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A B S T R A C T

A point cloud can be endowed with a topological structure by con-
structing a simplicial complex using the points as vertices. Instead
of assigning a single simplicial complex, Topological Data Analysis
(TDA) employs multiple simplicial complexes, each representing the
point cloud at a different resolution. These combine to form a filtra-
tion: a nested sequence of simplicial complexes which gives rise to
persistent homology, a useful tool able to extract topological infor-
mation from the point cloud. The Vietoris-Rips filtration is a popular
choice in TDA, mainly for its simplicity and easy implementation for
high-dimensional point clouds. Unfortunately, this filtration is often
too large to construct fully.

We introduce in this thesis a way of reducing a simplicial complex
by identifying its vertices. Applying this technique to each simplicial
complex in the Vietoris-Rips filtration results in a smaller filtration
that can be shown to approximate the Vietoris-Rips filtration in terms
of persistent homology.
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I N T R O D U C T I O N

With the improvement in computing technology, we are able to pro-
duce various kinds of data at an incredible rate. The relatively new
term "Big Data" reflects this very well; the data produced is much
larger and more complex than in the past. This complexity often
stems from the data being noisier, making it difficult to sort out the
irrelevant parts, or the data being very high-dimensional, which lim-
its any kind of visualization.

Topological Data Analysis (TDA) is a recent field which has proved
successful in extracting information from metric datasets, i. e. point
clouds. One of the main techniques in TDA, persistent homology, was
introduced in a paper by Edelsbrunner et al. [12] (2002), which was
followed by the works of Zomorodian and Carlsson [23] (2005). An
increasing number of applications have appeared recently in fields
such as social sciences [4, 18], biology [5], neurosciences [14, 21] and
nanotechnologies [17].

The goal of TDA is to determine qualitative properties or structures
of the point cloud by studying its shape. There are multiple ways of
approaching this underlying shape, e. g. the Mapper algorithm intro-
duced by Singh et al. [19], notable for its discovery of a new subtype
of breast cancer cite:nicolau:2011. In this thesis, however, we choose
to adopt the technique of persistent homology.

Persistent homology revolves around building a nested sequence
of simplicial complexes, called a filtration, with the point cloud as
the vertex set. Since any simplicial complex can be realized as a topo-
logical space, the filtration captures the desired notion of shape at
various resolutions. The specific choice of filtration is important as it
should be able to detect relevant properties of the point cloud. We
can visualize the persistent homology of a filtration via the so-called
persistence diagram.

A popular choice for the filtration is the Vietoris-Rips filtration,
based on balls increasing in size around each point in the cloud.
While easy to implement, the size of the filtration grows exponen-
tially with the amount of points, which makes it computationally ex-
pensive.

In this thesis, we will approximate the persistent homology of the
Vietoris-Rips filtration via a different filtration. Since the limiting fac-
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tor of the Vietoris-Rips filtration is the size of the point cloud, the
immediate aim would be to reduce this size by some means. By identi-
fying points before constructing the Vietoris-Rips filtration, we obtain
a smaller filtration, called the quotient filtration. In terms of topolog-
ical spaces, this quotient filtration consists of quotient spaces of the
original spaces in the Vietoris-Rips filtration. We will show that given
certain restrictions there exists an interleaving between the two fil-
trations, which results in their associated persistence diagrams being
similar. This, in other words, means that the quotient filtration ap-
proximates the Vietoris-Rips filtration in terms of persistent homol-
ogy.

While this quotient filtration construction is, most likely, not origi-
nal, we have not seen this used in the context of persistent homology.
The fact that we get one of the two inclusions for free makes it rather
simple to achieve an interleaving with the Vietoris-Rips filtration.

overview

The thesis is structured as follows:

Chapter 1 introduces basic concepts within simplicial methods and
algebraic topology that will be frequently used throughout the thesis.

Chapter 2 describes the fundamentals of persistent homology, which
we will use to compare various datasets in Chapter 4. We also define
the Čech and Vietoris-Rips filtrations, the latter of which we are ap-
proximating in this thesis.

Chapter 3 introduces two new simplicial complexes: the preimage
complex and the quotient complex. We also state and prove in this
chapter the main theoretical result of this thesis, namely that the com-
plexes are homotopy equivalent whenever the map used to construct
them is surjective. We also present a section on the Nerve Theorem,
which is needed for the proof.

Chapter 4 revisits the quotient filtration and describes a restriction
needed to make it interleaved with the Vietoris-Rips filtration. We
also describe the algorithm we have implemented to make such a
filtration. Finally we compare the persistence diagrams between the
filtrations using a few synthetic datasets.

In Chapter 5 we discuss the results of the applications done in the
previous chapter and introduce several ideas for future work.
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Part I

S O M E K I N D O F M A N U A L





1
P R E L I M I N A R I E S

The topics presented in this chapter forms a basis for the thesis. These
preliminaries only include concepts and results from simplicial meth-
ods and algebraic topology and we therefore expect the reader to be
familiar with various algebraic objects such as groups, quotient sets
and vector spaces.

The chapter is included to make the thesis more self-contained and
any experienced reader may skip directly to Chapter 2 and use this
chapter as a reference. Most of the following expositions and defini-
tions are largely based on various literature. See [10], [15] and [13].

1.1 simplicial methods

We present here a minimalistic approach to simplicial methods, the
main notions being the simplicial complex and its geometric realiza-
tion.

Definition 1.1.1 (Abstract simplicial complex). A collection K of fi-
nite nonempty subsets of a set V is called a (abstract) simplicial complex
if, for any σ in K and any nonempty set τ ⊆ σ, τ also is a member of
K.

We will refer to V as the vertex set of K and the members of K as
simplices. More specifically, if σ is in K and the cardinality card(σ) of
σ is equal to n, then we say its dimension is equal to n− 1 or that it’s
a (n− 1)-simplex.

Sometimes we will also denote the simplicial complex as (K,V) if
we need to emphasize the vertex set.

Example 1.1.2. For the set V = {0, 1, 2, 3, 4}, we can define the sim-
plicial complex K = {0, 1, 2, 3, 4, 01, 02, 12, 23, 24, 34, 012, 234} (here e. g.
234 denotes the set {2, 3, 4}). By identifying the set V with the vertices
in Figure 1 we can describe K as the depicted diagram; the singleton
sets, the two-element sets and the three-element sets in K correspond
to the points, the lines and the shaded triangles in Figure 1, respec-
tively.

Proposition 1.1.3. The intersection of a collection of simplicial complexes
{Ki}i∈I is either empty or a simplicial complex.

Proof. Assume K := ∩i∈IKi is nonempty and let σ be a simplex of K.
We want to show that if τ is contained in σ, then τ is also a simplex
of K. This should however be obvious: if τ ⊆ σ and σ is a simplex
of Ki for all i ∈ I, then it follows from definition that τ must also be
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Figure 1: The simplicial complex K of Example 1.1.2

a simplex of Ki for all i ∈ I. Thus, τ is also in the intersection of all
these, K.

Definition 1.1.4 (Closure). Let V be a set. We define the closure V of V
to be the smallest simplicial complex containing V , i. e. the collection
of all nonempty subsets of V .

Remark 1.1.5. A map f : V → W between the vertex sets of two sim-
plicial complexes (K,V) and (L,W) also induces a map between the
simplicial complexes; if σ is a simplex of K, then the image of σ under
f is defined as f(σ) := {f(v) | v ∈ σ}.

Definition 1.1.6 (Simplicial map). Let (K,V) and (L,W) be simplicial
complexes. A map f : V → W is called a simplicial map if it maps
simplices to simplices, i. e. for σ in K we have that f(σ) belongs to L.

Definition 1.1.7. The standard n-simplex is a subset of Rn+1 given by

∆n =

{
(t0, t1, . . . , tn) ∈ Rn+1 |

n∑
i=0

ti = 1, ti > 0

}
.

We now describe a way to endow an abstract simplicial complex
with a topology by embedding it into a euclidean space. The follow-
ing definition only considers finite simplicial complexes, which is suf-
ficient for the purpose of this thesis.

Definition 1.1.8 (Geometric realization). Let (K,V) be a finite simpli-
cial complex, i. e. |V | = n for some n ∈ N. We define the geometric re-
alization, or just realization, |K| of K as a subspace of Rn+1 by choosing
an embedding f of V onto the vertices of the standard n-simplex ∆n

and identifying the simplices of K with the corresponding face/sim-
plex spanned by the image of the vertices by f.

6



Figure 2: The standard 2-simplex

Remark 1.1.9. Throughout this thesis we will omit the notation |− |

when no ambiguity can arise. Whenever we refer to a simplicial com-
plex K by its topological features, we mean the topological features of
its realization |K|.

1.2 algebraic topology

1.2.1 Homotopy

The important notions to take from this section will be the ones of
homotopy equivalence and connectedness, both needed for the main
theoretical result in Chapter 3.

