vector and constructs a symmetric
matrix, multiplying off-diagonal entries by 1√

2
.

Note that if the matrices in question are not full, but block diagonal with
the same block structure, the operators can be modified to take this struc-
ture into account. This can in fact be extended to any general sparsity
structure. Such a custom svec operator could replace the constraints of the
graph example in section 1.3, which forced X to have a certain structure.
As for block-diagonal matrices, if a symmetric block diagonal n× n-matrix
consists of k blocks, with block i of size

ni × ni,

then its vector representation can be stored in a vector of length

q =

k∑

i=1

ni(ni + 1)

2
. (2.17)

Provided that the block diagonal pattern in question encapsulates all the
nonzero elements of C, X, Z and Ai, i = 1 . . . m whichever version of these
operators is used has no mathematical implications, but when it comes to
implementation the latter is clearly preferable. The obvious reason for this
would be memory considerations, but there are also other aspects such as
operation count, which we will return to in chapter 4.

The symmetric Kronecker product ~ Let M,N ∈ Rn×n and K ∈ Sn.
The symmetric Kronecker product ~ is a product between the two n × n
matrices M and N , and results in an n2×n2 matrix (M ~N). It is implicitly
defined by:

(M ~ N)svec(K) = svec

(
1

2
(NKMT + MKNT )

)
.

We now have the necessary tools to construct a more desirable formula-
tion at hand. Let

A =




svec(A1)
T

svec(A2)
T

...
svec(Am)T


 . (2.18)

In other words, row i of A is the vector representation of Ai.
Let x = svec(X), and z = svec(Z). We will use this relation through-

out for all variables, that is, if v is a vector then V is the corresponding
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matrix V = smat(v) and vice versa. Equations (2.14) and (2.15) can then
be written

AT ∆y + ∆z = svec(C)− z −AT y
A∆x = b−Ax.

Using the implicit definition of the symmetric Kronecker product and em-
ploying some algebra, (2.16) can be written as:

(Z
1

2 ~ Z
1

2 )∆x + (Z
1

2 X ~ Z− 1

2 )∆z = svec(σµI − Z
1

2 XZ
1

2 ).

Now let E = (Z
1

2 ~ Z
1

2 ), F = (Z
1

2 X ~ Z− 1

2 ), and we finally get:



0 AT I
A 0 0
E 0 F






∆x
∆y
∆z


 =




svec(C)− z −AT y
b−Ax

svec(σµI − Z
1

2 XZ
1

2 )


 , (2.19)

which is a linear system of equations with 2n2 +m unknowns and equations.
If the svec-operator takes block structure into account, it becomes a system
of 2q + m equations and unknowns.

Outline of the Algorithm On the central path we have

X • Z

n
= µ.

To see this, consider: XZ − µI = 0⇒ X = µZ−1. Now bullet-multiply by Z
to obtain (X • Z) = µ(Z−1 • Z), which by the second definition of the bul-
let product is given as µ trace(Z−1Z) = µn, from which the relation follows.

We use µ = (X • Z)/n at each interior-point iteration, similar to what we
did for LP. Furthermore, introducing separate step lengths for the primal
and dual variables (thereby hopefully obtaining longer steps), the algorithm
based on the above step equation can be stated as:

Algorithm PD-SDP

Given (X0, y0, Z0) where X and Z � 0

While (not converged)

Solve (2.19), where σ ∈ [0, 1] and µ = X•Z
n

.

Set Xk+1 = Xk + α∆Xk

where α is chosen such that Xk+1 � 0.

Set (yk+1, Zk+1) = (yk, Zk) + β(∆yk,∆Zk)
where β is chosen such that Zk+1 � 0.
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Chapter 3

Analysis of the Interior-Point
Algorithm

In this chapter we take a closer look at the algorithm PD-SDP from the
previous chapter, considering implementation issues and technical details
regarding each individual step.

3.1 Initial Iterates

As with all incarnations of Newton’s method, our algorithm needs an initial
iterate to get started. If available, an estimate of the solution is likely to
speed up convergence. If not, some initial value will have to be provided. A
natural choice might be zero, but this choice won’t work in our case, as the
coefficient matrix in (2.19) will be singular.

A better choice, in the case of X and Z at least, would be the identity
matrix, or a (strictly positive) multiple thereof. This ensures strict positive
definiteness of the matrix variables and non-singularity of the step equation
coefficient matrix. Now of course any initial iterate, well-considered or not,
is still a guess as far as the algorithm is concerned. Therefore what multiple
will be a good starting value is highly problem dependent.

As for an initial estimate of the vector y, no restrictions apply, so zero
is fine here. A more advanced heuristic for determining starting values can
be found in [18].

3.2 Solving the Step Equation

At the heart of the interior-point iteration is the determination of the step
direction, the solution to (2.19). We could of course try to solve this equation
system as it is written, but when m and n become large, storage of the
coefficient matrix is impractical. For a problem with a primal variable size
of 100 × 100 and 100 constraints the matrix will be 2n2 + m× 2n2 + m, or
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10200 × 10200. (This is if the matrices are full. If they are block diagonal,
the term n2 should as before be replaced by q defined in (2.17).) Instead,
we will perform two steps of block Gaussian elimination in order to reduce
the problem size, and back-substitute to obtain the entire solution. It is
again useful to introduce shorthand for the right-hand side of the Newton
step equation, for SDP (2.19). Define:

hd = svec(C)− z −AT y,

hp = b−Ax,

hc = svec(σµI − Z
1

2 XZ
1

2 ),

so that (2.19) becomes




0 AT I
A 0 0
E 0 F






∆x
∆y
∆z


 =




hd

hp

hc


 . (3.1)

As for LP, hp is the primal infeasibility, hd the dual infeasibility.
Now let Ri denote block of rows number i. To eliminate ∆z we perform

the following (block) row operations: R1 ← R1 − F−1R3, delete R3. This
gives us: [

−F−1E AT

A 0

] [
∆x
∆y

]
=

[
hd − F−1hc

hp

]
. (3.2)

Now, eliminate ∆x: R2 ← R2 + (AE−1F )R1, delete R1. Define

M = AE−1FAT . (3.3)

We call M the Schur Complement Matrix. The reduced problem becomes:

M∆y = hp + (AE−1)(Fhd − hc). (3.4)

In the example mentioned above, M (which is of size m × m) is 100 ×
100, a significant reduction of the problem size. (3.4) is called the Schur
Complement Equation (SCE) and is usually solved by means of a direct
method, e.g. LU-factorisation. From (3.2) we have

∆x = −E−1(F (hd −AT ∆y)− hc),

and from (3.1) that
∆z = hd −AT ∆y.

The definitions of E and F are implicit, but using the definition of the
symmetric Kronecker product we can arrive at explicit statements. From
(3.3) we can obtain an expression for the ij-th element of M , which is given
as

eT
i Mej ,
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where ei is the vector with 1 in position i and zero elsewhere. We now have

Mij = eT
i AE−1FAT ej ,

which is the same as

svec(Ai)
T E−1F svec(Aj),

which once E−1 and F are multiplied with svec(Aj) is a product between
two vectors. The equivalent product between two matrices is

Mij = Ai • smat
(
E−1F svec(Aj)

)
. (3.5)

Using three properties of the symmetric Kronecker product (see appendix
A) this expression can be simplified. First of all, we use the fact

(G ~ G)−1 = (G−1
~ G−1),

which implies that

E−1 = (Z
1

2 ~ Z
1

2 )−1 = (Z− 1

2 ~ Z− 1

2 ).

In addition, we use

(H ~ H)(G ~ K) = (HG ~ HK),

so that
E−1F = (Z− 1

2 ~ Z− 1

2 )(Z
1

2 X ~ Z− 1

2 ) = (X ~ Z−1). (3.6)

(3.5) then turns into

Mij = Ai • smat
(
(X ~ Z−1)svec(Aj)

)
,

which is the same as

Mij = Ai •
1

2
(Z−1AjX + XAjZ

−1).

Using this expression we can construct M element by element. The last fact
we use is that if G and K are symmetric and positive definite, then so is
(G ~ K). In our case this means that (X ~ Z−1) has these properties, and
hence

Mij = svec(Ai)
T (X ~ Z−1)svec(Aj)

= svec(Aj)
T (X ~ Z−1)T svec(Ai) = Mji.

M is in fact symmetric, which makes way for the use of specialised algorithms
when solving (3.4). Performing similar analysis we can derive explicit ex-
pressions for the right-hand side in (3.4) and the matrix ∆X. The results
we need are:

M∆y = hp + A svec

(
1

2
(Z−1HdX + XHdZ

−1)− σµZ−1 + X

)
,

∆X = σµZ−1 −X − 1

2
(Z−1∆ZX + X∆ZZ−1),
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where Hd = smat(hd). An important point here, from a computational
point of view, is that although the different expressions of Mij are all mathe-
matically equivalent (the same applies to intermediate expressions regarding
M∆y and ∆X), their numerical properties may vary, and the expression
ensuring the most stability need not be the simplest one. A discussion of
this (though regarding the AHO step direction) can be found in [1].

3.3 Calculation of Step Lengths

Computing the longest permissible step length is a little trickier when we
are dealing with matrices rather than vectors as in LP, but the following
procedure gives us the answer we need.

Given X ∈ Sn, X � 0 and ∆X ∈ Sn, assume we want to find the largest
α > 0 such that

X + α∆X � 0. (3.7)

In addition, assume that X is positive definite and that its Cholesky fac-
torisation is given by

X = RT R.

(3.7) then is the same as
α∆X � −RTR.

Multiply from the left with R−T , from the right with R−1 and divide by α
(assuming it is positive) to obtain

R−T ∆XR−1 � − 1

α
I.

Now, since the matrix on the left side of the expression has the same eigen-
vectors as the one on the right (every vector being an eigenvector of the
identity matrix) all the eigenvalues of the matrix R−T∆XR−1 are larger
than −α−1 and in particular

λmin(R
−T ∆XR−1) > − 1

α
.

If λmin is negative it follows that

α <
1

−λmin(R−T ∆XR−1)
. (3.8)

If we now set α equal to τ times the right-hand side, where τ ∈ (0, 1), what
might happen is that we will get a negative α-value. The cause of this is
that λmin is positive, and means that the step direction points away from
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the boundary of the semidefinite cone. We can then in principle take as long
a step as we want, usually α = 1. If λmin < 0 , then the formula for α is:

α = min

(
1,

τ

−λmin(R−T ∆XR−1)

)
.

A suitable τ -value might be for example 0.999 or 0.99, depending on the
stability properties of the chosen step direction.

