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Abstract

Quadratic differentials first appeared in 1930s in works of Teichmuller in connection
with moduli problem for Riemann surfaces. Later it was revealed that quadratic differ-
entials and their trajectories give solutions to extremal problems for moduli of families
of curves and extremal partition of Riemann surfaces. Over the last decades there has
been discovered a connection between quadratic differentials and extremal problems
of different nature related to minimal surfaces, potential theory, approximation theory,
mathematical physics.

In this work, we study quadratic differentials, discover new properties of certain
types of quadratic differentials and explore the connection of quadratic differentials
with other disciplines, such as discrete mathematics, topology and even applied math-
ematics. We apply the theory of quadratic differentials to solve problems of complex
analysis and study analytical problems that are connected with quadratic differentials.

The dissertation is organized as follows. Chapter 1 contains an introduction to the
notions and facts that are necessary for understanding the main results of this work.
Section 1.1 gives a short introduction to quadratic differentials and their trajectory
structure. It also recalls the definition of reduced moduli of digons. Section 1.2 de-
scribes the tools from discrete mathematics and topology that are used in this work.
Chapter 2 gives a summary of the research papers that constitute the main scientific
contributions of the thesis. Both Chapter 1 and Chapter 2 are followed by lists of refer-
ences. The following papers are included in Chapter 3.

Paper A: A. Frolova, M. Levenshtein, D. Shoikhet, and A. Vasil’ev, Boundary dis-
tortion estimates for holomorphic maps, In Complex Analysis and Operator Theory,
8 (2013), no. 5, 1129–1149 .

Paper B: A. Frolova, A. Vasil’ev, Combinatorial description of jumps in spectral
networks, accepted to Proceedings AMS.

Paper C: A. Frolova, D. Khavinson, and A. Vasil’ev, Polynomial lemniscates and
their fingerprints: from geometry to topology, Submitted to New Trends in Complex
and Harmonic Analysis.

Paper D: A. Frolova, M. Solberg, and A. Vasil’ev, Pure braids and homotopy
classes of closed loops, paper in preparation.

In Paper A we apply extremal partitions and moduli of digons to obtain a boundary
distortion estimate for a conformal self-mapping of the unit disk with two fixed points
on the boundary. Paper B studies combinatorial structure of the family of quadratic
differentials with a finite simple pole that possess a short trajectory. In Paper C we dis-
cover some properties of fingerprints of polynomial lemniscates and construct a non-
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unitary operad that realizes a process of approximation of two dimensional shapes by
polynomial lemniscates. In Paper D we define an action of a braid group on homo-
topy classes of closed curves on a punctured sphere, which is related to a problem of
constructing an operad on quadratic differentials with several double poles.
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Chapter 1

Preliminaries

We begin the preliminaries chapter with a short introduction to the quadratic differen-
tials and reduced moduli in Section 1.1. In Section 1.2 we give an introduction to some
tools from discrete mathematics and topology that are used in Papers B, C and the paper
in progress D. In particular, we introduce trees and operads in Subsection 1.2.2, Sub-
sections 1.2.2 and 1.2.3 show how an associahedron, which is also called the Stasheff
polytope, is realizable as triangulations of a regular polygon. Subsection 1.2.4 contains
the definition of a braid group and an action of a braid group on a free group.

1.1 Quadratic differentials and moduli

1.1.1 Quadratic differentials: definition, critical points and natural parameter

Definition 1. Let S be a Riemann surface with atlas {(Uα ,φα)}, where each φα is a
holomorphic homeomorphism of an open set Uα of S onto a neighbourhood of zero in
the complex plane with a local parameter zα . For each chart (Uα ,φα) about an arbitrary
point P of S we define a function element Qzα (zα). If (Uβ ,φβ ) is any other chart about
P, let the corresponding function elements satisfy the following invariance property:

Qzα (zα)(dzα)
2 = Qzβ (zβ )(dzβ )

2, dzβ =
dzβ

dzα
dzα . (1.1)

Such a collection of function elements forms a quadratic differential on S.

Relation (1.1) can be interpreted as the rule of change of coordinates. Keeping
this in mind, we can fix one local parameter denoted by z and refer to the quadratic
differential simply as Q(z)dz2.