Definition 1.2.1 (Homotopy). Let X and Y be two topological spaces
and f and g be two functions from X to Y. A homotopy between f and
g is a map H : X× [0, 1]→ Y such that

• H is continuous,

• H(x, 0) = f(x) and

• H(x, 1) = g(x).

We say that two maps f,g : X → Y are homotopic if there exists a
homotopy H between them; we denote this as f ' g.

Definition 1.2.2 (Homotopy equivalence). Let X and Y be two topo-
logical spaces. A map f : X→ Y is said to be a homotopy equivalence if
there exists a map g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X (here
1X denotes the identity map on X).

We say that two spaces X and Y are homotopy equivalent, or have the
same homotopy type, if there exists a homotopy equivalence f between
them; we denote this as X ' Y. If a space X is homotopy equivalent
to a point, then we say that X is contractible.
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Definition 1.2.3 (Homotopy group). Let X be a topological space with
x0 ∈ X. Then the n-th homotopy group πn(X, x0) of X is the set of
homotopy classes [f] of maps f : (In,∂In) → (X, x0) such that the
homotopies satisfies H((∂In), t) = x0 for all t.

The group operation is defined as follows:

(f+ g) ((s1, s2, . . . , sn)) =

f(2s1, s2, . . . , sn), s1 ∈
[
0, 12

]
g(2s1 − 1, s, . . . , sn) s1 ∈

[
1
2 , 1
]

Remark 1.2.4. We define below the concept of a topological space X
being "path-connected". It can be shown that for such a space all the
homotopy groups πn(X, x) coincide, i. e. they are isomorphic for all
x ∈ X. Thus, we often shorten the notation to πn(X).

Definition 1.2.5 (Connectedness). Let X be a topological space. We
say that X is path-connected if for any two points x,y in X there exists a
path between them, i. e. a continuous function α : [0, 1]→ X such that
α(0) = x and α(1) = y. More generally, X is said to be n-connected
if X is path-connected and its first n homotopy groups vanish, i. e.
πi(X) ∼= 0 for 1 6 i 6 n.

1.2.2 Homology

The main topics covered here are chain complexes and homology.
More specifically, we will define the specific chain complex which
gives rise to simplicial homology and we will assign this construction
to filtrations in Chapter 2 to define persistent homology.

Definition 1.2.6 (Chain complex). We define a chain complex C of
abelian groups to be a sequence of abelian groups (Ck)k∈Z connected
by maps ∂k : Ck → Ck−1 which satisfy ∂k−1∂k = 0 for all k ∈ Z. We
refer to the ∂k’s as boundary maps and often denote a chain complex
as follows:

· · · ∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ · · · ∂2−→ C1
∂1−→ C0

∂0−→ C−1
∂−1−→ · · ·

For a chain complex C and an integer k, we define the following
subspaces:

Zk(C) := ker(∂k), the k-cycles,

Bk(C) := im(∂k+1), the k-boundaries.

Definition 1.2.7 (Homology group). The p-th homology group, Hp(C)
of C is defined as the quotient:

Hp(C) :=
Zp(C)

Bp(C)

8



Definition 1.2.8 (Orientation). An orientation of an n-simplex is an
ordering of its vertices, i. e. (v0, v1, . . . , vn−1), such that two orienta-
tions are considered equal if they only differ by an even permutation.
A simplex with an orientation is said to be oriented.

Because there are only two orientations to consider, we denote the
opposite orientation of a simplex as the negative of the simplex.

Example 1.2.9. (v0, v1, v2) = (v2, v0, v1) = −(v0, v2, v1) = −(v2, v1, v0).

We will assume from now on that all our simplices are oriented.

Definition 1.2.10 (Group of (oriented) n-chains). Let (K,V) be a fi-
nite simplicial complex. The group of (oriented) n-chains Cn(K) of K is
the free abelian group generated by the n-simplices of K. An n-chain
is therefore a finite sum

∑N
i=1 aiσi where the ai are the coefficients

and σi are the n-simplices.

Definition 1.2.11 (Boundary map). Let K be a simplicial complex and
(v0, v1, . . . , vn) an (n+ 1)-simplex of K. We define the boundary map
∂n+1 : Cn+1(K)→ Cn(K) as:

∂n+1 ((v0, v1, . . . , vn)) =
n∑
i=0

(−1)i(v0, v1, . . . , v̂i, . . . , vn).

∂1

∂2

1

0

1

0

2

0 1

2 2

0
0

1
1

+

−

Figure 3: Boundary maps ∂1 and ∂2
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Proposition 1.2.12. For a natural number n, we have that ∂n ◦ ∂n+1 = 0.

Proof. We show this by direct computation:

∂n ◦ ∂n+1((v0, . . . , vn))

= ∂n

(
n+1∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vn)

)

=

n+1∑
i=0

(−1)i∂n((v0, . . . , v̂i, . . . , vn))

=

n+1∑
i=0

(−1)i

i−1∑
j=0

(−1)j((v+, . . . , v̂j, . . . , v̂i, . . . , vn))

+

n∑
j=i

(−1)j((v0, . . . , v̂i, . . . , v̂j+1, . . . , vn))


=

n+1∑
i=0

i−1∑
j=0

(−1)i+j((v+, . . . , v̂j, . . . , v̂i, . . . , vn))

+

n+1∑
i=0

n∑
j=i

(−1)i+j((v0, . . . , v̂i, . . . , v̂j+1, . . . , vn))

= 0

because the coefficients for a given simplex (v0, . . . , v̂k, . . . , v̂l, . . . , vn)
above are equal to (−1)k+l + (−1)k+l−1 = (−1)k+l−1(−1 + 1) = 0.

This shows that for a simplicial complex K, we have a chain com-
plex C(K) = (Cn(K))n∈N associated to it; taking the homology of this
chain complex results in simplicial homology.

Definition 1.2.13 (Simplicial homology). For a simplicial complex K,
we define the p-th simplicial homology group Hp(K) of K as

Hp(K) = Hp(C(K))

where C(K) is the chain complex above.

Remark 1.2.14. Simplicial homology can be considered as functors
Hp(−) from the category of simplicial complexes to the category of
abelian groups. In fact, if the coefficients are taken from a field k, then
the simplicial homology Hp(K) of a simplicial complex K becomes a
k-vector space. Unless specified otherwise, we will assume the coef-
ficients to be in the field Z/2Z which makes the corresponding ho-
mology functors map to the category of vector spaces instead. This
distinction for functors will become important for the next chapter.
For more about categories and functors, see [16].
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2
V I E T O R I S - R I P S A N D P E R S I S T E N T H O M O L O G Y

Our data usually comes in form of finite subsets P ⊆ Rk, and there-
fore talking about the topology is quite uninteresting as all the higher
homology groups vanish. One can however remedy this by construct-
ing a simplicial complex using P as a vertex set. Not only does this
endow our dataset P with a topology, but, depending on the chosen
construction, we also get the notion of persistence, i. e. topological fea-
tures which persists over long periods of time. This will be made
more clear in Section 2.2

We will start by defining and comparing the Čech and Vietoris-Rips
complexes, two frequently used tools in TDA. Both of these give rise
to filtrations which are relatively easy to implement.

2.1 čech , vietoris-rips and filtrations

Assuming we have a finite dataset P, we proceed by creating balls of
constant radius t > 0 around each point in P. The construction of the
Čech (and Vietoris-Rips) complex considers the intersection of such
balls and creates simplices accordingly.

Definition 2.1.1 (Čech complex). Let P be a finite subset of Rk and
Bt/2(x) be the open ball with radius t

2 around a point x in P. The
Čech complex Ct(P) is the simplicial complex with vertex set P given
by all the subsets σ of P such that the intersection of balls around
each point in σ is nonempty. That is,

Ct(P) = {σ ⊆ P | ∩x∈σ Bt/2(x) 6= ∅}.

One might note that this construction is not limited to balls only. In
fact, the more general concept is defined as follows:

Definition 2.1.2 (Nerve). Let F = {Ui}i∈I be a family of sets. The
nerve N(F) of F is the simplicial complex defined on the vertex set I
such that a finite subset σ ⊆ I is a simplex of N(F) if the intersection
of the corresponding Ui’s with i ∈ σ is nonempty. That is,

N(F) = {σ ⊆ I | ∩i∈σ Ui 6= ∅}.

The problem regarding the Čech complex Ct(P) is that it is com-
putationally expensive; the time required grows exponentially with
the amount of points in P because finding out whether a high dimen-
sional simplex is included in Ct(P) requires to check all subsets of
the same size. However, Theorem 3.1.6 shows that the Čech complex
captures the topology of the original space up to homotopy.
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Figure 4: An example of the nerve of a covering. Here we let the family F,
consisting of open balls, be a covering of a topological space X.
Each nonempty pairwise intersection of members of F results in
a 1-simplex between the corresponding vertices, while the single
nonempty triple intersection results in the 2-simplex, shown in
light green.