3.4 The centering Parameter σ

3.4.1 Algorithm PD-SDP

As pointed out in the previous chapter, a constant value for σ which has
proven to work well in practice, is 0.1. Theoretically speaking, a successful
choice of σ depends on the iterate we are working with. (“Successful” here
meaning “ensuring quick convergence”.) If we are close to the solution then
setting σ as close to zero as possible and hence biasing the search direction
towards the solution itself rather than a point on the central path would
be desirable. As for points far from the solution, we would like them to
approach the feasible region and the central path as quickly as possible,
which can be done with a larger value for σ. Now σ = 0.1 certainly works
well, but all in all, an adaptive σ would be the most desirable.

3.4.2 The Predictor-Corrector (PC) Scheme

When solving a semidefinite program, or a linear program for that matter,
what we ideally want is to obtain a feasible point, and then follow the
central path until we are so close to the solution that a pure Newton method
would give us the solution we seek. An adaptive σ as outlined above would
hopefully achieve this, and such a σ is obtained through the Predictor-
Corrector scheme.

The idea, introduced by Mehrotra [12], is: First, we calculate the pure
Newton step direction, from (3.1) with σ set to 0. If we can take long steps
along this direction without violating the conditions X � 0 and Z � 0 then
little centering is needed, and so we choose a small value for σ. If we, on the
other hand can’t make much progress along the Newton direction we select
a larger value for σ. This is done using the following algorithm. Terms with
a superscript P means terms associated with the predictor step, terms with
superscript C are associated with the corrector step.
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Algorithm PC

Given (X0, y0, Z0) where X and Z � 0
While (not converged)

Set µ = X•Z
n

.
Solve (3.1) with σ = 0,
to obtain the predictor step, (∆XP ,∆yP ,∆ZP ).

Compute step lengths αP and βP such that X + αP ∆XP � 0,
and Z + βP ∆ZP � 0.

Set µP = (X+αP ∆XP )•(Z+βP ∆ZP )
n

.

Set σ =
(

µP

µ

)expon

, for an appropriate value of expon.

Solve (3.1), but replace hc with
hC

c = svec(σµI − SP (XZ)− SP (∆XP ∆ZP )),
with SP defined in (2.12) to obtain the corrector step,
(∆XC ,∆yC ,∆ZC).

Compute step lengths αC and βC such that
X + αC∆XC � 0 and Z + βC∆ZC � 0.

Update iterates using the corrector step:

Xk+1 = Xk + αC∆XC ,
yk+1 = yk + βC∆yC ,
Zk+1 = Zk + βC∆ZC .

An “appropriate” value for expon is often determined experimentally. In
LP expon = 3 is common, a common choice for the HKM direction in SDP
is expon = 1. Other update formulae for σ are of course also possible. The
corrector step Schur complement equation is

M∆yC = hp + A svec

(
1

2
(Z−1HdX + XHdZ

−1)− σµZ−1 + X

+
1

2
(∆XP ∆ZPZ−1 + Z−1∆ZP∆XP )

)
, (3.9)

where as before Hd = smat(hd). We need an expression for ∆XC as well,
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namely

∆XC = σµZ−1 −X − 1

2
(Z−1∆ZCX + X∆ZCZ−1)

−1

2
(∆XP ∆ZPZ−1 + Z−1∆ZP∆XP ). (3.10)

That the above choice of σ leads to the desired effect can be deduced by
studying its formula. When we can take long steps along the pure Newton
(or predictor) direction, µP is much smaller than µ, resulting in a small σ.
When little progress is made, µP and µ differ little in magnitude, so the
chosen σ is close to 1. The extra work involved in having to solve (3.1) two
times is relatively modest — we can reuse an LU or Cholesky-factorisation
when solving the second time.

The adaptive choice of σ is however not the only feature of PC-scheme.
The addition of the term

−SP (∆XP ∆ZP )

in the right hand side of the corrector step corresponds utilising second-
order (i.e. curvature) information about the central path. The combination
of these two features makes the PC-scheme a very effective tool as far as
quick convergence is concerned. Multiple corrections are also possible, an
idea pursued for LP in [10].

Unfortunately, there is no convergence theory available for Mehrotra’s
scheme [14]. It usually outperforms PD-SDP, but there are examples for
which it in fact diverges.

3.5 Stopping Criteria

With the main loop now described, the question becomes when to stop. If
all goes well and we converge on a solution, there are three measures that all
should be zero. These are the three KKT conditions for SDP, (2.10). Since
we’re usually working in floating-point arithmetic, such absolute accuracy
would be too much to hope for and, depending on the computer used, values
of a certain magnitude (for example 10−12) must simply be considered to be
equal to zero.

Having made our minds up about the error tolerance, a simple stopping
rule would be to stop when

max
{
‖b−Ax‖, ‖svec(C)− z −AT y‖, X • Z

}
≤ error tolerance,

for some norm ‖ · ‖.
This criterion of course assumes that all goes well, which need certainly

not be the case. Any implementation should incorporate safeguards against
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stagnation (i.e. two consecutive iterates are the same or step length becom-
ing extremely small) as well as indefinite iterates. Especially when solving
the step equation inexactly the latter is prone to happening.
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Chapter 4

Inexact Schemes

In this chapter we will modify the approach described in chapter 3 by solving
(3.1) inexactly. More specifically, inexact solution in practice means that we
at each interior-point iteration solve the SCE (3.4) inexactly via an iterative
equation solver, which performs a number of inner iterations to arrive at
an approximate solution. The condition number of the Schur complement
equation, κ(M), grows rapidly as µ gets smaller, but hopefully we can make
good progress along inexactly computed directions in early interior-point
iterations, and switch to direct solution in the final stages of convergence.

The reason for the growth of κ(M) is linked to the fact that Z and X
and hence E and F become closer and closer to being singular as X • Z
gets smaller. Solving (3.4) inexactly with the same error tolerance will
consequently give larger and larger errors as the interior-point iterations
progress. As shown in figure 4.1 κ(M) is modest in early interior-point
iterations, and arguably solving inexactly is a good idea.

For Newton’s method inexact solution of the step equation was intro-
duced in [9]. It has also been done in the case of LP (see [5] and the
references therein), but little has been done to our knowledge when it comes
to SDP.

We will show how the the error we make when solving (3.4) inexactly
is propagated in the setting of PD-SDP (which is outlined in [16] as well)
and make new observations about what happens in a predictor-corrector
framework, as well as estimate the operation count of both inexact and
direct solution. Based on this information, we present possible modifications
which suggest a hybrid algorithm — one that switches between inexact and
direct solution of the Schur complement equation.

Throughout this chapter, in order to make the algebra as simple as
possible, we assume that full steps are taken when iterating, i.e.

α = β = 1.
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Figure 4.1: The condition number κ(M) of the Schur complement matrix
M for a random SDP problem with matrix sizes n×n, n = 75, and number
of constraints m = 50. As the interior-point iterations progress and the
solution is approached, the conditioning of M steadily worsens.

4.1 Initial Observations

4.1.1 Inexact Solution of the SCE

We now investigate what happens if we solve (3.4) inexactly.

Let ∆̃y be an inexact solution to (3.4), that is

M∆̃y = hp + (AE−1)(Fhd − hc) + r. (4.1)

We now have
∆̃x = −E−1(F (hd −AT ∆̃y)− hc),

and
∆̃z = hd −AT ∆̃y.

To see how the error in ∆̃y is propagated, we insert the inexact solutions
(∆̃x, ∆̃y, ∆̃z) into (3.1).

Row 1:
AT ∆̃y + ∆̃z = AT ∆̃y + (hd −AT ∆̃y) = hd.

Row 2:
A∆̃x = A(−E−1(F (hd −AT ∆̃y)− hc)).
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Eliminating parentheses we get

−AE−1(Fhd − FAT ∆̃y − hc)

= −AE−1Fhd + AE−1FAT ∆̃y + AE−1hc.

AE−1FAT is the same as M , so we can write this as

−AE−1Fhd + M∆̃y + AE−1hc.

Substituting M∆̃y with the right-hand side in (4.1) we get

−AE−1Fhd + (hp + (AE−1)(Fhd − hc) + r) + AE−1hc = hp + r.

Row 3:

E∆̃x + F ∆̃z = E(−E−1(F (hd −AT ∆̃y)− hc)) + F (hd −AT ∆̃y),

which is the same as

−(Fhd − FAT ∆̃y − hc) + Fhd − FAT ∆̃y = hc.

The right hand sides of row one and row three are the same as in (3.1), the
right hand side in row two gets a contribution from the residual r. All in
all, this means that when we solve (3.4) inexactly to obtain the solution to
(3.1), what we really end up doing is solving is the following system:




0 AT I
A 0 0
E 0 F







∆̃x

∆̃y

∆̃z


 =




hd

hp + r
hc


 . (4.2)

We see that the residual ends up in the equation regarding primal feasibility
[16]. If a full step is taken along this direction, the second KKT condition
gives us:

A(x + ∆̃x)− b = Ax + hp + r − b = Ax + (b−Ax) + r − b = r,

so the residual r actually becomes the new primal infeasibility.

4.1.2 Conservation of Primal Feasibility

As shown above, the residual (if present) from the Schur complement equa-

tion affects ∆̃x so that it doesn’t satisfy the step equation exactly. It is
possible to have the residual affecting complementarity instead of primal
feasibility, by at each interior-point iteration replacing ∆̃x with

∆x = ∆̃x−AT (AAT )−1r,
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and leaving ∆̃y and ∆̃z unchanged [16]. As before, r is the residual from
the Schur complement equation. This is an inexpensive step, since we only
need to compute the inverse (or Cholesky factorisation) of AAT once. In
addition, the dimension of AAT is m ×m, so it is not prohibitely large to
store. The row in the step equation regarding primal feasibility becomes

A∆x = A∆̃x− r,

which since r = A∆̃x− hp is the same as

A∆x = hp.

The row in the step equation regarding complementarity becomes

E∆x + F ∆̃z = E(I −AT (AAT )−1A)∆̃x + F ∆̃z = hc + EAT (AAT )−1r.

The row regarding dual feasibility, that is

AT ∆̃y + ∆̃z = hd,

does not contain any ∆̃x-terms and hence is not affected. Putting everything
together, we get:




0 AT I
A 0 0
E 0 F







∆x

∆̃y

∆̃z


 =




hd

hp

hc + EAT (AAT )−1r


 . (4.3)

The size of the term EAT (AAT )−1r can be analysed to some extent.

E = (Z
1

2 ~ Z
1

2 ), where Z
1

2 is symmetric, so we have:

EAT (AAT )−1r = svec
(
Z

1

2 smat(AT (AAT )−1r)Z
1

2

)
,

which is the same as

svec

(
Z

1

2

[
m∑

i=1

[
(AAT )−1r

]
i
Ai

]
Z

1

2

)
.

[
(AAT )−1r

]
i

denotes component i of the vector (AAT )−1r. Taking norms
and using (A.1) we have

‖EAT (AAT )−1r‖2 =

∥∥∥∥∥Z
1

2

[
m∑

i=1

[
(AAT )−1r

]
i
Ai

]
Z

1

2

∥∥∥∥∥
F

.