Example 2. Consider the quadratic differential Q(z)dz2 = (z2−1)dz2 on the Riemann

sphere Ĉ. The function element z2 −1 represents the quadratic differential in the finite
complex plane. Let us find the form of Q(z)dz2 about infinity. Let w := 1

z . The
quadratic differential about infinity looks as follows:

Q(w) = Q(z)
(

dz
dw

)2

=

(
1

w2
−1

)
1

w4
= (1−w)(w+1)

1

w6
.
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Note that Q(z) has simple zeros at 1 and −1. The function Q(w) also has simple
zeros at 1 and −1, together with a pole of order 6 at infinity. We say that the quadratic
differential Q(z)dz2 has simple zeros at ±1 and a pole of order 6 at infinity.

Remark 1. Further on we consider only quadratic differentials Q(z)dz2, where Q(z) is
a rational or a polynomial function.

Definition 3. Zeros and poles of a quadratic differential Q(z)dz2 are called critical
points of Q(z)dz2. Points that are not critical are called regular.

The following lemma (see [11]) shows that the notion of a zero or a pole of a
quadratic differential is well-defined.

Lemma 4. Let z and w be two local coordinates about a point P ∈ S, z = 0 and w =
0 correspond to P, and let Q(z) and Q(w) be the function elements of a quadratic
differential that correspond to z and w. If Q(z) has a zero (respectively, pole) of order
n about z = 0, then Q(w) also has zero (respectively, pole) of order n about w = 0.

Given a quadratic differential Q(z)dz2, it is possible to choose a single valued

branch of a square root Q1/2 in a small enough neighbourhood U of a regular point.
Let us define a local parameter w by

w = Φ(ζ ) =
∫

ζ

√
Q (1.2)

and note that it is well-defined.

Remark 2. The integral in the latter formula is understood as an integral of
√

Q(z)
along a piecewise smooth curve connecting an arbitrary point ζ0 with a point ζ in the
z−plane.

Let us express Q(z)dz2 in terms of this new parameter.

Q(z) = Q(w)
(

dw
dz

)2

= Q(w)Q(z).

Therefore, in a small enough neighbourhood of a regular point the function element
Q(w) is identically equal to 1 and we can write

Q(z)dz2 = dw2.

The parameter w is called the natural parameter near the regular point. It gives the sim-
plest possible representation of the quadratic differential in the given neighbourhood.
The natural parameter of Q(z)dz2 around a pole or a zero has to be chosen differently.
For example, in a neighbourhood of a double zero P the quadratic differential can be
represented as

Q(z)dz2 = 4ζ 2 dζ 2. (1.3)

In a neighbourhood of a double zero function element Q(z) has form

Q(z) = z2 (a2 +a3z+ . . .) ,
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where (a2 +a3z+ . . .) is a non-vanishing holomorphic function. In a small enough
neighbourhood of the origin we can choose

√
Q to be√

Q(z) = z(b1 +b2z+ . . .),

and integrate it term by term to obtain

z2

(
b1

2
+

b2

3
z+ . . .

)
.

We denote by

ζ = z
(

b1

2
+

b2

3
z+ . . .

) 1
2

= z(c1 + c2z+ . . .) ,

where ζ becomes a conformal change of variable. We define

w = Φ(ζ ) := ζ 2.

The latter implies that
dw2 = 4ζ 2 dζ 2.

We have illustrated a particular case of the following theorem.

Theorem 3. Let Q(z)dz2 be a quadratic differential defined on a Riemann surface R
and let P ∈ R.

1. If P is a regular point, then in a neighbourhood of P the quadratic differential can
be represented as

Q(z)dz2 = dζ 2.

2. If P is a zero of order n, then in a neighbourhood of P the quadratic differential
can be represented as

Q(z)dz2 =

(
n+2

2

)2

ζ n dζ 2.

The corresponding function Φ(ζ ) has the form ζ
n+2

2 .

3. If P is a pole of odd order n, then in a neighbourhood of P the quadratic differen-
tial can be represented as

Q(z)dz2 =

(
2−n

2

)2

ζ−n dζ 2.

The corresponding function Φ(ζ ) has the form ζ
2−n

2 .