The Vietoris-Rips complex is a simplicial complex built in a similar
fashion:

Definition 2.1.3 (Vietoris-Rips complex). Let P be a finite subset of
Rk. For a given t > 0, the Vietoris-Rips complex Rt(P) is the simplicial
complex defined on the vertex set P with the following condition: a
finite subset σ of P is a simplex of the Vietoris-Rips complex if all
pairwise distances of points in σ are less than t, i. e.

Rt(P) = {σ ⊆ P |d(x,y) < t for all x,y in σ}.

The example in Figure 5 shows that, while both complexes can
be constructed similarly using balls, they do not provide the same
topology. While this is unfortunate, the main advantage of using the
Vietoris-Rips complex is that it is a clique complex, i. e. it is uniquely
determined by its 1-skeleton or 1-graph. This has resulted in more
efficient algorithms by first constructing the 1-graph and expanding
that into the complete Vietoris-Rips complex. See [22].

12



Ct(P) Rt(P)

Figure 5: Comparison between the Čech and Vietoris-Rips complexes. Be-
cause the Vietoris-Rips complex is only concerned with pairwise
intersections being nonempty, a 2-simplex is created, shown here
in grey.

Definition 2.1.4 (Filtration). A filtration F is an indexed collection of
subobjects Fi, where i runs over some ordered set, such that if t 6 s,
then Ft ⊆ Fs.

Example 2.1.5 (Sublevelset filtration). Let X be a topological space
and let f : X → R be some function. Using f, we can define sublevel
sets Xt as

Xt := {x ∈ X | f(X) 6 t}.

For t 6 s we clearly have an inclusion ist : Xt → Xs and thus, it is also
a filtration. This is called the sublevelset filtration of (X, f) and we will
denote it as Xsub or Xfsub.

We note that by varying the radius in the definition of the Čech
complex we get a filtration of simplicial complexes, the Čech filtration
C(P) := (Ct(P))t>0, indexed by the real numbers. Similarly, we define
the Vietoris-Rips filtration to be R(P) := (Rt(P))t>0.

P R2(P) R4(P)⊆ ⊆

Figure 6: Example of a Vietoris-Rips filtration.
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Proposition 2.1.6. The Čech and Vietoris-Rips filtrations are multiplica-
tively 2-interleaved, i. e. for a set P there exist inclusions

Ct(P) ⊆ Rt(P) ⊆ C2t(P).

Proof. Let σ be a simplex of Ct(P). We want to show that σ is also
a simplex of Rt(P). If σ is a simplex of Ct(P), then the intersection
of balls ∩p∈σBt/2(p) is nonempty. In particular, for any two points
p,q ∈ σ we have that the intersection Bt/2(p) ∩ Bt/2(q) is nonempty.
Thus, there exists a point y in this intersection such that

d(p,q) 6 d(p,y) + d(y,q) 6
t

2
+
t

2
= t.

We conclude that σ is also a simplex of Rt(P).
For the second inclusion, let σ now be a simplex of Rt(P). We want

to show that the intersection of balls ∩p∈σBt(p) is nonempty. By def-
inition we have that d(p,q) < t for any two points p,q ∈ σ. In par-
ticular, for a fixed vertex p0 in σ we have that d(p0,q) < t for q in σ.
This shows that p0 is in the intersection ∩p∈σBt(p).

2.2 persistent homology

In this section we present the notions of persistence modules and its
invariant, persistence diagrams.

2.2.1 Barcodes and diagrams

Definition 2.2.1 (Persistence module). A persistence module V over
the real numbers is a functor from (R,6) (viewed as a category) to
the category of vector spaces.

If s, t are members of R and s 6 t, i. e. there exists an unique
morphism s→ t, we will often denote

Vt := V(t), and

vts := V(s→ t).

Definition 2.2.2 (Persistent homology). Let X = (Xt)t>0 be the a
filtration of simplicial complexes and let H be the functor from sim-
plicial complexes to vector spaces mentioned in Remark 1.2.14, which
sends a simplicial complex K to its p-th simplicial homology group
Hp(K). We define the p−th persistent homology of X to be the persis-
tence module V = H(X).

Explicitly, p-th persistent homology is just the diagram obtained by
taking simplicial homology on the filtration X:

Hp (X0)→ · · · → Hp (Xt)→ · · ·

14



We think intuitively of the real number t as a representation of time
for X. In other words, the filtration represents a simplicial complex
evolving over time; as we traverse along the filtration, more and more
simplices are added, changing the structure of the complex. Persistent
homology is therefore a way of representing this change in terms of
homology.

An useful invariant of persistence modules is a multiset of inter-
vals we call persistence barcode or persistence diagram. When applied to
a filtered simplicial complex, the long bars of the barcode represent
topological features which last over time, i. e. are "persistent", while
the short bars represent noise and such in our data. There are mul-
tiple ways of defining these persistence barcodes; the construction
below are based on [7] and [11].

For the purpose of this thesis, assume X to be the Vietoris-Rips
filtration R(P) with P a finite set. If we let V and H be as in Defini-
tion 2.2.2, then

• the vector spaces H(Xt) are all finite-dimensional, and

• all but finitely many of the linear maps H(ist) : H(Xt) → H(Xs)

are isomorphisms.

Persistence modules which satisfy the first property are often referred
to as q-tame, see [6].

The second property stems from there only being a finite amount
of possible subcomplexes with vertex set P and thus, as t increases
there are only finitely many "critical values" at which the subcomplex
Xt changes, say a1 < a2 < . . . < an. For i = 1, 2, . . . ,n, we are able to
choose a basis Bi for each vector space Vai , such that the map vai+1ai

is injective when restricted to Bi and

rank(vai+1ai ) = card
(
im(v

ai+1
ai |Bi) ∩ Bi+1

)
([11], Basis Lemma).

We will refer to a persistence module which satifies both the prop-
erties above as finite.

Definition 2.2.3 (Persistence barcode). Let V be a finite persistence
module and let {Bi}ni=1 be a choice of basis as above. Define the set

A :=
{
(b, i) |b ∈ Bi,b /∈ im(vaiai−1), i ∈ {2, 3, . . . ,n}

}
∪
{
(b, 1) |b ∈ B1

}
and the map a : A→ {1, 2, . . . ,n}:

a ((b, i)) := max
{
k ∈ {1, 2, . . . ,n} | (vakak−1 ◦ · · · ◦ v

ai+2
ai+1 ◦ v

ai+1
ai )(b) ∈ Bk

}
.

Given an element (b, i) ∈ A, we refer to the integers i and a((b, i)) as
the birth index of basis element b and the death index of b, respectively.
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Then the persistence barcode Bar(V) of V is defined as the multiset
of intervals

Bar(V) :=
[
[ai,aj+1) | there exists (b, i) in A such that a((b, i)) = j

]
.

The multiplicity of an interval [ai,aj+1) in Bar(V) is the number of
elements (b, i) in A such that a((b, i)) = j

We represent the barcode as a set of lines along one axis; this is
the preferred visualization for the applications in Chapter 4. The al-
ternative way is to plot it as a multiset of points lying on or above the
diagonal in the real plane R2:

Definition 2.2.4 (Persistence diagram). Let V be a finite persistence
module and Bar(V) be its persistence barcode. The persistence diagram
Dgm(V) of V is defined as follows:

Dgm(V) :=
[
(ai,aj+1) ∈ R2 | (ai,aj+1) ∈ Bar(V)

]
.

The multiplicity of a point (ai,aj+1) in Dgm(V) is equal to the mul-
tiplicity of [ai,aj+1) in Bar(V).

2.2.2 Distances and stability between persistence diagrams

Recall the supremum distance: for points (p,q) and (p ′,q ′) in R2, we
define ||(p,q) − (p ′,q ′)||∞ := max{|p− p ′|, |q− q ′|}.

Definition 2.2.5 (Bottleneck distance). Given two persistence dia-
grams C and E, the bottleneck distance dB between C and E is defined
as follows:

dB(C,E) := inf

{
sup
c∈C

||c−φ(c)||∞ |φ : C∪∆∞ → B∪∆∞ is a bijection

}

Here ∆∞ is the multiset containing all points on the diagonal with
each of them having infinite multiplicity.

Definition 2.2.6 (ε-interleaving). Let U, V be two finite persistence
modules over the real numbers and ε > 0. We say that U and V are
(additively) ε-interleaved if there exists two families of linear maps

{φt : Ut → Vt+ε}t∈R, {ψt : Vt → Ut+ε}t∈R

16



such that the following four diagrams commute for s 6 t ∈ R:

Us
uts //

φs ""

Ut
ut+2εt //

φt ""

Ut+2ε

Vs+ε
vt+εs+ε

// Vt+ε

ψt+ε

::

Us+ε
ut+εs+ε // Ut+ε

φt+ε

$$
Vs

ψs
<<

vts

// Vt
vt+2εt

//

ψt
<<

Vt+2ε

.