Using the relation ‖A + B‖ ≤ ‖A‖ + ‖B‖, an upper bound on the norm of
the bracketed sum is the norm of the largest element of (AAT )−1r multiplied
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with the Ai of largest norm m times. The largest element of (AAT )−1r can’t
be larger than ‖(AAT )−1r‖, so we have

∥∥∥∥∥

m∑

i=1

[
(AAT )−1r

]
i
Ai

∥∥∥∥∥ ≤ m ‖(AAT )−1r‖ max
i
‖Ai‖.

Using this relation, as well as the relation ‖AB‖ ≤ ‖A‖ ‖B‖ successively,
we arrive at the relation

‖EAT (AAT )−1r‖2 ≤ m ‖(AAT )−1‖ ‖r‖ ‖Z 1

2 ‖2F max
i
‖Ai‖F .

The only term here apart from ‖r‖ which isn’t constant is ‖Z 1

2 ‖2F . We could
scale the Ais in advance, but they would still be constant once we start
solving. We cannot expect ‖Z 1

2 ‖2F to become smaller and smaller as we
approach the solution, so the size of the entire residual may well depend only
on ‖r‖ throughout the interior-point iterations. The condition number of the
equation system itself steadily increases, so the relative difference between
the inexact step and its exact counterpart is likely to become bigger and
bigger if ‖r‖ is of about the same magnitude throughout. Hence, performing

the projection of ∆̃x to ∆x with ‖r‖ constant may well prevent us from
obtaining a µ below a certain level.

4.1.3 Inexact Solution of the SCE within a PC-framework

A Fundamental Obstacle As mentioned earlier, when the condition
number of the Schur complement equation is small, solving inexactly con-
ceivably is a good idea. Predictor-corrector methods are very effective, so
utilising this framework would be desirable. Unfortunately, we will then
encounter the following inconvenient problem. While direct solvers perform
little extra work to solve the same system of equations for two or more
different right hand sides once the coefficient matrix is factorised, iterative
methods have to start over from the very beginning each time. This means
that even if we really can make use of inexactly computed search directions,
doing so within a PC-framework means that we will have to perform work
as if we were solving twice as many equation systems as with a direct ap-
proach. However, it is conceivably still a better idea than using an inexact
version of algorithm PD-SDP (which would only involve one equation sys-
tem per interior-point iteration, but requires more interior-point iterations
to converge), since the condition number only increases every two equation
systems we solve rather than each time.

Error Propagation As before, let a superscript P denote a term associ-
ated with the predictor step, and let a superscript C denote a term associated
with the corrector step. Terms without superscripts are step invariant.
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The step equation for the inexact predictor step without projection of ∆̃x
to ∆x is: 


0 AT I
A 0 0
E 0 F







∆̃xP

∆̃yP

∆̃zP


 =




hd

hp + rP

hP
c


 . (4.4)

The predictor step is used to calculate hC
c in the corrector step step equation

right-hand side. We have:

hC
c = svec

(
σµI − SP (XZ)− SP (∆XP ∆ZP )

)
.

Since hC
c is computed from the inexact predictor solution (∆̃xP , ∆̃yP , ∆̃zP )

the calculated h̃C
c will be inexact as well, that is, h̃C

c = hC
c + ε. This is

also the case if we do perform the projection of ∆̃x to ∆x. By solving the
resulting system of equations, again inexactly, we get the following inexact
corrector step:




0 AT I
A 0 0
E 0 F







∆̃xC

∆̃yC

∆̃zC


 =




hd

hp + rC

hC
c + ε


 . (4.5)

The residual ε unfortunately turns out to be quite difficult to analyse, so we
are forced to make experimental observations. Let us define:

G =




0 AT I
A 0 0
E 0 F




hP =




hd

hp

hP
c


 (4.6)

hC =




hd

hp

hC
c


 (4.7)

h̃P =




hd

hp + rP

hP
c


 (4.8)

h̃C =




hd

hp + rC

hC
c + ε


 . (4.9)

Let ∆̃P and ∆̃C be the solutions to (4.4) and (4.5) so that we can write
(4.4) as

G∆̃P = h̃P
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and (4.5) as

G∆̃C = h̃C .

Let ∆P and ∆C be their exact counterparts, so that

G∆P = hP

and
G∆C = hC .

Note that ∆C is the exact solution to the corrector step step equation cor-
responding to an exact predictor step.

Then, an upper bound on the relative error we make when we end up
solving (4.4) instead of its exact counterpart G∆P = hP is given by the
relation

‖∆̃P −∆P ‖
‖∆P ‖ ≤ κ(G)

‖h̃P − hP ‖
‖hP ‖ ,

where κ(G) is the condition number of the matrix G. (See appendix A.) In
the case of the inexact corrector step (4.5), we have

‖∆̃C −∆C‖
‖∆C‖ ≤ κ(G)

‖h̃C − hC‖
‖hC‖ .

The question becomes what the relation between the relative errors them-
selves is. If we assume rC is zero and plot

‖rP ‖/‖hP ‖
‖ε‖/‖hC‖ ,

we get curves like in figure 4.2. Here we solved the problem with direct SCE
solution as usual, and at each interior-point iteration tried inexact solution
of the predictor step SCE with error tolerance

‖rP ‖
‖M∆̃yP − rP‖

≤
{
10−3, 10−6, 10−9

}
,

to compare ‖rP ‖/‖hP ‖ and ‖ε‖/‖hC‖. (The denominator ‖M ∆̃y − rP‖
is just the right-hand side of the exact predictor step Schur complement
equation, (3.4) with hc = hP

c .) Note that in early interior-point iterations
where we plan to take inexact steps, the upper bound on the relative error
in the corrector step is larger than that of the predictor step, even if rC = 0.

In later interior-point iterations this relation seems to be reversed, but
now the condition number of Schur complement equation is large and we
don’t expect an inexact step to bring us closer so the solution of the SDP
itself. Hence, this information about later interior-point iterations is not very

useful. Since the corrector step residual ε contains the actual errors in ∆̃XP
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Figure 4.2: Plot of the upper bound of the relative error of an inexact
predictor step divided by the upper bound of the relative error of its exact
corrector step. The problem is SDPLIB problem theta1 [6].

and ∆̃ZP (and not just the residual rP ), it doesn’t sound implausible that
the error we make in the corrector step is larger than that of the predictor
step. As we plan to solve the corrector step step equation inexactly, causing
an even larger error to be made, we should consider tightening the error
tolerance when solving the corrector step Schur complement equation.

Of course the discussion regarding the projection of ∆̃x to ∆x applies
here in the corrector step as well, with the Schur complement equation
residual either affecting primal feasibility or complementarity.

4.2 Implicit Representation of the SCE

When choosing which method to use to solve the SCE inexactly, Krylov sub-
space methods, such as for example the conjugate gradient (CG) method is
a natural choice. One of the advantages of these methods is that when solv-
ing a system of equations they do not need an explicit representation of the
coefficient matrix, but instead only the ability to compute the matrix-vector
product for any vector [20]. This property turns out to be potentially useful
in our case — the Schur complement equation (3.4). Element-by-element
construction of the Schur complement matrix M can be quite expensive, so
when solving inexactly there might be advantages to the implicit approach
at least as far as computation time is concerned. In any event, if we use the
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formula:

Mij = svec(Ai)
T svec

(
1

2
(Z−1AjX + XAjZ

−1)

)
,

we can generate M using the following algorithm:

Given A defined as in (2.18), X, and R such that Z = RTR,

for (j = 1 . . . m),

tmp← R−1R−T smat(A(j,:))X

tmpsym ← 1
2(tmp + tmpT )

wj ← svec(tmpsym)

for (i = j . . . m),
Mij ← A(i,:)wj

Mji ←Mij

end

end

Here we have used a Matlab-like notation A(i,:) to denote row i of the matrix
A. We take the Cholesky factor R of Z for granted, since we will need it to
compute step lengths whether we generate the Schur complement matrix or
not.

In the three first lines of the outermost for-loop the second vector in the
formula for Mij is constructed, and in the innermost for-loop the product
is carried out. Assume now that the Ai-matrices, X and Z are dense ma-
trices. The innermost loop is run one time for each distinct element in M ,
1
2m(m + 1) times. Each time it performs n2 − 1 additions and n2 multipli-
cations. The outermost loop performs one matrix multiplication (O(n3)),
one svec and one smat (each O(n2)) and two instances of back-substitution
(corresponding to the triangular matrices R−1 and R−T ), both also O(n3)
of work. The symmetrisation of tmp corresponds to n2 − n additions and
n2−n multiplications. All in all, noting that n2 = O(1

2n2) and keeping only
the highest-order terms, the construction of M takes

O(3mn3 +
1

2
m2n2)

operations. If we are dealing with block diagonal matrices this bound on
the operation can be modified, as software packages like Matlab can be
expected to optimise matrix multiplications and back-substitutions based
on block structure. Therefore, as commented in [18], the terms n3 and n2

should be replaced by the sum of the cubes and squares of the individual
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block sizes (let block i be of size ni×ni, i = 1 . . . k), giving us an operation
count of

O(3m

k∑

i=i

n3
i +

1

2
m2

k∑

i=1

n2
i ).

In addition the svec and smat operations can be made more effective as
discussed earlier. As for implicit representation of M , we for a given vector
v have:

Mv = AE−1FAT v = AE−1F (AT v).

Using (3.6), this is the same as

A(X ~ Z−1)(AT v).

Each row of A contains the vector version of a constraint matrix. Therefore
smat(AT v) is the same as

m∑

i=1

viAi,

and is symmetric since the matrices Ai, i = 1 . . . m are. We finally get

Mv = A svec

(
1

2
(Z−1smat(AT v)X + Xsmat(AT v)Z−1)

)
, (4.10)

here taking into account the symmetry of X and Z−1 as well to eliminate
transposes.

The operation count here consists of the product AT v which is O(2mn2)
operations, smat (O(n2)), multiplication by X and two instances of back-
substitution corresponding to multiplication of Z−1 (all three put together
O(3n3)), one symmetrisation (O(2n2)), one svec (O(n2)), and finally multi-
plication by A, which is O(2mn2). Discarding the pure n2-terms and again
noting that n2 = O(1

2n2), we all in all get an operation count for the product
Mv of

O(3n3 + 2mn2)

operations. If we are dealing with block-diagonal matrices the correct oper-
ation count is

O(3
k∑

i=i

n3
i + 4mq)

operations, with q defined as in (2.17).
Roughly speaking, we can from these O-expressions expect inexact solu-

tion to be cheaper than direct solution if the sum of inner iterations in the
predictor and corrector steps is less than m.
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4.3 Description of the Schemes

First of all we make a few assumptions and observations:

• Assume that the initial iterates X0 and Z0 are multiples of the identity
matrix, and are likely to be far from the solution. This results in a
large duality gap, and a well-conditioned Schur complement matrix.