4. If P is a pole of second order, then in a neighbourhood of P the quadratic differ-
ential can be represented as

Q(z)dz2 =
a−2

ζ 2
dζ 2,
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where Q(z) has expansion Q(z) = a−2

z2 +
a−1

z + a0 + a1z+ . . . about z = 0 that
corresponds to P. Q(z) can be represented as z−2 f (z), where f (z) is a non-
vanishing holomorphic function.

The corresponding to Q(z) function Φ(ζ ) has form b logζ , where b is the constant
coefficient of the Taylor expansion of f 1/2.

5. If P is a pole of even order n > 2, then in a neighbourhood of P the quadratic
differential can be represented as

Q(z)dz2 =

(
b
ζ
+

n+2

2
ζ

n
2

)2

dζ 2,

where b is a coefficient of the logarithmic term b logz, which appears after inte-
grating the square root of the expansion of Q(z) in a punctured neighbourhood of
P.

1.1.2 Trajectory structure of a quadratic differential

Definition 5. Let Q(z)dz2 be a quadratic differential on a Riemann surface S. A tra-
jectory of Q(z)dz2 is a maximal smooth curve γ in S, such that Q(z)dz2 is real and
positive along it. A maximal smooth curve γ, such that Q(z)dz2 < 0 along it, is called
an orthogonal trajectory of the quadratic differential.

Example 6. Consider z2 dz2 on C. Origin is a double zero of this quadratic differential.
It is easy to check that the curves z1(t) = t, 0 < t < ∞, z2(t) =−t, 0 < t < ∞, z3(t) = it,
0 < t < ∞, z4(t) =−it, 0 < t < ∞ are trajectories of z2 dz2.

A quadratic differential Q(z)dz2 induces a metric with a length element
√|Q(z)||dz|.

The length of a curve g with respect to this metric is called the Q−length of g.

Remark 4. Let S be a Riemann surface and z be a local coordinate about P ∈ S. We can
regard a conformal mapping w = f (z) as a conformal mapping from S to the w− plane.

Let P be a regular point of Q(z)dz2 and U be the maximal neighbourhood of P
where w = Φ(z) =

∫
z
√

Q is defined. Φ(z) maps U conformally onto a disk V in the
w−plane, and P is mapped onto the origin. The intersection r of V and the real line is a
horizontal line segment in the w−plane, thus the pre-image of r by Φ(z) is a piece of a
trajectory of Q(z)dz2 which goes through P. Note that Φ−1(z) is a conformal mapping
of V onto U . Let us continue Φ−1(w) analytically along the real line. We obtain a
chain C of maximal disks centered on the real line, such that Φ−1(w) is conformal on
C. The intersection of C with the real line is a real interval, denote it by (a,b). The
image of (a,b) by Φ−1(w) is a trajectory γ of Q(z)dz2 going through P. Assume that
the trajectory γ is a Jordan curve. Then the Q−length of γ is given by

|γ |Q =
∫

γ
|
√

Q(z)||dz|=
∫
(a,b)

|dw|= b−a.

The trajectory γ can be divided into two trajectory rays γa and γb, which are the pre-
images by Φ−1 of the intervals (a,0] and [0,b) correspondingly. We define a limit set



1.1 Quadratic differentials and moduli 5

(a) Double zero (b) Simple pole (c) Double pole

Figure 1.1: Local trajectory structure

of a trajectory ray γa as the set of all points P1 on R, such that there exists a sequence
xn of real numbers converging to a and the sequence {Φ−1(xn)} converging to P1. A
limit set of a trajectory ray γb can be defined analogously. The limit set of a trajectory
ray may be a zero or a pole of the quadratic differential. For example, a trajectory t,
0 < t < ∞ of z2 dz2 has trajectory rays with limit sets at the origin and infinity. A limit
set of a trajectory ray sometimes may be a set with a non-empty interior, in this case the
trajectory ray swipes out an entire domain. Such a trajectory ray is called a recurrent
ray (See more details in [11], §10,11).

Remark 5. One can define orthogonal trajectory rays and give the Q−length of an
orthogonal trajectory in an analogous manner.

Let P be a regular point of a quadratic differential Q(z)dz2 defined on S. According
to Theorem 3, in a neighbourhood of P the following representation holds

Q(z)dz2 = dw2, w = Φ(z) =
∫

z

√
Q.