Remark 2.2.7. If F = (Ft)t>0 and G = (Gt)t>0 are two ε-interleaved
filtrations of simplicial complexes, i. e.

Ft−ε ⊆ Gt ⊆ Ft+ε,

then applying the p-th simplicial homology functor H to all such in-
clusion maps returns an ε-interleaving between the persistence mod-
ules H(Ft) and H(Gt) by definition.

Example 2.2.8. By changing to a log-scale in Example 2.1.6, i. e.

Clog(t)(P) ⊆ Rlog(t) ⊆ Clog(t)+log(2),

we see by the previous remark that the Čech and Vietoris-Rips filtra-
tions induces persistence modules which are log(2)-interleaved on a
log scale. We say the persistence modules are log-interleaved or multi-
plicatively 2-interleaved.

Definition 2.2.9 (Interleaving distance). Let U, V be two finite per-
sistence modules over the real numbers. The interleaving distance dI
between U and V is the pseudometric defined as:

dI(U, V) := inf {ε > 0 |U and V are ε-interleaved} .

Theorem 2.2.10 (Algebraic Stability Theorem). Let U, V be two finite
persistence modules over the real numbers. Then

dB (Dgm(U), Dgm(V)) 6 dI(U, V)

Proof. See [6], Stability theorem.
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Part II

T H E S H O W C A S E





3
R E D U C I N G S I M P L I C I A L C O M P L E X E S

3.1 nerve theorem

The Nerve Theorem associates the homotopy type of a suitable topo-
logical space to the nerve of a good covering of that space. The fol-
lowing exposition is based on [2] and [20].

Definition 3.1.1 (Contractible carrier). Let K be a simplicial complex
and X a topological space and suppose we have a map C : K → X

which sends simplices of K to subspaces of X. We say C is a contractible
carrier if

i) for every simplex σ in K, C(σ) is contractible,

ii) C is order-preserving, i. e. if τ ⊆ σ, then C(τ) ⊆ C(σ).

A continuous function f : |K|→ X is carried by C if f(|σ|) ⊆ C(σ) for
all simplices σ in K.

Lemma 3.1.2 (Carrier Lemma). Let K be a simplicial complex and X a
topological space and suppose that C is a carrier from K to X. Then

1) there exists a continuous function f : |K|→ X carried by C.

2) if f,g : |K|→ T are both carried by C, then f ' g.

Proof. See [20], Lemma 2.1.

A partially ordered set, or a poset, can be assigned a simplicial com-
plex structure.

Definition 3.1.3 (Order complex). Let P be a poset. The order complex
K(P) is the simplicial complex having P as a vertex set and whose
k-simplices are the k-chains x0 < x1 < . . . < xk in P.

If Q is a poset, then for any q in Q we can define Q6q as the
subposet {a ∈ Q |a 6 q}. For an order-preserving (or order-reversing)
map f : P → Q between two posets P and Q, we say that f−1(Q6q) is
a fiber of f.

Theorem 3.1.4 (Fiber Theorem). Let f : P → Q be an order-preserving
(or order-reversing) map. If all the fibers are contractible, then f induces a
homotopy equivalence between K(P) and K(Q).

Proof. Note that f induces a simplicial map on the order complexes,
i. e. f : K(P)→ K(Q). We want to show that f has a homotopy inverse
map g.
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Suppose that all the fibers are contractible; the map

C : K(Q) −→ |K(P)|

σ 7−→
∣∣f−1(Q6max σ)

∣∣
is then a contractible carrier. By Lemma 3.1.2(a), there exists a contin-
uous map g : K(P) → K(Q) carried by C. Explicitly, this means that
g (|σ|) ⊆

∣∣f−1(P6max σ)
∣∣ for every simplex in σ in K(Q).

We will show that g is a homotopy inverse; consider the maps

C ′ : K(Q) −→ |K(Q)|

σ 7−→ |Q6max σ|

and

C ′′ : K(P) −→ |K(P)|

τ 7−→
∣∣f−1(Q6max f(τ))

∣∣
The first map C ′ is a contractible carrier and carries f ◦ g and 1K(Q);
for σ in K(Q) we have that

g (|σ|) ⊆
∣∣f−1(P6max σ)

∣∣ = f−1 (|P6max σ|) ,

because g is carried by C. Applying the map f results in the inclusion
(f ◦ g)(|σ|) ⊆ C ′(σ). Note that we also have the inclusion |σ| ⊆ C ′(σ).

Similarly, the second map C ′′ is a contractible carrier and carries
g ◦ f and 1K(P); for a simplex τ in K(P), the image f(τ) is a simplex
of K(Q). Since g is carried by C, we have that

g (f(|τ|)) ⊆
∣∣f−1(Q6max f(τ))

∣∣ = C ′′(τ).
Note that we also have the inclusion |τ| ⊆ C ′′(τ).

By Lemma 3.1.2(ii), we have that f ◦ g ' 1K(P) and g ◦ f ' 1K(Q).
Thus, g is the desired homotopy inverse of f.

Similar to the order complex, we can associate a partial order struc-
ture to a simplicial complex.

Definition 3.1.5 (Face poset). Let K be a simplicial complex. The face
poset P(K) = (K,⊆) is the set of simplices of K ordered by inclusion.

We state the Nerve Theorem below; recall Definition 2.1.2 for the
nerve N(U) of a covering U.

We only prove the
theorem for locally

finite coverings; for
the purpose of this

thesis, this is
adequate. See [3] for

a proof of the general
statement.

Theorem 3.1.6 (Nerve theorem). Let (K,V) be a simplicial complex and
U = {Ki}i∈I be a good covering of K, i. e. any nonempty finite intersection
of subcomplexes in U is contractible. Then K is homotopy equivalent to the
nerve N(U).
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Proof. We assume that the covering U is locally finite, i. e. any vertex
v in V is contained in only finitely many Ki’s of U. Let P = P(K) and
Q = P(N(U)) be the face posets of the simplicial complexes. Define
the map

f : P −→ Q

σ 7−→ {i ∈ I |σ ∈ Ki}.

The map f is clearly order-reversing, i. e. τ ⊆ σ implies f(σ) ⊆ f(τ)
for simplices τ,σ in P. The fiber f−1(Q>ρ) at ρ in Q is then equal
to the intersection ∩i∈ρKi which is contractible by assumption. By
Theorem 3.1.4, f induces a homotopy equivalence between K(Q) and
K(P).

3.2 quotient complex

The Rips filtration has been one of the preferred choices in topological
data analysis. Despite its advantages, the filtration still grows expo-
nentially with the amount of data points or vertices. Intuitively, the
only way to reduce the size of the filtration is by limiting the vertex
set, e. g. by removing points.

Another idea which might occur is to identify points, i. e. taking
the quotient of the vertex set by some equivalence relation. By using
a non-trivial relation the size will clearly be reduced, but the topol-
ogy might change drastically. Similarly to the idea of the Vietoris-
Rips complex, we are only allowed to relate points which are "close"
enough. This idea will however be made more rigorous in the next
chapter.

It turns out that this idea of a "quotient complex" works surpris-
ingly well thanks to the Nerve theorem. We are able to show that
its realization is homotopy equivalent to the realization of a larger
simplicial complex, which is the main theoretical result of this thesis.

Definition 3.2.1 (Preimage of a simplicial complex). Let (L,W) be a
simplicial complex with vertex set W and f : V → W be a map for
some set V . We define the preimage, f−1(L) ⊆ ℘(V) of L to be the
simplicial complex such that

σ is a simplex of f−1(L) iff f(σ) is a simplex of L.

The following lemma shows that intersection (Proposition 1.1.3),
closure (Definition 1.1.4) and preimage (Definition 3.2.1) of simplicial
complexes behave nicely (i. e. they commute) with each other.