• Observe that the accuracy used in the corrector step should be more
restrictive than that used in the predictor step, to minimise error prop-
agation.

• Observe that an inexact interior-point iteration using the predictor-
corrector scheme where

‖h̃P − hP ‖
‖hP ‖ � X • Z

n
, as well as

‖h̃C − hC‖
‖hC‖ � X • Z

n
, (4.11)

using the definitions from (4.6)-(4.9), is equally effective as an interior-
point iteration employing direct solution. That is, if we solve inexactly
under the condition above, the total number of interior-point iterations
it takes to solve the entire problem is about the same as with direct
solution throughout. This hypothesis is supported by preliminary nu-
merical testing.

Using these bullet points as well as the other observations made in this
chapter, we devised two simple schemes for testing.

4.3.1 Scheme 1 — Inexact SCE Solution with PC

The idea behind this scheme is very simple: Using the predictor-corrector
approach, solve the SCE inexactly (two times per interior-point iteration)
with a loose error tolerance for the predictor step, and a more restrictive
error tolerance for the corrector step. In our experiments we used an SCE
relative residual of norm 10−4 in the predictor step and a relative residual
of norm 10−8 in the corrector step, that is

‖rP ‖
‖M∆̃yP − rP‖

≤ 10−4, and
‖rC‖

‖M∆̃yC − rC‖
≤ 10−8.

The denominators here are just the right hand side of (3.4) with hc = hP
c in

case of the predictor step, and hc = h̃C
c in case of the corrector step. The

Schur complement matrix is not generated explicitly, but represented by a
function which returns Mv for any v using (4.10). Keep solving inexactly
until one of the following occurs:
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• The operation count for the previous interior-point iteration was more
than 85% of the cost of an iteration employing direct solution. Opera-
tion counts are estimated using the O-expressions above. An interior-
point iteration with inexact solution is assumed to cost the number
of inner iterations in the predictor step plus the number of inner it-
erations in the corrector step multiplied by the cost of the product
Mv. An interior-point iteration with direct solution is assumed to
cost the number of operations used to generate M , as well as the
cost of computing its Cholesky factorisation (O( 1

3m3), [20]) and back-
substitution. The threshold of 85% may of course be at the user’s
discretion, this is only a suggestion.

• The equation solver used fails to return a sufficiently approximate
solution within the maximum number of allowed inner iterations. In
our experiments we set this number to m, so this never occurred.

• (4.11) no longer holds. If this happens, we expect inexact solution of
the SCE to yield large errors in both the predictor and corrector steps,

that is, that ∆̃P and ∆̃C will differ much from their exact counterparts.
Our codes actually don’t check this, as our choice of corrector step
accuracy causes inexact solution to be abandoned due to cost before
it becomes a problem. It should however not be overlooked.

When inexact solution is deemed undesirable, switch to generating M and
solving (3.4) directly.

4.3.2 Scheme 2 — Inexact SCE Solution with PC and Con-
servation of primal Feasibility

This scheme is essentially the previous scheme only with projection of ∆̃x to
∆x to obtain and preserve primal feasibility in both the predictor and cor-
rector steps (but only when solving inexactly). The projection adds slightly
to the cost of an inexact interior-point iteration since we have to perform
O(2m2 + 2mq) work when projecting. As discussed previously, we thereby
transfer the error we make to the part of the inexact step equation regarding
complementarity. If the error we make when solving (4.3) compared to ex-
act solution of the step equation is large, we risk stagnation, since we might
end up aiming over and over again for a point corresponding to a much
larger value for X •Z than intended. However, a large error in the solution
to (4.3) usually corresponds to a large condition number in the coefficient
matrix, and therefore also in the coefficient matrix of the Schur complement
equation. It will then be difficult to solve, and we are likely to switch to
direct solution. Indeed, in our experiments this scheme performed well and
seemingly without any such stagnation problems.
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Chapter 5

Numerical Results

5.1 Computer Code used

Many excellent software packages for solving SDP problems are available,
and when trying to improve existing algorithms modifying existing code is
certainly a feasible option. To maintain complete control over the code with
which we were to conduct experiments however, we decided to create code
from scratch1, resulting in a package of Matlab m-files given the name lfsdp.

To check the validity and stability of our code we tried several sample
runs on randomly generated problems to see if our code would produce the
same iterates as existing software. We chose to compare ourselves to the
SDPT3 v2.3 software package [19] which implements the HKM direction.
Below are graphs of three sample runs, on one small (n = 75, m = 75, Ai

sparse) problem, as well as a larger (n = 500, m = 500, Ai sparse) prob-
lem and a problem with dense coefficient matrices (n = 200, m = 100), all
randomly generated. Both codes use the same heuristics when updating σ,
primal and dual step lengths, and have the same stopping criteria. In the
first example the iterates are almost indistinguishable on these plots, and in
the second example they closely follow each other. From these two runs we
could conclude that the two codes are equivalent, but if we look at the prob-
lem with dense constraint matrices, we get a somewhat different result. Here
SDPT3 uses one more interior-point iteration to converge, and the iterates
of the two codes do not match each other as well as before. The question
becomes if this is due to numerical properties or an actual error in our im-
plementation. Since, on sparse problems, the two different codes behave in
a similar fashion, (the behaviour on the two sparse problems shown here is
quite typical) we are satisfied that ours is indeed a valid implementation of
the HKM direction, but with different numerical properties than SDPT3.

It should be added that on challenging problems, SDPT3 outperforms
lfsdp when it comes to computation time, probably due to its use of spe-

1Four subroutines from [2, 3] were used. We are grateful to its authors.
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cialised MEX routines when it comes to computing the Schur complement
matrix.
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Table 5.1: Plots of the duality gap and maximum relative infeasibility of
three randomly generated problems. The first two problems involve sparse
matrices, the third dense matrices.
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5.2 Heuristics and Convergence Criteria used

As described in the previous section, we adopted stopping criteria as well as
heuristics for determining σ, α and β from SDPT3 when trying to replicate
its iterates. As it turned out, these heuristics helped making lfsdp more
stable, so they were adopted permanently, and are outlined below:

σ = min

(
1,

[
µP

µ

]expon)
,

where as before the superscripts P and C correspond to the predictor and
corrector step, respectively and expon is chosen as

expon =





1 if µ > 10−6 and min(αP , βP ) < 1/
√

3,

max[1, 3min(αP , βP )2] if µ > 10−6 and min(αP , βP ) ≥ 1/
√

3,
1 if µ ≤ 10−6.





α and β are computed as before, only with

τP = 0.9 + 0.09min(αC , βC),

where αC and βC are from the previous interior-point iteration, and

τC = 0.9 + 0.09min(αP , βP ),

with the initial value of τ being 0.9. The convergence criterion is:

max

{ ‖b−Ax‖
max(1, ‖b‖) ,

‖svec(C)− z −AT y‖
max(1, ‖svec(C)‖) ,

X • Z

n

}
≤ 10−8.

The main difference here from the convergence criterion outlined in chapter
3 is that we here consider relative rather than absolute magnitudes when it
comes to all three error measures.

5.3 A typical Run

Our experiments consisted of comparing the two schemes against the tra-
ditional approach of solving the SCE directly on the same problem and on
the same computer. The output from a typical run looked like this:

knott.ii.uib.no

Fri Mar 29 19:24:33 CET 2002

This is the name of the computer, which is a 1000MHz workstation running
Linux, as well as a time stamp. Next follows the problem dimensions:

m = 300

n = 400

q = 80200
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q means the number of distinct elements in the n× n-matrices, so these are
full in this instance. Now we solve the problem (which here is a random
problem generated using routines from SDPPack v0.8 beta [2, 3]), using the
first scheme, without projection:

iter pstep dstep pinfeas dinfeas gap val sigma

0 0.000e+00 0.000e+00 1.583e+02 1.315e+00 4.000e+06 -5.758e+02

1 1.000e+00 9.742e-01 1.179e-05 3.399e-02 1.236e+05 9.466e+03 0.024

2 1.000e+00 9.877e-01 1.050e-05 4.191e-04 1.351e+04 6.149e+03 0.003

3 9.822e-01 9.838e-01 9.990e-07 6.798e-06 3.164e+02 2.579e+01 0.001

4 8.891e-01 1.000e+00 1.842e-07 1.775e-16 3.853e+01 -1.126e+02 0.013

5 3.729e-01 1.000e+00 1.238e-07 1.775e-16 3.324e+01 -1.150e+02 0.644

6 9.071e-01 1.000e+00 1.720e-08 1.765e-16 5.372e+00 -1.288e+02 0.076

7 1.000e+00 9.063e-01 4.437e-09 1.703e-16 2.252e+00 -1.302e+02 0.416

8 9.132e-01 1.000e+00 6.030e-09 1.778e-16 6.688e-01 -1.309e+02 0.232

9 9.423e-01 9.522e-01 4.128e-09 1.728e-16 6.408e-02 -1.312e+02 0.041

10 9.599e-01 9.742e-01 5.801e-09 1.749e-16 5.121e-03 -1.312e+02 0.042

Operation count becoming too large for inexact solution...

Solving SCE directly from now on

11 9.858e-01 1.000e+00 8.244e-11 1.785e-16 2.688e-04 -1.312e+02 0.039

12 1.000e+00 1.000e+00 7.641e-14 1.777e-16 1.643e-05 -1.312e+02 0.061

13 1.000e+00 1.000e+00 1.655e-13 1.766e-16 1.456e-06 -1.312e+02 0.089

14 1.000e+00 1.000e+00 2.656e-13 1.777e-16 3.456e-08 -1.312e+02 0.024

15 1.000e+00 1.000e+00 2.007e-12 1.771e-16 1.117e-09 -1.312e+02 0.032

Success, error reduced to value desired.

Cpu time spent: 19570.49 seconds.

The output columns are designed to mimic those of SDPT3 so they
display, from left to right:

iter Interior-point iteration number.
pstep Length of the primal corrector step, that is, αC from algorithm PC.
dstep Length of the dual corrector step, βC from algorithm PC.

pinfeas Relative primal infeasibility ‖b−Ax‖
max(1,‖b‖) .

dinfeas Relative dual infeasibility ‖svec(C)−z−AT y‖
max(1,‖svec(C)‖) .

dgap X • Z
val The average of the primal and dual objective function values, 1

2 (C •X + bT y).
sigma σ used in the corrector step.

Note that when a full primal step is taken, the new primal infeasibility
becomes the residual from the Schur complement equation instead of zero.