Note that Φ(z) defines a conformal change of variables. We note that dw2 > 0 along
horizontal arcs in the w−plane. For example, we have dw2 > 0 along w(t) = t, −∞ <
t < ∞. The pre-image γ by conformal mapping Φ(z) of a horizontal arc in the w−plane
is a trajectory of the quadratic differential. We conclude that in a neighbourhood of a
regular point trajectories of Q(z)dz2 look like horizontal arcs.

Let P be a double pole of Q(z)dz2. We have shown that there exists a conformal
change of variable ζ (z), such that the quadratic differential has form (1.3) with respect
to the parameter ζ . The ζ−plane can be subdivided into 4 sectors k π

2 ≤ argζ ≤ (k+
1) π

2 , k = 0,1,2,3, each of which is mapped by w = Φ(ζ ) = ζ 2 onto a half-plane.

We have that dw2 > 0 along horizontal arcs in the w−plane, the pre-images by ζ 2

of horizontal arcs in w−plane are shown on Figure 1.1 (a). This illustrates the local
structure of trajectories of a quadratic differential around a double zero. Note that
Figure 1.1 (a) demonstrates the trajectory structure of quadratic differential z2 dz2 from
Example 6 around the origin.

We have illustrated above two particular cases of the following theorem, which
describes local trajectory structure of quadratic differentials (See more details in
[12],[11]).

Theorem 6 (Local trajectory structure of a quadratic differential). Let Q(z)dz2 be a
quadratic differential on Riemann surface S and P be a point on S.

1. If P is a regular point of Q(z)dz2, then in a small neighbourhood of P the trajec-
tories are horizontal arcs.
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(a) Two simple zeros (b) Pole of order six

Figure 1.2: Trajectory structure of (z2 −1)dz2

2. If P is a zero of Q(z)dz2 of order n, then any trajectory entering a small neigh-

bourhood U of P is a pre-image of a horizontal arc by the mapping ζ
n+2

2 . In
particular, there are n+2 trajectory rays that enter U and tend to P and divide U
into n+ 2 equal sectors. If P is a simple pole, then the situation is analogous to
the one described above, with n being equal to −1.

3. If P is a double pole, then locally the trajectories around P are either concentric
circles centered at P, or radial rays that tend to P, or spirals tending to P.

4. If P is a pole of order n larger than 2, then each trajectory ray that enters small
neighbourhood U of P, tends to infinity in one of n− 2 distinguished directions,
which divide U into n−2 equal sectors. If a trajectory enters a sector, its trajectory
rays tend to P in two directions. See Figure 1.2 (b).

Figure 1.1 illustrates trajectory structure of a quadratic differential around a double
zero, simple pole and a double pole. Theorem 6 gives us a clear picture of what tra-
jectories of a quadratic differential look like locally. To describe what happens with a
trajectory outside a small neighbourhood of a point is generally a difficult task. Jenkins
Main Structure Theorem (see [2]) sheds light on trajectory structure in large. We state
this theorem after introducing certain types of domains that play an important role in
describing global trajectory structure.

Definition 7. A circular domain D is a simply connected domain that contains a double
pole P and is swept out by trajectories that separate P from the boundary of D. There
is a mapping

g(z) =
{

ec
∫

z
√

Q, z �= P,c �= 0;
0, z = P,

which maps D onto a disk centered at the origin.

A ring domain D is a doubly connected domain that contains no critical points and
is swept out by trajectories that separate its two boundary components. There exists a
map g(z) = exp{c

∫
z
√

Q}, c �= 0, which maps D onto an annulus.

A strip (half-plane) domain D is a simply connected domain that does not contain
critical points and that is swept out by trajectories with both rays tending to poles of
order at least two. There is a map g(z) =

∫
z
√

Q, that maps D onto a horizontal strip
(half-plane).

A dense structure is a domain that is swept out by a recurrent trajectory ray.
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Theorem 7 (Jenkins Main Structure Theorem, [2]). Let Q(z)dz2 be a quadratic differ-
ential on a compact Riemann surface S, where Q(z) is a meromorphic function. Let Ψ
be the union of all trajectories of Q(z)dz2 that contain zeros and simple poles in their
closures and do not have recurrent rays. We denote by Ψ̄ the closure of Ψ.

Then S \ Ψ̄ is a union of non-overlapping domains of the following types: circular
domains, ring domains, strip domains, half-plane domains, dense structures.