Lemma 3.2.2. Let (L,W) be a simplicial complex, {(Li,W)}i∈I a collection
of simplicial complexes with the same vertex set W and f : V → W a map
for some set V . Then

a) ∩i∈ILi = ∩i∈ILi
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b) f−1(∩i∈ILi) = ∩i∈If−1(Li)

c) f−1(L) = f−1(L)

Proof. Recall by Definition 1.1.4, that the closure L of a set L is the
simplicial complex consisting of all subsets of L. Thus a simplex of L
is a subset of L.

a) We want to show that for a given subset τ ∈ ℘(W), τ is a simplex
of the intersection ∩Li if and only if τ is also a simplex of the
closure ∩Li.
If τ is a simplex of ∩Li, then it is also a simplex of each Li for
all i, i. e. τ ⊆ Li for all i. Thus, τ is contained in the intersection
∩Li. By definition of the closure, it follows that τ is a simplex of
∩Li.
Conversely, if τ is a simplex of ∩Li, then it is also a subset of
the intersection ∩Li, i. e. τ ⊆ Li for all i. Being a subset of each
Li means that τ is a simplex of the closure Li for all i. It follows
that τ is a simplex of ∩Li.

b) For a given subset σ ∈ ℘(V) we want to show that σ is a simplex
of the preimage f−1(∩Li) if and only if σ is also a simplex of the
intersection ∩f−1(Li).
If σ is a simplex of f−1(∩Li), then by Definitio 3.2.1 the image
f(σ) is a simplex of ∩Li, i. e. f(σ) ⊆ Li for all i. Thus, f(σ) is
a simplex of the closure Li for all i and, by Definition 3.2.1, σ
a simplex of f−1(Li) for all i. It follows that σ is a simplex of
∩f−1(Li).
Conversely, if σ is a simplex of ∩f−1(Li), then it must be a sim-
plex of f−1(Li) for all i. By Definition 3.2.1, f(τ) is a simplex of
Li for all i, i. e. f(τ) ⊆ Li for all i. Thus, f(τ) is contained in ∩Li,
which, by Definition 3.2.1, implies that τ ∈ f−1(∩Li).

c) We want to show that for a given subset δ ∈ ℘(V), δ is a simplex
of the preimage f−1(L) if and only if δ is a simplex of the closure
f−1(L).

If δ is a simplex of f−1(L), then by Definition 3.2.1 the image
f(δ) is a simplex of L. This implies that f(δ) is a subset of L
which, by Definition 3.2.1, shows that δ is contained in f−1(L).
It follows that δ is also a simplex of the closure f−1(L).

Conversely, if δ is a simplex of f−1(L), then it is also a subset
of f−1(L). By Definition 3.2.1 the image f(δ) is contained in L.
Thus, it is also a simplex of L. This implies, by Definition 3.2.1,
that δ is a simplex of the preimage f−1(L).

We now present the main result of the thesis.
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Corollary 3.2.3. Let (L,W) be a simplicial complex with vertex set W
and f : V → W be a surjective map for some set V . Then L is homotopy
equivalent to f−1(L).

Proof. Consider the coverings U = {γ}γ∈L and V = {f−1(γ)}γ∈L of the
simplicial complexes L and f−1(L), respectively. By surjectivity of f,
the map γ 7→ f−1(γ) becomes a bijection between the covers.

The nerves of the coverings are isomorphic: indeed, if {γi}ni=1 is a
simplex of N(U), then by definition ∩ni=1γi must also be nonempty.
Surjectivity of f implies that f−1(∩ni=1γi) is also nonempty. Moreover,
we know that the preimage map "commutes" with the intersection
of sets and thus ∩ni=1f−1(γi) must be nonempty too. It follows that
{f−1(γi)}

n
i=1 is a simplex of N(V).

In short:

{γ1,γ2, . . . ,γn} ∈ N(U) ⇔ ∩ni=1γi 6= ∅
⇔ f−1(∩ni=1γi) 6= ∅
⇔ ∩ni=1f−1(γi) 6= ∅
⇔ {f−1(γi)}

n
i=1 ∈ N(V).

Lastly, we note that the coverings are good, i. e. all the nonempty
intersections are contractible, as they all reduce to the closure of a
simplex:

∩ni=1γi
3.2.3a
= ∩ni=1γi = σ, (∗)

for some simplex σ ∈ L. Similarly

∩ni=1f−1(γi)
3.2.3b
= f−1(∩ni=1γi)

3.2.3a
= f−1(∩ni=1γi)

(∗)
= f−1(σ)

3.2.3c
= f−1(σ) = τ,

for some simplex τ ∈ f−1(L).
Applying the Nerve Theorem (Theorem 3.1.6) gives us the desired

result:

L ' N(U) ∼= N(V) ' f−1(L).

Consequently, Corollary 3.2.3 shows that in terms of homology, L
and f−1(L) are equal.

We are finally ready to put all of this in the desired context of
reducing a simplicial complex. Alluded to in the start of this section,
this construction is based on reducing the vertex set by mapping it
onto a smaller set, i. e. taking the quotient:
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Definition 3.2.4 (Quotient complex). Let (K,V) be a simplicial com-
plex with vertex set V and let f : V → W be a surjective map. Define
the quotient complex Lf to be the set {f(σ) |σ ∈ K}.

The map f will also be referred to as the quotient map.

Note that, by the previous corollary, the quotient complex Lf is
homotopy equivalent to f−1(Lf).

Remark 3.2.5. K ⊆ f−1(Lf).

Proof. Let σ be a simplex of K. From Definition 3.2.1 and Defini-
tion 3.2.4 it follows that

σ ⊆ f−1(f(σ)) ∈ f−1(Lf).

This shows that σ is contained in a simplex of f−1(Lf), i. e. σ ∈
f−1(Lf).
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4
A P P L I C AT I O N A N D E X A M P L E S

The goal of this chapter is to present an approximation of the Vietoris-
Rips filtration in terms of persistent homology. That is, we will con-
struct a filtration which is (additively) interleaved with the Vietoris-
Rips filtration. This is done by using the quotient complex construc-
tion, with a quotient map fulfilling some properties, on each of the
members in the Vietoris-Rips filtration. Note that we are able to use
the same map as all the members share the same vertex set.

We will end the chapter with an algorithm for creating one such
quotient map. This will be accompanied by some few examples where
we compare the resulting barcodes of each filtration.

4.1 application on the vietoris-rips filtration

Given a finite dataset P ⊆ Rn, we will from now on denote the sim-
plicial complex (K,V) := (Rt(P),P). We need to choose a function
f : V → W such that the resulting quotient complex is "nice", i. e. it
retains most of the topological features. This comes in the form of an
ε-restriction on f:

For any two points v, v ′ ∈ V , we have the following implication:
f(v) = f(v ′)⇒ d(v, v ′) < ε for some positive real number ε.

The restriction essentially means that the only points which f iden-
tifies are within ε-distance. This makes intuitively sense as we clearly
cannot identify points too far from each other without changing the
topology. We can also think of f as a clustering algorithm as it shares
similar features.

Proposition 4.1.1. Let (K,V) be as above and assume that f : V →W is a
surjective map which fulfills the ε-restriction. Define the quotient complex
Lf as from Definition 3.2.4 and change the indexing such that Lt := Lf.
Then we have the following inclusion:

f−1(Lt) ⊆ Rt+2ε(P).
Proof. Let τ be a simplex of f−1(Lt). We want to show that τ is also a
simplex of Rt+2ε(P). If τ ∈ f−1(Lt), then we know that f(τ) ∈ Lt by
definition of f−1(Lt). Being a simplex of Lt means there exists some
σ in K such that f(σ) = f(τ) by the definition of Lt.

For arbitrary points p,q ∈ τ, choose corresponding points p ′,q ′ ∈
σ such that f(p) = f(p ′) and f(q) = f(q ′). Then we have by the
triangle inequality (twice):

d(p,q) 6 d(p,p ′) + d(p ′,q ′) + d(q ′,q) = ε+ t+ ε = t+ 2ε.
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Thus, any two points in τ have distance less than or equal to t+ 2ε.
It follows that τ is a simplex of Rt+2ε(P).

If a map f fulfills the ε-restriction, then the corresponding preimage
filtration will be interleaved with the Vietoris-Rips filtration:

Corollary 4.1.2. The Vietoris-Rips filtration and the preimage filtration are
2ε-interleaved, i. e.

Rt(P) ⊆ f−1(Lt) ⊆ Rt+2ε(P).

Proof. This follows from Remark 3.2.5 and Proposition 4.1.1.

Recall from Remark 2.2.7 that as a consequence, the persistent ho-
mology of the two filtrations are 2ε-interleaved. Since the quotient
map f is surjective by definition, we have the diagonal homotopy
equivalences in the following diagram

Rt(P) ⊆

f

��

f−1(Lt) ⊆

'
��

Rt+2ε(P) ⊆

f

��

f−1(Lt+2ε) ⊆

'
{{

· · ·

Lt ⊆ Lt+2ε ⊆ · · ·

by Corollary 3.2.3. In terms of persistent homology, the two filtrations
(Lt)t>0 and

(
f−1(Lt)

)
t>0 become interchangable. We summarize this

as the following corollary:

Corollary 4.1.3. The persistent homology of the filtrations (Rt)t>0 and
(Lt)t>0 are 2ε-interleaved.

We use this fact extensively in the next section as computing the
quotient filtration (Lt)t>0 is much easier than the corresponding preim-
age filtration

(
f−1(Lt)

)
t>0.