Next, we solve the same problem from the same starting point using the
scheme with projection:

iter pstep dstep pinfeas dinfeas gap val sigma

0 0.000e+00 0.000e+00 1.583e+02 1.315e+00 4.000e+06 -5.758e+02

1 1.000e+00 9.742e-01 8.215e-12 3.399e-02 1.236e+05 9.466e+03 0.024

2 1.000e+00 9.877e-01 6.277e-12 4.191e-04 1.351e+04 6.149e+03 0.003

3 9.822e-01 9.836e-01 7.575e-13 6.864e-06 3.166e+02 2.590e+01 0.001

4 8.891e-01 1.000e+00 9.265e-14 1.772e-16 3.856e+01 -1.126e+02 0.013

5 3.734e-01 1.000e+00 6.048e-14 1.772e-16 3.325e+01 -1.150e+02 0.643

6 9.071e-01 1.000e+00 7.083e-15 1.779e-16 5.375e+00 -1.288e+02 0.076

7 1.000e+00 9.067e-01 2.900e-15 1.700e-16 2.253e+00 -1.302e+02 0.416
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8 9.136e-01 1.000e+00 2.664e-15 1.781e-16 6.691e-01 -1.309e+02 0.232

9 9.423e-01 9.528e-01 2.562e-15 1.733e-16 6.431e-02 -1.312e+02 0.041

10 9.698e-01 9.807e-01 4.730e-15 1.752e-16 5.168e-03 -1.312e+02 0.052

Operation count becoming too large for inexact solution...

Solving SCE directly from now on

11 9.697e-01 9.788e-01 3.693e-14 1.754e-16 2.600e-04 -1.312e+02 0.021

12 1.000e+00 1.000e+00 9.708e-14 1.789e-16 1.674e-05 -1.312e+02 0.064

13 1.000e+00 1.000e+00 1.890e-13 1.766e-16 1.697e-06 -1.312e+02 0.101

14 1.000e+00 1.000e+00 2.289e-13 1.767e-16 3.822e-08 -1.312e+02 0.023

15 1.000e+00 1.000e+00 1.926e-12 1.779e-16 1.295e-09 -1.312e+02 0.034

Success, error reduced to value desired.

Cpu time spent: 19816.75 seconds.

The main difference here is that when a full primal step is taken, the rel-
ative primal infeasibility becomes and stays zero. This scheme does however
not behave with notable difference from the previous one when it comes to
the number of inexact interior-point iterations or computation time.

Finally we solve the same problem using the traditional approach:

iter pstep dstep pinfeas dinfeas gap val sigma

0 0.000e+00 0.000e+00 1.583e+02 1.315e+00 4.000e+06 -5.758e+02

1 1.000e+00 9.742e-01 1.016e-11 3.399e-02 1.236e+05 9.466e+03 0.024

2 1.000e+00 9.877e-01 7.217e-12 4.192e-04 1.351e+04 6.149e+03 0.003

3 9.822e-01 9.836e-01 7.447e-13 6.870e-06 3.167e+02 2.592e+01 0.001

4 8.892e-01 1.000e+00 9.147e-14 1.775e-16 3.856e+01 -1.126e+02 0.013

5 3.737e-01 1.000e+00 5.943e-14 1.786e-16 3.324e+01 -1.150e+02 0.643

6 9.071e-01 1.000e+00 7.696e-15 1.761e-16 5.374e+00 -1.288e+02 0.076

7 1.000e+00 9.067e-01 3.207e-15 1.688e-16 2.255e+00 -1.302e+02 0.416

8 9.133e-01 1.000e+00 3.368e-15 1.791e-16 6.690e-01 -1.309e+02 0.231

9 9.424e-01 9.522e-01 3.931e-15 1.742e-16 6.419e-02 -1.312e+02 0.041

10 9.597e-01 9.742e-01 1.190e-14 1.753e-16 5.130e-03 -1.312e+02 0.042

11 9.860e-01 1.000e+00 4.940e-14 1.765e-16 2.714e-04 -1.312e+02 0.040

12 1.000e+00 1.000e+00 8.251e-14 1.778e-16 1.656e-05 -1.312e+02 0.061

13 1.000e+00 1.000e+00 1.614e-13 1.794e-16 1.453e-06 -1.312e+02 0.088

14 1.000e+00 1.000e+00 2.626e-13 1.778e-16 3.473e-08 -1.312e+02 0.024

Success, error reduced to value desired.

Cpu time spent: 22630.97 seconds.

Once a full step is taking along either the primal or dual search direc-
tion, the corresponding infeasibility term becomes zero, as expected. The
number of interior-point iterations is roughly the same as before, but the
total computation time is about 14% longer.

5.4 Listing of Results

We tested the codes on both problems with full coefficient matrices, and
on problems with 20 equal blocks of dimension (n/20)× (n/20), referred to
as “dense” and “sparse” problems, respectively, as well as on some selected
SDPLIB [6] problems. The results are listed below. S1 means the scheme
without projection, S2 the one with projection. The columns S1 vs lfsdp
and S2 vs lfsdp indicate solution time relative to that of lfsdp. A relative
solution time of less than 100% means that S1 or S2 was faster than lfsdp.
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Dense problems

m n lfsdp sol. time S1 vs lfsdp S2 vs lfsdp

100 100 102s 116% 118%

100 200 692s 103% 98%

100 300 2735s 103% 104%

100 400 7130s 103% 103%

100 500 11599s 81% 82%

200 100 311s 104% 106%

200 200 1829s 87% 83%

200 300 6122s 75% 76%

200 400 13573s 82% 83%

200 500 24798s 74% 76%

300 100 519s 103% 106%

300 200 3484s 87% 88%

300 300 12985s 89% 90%

300 400 22630s 86% 88%

400 100 906s 91% 93%

400 200 5774s 80% 82%

400 300 19538s 75% 76%

500 100 1435s 100% 101%

500 200 8871s 84% 86%

500 300 26578s 75% 69%

Figure 5.1: Experimental results of the three codes on 20 different dense
randomly generated problems, generated with [2].

The pattern in the results seems to be that when the problems reach a
certain size, the inexact schemes arrive at the solution faster than the direct
approach, in terms of cpu time. On small problems they on the other hand
usually get outperformed by a significant relative margin, though this for
the most part doesn’t mean much in terms of seconds. An example: The
biggest relative increase in cpu time spent was when scheme 1 used 169%
of the time used by lfsdp on a small problem, trailing by about 28 seconds.
The biggest relative reduction in cpu time spent was when scheme 2 used
69% of the time lfsdp used on a large problem, which amounted to a solution
time reduction of two hours and 17 minutes.

It is difficult to announce a “winner” between the two schemes them-
selves. Scheme 1 wins most of the time, but on the largest problem scheme
2 is significantly faster than scheme one.
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Sparse problems

m n q lfsdp sol. time S1 vs lfsdp S2 vs lfsdp

100 100 300 17.84s 108% 107%

100 200 1100 49.52s 104% 104%

100 300 2400 105.92s 99% 101%

100 400 4200 237.15s 90% 92%

100 500 6500 456.57s 87% 89%

200 100 300 45.52s 110% 110%

200 200 1100 111.08s 102% 104%

200 300 2400 272.17s 93% 94%

200 400 4200 576.09s 91% 91%

200 500 6500 1041.56s 83% 85%

300 100 300 40.07s 169% 157%

300 200 1100 199.2s 118% 114%

300 300 2400 411.55s 93% 95%

300 400 4200 1038.97s 90% 92%

300 500 6500 1905.25s 79% 82%

400 200 1100 297.66s 104% 105%

400 300 2400 832.6s 83% 85%

400 400 4200 1494.22s 76% 77%

400 500 6500 2554.23s 87% 88%

500 200 1100 403.23s 106% 100%

500 300 2400 921.68s 87% 88%

500 400 4200 2208.1s 82% 82%

500 500 6500 4228.68s 73% 78%

Figure 5.2: Experimental results of the three codes on 23 different sparse
randomly generated problems, generated with [2].
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Selected SDPLIB problems

Name m n q lfsdp sol. time S1 vs lfsdp S2 vs lfsdp

arch0 174 335 13215 2293.64s 94% 94%

arch4 174 335 13215 2168.99s 88% 88%

mcp100 100 100 5050 128.57s 92% 93%

mcp124-1 124 124 7750 294.64s 87% 88%

ss30 132 426 43497 5470.72s N/A 87%

theta1 104 50 1275 29.61s 89% 89%

theta2 498 100 5050 2044.7s 84% 77%

truss2 58 133 331 11.29s 107% 106%

truss5 208 331 1816 228.82s 93% 94%

Figure 5.3: Experimental results of the codes on selected SDPLIB [6] prob-
lems. The “N/A”-entry signifies scheme one failing to converge.
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Chapter 6

Conclusions

6.1 Experiment Evaluation

Although we have only tested our schemes on about 50 concrete problems,
most of which which in addition are random and hence unlikely to exhibit
special structure real-world problems might have, the results obtained must
be said to be encouraging. As the size of the problems grow, the two pro-
posed schemes outperform the direct approach with an increasing relative
margin, as much as 31% of the total computation time in one of our exper-
iments. The direct approach is the most effective on smaller problems, but
this is not unexpected.

What is puzzling, though, is the relationship between the performances
of the two schemes themselves. In most cases they perform the same number
of both inexact and direct interior-point iterations, and spend roughly the
same amount of time arriving at a solution even though their individual
iterates are different, at least when it comes to primal feasibility. The reason
for this similar behaviour remains unclear, as we know little about the global
convergence properties of any our three solution methods. Both schemes
must be said to have performed well in practice.

It should of course be noted that the convergence criteria are a factor
when it comes to total computation time. If the tighten the global error
tolerance then we will have to perform more interior-point iterations and
this will favour the direct approach compared to our results. If we loosen
the error tolerance, it will favour our schemes.

6.2 Possible Modifications

Our codes are relatively rudimentary, and might well benefit from some
refinement. Possibilities are:

• Code stability, problem scaling. In our preliminary experiments, the
codes used including lfsdp frequently failed to converge on non-random
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problems. There can be several causes to this, for example that our
algorithms are sensitive to problem scaling. By scaling we mean mul-
tiplying objective function coefficients and problem constraints with
constants in a way which doesn’t alter the optimal solution but results
in better numerical properties. Implementing this technique in one
way or the other could possibly enhance the performance of our codes.

Another possible cause is that even if the expressions for right hand
sides, Schur complement matrix elements, step lengths and so on may
be written in many mathematically equivalent ways, their numerical
properties may vary. It may well be that our software would benefit
from experimenting with different formulations to see which would
result in the most stability.

• Adaptive decision-making. Often, the hallmark of a good algorithm is
the ability to adapt to the problem at hand. In our case, this could
be the ability to determine whether or not projection of ∆̃x is a good
idea, whether or not we should use preconditioning (see below) when
solving the Schur complement equation inexactly, what error tolerance
should be used, and so on. It is quite possible that such adaptivity
could improve performance.