Remark 8. Theorems 6 and 7 also hold for orthogonal trajectories.

Example 8. Consider z2 dz2 on the Riemann sphere Ĉ. In this case Ψ is formed by
the four trajectories described in Example 6. The closure of Ψ consists of z1(t), z2(t),
z3(t), z4(t), origin and infinity. S\ Ψ̄ is a union of four half-plane domains.

The quadratic differential (z2 − 1)dz2 from Example 2 is defined on Ĉ and has
simple zeros at z = 1 and z = −1 and a pole of order six at infinity. Ψ is formed
by three trajectories γ1,γ2,γ3 that have z = 1 and infinity in their closures, and three
trajectories g1,g2,g3 that have z = −1 and infinity in their closures. These are the
trajectories that form three sectors in small neighbourhoods of z = 1 and z = −1 as
described in Theorem 6, part 2; they are illustrated by bold lines on Figure 1.2 (a). Two
of these trajectories, say γ1 and g1, have an easy representation γ1(t) = t, 1 < t < ∞;
g1(t) =−t, 1 < t < ∞. On the other hand, these six trajectories γ1,γ2,γ3,g1,g2,g3 tend

to infinity in four distinguished directions as described in Theorem 6, part 4. Ĉ \ Ψ̄
consists of four half-plane domains and a strip domain. The strip domain is bounded
by γ2, γ3, g2,g3 and has 1,−1 and infinity on its boundary. Figure 1.2 (a) shows some of
the trajectories that do not have trajectory rays that tend to simple zeros. The trajectory
structure around infinity is illustrated on Figure 1.2 (b).

Let us consider orthogonal trajectories of the quadratic differentials discussed in this
example. The quadratic differential z2 dz2 has four orthogonal trajectories ζ1,ζ2,ζ3,ζ4

that tend to the zero of the quadratic differential. We note that in a small neighbourhood
of 0 the trajectories z1,z2,z3,z4 form sectors k π

2 ≤ argζ ≤ (k+1) π
2 , k = 0,1,2,3. The

orthogonal trajectories ζ1,ζ2,ζ3,ζ4 divide the neighbourhood of the origin into sectors
π
4 + k π

2 ≤ argζ ≤ π
4 + (k + 1) π

2 , k = 0,1,2,3. On the other hand, ζ1,ζ2,ζ3,ζ4 tend
to the pole in four distinguished directions; locally around infinity the distinguished
directions defined by trajectories and orthogonal trajectories of z2 dz2 form eight equal
sectors.

The quadratic differential Q(z)dz2 =(z2−1)dz2 has five orthogonal trajectories that
tend to the zeros of (z2 − 1)dz2. One of them has an easy representation: w1(t) = t,
−1 < t < 1. The Q−length of w1 is equal to 2; all the other orthogonal trajectories and
trajectories of (z2 −1)dz2 have infinite Q−length. Orthogonal trajectory w1 has an or-
thogonal trajectory ray that tends to −1; this orthogonal trajectory ray together with
the two other orthogonal trajectory rays that tend to −1 form three equal sectors locally
around −1. Trajectory rays and orthogonal trajectory rays that tend to −1 form 6 equal
sectors locally about −1. The situation around the simple zero 1 is similar. There are
four orthogonal trajectories that have an orthogonal trajectory ray that tends to either
1 or −1 and an orthogonal trajectory ray that tends to infinity in one of four distin-
guished directions. The distinguished directions defined by trajectories and orthogonal
trajectories form eight equal sectors locally around infinity.

Trajectories of quadratic differentials and, in particular, non-dense domains associ-
ated with them, give solutions to various mathematical problems. Some of them are
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classical complex analysis problems (for example, extremal length problem, see [12]);
some of them come from potential theory and approximation theory (see [5], [8], [9]).

1.1.3 Reduced modulus of a digon

Consider a simply connected domain Q bounded by a Jordan curve. Let us mark four
points z1,z2,z3,z4 on the boundary in a cyclic order. Let us fix the sequence z1,z2,z3,z4.
Such a domain is called a quadrilateral and can be mapped conformally onto a a rectan-
gle R(r) with vertices at 0, r, i+ r, i, where r is a uniquely determined positive number.
The mapping can be extended as a homeomorphism to the boundary. The fixed se-
quence z1,z2,z3,z4 of vertices are mapped onto 0, r, i+ r, i respectively, (see Figure
1.3, left hand side). The number r is called the modulus of Q. A modulus of a quad-
rangle is a conformal invariant.