4.2 algorithm and examples

In this section we discuss and explain the implementation of the quo-
tient complex. We use to our advantage that the quotient complex
retains in some way the structure of the original simplicial complex,
which, for our purposes, will be the Vietoris-Rips complex. Tools for
computing the Vietoris-Rips complex are readily available and we are
able to use this machinery if the resulting quotient filtration is indeed
a filtration. We achieve this by fixing a quotient map f for each filtra-
tion index t such that a map between any two quotient complexes
becomes an inclusion. For a discussion on quotient maps ft depen-
dent on filtration index t, see Chapter 5.

We have shown previously in Corollary 4.1.3 that for a quotient
map satisfying the ε-restriction the resulting quotient filtration ap-
proximates the Vietoris-Rips filtration. That is, the bottleneck distance
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between the corresponding persistence diagrams is less than or equal
to 2ε. We want an algorithm for constructing such a map while also
being:

• lightweight and easy to implement. Obviously we do not want
something more complicated than computing the whole Vietoris-
Rips complex, as that defeats the purpose of an approximation;

• "locally maximal". In other words, the resulting quotient map
cannot identify any more points without failing to satisfy the
ε-restriction.

We present here a possible algorithm which satisfies both the desired
properties. Refer to Figure 7 for intuition.

Assume the input to be a finite dataset P ⊆ Rd. Choose an order-
ing on P, that is, P = {p0,p1, . . . ,pn}, and create the distance ma-
trix D of the points using the metric d inherited from Rd such that
Dij = d(pi,pj). Algorithm 1 shows how to construct the desired quo-
tient map f in terms of an equivalence relation on P.

Algoritm 1 : Algorithm for constructing a quotient map sat-
isfying the ε-restriction for a given ε > 0

1 QuotientMap(D, ε);
Input : A distance matrix D and a real number ε > 0
Output : A list W of equivalence classes

2 N← length(D)

3 W ← {{0}}

4 for i← 1 to N:
5 T ← false
6 foreach equivalence class E in W:
7 if Die < ε foreach vertex e in E:
8 E← E∪ {i}
9 T ← true

10 break
11 if not T :
12 W ←W ∪ {{i}}
13 return W

We begin by initializing the set of equivalence classes W on line
3 such that it contains (part of) the first equivalence class {p0}. Note
that, in the algorithm, the points of P are only referred to by their
indices. The for-loop on line 4 iterates through all the points of P \ {p0}
and determines whether it can be related to any previously defined
equivalence class.

At step i in the for-loop we compare the distance between the point
pi, with all the points of a given equivalence class E ∈ W. If all the
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distances are less than ε, then pi can be added to the class E without
breaking the ε-restriction on W. The foreach-loop on line 6 guarantees
that we do this with all classes of W. If it turns out to be so that
pi cannot be added to any of the equivalence classes we add it to
W as its own class on line 12. The resulting output W satisfies the
ε-restriction by construction. Note that the algorithm depends on the
ordering chosen on the dataset P.

To construct the corresponding quotient filtration we just compute
the Vietoris-Rips complex with W as the vertex set; we define the
quotient distance dQ between any two classes w,w ′ in W to be

dQ(w,w ′) := min{d(v, v ′) | v ∈ w and v ′ ∈ w ′},

where d is the aforementioned metric on P. Algorithms for calculating
the quotient distance and the associated distance matrix are given in
Algorithms 3 and 2, respectively.

Algoritm 2 : Algorithm for constructing a distance matrix
based on the equivalence classes

1 QuotientMatrix(D,W);
Input : A distance matrix D and a list of equivalence

classes W
Output : A distance matrix Q

2 N← length(W)

3 Q← matrix(N,N)

4 for i← 0 to (N− 1):
5 for j← i to (N− 1):
6 M← MinimumDistance(D, i, j,W)

7 Qij ←M

8 return Q

Algoritm 3 : Algorithm for computing the minimal distance
between equivalence classes i and j

1 MinimumDistance(D, i, j,W);
Input : A distance matrix D, positive integers i, j and a list

of equivalence classes W
Output : A real number m.

2 foreach vertex v in W[i]:
3 foreach vertex w in W[j]:
4 L← L∪ {Dvw}
5 m← min{L}
6 return m
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Figure 7: Intuition behind the algorithm for ε = 1.5. Let V be the set of eight
points, creating the outline of a 2× 2-square, at the first step of the
figure and let ε = 1.5. The chosen ordering of the points are as
shown. We start by setting the first point 0 as its own equivalence
class and continue along the remaining points in the given order-
ing: The point 1 is within ε-distance of the point 0 and thus, we
can identify the two points, shown here in blue at the middle step.
Next up we look at the point 2; it is indeed within ε-distance of the
point 1, but we have to consider the equivalence class of 1. The dis-
tance between points 0 and 2 is greater than ε, so 2 starts its own
equivalence class, shown here in red. Continuing in this fashion
we end up with the four equivalence classes, i. e. the four points at
the last step, as the new vertex set W. Note that the last step does
not give a realistic representation of the distances between points.

4.2.1 Examples

In this section, we compare the performance of our various algo-
rithms on synthetic data. For the purpose of this thesis we have im-
plemented an algorithm for constructing the Vietoris-Rips filtration
and although it might not be efficient, comparing it with the quotient
filtration is still valid; the filtrations themselves are constructed in the
same manner and thus, the efficiency of both algorithms are heavily
correlated.

All our implementations are done in Python through a Jupyter
Notebook. For computing persistent homology we use a few tools
from the Python package phat [1] and all the timings are measured
with the built-in magic command %time in Jupyter. The specifics of
the implementations and code are available in the Appendix.

The datasets found in this section are all taken from [24] and we
have chosen here to use the value ε = 2 for each of them. As our im-
plementation of the Vietoris-Rips filtration only considers simplices
up to dimension k = 2, the resulting barcodes only show the 0th and
1st persistent homology in blue and orange, respectively.

When the filtration value increases beyond a certain value, the re-
sulting simplicial complex becomes simply connected. In the con-
text of barcodes this means that all but one bar, i. e. the main path-
component, should end at finite filtration values. One might however
notice that this bar is missing in all the barcodes and this is just done
by choice.

The first dataset Spiral consists of 312 points forming three distinc-
tive and disjoint strands of points spiralling towards the center, simi-
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Figure 8: The Spiral dataset

lar to a hurricane or a cyclone seen from above. The path-components
corresponding to these are represented in the barcode in Figure 9 as
the two long bars (and the hidden main bar) of the 0th persistent ho-
mology. Lastly we also see a long bar in the 1th persistent homology,
which represents the "eye" of the storm. As the three components
merge into one component, a hole is created in the middle which
becomes a persistent generator in our barcode.

The barcode for the corresponding quotient filtration is quite simi-
lar, more than what should be expected. As ε here is equal to 2, and
the interleaving distance between the two persistence modules is 2ε,
we should expect the difference in the bar lengths to vary by a similar
amount; however, this is not the case. The only noticeable difference
seems to be the amount of simplices; the topological information that
we can infer from both barcodes is identical.

Figure 9: The barcodes for "Spiral" with ε = 2
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Figure 10: The Path-based1 dataset

Our second dataset Path-based1 consists of exactly 300 points. Sim-
ilarly to Spiral there seems to be three components, one being in the
shape of an incomplete circle while the other two being clusters inside
the circle. This is however not easily seen in the barcode in Figure 11,
as all three of them are too close to each other and thus the bars rep-
resenting these three components are seen as noise in the barcode.
However, we can get some information, as the big hole at the topside
of the circle gets created at an early filtration value, which makes it
the most persistent topological feature of the dataset, shown here as
the single long bar of the barcode.

While there seem to be a few differences in the shorter bars for the
quotient filtration there is again no significant change in the long bars.
Compared to the original barcode, it is practically the same.

Figure 11: The barcodes for "Path-based1" with ε = 2

33



Figure 12: The Zahn’s Compound dataset

Lastly, we consider the more unique dataset with 399 points; Zahn’s
Compound, a collage of various elements. The lower left of this dataset
can only be described as a fried egg with the outer rim of the yolk
forming a hole. The width of this yolk is relatively small so we do not
expect this feature to be very persistent in the barcode in Figure 13.
Indeed, the corresponding bar, born at approximately filtration value
0.6 and ending at filtration value 2.3, is too short to be considered as
anything but noise in our dataset.

Above the egg we see two disk-shaped clusters of points. The dis-
tance between these is very small and we expect them to merge at an
early filtration value, most probably together with the egg mentioned
earlier. This can be seen in the barcode as the two longest bars in the
0-th persistent homology. Note that, while the shorter one of the two
does represent the egg component, it is too short to be considered a
persistent topological feature of the dataset. The last and rightmost
element of the dataset is a high density cluster lying amidst a sea of
points. This cluster is represented in the barcode as the hidden main
bar.