6.3 Topics and Issues not addressed

There are a number of issues we haven’t given attention or explored to full
depth:

• Preconditioning. Preconditioning is a very important tool when it
comes to inexact solution of linear equation systems, and is outlined
in [20]. Its main goal is to make the iterative solver converge to the
solution of the equation system in as few iterations as possible. In our
case, this translates to obtaining a good PC-step with as few inner
iterations as possible. We have based the desirability of a PC-step
largely on computation time, and hence preconditioning of the Schur
complement equation might be of use to us.

• Matlab MEX files. Many Matlab SDP solvers use specialised routines
often written in C++ (MEX files) to compute the Schur complement
matrix. This we could do as well, but we haven’t as it would favour
the direct approach. Of course one might argue that doing so would
show that our schemes are less useful than we claim, but this would
not be “fair” in our view as the operations used to construct the SCE
would take less time than those used to perform the product Mv. Such
unfairness could namely also be made to favour our schemes; if SCE
generation is written in C++ and the routine performing the product
Mv is written in pure machine language, then the tables have turned.
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• Global convergence analysis. Global convergence theory is not fully
developed when it comes to the predictor-corrector approach, as out-
lined in [14], and consequently we haven’t been able to shed light on
the global convergence properties of inexact PC. We can of course rely
on our experimental results when claiming our schemes have the right
to life, but the theory behind it all remains incomplete.

6.4 Summary

We set out to investigate whether inexact solution of the Schur complement
equation when solving SDPs could be beneficial. We have surveyed research
already done in this field, and made new observations about inexact SCE
solution within a predictor-corrector framework, as well as observations re-
garding the operation count involved in the individual steps of Newton’s
method.

Using this information we devised schemes which implement direct and
inexact SCE solution in a hybrid fashion, starting out with inexact solution
and switching to direct solution once inexact solution becomes expensive, in
terms of operation count.

Through experiments we have shown that on both random and non-
random problems of a certain size, the suggested schemes can reduce the
solution time without losing accuracy. A number of questions remain unan-
swered, but our schemes seem to perform well, and the motivation behind
them seems to be a good idea.
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Appendix A

Notation and Terminology

In this appendix we define some of the notation and terminology which is
used throughout the text. It is mainly intended as reference material.

A.1 Basic definitions

Vectors and Matrices We denote vectors by lowercase letters, for ex-
ample x. If x is made up of n real numbers, then we say that x belongs to
the space Rn, or simply x ∈ Rn. Such a vector can also be referred to as an
n-vector, although this doesn’t say anything about the nature of its com-
ponents. Matrices are denoted by uppercase letters. For a matrix A with
m rows and n columns made up of real numbers we say that A ∈ Rm×n. If
m = n we say that the matrix is square.

Individual elements are denoted by a subscript, so xi means the i-th
element of x, and Aij means the element found at row i, column j.

Linear Independence Given i vectors {x1, x2, . . . , xi} of length n, where
i ≤ n, if the relation

xi =

i−1∑

j=1

cjx
j

doesn’t hold for any real numbers {c1, . . . , ci−1} or any ordering of the vec-
tors xj , then we say that {x1, . . . , xj} are linearly independent. If the relation
does hold, the vectors are said to be linearly dependent. In words, this means
that none of the vectors can be constructed as a linear combination of any
of the other vectors if they are linearly independent.

If the columns (or rows) of a square matrix are linearly independent,
then the matrix is said to be nonsingular, otherwise it is said to be singular.
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Eigenvalues and Eigenvectors For an n×n-matrix A, if for some vector
x

Ax = λx,

where λ is a scalar (real or complex), we say that x is an eigenvector of A
and that λ is the corresponding eigenvalue. If x is an eigenvector, then so
is cx for any c ∈ R, but it is common and useful to say that eigenvectors
are the vectors scaled so that ‖x‖ = 1. An n × n-matrix may have up to
n distinct eigenvalues and eigenvectors. An eigenvalue may correspond to
more than one eigenvector, but not the other way around. The determinant
of a matrix is equal to the product of its eigenvalues, so a matrix is singular
if and only if it has one or more zero eigenvalues. If the n× n-matrix A has
n linearly independent eigenvectors (which need not be the case even if A is
nonsingular), then there exists a factorisation

A = X−1ΛX,

where the columns of X are the scaled eigenvectors of A, and Λ is a diagonal
matrix with the corresponding eigenvalues of A on its diagonal. Powers and
roots of matrices can now easily be computed using the observation that the
factors X and X−1 cancel each other when A is multiplied by itself, so that

An = X−1ΛnX.

If A is symmetric, then

X−1ΛX = XT ΛT X−T ⇒ X−1 = XT .

Combining these observations, we can deduce that if A is symmetric, then
so is A−1, A2, and in general An for any integer n.

An additional observation is that if two matrices have the same set of
eigenvectors, they commute.

Big O-Notation This notation is used to provide an upper bound on the
number of operations it takes to perform a certain task. One definition is
that if a task takes f(n) operations to complete, then an upper bound on
the operation count is O (g(n)), where g(n) is a function such that

0 ≤ f(n) ≤ cg(n),

for some c > 0 and n ≥ n0, for some n0. An example:

f(n) =
1

2
n3 + 4n2 + n

is O(n3). The definition is satisfied if c > 1/2 and n0 is the value of n for
which the two functions are equal in value. Constants are often dropped
when it comes to giving upper bounds, but we have kept them in the text
since we are dealing with functions of more than one variable. For more
information on big O-notation and related material, see for example [8].
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A.2 Spaces and Sets

We have already mentioned the spaces Rn and Rm×n. In Rn each element
(that is, each n-vector) has n independent components, so we say that the
dimension of this space is n. The dimension of Rm×n, is mn.

The Space Sn Let Sn denote the space of real symmetric matrices. Here
the individual components of each member matrix are not independent,
since for a matrix A ∈ Sn, we must have Aij = Aji. The dimension of this
space we will denote by n2, and is given by

n2 =
n(n + 1)

2
.

Positive definite Matrices Matrices for which xT Ax > 0 for all x 6= 0
are said to be positive definite. This property is indicated using the notation
A � 0. These matrices have the property that all their eigenvalues are
strictly positive. Positive definite matrices encountered in practice are often
symmetric, but they need not be, for example the matrix

[
a −b
b a

]

is positive definite, but not symmetric. For symmetric and positive definite
matrices there exists a factorisation

A = RT R,

where R is upper-triangular. (Or equivalently, A = LLT , where L is lower-
triangular.) This factorisation is known as the Cholesky factorisation, and
is cheaper to compute than the standard LU-factorisation.

It is meaningful to talk about the set of positive definite matrices. If A
and B are positive definite, then so is cA + dB for scalars c and d such that
c + d > 0. This set is therefore a cone.

Positive Semidefinite Matrices Positive semidefinite matrices are an
extension of positive definite matrices. These are matrices for which
xT Ax ≥ 0 for all x. The main difference in this definition compared to the
definition of positive definite matrices is that a positive semidefinite matrix
need not have full rank. Therefore, for a positive semidefinite matrix we have
that for all eigenvalues, λi ≥ 0. All positive definite matrices are positive
semidefinite, but the opposite is not true.

The semidefinite cone is the set which arises from linear combination of
semidefinite matrices where the sum of the coefficients is nonnegative.
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A.3 Functionals and Operators

trace The trace of an n×n-matrix is defined to be the sum of its diagonal
elements:

trace(A) =
n∑

i=1

Aii.

The trace of a matrix interestingly turns out to be equal to the sum of its
eigenvalues.

The Bullet Product • We define • to be an inner product between two
matrices in Rn×n. Let

A • B = trace(BT A) =

n∑

i=1




n∑

j=1

AijBij


 .

If A and B both belong to Sn, A •B is equal to trace(AB).

Condition Numbers The condition number of a matrix A, κ(A), is given
as the number

κ(A) = ‖A‖‖A−1‖,
for some norm ‖ · ‖. It is useful in light of the relation

1

κ(A)
· ‖r‖‖b‖ ≤

‖e‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ ,

where x is the solution to Ax = b and given an approximate solution x̃,

‖e‖ = ‖x− x̃‖ and ‖r‖ = ‖b−Ax̃‖.

A proof of this relation can be found in [7]. What it means is that when ap-
proximately solving a system of equations, the relative error ‖e‖/‖x‖ which
we can say little about without solving the system exactly can be as large
as κ(A) times the relative residual ‖r‖/‖b‖, which can easily be computed.
An important implication is that if we want to solve a system of equations
with a high condition number, also called an ill-conditioned system, we have
to use high accuracy to solve even if we just want moderate accuracy in the
solution. An example: If a matrix has a condition number of 108, then a
solution with relative residual 10−10 could still have a relative error of 10−2.

The Jacobian Matrix of a Function F If F is a function from Rn

to Rm, that is, it transforms an n-vector v to an m-vector F (v), then its
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Jacobian matrix is the m× n-matrix:



∂F1

∂v1

∂F1

∂v2
· · · ∂F1

∂vn

∂F2

∂v1

∂F2

∂v2
· · · ∂F2

∂vn

...
...

...
∂Fm

∂v1

∂Fm

∂v1
· · · ∂Fm

∂vn


 ,

where vi is the i-th element of v and Fj is the j-th component of the vector
function F . See for example [4] for more details.

svec and smat Let svec be an operator from Sn to Rn2

. svec stacks the
distinct elements of the matrix in a vector, and multiplies the off-diagonal
entries by

√
2 so that

svec(A)T svec(B) = A • B,

for A,B ∈ Sn. Let smat be the inverse operator of svec, that is, the
operator from Rn2

to Sn which takes a vector and constructs a symmetric
matrix, multiplying off-diagonal entries by 1√

2
. An example might clarify

things:
Let

A =




1 2 3
2 5 6
3 6 9


 , B =




5 7 2
7 3 9
2 9 11


 .

We now have

A • B = trace(AB) = trace






25 40 53
57 83 115
75 120 159




 = 267.

Another way to obtain the bullet-product between A and B we get by first
multiplying each component in A with the corresponding component in B
to obtain: 


5 14 6
14 15 54
6 54 99


 .

A • B is now the sum of the elements of this matrix, again 267. As stated
above, we can also perform this product using svec. We let svec(A) stack
the columns of the lower-triangular part of A in a vector. (In theory we
can order the elements any way we want, as long as we are consistent.)
Multiplying the off-diagonal elements by

√
2, we get:

svec(A) =




1

2
√

2

3
√

2
5

6
√

2
9




, svec(B) =




5

7
√

2

2
√

2
3

9
√

2
11




.
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Note that the length of these vectors is 6, which is n2, the number of distinct
elements in A and B. Performing the inner product between these two
vectors is to give us A • B, and indeed

svec(A)T svec(B) = 267.