The same domain Q with the vertices z1,z2,z3,z4, but with fixed sequence z2,z3,z4,z1

is mapped conformally onto R(1
r ). Fixing the order of vertices in a sequence in this

case is equivalent to choosing the "vertical" and "horizontal" sides of the quadrilateral.
Let us summarize: the modulus of a simply connected domain Q with four vertices
z1,z2,z3,z4 is either a positive number r or 1/r, depending on which sides we choose
to be vertical.

A simply connected domain D bounded by a Jordan curve ∂D with marked vertices
z1 and z2 on the boundary is called a digon. Let us require in addition that angles at the
vertices z1 and z2 are defined; denote them by ϕ1 and ϕ2 respectively.

Let us define a reduced modulus of a digon. Let us choose two small positive
numbers ε1 and ε2. The circles |z− z1| < ε1 and |z− z2| < ε2 divide the interior of D
into three domains: the intersections of the disks |z− z1| < ε1, |z− z2| < ε2 with the
interior of D and a quadrangle Q; let arcs of ∂D be its horizontal sides.

Then the reduced modulus m(D,z1,z2) of the digon is defined by

m(D,z1,z2) = lim
ε1,ε2→0

{
1

ϕ1
logε1 +

1

ϕ2
logε2 +m(Q)

}
. (1.4)

Assume that one of the vertices, say z2, is infinity. In this case we can modify the
definition as follows. We use the disk |z|> ε about infinity and replace the correspond-
ing logarithmic term in the sum (1.4) with 1/ϕ2 log1/ε2.

Example 9. Let Γ denote the real positive semi axis together with the origin and the
infinity. Then Ĉ \Γ is a digon with vertices at 0 and infinity and angles 2π at them.
Let us show that m(D,0,∞) = 0. We consider a neighbourhood |z| < R1 about the
origin and a neighbourhood |z| > R2 about infinity. The quadrangle with horizontal
sides R1R2 is conformally mapped by 1

2π logz onto a rectangle with vertices 1
2π logR1,

1
2π logR2, 1

2π logR2 + i, 1
2π logR1 + i, (see Figure 1.3, right hand side). We obtain the

following reduced modulus of Q

m(Q) =
1

2π
log

R2

R1
.

Thus the sum
1

2π
logR1 +

1

2π
log

1

R2
+m(Q)

vanishes identically.
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Figure 1.3: Mapping of a quadrangle

(a) Trees t and θ (b) Grafting θ and t (c) t ◦ (id,θ , id)

Figure 1.4: Composition of trees

1.2 Graphs, operads and polytopes

1.2.1 Trees and operads

Operads were defined first by J. Peter May in [6] in 1972, but appeared essentially even
before that, for example in work by Boardman and Vogt [1].

Definition 10. An operad is a collection of sets {O(n)}, n ∈ N, together with an el-
ement id ∈ O(1) and a defined for each set of natural numbers k1, . . . ,kn composition
map

◦ : O(n)×O(k1)×·· ·×O(kn)−→ O(k1 + · · ·+ kn),

(t, t1, . . . , tn) �→ t ◦ (t1, . . . , tn),
which satisfies the following axioms:

1. (Identity axiom) For each t ∈ O(n)

t ◦ (id, . . . , id) = t,

id ◦ t = t;

2. (Associativity axiom) For any t ∈O(n), n elements t1 ∈O(k1), . . . , tn ∈O(kn), and
N = k1+k2+ · · ·+kn elements θ1 ∈O( j1), . . . ,θk1

∈O( jk1
),θk1+1 ∈O( jk1+1), . . . ,

θN ∈ O( jN) we have

t ◦ (t1 ◦ (θ1, . . . ,θk1
), . . . , tn ◦ (θk1+k2+···+kn−1+1, . . . ,θk1+k2+···+kn)) =

(t ◦ (t1, . . . , tn))◦ (θ1, . . . ,θk1
, . . . ,θk1+k2+···+kn−1+1, . . . ,θk1+k2+···+kn).