The 1st persistent homology has a relatively long bar that we have
not discussed, appearing at a later filtration value. We can see that
this bar is born when there is only one path-component left and it
represents the hole appearing in the middle of our dataset between
the three clusters.

While the other quotient barcodes mostly resembled the original
Vietoris-Rips barcodes with a fewer amount of bars, the lower sec-
tion of the quotient barcode in Figure 13 has changed. This illustrates
the effect of which the parameter ε has on different datasets. The
aforementioned sea on the right side of the dataset has a low density,
meaning that the distances between each point and its neighbours are
relatively high. Because Algorithm 1 is only able to identify points
within ε-distance, we can see, by choosing ε = 2, that very few of
the points in the sea are affected by the algorithm. Thus, the bars at
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the bottom of both barcodes are mostly identical, the only difference
being the scale of the y-axis. The important point is that all the long
bars remain unchanged.

Figure 13: The barcodes for "Zahn’s Compound" with ε = 2

Table 1 and Table 2 compare the efficiency between computing the
filtration and barcodes for the Vietoris-Rips filtration and the quotient
filtration. The results are as expected: as both algorithms construct the
filtration (and barcodes) in the same fashion, the filtration with the
smaller starting vertex set is faster to compute. Note that the times
for the quotient filtration in Table 1 also include the time for running
Algorithm 1 to construct the quotient map.

Dataset Vietoris-Rips Time Quotient Time

Spiral 3min 19s 4.61s

Path-based1 2min 47s 4.47s

Zahn’s Compound 6min 38s 7.69s

Table 1: Table of times for computing the various filtrations

Dataset Vietoris-Rips Time Quotient Time

Spiral 5min 46s 1.9s

Path-based1 3min 39s 1.65s

Zahn’s Compound 14min 40s 2.87s

Table 2: Table of times for computing the various persistence barcodes with
phat
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5
A F T E RT H O U G H T S

In this thesis, we presented an approach to approximate the Vietoris-
Rips filtration by taking the quotient of the vertex set. The algorithm
produced a quotient filtration, shown to be 2ε-interleaved with the
Vietoris-Rips filtration if the quotient map satisfied the ε-restriction.

The results from the previous chapter showed that the efficiency of
computing the filtration and barcodes were greatly improved, even
when the time used to construct the quotient map were taken into con-
sideration. In fact, the construction of the quotient map were largely
irrelevant taking less than a fraction of a second to compute, as seen
in Table 3. The main improvement stemmed from the reduced vertex
set. There were also promising tendencies to be seen in the barcodes
themselves: by choosing an appropriate value for ε, the differences
between the original barcode and the quotient barcode became mi-
nuscule. As all the long bars were identical in terms of length and
no new long bars were introduced, the topological features discerned
between the barcodes remained the same.

We mentioned in Section 4.2 the idea of quotient maps ft depen-
dent on filtration values t. Unfortunately, the result after applying
these maps to a Vietoris-Rips filtration may not remain a filtration, i. e.
the connecting maps will not necessarily be inclusions. All the maps,
however, are simplicial maps and there exist various methods for com-
puting topological persistence of such sequences. See [8] and [9].

An attempt was made to implement Algorithm 1 having ε as a lin-
ear function of t instead, but this did not prove to be very efficient
and the idea was scrapped early.

Dataset Time

Spiral 315ms

Path-based1 287ms

Zahn’s Compound 596ms

Table 3: Table of the times for Algorithm 1
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5.1 future work

While we did achieve a positive result approximating the Vietoris-
Rips filtration in this thesis, there is a lot which could be improved
and more work that could be done.

The implementations were done admittedly with little prior knowl-
edge of Python and thus, they are most likely not an aid for anyone
other than the author. Implementations for the Vietoris-Rips filtration
are readily available elsewhere in a more refined form and we advise
the interested reader to use those whenever possible.

The proposed algorithm for constructing the quotient map relies on
a chosen ordering of the points. Because the datasets in Section 4.2.1
are read in as a list of coordinates, it is natural to order the points as
they appear in the list. This is what we decided to do, but one could
try to optimize this choice even more. An alternative could be to make
a different algorithm altogether which might be able to incorporate
dependent quotient maps better.

In addition to changing the implementation we would also have
liked to have done more comparisons, either by varying the param-
eter ε in our algorithm or performing a similar analysis on other
datasets. The three datasets used in this thesis were all synthetic,
which may have caused the results to be an inaccurate representation
of the quotient filtration’s effectiveness.

We note that the quotient complex construction can be applied
to any simplicial complex, so another possibility would have been
to apply this to some other filtration, e. g. the Čech filtration. The
ε-restriction defined in Section 4.1 only works for the case of the
Vietoris-Rips filtration. For any other filtration, one has to define a
similar restriction to make the resulting quotient filtration interleaved
with the desired filtration.

Lastly, we would have liked to explain the barcodes a bit more.
Looking back at the results, we concluded that the approximation
showed no loss in topological information and while this remains
true, the remarkable fact was that none of the long bars had changed
even the slightest. Because the persistence modules of the filtrations
were 4-interleaved, we expected this to show up in the barcodes. This
did not happen for any of our datasets and it would be interesting to
be able to understand this peculiarity.
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Part III

A P P E N D I X

We present here the Jupyter Notebook (converted to LATEX)
with all the documentation and source code for the imple-
mentation used in the thesis.





1 vietoris-rips filtration

1 vietoris-rips filtration

Here’s the algorithm for computing the Vietoris-Rips filtration for a given dataset.

1.1 Preamble

Importing the necessary packages.

In [ ]: import numpy as np
import pandas as pd
from scipy.spatial.distance import cdist
from timeit import default_timer as timer

1.2 Zero

Creating a function for listing the 0-simplices.

In [ ]: def simp0(df):
simp = []
N = len(df)
for i in range(N):

simp.append([i, 0])
return simp

1.3 One

Similarly, a function for the 1-simplices. We extract the filtration time out of a distrance matrix
and sort the list by filtration time.

In [ ]: def simp1(df):
simp = []
N = len(df)

#Loop for appending 1-simlices to the list "simp".
for i in [x for x in range(N)]:

for j in [x for x in range(N) if x > i]:
simp.append([i, j, df.values[i,j]])

#Sorting based on filtration value.
from operator import itemgetter
simp.sort(key=itemgetter(2))
return simp

1.4 Two

Lastly, a function for the 2-simplices. The algorithm consists of two steps: 1. Create a dictionary
which stores the filtration time for each 2-simplex. Here we use the fact that the filtration time
of a simplex is determined by the maximum filtration time of it’s boundary. 2. Unload the
dictionary above and write it out as a list, similar to what we did with the 0- and 1-simplices.

In [ ]: def simp2(simp0, simp1):
##Step1
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1 vietoris-rips filtration

myDict = dict()
N = len(simp0)

for s in reversed(simp1):
a = list(range(N))
a = [x for x in a if x != s[0] if x != s[1]]
for i in a:

L = sorted([i,s[0],s[1]], key=int)
key = ".".join(str(z) for z in L)
if key not in myDict:

myDict[key] = s[2]

##Step2
simp = []
step = list(myDict.items())
for tup in step:

spl = [int(x) for x in tup[0].split('.')]
spl.extend([tup[1]])
simp.append(spl)

from operator import itemgetter
simp.sort(key=itemgetter(3))
return simp

1.5 Input/Output

Here we connect it all together; we read the given data file as a data frame using pandas and
calculate the distance matrix. Then we use the previous functions to output the filtration.

In [ ]: def VRFiltration(inFile,outFile):
#Read in file and calculate the distance matrix.
table = pd.read_table(inFile, header=None)
data = table.values
data = data.astype(float)
distMatrix = cdist(data,data)
df = pd.DataFrame(distMatrix)

#Calculating simplices and adding them to a list.
sim0 = simp0(df)
sim1 = simp1(df)
sim2 = simp2(sim0,sim1)
filtration = sim0 + sim1 + sim2

#Output
with open(outFile, 'w') as fileOut:

for item in filtration:
text = ''
for i in item:

text = text + str(i) + ' '
text = text[:-1]
fileOut.write(text + '\n')

42



2 quotient complex/filtration

2 quotient complex/filtration

We introduce here an algorithm for constructing a surjective function f which does not depend
on filtration value t.

2.1 Preamble

Importing packages which are needed for the code below.

In [ ]: import numpy as np
import pandas as pd
import itertools as it
from scipy.spatial.distance import cdist
from timeit import default_timer as timer

2.2 Function

Defining the desired function/relation.