Exploiting Block Structure with svec We can make svec and smat

more effective by taking block diagonal structure, if present, into account.
If, for example we have the matrix

A =




E
F

G
H


 ,

where E through H are symmetric blocks, not necessarily of equal size, then
instead of implementing the svec operation as in the example above, we can
store the distinct nonzero elements more economically in the vector




svec(E)
svec(F )
svec(G)
svec(H)


 .

This makes the economy-version of svec an operator from Sn to Rq, where

q =
k∑

i=1

ni(ni + 1)

2
,

and ni × ni is the dimension of block number i. Of course, such a modified
svec is only applicable if we want to bullet-multiply two matrices with
identical block structure.

svec, smat and Norms For a vector x the 2-norm ‖x‖2 is given as

‖x‖2 =
√

xT x.

For a matrix A the Frobenius norm ‖A‖F is given as

‖A‖F = trace(AT A) = A •A.

If we’re dealing with a symmetric matrix, say V , then

V • V = svec(V )T svec(V ).

From these relations we can see that if V is symmetric and v = svec(V ),
then

‖v‖2 = ‖V ‖F . (A.1)
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The symmetric Kronecker Product ~ Let M,N ∈ Rn×n and K ∈ Sn.
The symmetric Kronecker product ~ is implicitly defined by:

(M ~ N)svec(K) = svec

(
1

2
(NKMT + MKNT )

)
.

What happens is that we from two n×n-matrices M and N , which are not
necessarily symmetric, construct the matrix (M ~N) which is of dimension
n2 × n2. This new matrix is not necessarily symmetric either, see the prop-
erties listed below. When multiplied to svec(K), where K is symmetric,
we get the vector version of a symmetric matrix as can be seen from the
implicit definition above. To construct to matrix (M ~ N) explicitly from
our definition we could for example multiply it with the individual columns
of the n2 × n2 identity matrix. Some properties of ~ are:

G ~ K = K ~ G,

(G ~ K)T = GT
~ KT ,

(G ~ G)−1 = G−1
~ G−1,

(G ~ K)(H ~ H) = (GH ~ KH),

(H ~ H)(G ~ K) = (HG ~ HK).

If G and K are symmetric and positive definite, then so is (G ~ K). For
additional properties, see for example [17].

A.4 Notation and Terminology specific to LP and
SDP

Inequality Constraints In our standard LP problem we have the con-
straints

x ≥ 0 and z ≥ 0.

This is non-standard notation when it comes to mathematics in general.
What is meant is,

xi ≥ 0, i = 1 . . . n, and zi ≥ 0, i = 1 . . . n,

respectively. The corresponding relation when it comes to matrices is, as
mentioned above

X � 0, and Z � 0,

which means that X and Z are positive semidefinite. If X and Z are positive
definite, we write

X � 0, and Z � 0.

Sometimes, however, we might encounter an expression like this:

A � B.

59



The meaning of this expression is that the matrix A−B is positive semidef-
inite. The same applies to such expressions involving positive definite ma-
trices.

Terminology In both LP and SDP we work with functions which are
subject to constraints. Consider the primal LP problem. Any n-vector x is
said to be a solution, whether it satisfies the constraints in question or not.
A vector x which does satisfy the constraints is said to be a (primal) feasible
solution. Similarly, a pair of vectors (y, z) satisfying the constraints of the
dual problem are said to be a (dual) feasible solution. If no primal or dual
feasible solutions exist, the problem is said to be infeasible. The constraints
themselves are referred to as the primal and dual feasibility constraints.

Primal and dual infeasibility are the expressions

b−Ax,

and
c− z −AT y,

respectively. These are measures of how close the points x and y are to
satisfying the constraints of the LP or SDP problem. The term primal/dual
infeasibility is often used to mean the norms of the two expressions as well.
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Appendix B

Derivation of the Central
Path Equations for LP

In this appendix we outline the motivation behind the interior-point method
for linear programming in chapter 2. It is mainly intended as a brief in-
troduction for the reader unfamiliar with these ideas. A more thorough
discussion can be found in [14].

B.1 Reformulation of the LP

If we’re only interested in the optimal values of the variables of the primal
and dual LP problems rather than the optimal objective function value, the
linear program we use as a standard (both primal and dual) can be written
as follows:

min cT x− bT y

such that
Ax = b

and
AT y + z = c

where
x ≥ 0, z ≥ 0.

We assume that A ∈ Rm×n has full rank, that is, that its rows are linearly
independent, and consequently that m ≤ n.

Let’s say now that we want to try to convert this constrained problem
into a problem without constraints. Such problems are usually much easier
to solve. If we wanted to eliminate the condition

(x, z) ≥ 0,
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we could replace it by terms in the objective function which are small when x
and z ≥ 0, and prohibitely large otherwise. This can be done in many ways,
but an obvious choice would be the logarithm function, or more precisely
the negative thereof:

−
n∑

i=1

log(xi)−
n∑

i=1

log(zi).

(A function like this is known as a logarithmic barrier function.) This func-
tion has a modest growth rate when x and z are positive, and goes to infinity
as x and z tend to zero. Negative (x, z)-values are thus not a problem any-
more, but as we would like x and z to able to be very close to zero should the
original problem demand it, we introduce a scaling parameter µ. The reason
for this is to compensate for the rapid decrease in the logarithm function as
its argument approaches zero, giving us:

−µ
n∑

i=1

log(xi)− µ
n∑

i=1

log(zi).

We can now reformulate the LP problem to give us an intermediate problem:

min cT x− bT y − µ

n∑

i=1

log(xi)− µ

n∑

i=1

log(zi),

such that
Ax = b, and AT y + z = c.

It is important to note that this problem is not the same problem as the
original one, but if we choose smaller and smaller values for µ it will become
an increasingly better approximation to it.

Turning our attention to the remaining constraints we see that if they
had been of the type Ax ≤ b we could have reused the logarithmic technique,
but unfortunately it doesn’t work for equality constraints. As it turns out,
we can’t replace for example Ax = b by

Ax ≤ b, Ax ≥ b

and use logarithms on each individual constraint either. If we do so, all
the constraints will still have to be satisfied in the is-equal sense, and the
logarithms will shoot the objective function off to infinity. Consequently,
the feasible set will be empty. What we need is a more versatile tool.

B.2 Lagrange Multipliers

Lagrange multipliers are a tool in analysis which deal with the problem of
finding maxima and/or minima of (not necessarily linear) functions subject
to one or more constraints. The idea stems from the following theorem:
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Theorem B.1 If a function

f(x1, . . . , xn) : Rn 7→ R

has a local maximum/minimum when subject to m constraints





g1(x1, . . . , xn)
...

gm(x1, . . . , xn)





= 0,

where m < n, then there exist m scalars λi, i = 1 . . . m, such that at each
maximum/minimum

∇f =
m∑

i=1

λi∇gi.

If we look at the so-called Lagrangian function:

L(x, λ) = f(x) +
m∑

i=1

λig(x),

where here x = (x1, . . . , xn) and λ = (λ1, . . . , λm), then setting the partial
derivatives of L(x, λ) equal to zero satisfy the original m constraints as well
as the relation in theorem B.1. In other words, to find the maximum or
minimum of a constrained function (provided that such a point exists), all
we need to do is to find the critical points of the corresponding Lagrangian
function. More information on Lagrange multipliers can be found in [4].

B.3 Lagrange Multipliers applied to LP

Applying the technique to our problem, we get:

min f = cT x−bT y−µ

n∑

i=1

log(xi)−µ

n∑

i=1

log(zi)+λT (Ax−b)+ηT (AT y+z−c).
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To obtain a critical point what we need to do is to set all the individual
partial derivatives to zero. Differentiating, we get:

∂f

∂xj
= cj −

µ

xj
+

m∑

i=1

λiAij

∂f

∂yi
= −bi +

n∑

j=1

ηjAm+1−i,j

∂f

∂zj
= − µ

zj
+ ηj

∂f

∂λi
=

n∑

j=1

Aijxj − bi

∂f

∂ηj
=

m∑

i=1

Am+1−i,jyi + zj − cj

for i = 1 . . . m, j = 1 . . . n,

all of which are to be zero. If we let

∂f

∂x
=




∂f
∂x1

...
∂f
∂xn


 ,

∂f

∂y
=




∂f
∂y1

...
∂f

∂ym




and so on, we can write these equations more compactly as:

∂f

∂x
= c− µX−1e + AT λ = 0,

∂f

∂y
= −b + Aη = 0,

∂f

∂z
= −µZ−1e + η = 0, (B.1)

∂f

∂λ
= Ax− b = 0,

∂f

∂η
= AT y + z − c = 0.

The two last equations here are the familiar LP constraints. The three first
can be manipulated further. If we multiply the first equation by X and the
third by Z, the first three rows become:

X c− µe + XAT λ = 0,
Aη − b = 0,
Zη − µe = 0.

(B.2)

If we now set
λ = −y, and η = x,
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then the first equation turns into

X c− µe−XAT y = 0.

Since −AT y = z − c this is the same as

X c− µe + X (z − c) = 0,

or
X z = µe,

which is the same as
xizi = µ, i = 1 . . . n.

The second equation turns into the primal feasibility constraints, and the
third turns into

Zx− µe = 0,

which again is the same as xizi = µ, i = 1 . . . n. So all in all we end up with

Ax− b = 0,
AT y + z − c = 0,
XZe− µe = 0.

(B.3)

With the given choice of η and λ (B.1) certainly implies (B.3), but we don’t
know if the converse also is true. That is, if the relation

XZe = µe⇒ λ = −y, η = x

holds. If we take a look at (B.2) and substitute µe with XZe in the first
row, we get

X c−XZe + XAT λ = 0.

Multiplying by X−1 gives us

c−Ze + AT λ = 0,

which is the same as
−AT λ + z − c = 0.

Now AT λ is the linear combination of the columns of AT with coefficients
λi, and since those columns are linearly independent, we must have λ = −y.
If we look at the third row of (B.2) and substitute µe with ZX e, we get

Zη −ZX e = 0.

Multiplying by Z−1 gives us

η −X e = 0,

which is the same as η = x, so (B.1) with η = x and λ = −y, and (B.3)
are equivalent. From second-order information it can be gathered that, if
it exists, there is in fact only one solution to (B.1), so we can safely solve
(B.3) instead.
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B.4 The unconstrained Problem vs LP

As noted above, the problem we obtain when introducing barrier functions
is not the same problem as the original LP problem, but we hoped that it
would be a good approximation for small values of µ. A more precise rela-
tion between the two can be obtained as follows:

We have
XZe = µe ⇒ xT z = µn.

If both x and z are feasible, we have from the relation AT y + z− c = 0 that
this is the same as

xT (−AT y + c) = µn

which can be rearranged as

−yT (Ax) + cT x = µn.

Now, since x is feasible we have Ax = b, and therefore

−yT b + cT x = µn,

or, rearranging a little again:

cT x− bT y = µn.

In other words, when x and z are feasible, µn is equal to the duality gap.