Let us give an example of an operad, namely an operad on trees. First we introduce
some notions that are used in this example. A tree is a connected graph with n vertices
and n− 1 edges. A degree of a vertex v of a tree is the number of vertices adjacent to
v. A rooted tree t is a tree with a distinguished vertex of degree 1, which is called the
root of t; all the other vertices of degree 1 are called leaves of t. A planar tree is a tree
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together with an embedding into a plane. The Figure 1.4 (a) illustrates two different
planar rooted trees. It is convenient to draw a planar rooted tree in such a way, that all
the leaves lie on one horizontal line and the root is above the line. Then it is possible to
order the leaves from left to right, in particular, we can number them according to this
order.

Let us begin the construction of an operad on planar rooted trees. We define O(n)
to be the set of planar rooted trees with n leaves. The identity element id is a tree that
consists of one edge. For example, the trees on Figure 1.4 (a) are elements of O(3).

The next step is to define an operation of composition, i.e. a composition map.
Consider a planar rooted tree t with a distinguished leaf v and a planar rooted tree θ ,
assume that the root r of θ is adjacent to a vertex u. By grafting the root of θ with the
leaf v we understand deleting the edge ru and identifying the vertices v and u, i.e. gluing
the tree θ without the edge ru to the vertex v. The result of this process is illustrated
on Figure 1.4(b). Given elements t ∈ O(n), t1 ∈ O(k1), . . . , tn ∈ O(kn), we define the
composition t ◦ (t1, . . . , tn) by grafting the roots of t1, . . . , tn with the leaves 1, . . . ,n of
t. The resulting tree is planar, it has k1 + · · ·+ kn leaves and has a root corresponding
to the root of t. Figure 1.4 (b) illustrates in fact the composition of t with (id, id,θ).
Figure 1.4 (c) shows t ◦ (id,θ , id).

It is clear that both of the axioms of Definition 10 hold.
If we exclude the identity axiom from Definition 10, we obtain the definition of a

non-unitary operad.

1.2.2 Triangulations of a convex polygon.

Consider a regular convex n−gon P. We call a set of non-intersecting diagonals of P a
triangulation of P. A triangulation is complete if the number of diagonals is maximal,
i.e. is equal to n− 3, and is incomplete otherwise. A triangulation divides the interior
of P into convex polygons, which all are triangles if the triangulation is complete. It
was proved by L. Euler that the number of distinct complete triangulations of a fixed
regular convex n−gon P is equal to

Cn =
1

n+1

(
2n
n

)
=

n−1

∑
k=0

CkCn−1−k,

which is called the n−th Catalan number. Note that C0 = 1.

Example 11. We denote by Cn number of complete triangulations of an n−gon. Let us
count the number C6 of triangulations of a hexagon P6.

Let us mark an edge of P6 as a. After a complete triangulation of P6, the interior P6

is divided into triangles, and a is an edge of exactly one of them; denote this triangle by
T . Note that T can be chosen in n−2 = 4 ways, see Figure 1.5. Once we have chosen
T , we need to triangulate the rest of the interior of P6. The sides of T divide the interior
of P6 into a (possibly empty) polygon to the left from T , the triangle T and a (possibly
empty) polygon to the right from T . The polygons to the left and to the right from T
are to be triangulated. For example, the interior of the second from the left hexagon on
Figure 1.5 has a 4−gon to the left from T and a triangle to the right from T . Therefore,
the number of triangulations of this hexagon is equal to C4C3. If we summarize all the
4 cases, we get a recursive formula for the 6−th Catalan number:
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Figure 1.5: Triangulating a hexagon: choice of triangle T .

C6 =C5 +C4C3 +C3C4 +C5 =
5

∑
k=0

CkC5−k.

1.2.3 Triangulations and the Stasheff polytope

In this subsection we describe combinatorial structure of the set Σn of all triangulations
of a convex polygon. Complete triangulations of a convex regular n−gon correspond in
fact to vertices of associahedron, which is sometimes also called Stasheff polytope. The
Stasheff polytope was considered independently by J. Stasheff ([10]) and D. Tamari.
The fact that Σn is realizable as a convex polytope dual to the associahedron was shown
by M. Haiman and C. Lee ([4]). We start with a short introduction to polytopes, for
more information see [13].