In [ ]: def naiveRelation(df, epsilon):
N = len(df)
W = [[0]]

#Looping over all points in the data.
for i in range(1,N):

#Boolean variable which tells us if we merged the point with a cluster.
T = False

#Checking if the point has distance less than epsilon from a cluster.
for vertex in W:

if all(df.values[i,v] < epsilon for v in vertex):
vertex.extend([i])
T = True
break

#Making point "i" into an own cluster if the above does not hold true.
if not T:

W.append([i])
return W

2.3 Quotient filtration

We can reuse the algorithms from the Vietoris-Rips section, but we need to create a new
distance matrix. The problem lies in the fact that we’re creating 1-simplices between clusters
of vertices, which will lead to multiple filtration values for each 1-simplex. The function below
chooses the minimum filtration value, i.e. the minimum distance between clusters and creates
a distance matrix based on it.

In [ ]: def quotientDistance(df,rel):
N = len(rel)
dist = pd.DataFrame(index=range(N), columns=range(N))
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2 quotient complex/filtration

#Finding the minimum filtration value and adding it to the dataframe.
for i in range(N):

for j in [x for x in range(N) if x > i]:
M = min([df.values[m,n] for m in rel[i] for n in rel[j]])
dist.set_value(i, j, M)

return dist

2.4 Preimage filtration

For completion, we’ll also make a filtration of f−1(L f ) such that we can compare the barcodes.

In [ ]: def preDistance(simp, rel):
#Creating empty dataframe to store distances/filtration value.
N = max([max(a) for a in rel])
dist = pd.DataFrame(index=range(N+1), columns=range(N+1))

#For each simplex, find the pre-images of points.
for simplex in simp:

pairs = [sorted([i,j],key=int) for i in rel[simplex[0]]
for j in rel[simplex[1]]]

#For each pair append it to a list together with the filtration value.
for P in pairs:

dist.set_value(P[0],P[1],simplex[2])

#We miss the pairs within a simplex, so we need to add the remaining zeros.
return dist.fillna(0)

2.5 Input/Output

Here’s the functions which reads and writes the two filtrations.

In [ ]: def quotientFiltration(inFile,outFile,epsilon):
#Read in file and calculate the distance matrix.
table = pd.read_table(inFile, header=None)
data = table.values
data = data.astype(float)
distMatrix = cdist(data,data)
df = pd.DataFrame(distMatrix)

#Applying the relation.
rel = naiveRelation(df,epsilon)
#Calculating the simplicies and adding them to a list.
sim0 = simp0(rel)
sim1 = simp1(quotientDistance(df,rel))
sim2 = simp2(sim0,sim1)
filtration = sim0 + sim1 + sim2

with open(outFile, 'w') as fileOut:
for item in filtration:

text = ''
for i in item:

text = text + str(i) + ' '
text = text[:-1]
fileOut.write(text + '\n')
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3 phat

In [ ]: def preimageFiltration(inFile,outFile,epsilon):
#Read in file and calculate the distance matrix.
table = pd.read_table(inFile, header = None)
data = table.values
data = data.astype(float)
distMatrix = cdist(data,data)
df = pd.DataFrame(distMatrix)

#Applying the relation and calculating the 1-simplices.
rel = naiveRelation(df,epsilon)
quoSimp = simp1(quotientDistance(df,rel))
#Using the above to calculate the preimage.
sim0 = simp0(df)
sim1 = simp1(preDistance(quoSimp,rel))
sim2 = simp2(sim0,sim1)
filtration = sim0 + sim1 + sim2

with open(outFile, 'w') as fileOut:
for item in filtration:

text = ''
for i in item:

text = text + str(i) + ' '
text = text[:-1]
fileOut.write(text + '\n')

2.6 Example

We compute the filtrations defined above for the “Spiral” dataset.

2.6.1 Spiral

In [ ]: spiral = '/mnt/c/Users/Tam/OneDrive/Documents/Python/Data/spiral.txt'
outSpiral = '/mnt/c/Users/Tam/OneDrive/Documents/Python/Data/spiralOutput.txt'
quoSpiral = '/mnt/c/Users/Tam/OneDrive/Documents/Python/Data/spiralQuotient.txt'
preSpiral = '/mnt/c/Users/Tam/OneDrive/Documents/Python/Data/spiralPreimage.txt'

In [ ]: %time VRFiltration(spiral, outSpiral)

In [ ]: %time quotientFiltration(spiral, quoSpiral, 2)

In [ ]: %time preimageFiltration(spiral, preSpiral, 2)

3 phat

3.1 Functions

Hastily made function for computing persistent homology.

In [ ]: import phat
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3 phat

Converting here from a text file (filtration) to persistence pairs.

In [ ]: def computePersistence(inFile):
#Reading in file.
print('Reading file')
filtration = []
with open(inFile) as my_file:

for line in my_file:
fs = [float(f) for f in line.split()]
filtration.append(fs)

#Sort filtration, first priority on filtration, second priority dimension.
print('Sorting the filtration')
filtration.sort(key=lambda obj: len(obj))
filtration.sort(key=lambda obj: obj[-1])

#Create a appropiate dictionary for remembering index.
print('Creating the index-dictionary')
indices = dict()
for i in range(len(filtration)):

#For each list, convert all the values except the last to integer type.
inte = tuple([int(f) for f in filtration[i][:-1]])
#Adding the index of simplex in the filtration as a dictionary value.
indices[inte] = i

#Creating boundary columns
print('Creating the boundary columns')
b_matrix = []
N = len(filtration)
for i in range(N):

#Pick out the dimension
ni = len(filtration[i])-1

#Check if the dimension is 0.
if (ni == 1):

b_matrix.append(tuple([0, []]))
continue

boundary = []
for a in range(ni):

dimma = list(range(ni))
dimma.pop(a)
da = tuple([filtration[i][k] for k in dimma])
boundary.append(indices[da])

#Append the boundary
b_matrix.append(tuple([ni-2, list(sorted(boundary))]))

#Using PHAT to create the boundary matrix.
print('Using PHAT')

boundary_matrix = phat.boundary_matrix(
representation = phat.representations.vector_vector)

boundary_matrix.columns = b_matrix

print('Calculating persitence pairs:')
pairs = boundary_matrix.compute_persistence_pairs()
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4 computations and plots

pairs.sort()

i = 0
L = []
for pair in pairs:

if (filtration[pair[0]][-1] != filtration[pair[1]][-1]):
L.append([pair, filtration[pair[0]][-1],filtration[pair[1]][-1]])
i = i+1

return L

4 computations and plots

Using matplotlib to plot datasets and create barcodes from filtrations.

4.1 Preamble

In [ ]: import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import pandas as pd

4.2 Functions

Function for plotting the dataset

In [ ]: def plot_data(inFile):
table = pd.read_table(inFile, header=None)
data = table.values
data = data.astype(float)
plt.figure(figsize=(10,10))
plt.plot(data[:, 0], data[:, 1], 'bo', markersize=5)
plt.xlabel('x')
plt.ylabel("y")
plt.title("")
plt.show()

Functions for plotting the barcode. The second one is the one used for the final revision of
the thesis.

In [ ]: def plotBarcode(barcode, name):
i = 1
time = 0
for b in reversed(barcode):

plt.plot([b[1], b[2]], [i, i])
i = i+1
if b[2] > time:

time = b[2]
plt.axis([0, time+1, 0, i])
plt.xlabel('Filtration value')
plt.title(name)
plt.show()
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4 computations and plots

In [ ]: def plot_barcodes(pers, title):
pers = pd.DataFrame(np.array(pers))
pers.columns = ["kA", "birth", "death"]
pers = pers.ix[pers.ix[:, "death"] != pers.ix[:, "birth"], :]
pers["dim"] = 1 - (pers["birth"] == 0.0)
pers["y"] = range(pers.shape[0])
groups = pers.groupby("dim")

fig = plt.figure(figsize=(6,10))
ax = fig.add_subplot(111)
colors = ['blue', 'orange']
for name, group in groups:

ax.plot((group.birth, group.death), (group.y, group.y),
colors[name], lw = 1.5, label=name)

ax.set_xlabel("Filtration value")
ax.set_ylabel("")
ax.set_title(title)
fig.tight_layout()
plt.xlim(xmin=0)
#ax.xaxis.set_ticks(ticks)
ax.yaxis.set_ticks([])
ax.grid()

4.3 Example

Testing the functions on the previous dataset.

4.3.1 Spiral

original

In [ ]: %%time
%matplotlib inline
os = computePersistence(outSpiral)
plotBarcode(os, 'Spiral')
plot_barcodes(os, 'Spiral')

quotient

In [ ]: %%time
%matplotlib inline
qs = computePersistence(quoSpiral)
plotBarcode(qs, 'Quotient Spiral')
plot_barcodes(qs, 'Quotient Spiral')

preimage

In [ ]: %%time
%matplotlib inline
ps = computePersistence(preSpiral)
plotBarcode(ps, 'Preimage Spiral')
plot_barcodes(ps, 'Preimage Spiral')
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