B.5 Extension to SDP

Generalisation of these results to SDP is possible, but as one might expect
is quite complicated, even though the resulting equations are not all that
different from the ones pertaining to LP. A full derivation of the existence
and uniqueness of the SDP central path can be found in [15]. The gener-
alised relations we are interested in are as follows:

For points on the central path we have:
∑m

i=1 yiAi + Z − C = 0,
A1 •X − b1 = 0,

...
Am •X − bm = 0,

XZ − µI = 0.

For feasible points, the duality gap is given by:

X • Z = µn.
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Appendix C

Source Code

C.1 Listing of Scheme 2

Listed below is the source code for scheme 2 (with projection), from which
scheme 1 and lfsdp can be recovered. The function “Mfun” takes as input
a vector v and returns the product Mv, using the formula (4.10).

% scheme2/lfsdp - Primal-Dual SDP solver using the HKM (P = Z^(1/2))

% direction and Mehrotra’s Predictor-Corrector approach.

%

% Written by Lennart Frimannslund, lennart@ii.uib.no, 2002.

%

% MODIFICATION SCHEME 2:

% Solves the Schur Complement equation Mdy = rhs

% using CG and a relative error tolerance of 1e-4 (pred) / 1e-8 (corr)

% until CG becomes too expensive or fails

% Projects dX at each iteration so that a full step results

% in Ax-b = 0. This projection affects complementarity

%

% Solves the problem

%

% min trace(C*X)

% s.t.

% trace(A_i*X) = b_i, i=1...m, X >= 0,

%

% as well as its associated dual problem

%

% max b’y

% s.t.

% sum (i=1..m) y_i * A_i + Z = C, Z >= 0.

%

% Needs the m-file Mfun (implicit def of SCE matrix M) to be

% available

%

% Needs the following m-files from sdppack to be available

%

% svec - Conversion from matrix to vector

% smat - Conversion from vector to matrix

% sdbound - Step length computer

% blkeig - Eigenvalue computer

%

% Needs the following variables to exist in the workspace:

%
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% A - Matrix containing [svec(A1)’; ... ; svec(Am)’]

% C - primal problem cost matrix

% b - dual problem cost vector

% blk - block structure vector

%

% X - initial iterate, must be positive definite

% Z - initial iterate, must be positive definite

% y - initial iterate

%

cput = cputime;

% some booleans for decision making, see scheme description above

solveinexactly = 1;

doneinexact =0;

pflag=0;

cflag=0;

% some constants used for calculating complexity

q = 0.5* sum(blk.*(blk+1));

sumnisquare = sum(blk.^2);

sumnicube = sum(blk.^3);

% Compute chol(A*A’), we’ll need it later for projecting dx

% onto the nullspace of A

[cholAAT,indef] = chol(A*A’);

if (indef~=0),

disp(’Matrix A*A^T not positive definite, aborting...’);

return;

end;

m = length(y);

n = length(C(:,1));

M = zeros(m,m);

sigma = 0.1;

[cholX,indef] = chol(X);

if (indef~=0),

disp(’Initial X not positive definite, aborting...’);

return;

end;

[cholZ, indef] = chol(Z);

if (indef~=0),

disp(’Initial Z not positive definite, aborting...’);

return;

end;

pinfeas = norm(b - A*svec(X,blk)) / max(1,norm(b));

dinfeas = norm(svec(C-Z,blk)-A’*y,’fro’) /max(1,norm(C,’fro’));

dgap = sum(sum(X.*Z));

err = max(max(pinfeas,dinfeas),dgap);

tol = 1e-8;

mu = dgap / n;

iter = 0;

alpha = 0;

beta = 0;

tau = 0.9;

% Print info
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disp([’iter pstep dstep pinfeas dinfeas’ ...

’ gap val sigma’])

disp(’ ’);

disp(sprintf(’%3d %11.3e %11.3e %11.3e %11.3e %11.3e %11.3e’,...

iter,alpha,beta,full(pinfeas),full(dinfeas),...

full(dgap),0.5*(full(sum(sum(C.*X)))+full(b’*y))));

%Main loop

while (err >= tol),

iter = iter +1;

Rd = C - Z - smat(A’*y,blk);

rp = b - A*svec(X,blk);

if (solveinexactly == 0),

% Construct Schur Complement

for (j = 1:m),

invZAjX = cholZ \ (cholZ’ \ (smat(A(j,:),blk) * X));

invEFAj = 0.5 *( invZAjX + invZAjX’);

svec_invEFAj = svec(invEFAj,blk);

for (i = j:m),

M(i,j) = A(i,:) * svec_invEFAj;

if (i ~= j),

M(j,i) = M(i,j);

end;

end;

end;

[R,indef] = chol(M);

if indef~=0,

disp([’Schur Complement matrix not positive definite -’ ...

’ aborting...’]);

disp([’Cpu time spent: ’ num2str(cputime - cput) ’ seconds.’]);

return;

end;

end;

%

% PREDICTOR STEP

%

% Construct right hand side

invZRdX = cholZ \ (cholZ’ \ (Rd * X));

rhs = rp + A*(svec( 0.5*(invZRdX + invZRdX’) + X,blk));

if (solveinexactly == 0),

% Solve M dy = rhs

dy = R \ (R’ \ rhs);

else,

[dy,pflag,relres,piter] = pcg(’Mfun’,rhs,1e-3,m,[],[],[],X,cholZ,A,blk);

r = Mfun(dy,X,cholZ,A,blk) - rhs;

end;

% Back-substitute. Obtaining dX this way might not be numerically optimal

% way, see AHO section 5 for discussion

dZ = Rd - smat(A’*dy,blk);
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invZdZX = cholZ \ ( cholZ’ \ (dZ * X));

dX = - X - 0.5*(invZdZX + invZdZX’);

% Symmetrize dX,dZ, according to AHO good idea because of rounding

dZ = 0.5*(dZ + dZ’);

dX = 0.5*(dX + dX’);

% If solving inexactly, project dx onto nullspace of A

if ( solveinexactly ==1),

dX = dX - smat(A’*(cholAAT \ (cholAAT’\r)), ...

blk);

end;

% Now compute steplengths

alpha = min(1,tau*sdbound(cholX,dX,blk));

beta = min(1,tau*sdbound(cholZ,dZ,blk));

%Store predictor step

Xnew = X + alpha * dX;

Znew = Z + beta * dZ;

% We choose choose centering parameter sigma dynamically

% based on heuristic presented in SDPT3 v2.1 user’s guide

exponent = 1;

if (mu > 1e-6),

if (min(alpha,beta) < 1/sqrt(3)),

exponent = 1;

else,

exponent = max(1, 3 * min(alpha,beta)^2);

end;

else,

exponent = 1;

end;

sigma = min(1, power(sum(sum(Xnew.*Znew))/dgap,exponent));

%

% CORRECTOR STEP

%

tau = 0.9 + 0.09*min(alpha,beta);

% Construct corrector right hand side

dXdZinvZ = ((dX * dZ ) / cholZ) / cholZ’;

rhscorr = rp + A*(svec( 0.5*(invZRdX + invZRdX’) - sigma * mu * ...

inv(cholZ)*inv(cholZ’) + X + 0.5*(dXdZinvZ + dXdZinvZ’), ...

blk));

if (solveinexactly == 0),

% Solve M dy = rhs

dy = R \ (R’ \ rhscorr);

else,

[dy,cflag,relres,citer] = pcg(’Mfun’,rhscorr,1e-9,m,[],[],[],X,cholZ,A,blk);

r = Mfun(dy,X,cholZ,A,blk) - rhscorr;

end;

%Back-substitute as before
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dZ = Rd - smat(A’*dy,blk);

invZdZX = cholZ \ ( cholZ’ \ ( dZ * X));

dX = sigma * mu * inv(cholZ)*inv(cholZ’) - X - 0.5*(invZdZX + invZdZX’) - ...

0.5*(dXdZinvZ + dXdZinvZ’);

% Symmetrize dX,dZ, according to AHO good idea because of rounding

dZ = 0.5*(dZ + dZ’);

dX = 0.5*(dX + dX’);

% If solving inexactly, project dx onto nullspace of A

if ( solveinexactly ==1),

dX = dX - smat(A’*(cholAAT \ (cholAAT’\r)), ...

blk);

end;

% Now compute steplengths

alpha = min(1,tau*sdbound(cholX,dX,blk));

beta = min(1,tau*sdbound(cholZ,dZ,blk));

%Update iterates for testing, we’ll accept

%or reject them shortly

Xnew = X + alpha * dX;

Znew = Z + beta * dZ;

[cholX,indef] = chol(Xnew);

if (indef~=0),

disp(’New X-iterate indefinite, terminating...’);

disp([’Cpu time spent: ’ num2str(cputime - cput) ’ seconds.’]);

return;

end;

[cholZ, indef] = chol(Znew);

if (indef~=0),

disp(’New Z-iterate indefinite, terminating...’);

disp([’Cpu time spent: ’ num2str(cputime - cput) ’ seconds.’]);

return;

end;

%Accept new point

X = Xnew;

Z = Znew;

y = y + beta * dy;

pinfeas = norm(b - A*svec(X,blk)) / max(1,norm(b));

dinfeas = norm(svec(C-Z,blk)-A’*y,’fro’) /max(1,norm(C,’fro’));

dgap = sum(sum(X.*Z));

err = max(max(pinfeas,dinfeas),dgap);

mu = dgap/n;

tau = 0.9 + 0.09*min(alpha,beta);

%Display info

disp(sprintf(’%3d %11.3e %11.3e %11.3e %11.3e %11.3e %11.3e %5.3f’,...

iter,alpha,beta,full(pinfeas),full(dinfeas),...

full(dgap),0.5*(full(sum(sum(C.*X)))+full(b’*y)),full(sigma)));

%decide if we’re to abandon inexact computation

if (pflag ~= 0 | cflag ~= 0),

solveinexactly = 0;
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%set these two zero to satisfy this if-test when done inexactly.

pflag=0;

cflag =0;

end;

% test of whether or not to quit based on operation count

% Check if operations carried out to solve inexactly

% are close to the cost of solving directly. If so, quit

% Don’t count cost of projecting as it is close

% to the cost of SCE back-substitution which we dont count either

if (solveinexactly == 1 & (piter+citer)*(3*sumnicube+4*m*q) >= ...

0.85*(3*m*sumnicube+0.5*m^2*sumnisquare+(1/3)*m^3)),

solveinexactly = 0;

%set these two zero to satisfy if-test when done inexactly.

pflag=0;

cflag =0;

disp(’Operation count becoming too large for inexact solution...’);

end;

if (solveinexactly ==0 & doneinexact ==0),

disp(’Solving SCE directly from now on’);

doneinexact =1;

end;

end;

disp(’Success, error reduced to value desired.’);

disp([’Cpu time spent: ’ num2str(cputime - cput) ’ seconds.’]);
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