Definition 12. A convex polytope P in R
n is a convex hull of a finite number of points

in R
n. We say that a hyperplane H ∈ R

n supports P if H ∩P �= /0 and P lies entirely in
one of the closed half-spaces bounded by H; the set H ∩P is called a face of P.

Every face F of a polytope P is a polytope of a possibly smaller dimension, every
face of F is a face of P.

Definition 13. Faces of dimension 0 and 1 are called vertices and edges of P respec-
tively. Faces of dimension n−2 and n−1 are called subfacets and facets of P.

Note that every point of the boundary of P belongs to its face.

Definition 14. A k−dimensional geometric simplex σk is a convex hull of k+1 points
{v0,v1, . . . ,vk}, such that the vectors v1−v0, . . . ,vk−v0 are linearly independent. Points
{v0,v1, . . . ,vk} are called vertices of σk.

A k−dimensional geometric simplex σk is a k−dimensional convex polytope. Note
that the notion of a geometric simplex is generalization of the notion of triangle to
arbitrary dimensions: 1−simplex is a line segment, 2−simplex is a triangle, 3−simplex
is a tetrahedron. Convex hull of any j vertices of a geometric simplex σk is a geometric
simplex σ j−1.

Definition 15. Let V be a finite set. A simplicial complex Δ is a non-empty collection
of subsets of V closed under the operation of taking a subset:

F ∈ Δ, G ⊂ F =⇒ G ∈ Δ.

An element F of a simplicial complex Δ is called a face of Δ. The dimension of F
denoted by dimF is defined as cardF − 1, where cardF means the cardinality of F .
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Dimension of Δ denoted by dimΔ is defined as maximal dimension of its faces. A
face F ∈ Δ is called a vertex, an edge, a subfacet, a facet of Δ if dimension of F is
0,1,dimΔ−1,dimΔ respectively.

Definition 16. [Isomorphism of simplicial complexes] Consider simplicial complexes
Δ and Δ1. Let V and V1 denote the set of vertices of Δ and Δ1 respectively. An iso-
morphism between Δ and Δ1 is a bijective map f : V →V1, such that {vi1, . . . ,vik} ∈ Δ
if and only if { f (vi1), . . . , f (vik)} ∈ Δ1. If such a map exists, we say that Δ and Δ1 are
isomorphic.

Definition 17. [Boundary complex of a polytope] Suppose P is a convex polytope
spanned by vectors {v1, . . . ,v j}. The boundary complex of P is a simplicial com-
plex Δ′, which consists of all the proper subsets of {v1, . . . ,v j}. There is a bijective
correspondence between the faces of the boundary of P and the non-empty faces of Δ′:
the face span{vk1

, . . . ,vk1+m} of P, m ≤ j−1, is assigned to the element {vk1
, . . . ,vk1+m}

of Δ′.

Example 18. A geometric simplex σk ⊂ R
k is a convex polytope and thus generates

a boundary complex. For example, a 2−simplex σ2 with vertices v0, v1 and v2 has a
boundary complex

Δ′ = { /0,{v0},{v1},{v2},{v0,v1},{v0,v2},{v1,v2}}.
The bijection between the faces of the boundary of σ2 and the non-empty faces of Δ′
is as follows. The vertices {v0},{v1},{v2} of Δ′ correspond to the vertices of σ2 . The
edges {v0,v1},{v0,v,},{v1,v2} of Δ′ as a simplicial complex correspond to the edges
of σ2.

The boundary complex Δ′ of a geometric simplex σk together with the set V ′ of
vertices of σk is, of course, a simplicial complex as well. We can extend the bijection
from above by assigning the interior of σk to V ′. Such a simplicial complex Δ′′ is called
the vertex scheme of σk, for more details see [7].

Definition 19. (Stellar subdivision) Let Δ be the boundary complex of a convex poly-
tope P, F be a non-empty face of Δ (and, respectively, P). Let us place a vertex v over
the geometric center of F . Consider the convex hull P∗ of v and P. The boundary com-
plex Δ∗ of the complex polytope P∗ is called the stellar subdivision of the face F with
respect to v and is denoted by st(v,F)[Δ].

During the construction of P∗ and Δ∗ we delete the faces that contain F and create
new faces that contain v.

Remark 9. Note that a stellar subdivision of a vertex v1 ∈ Δ with respect to a vertex v
is identical (isomorphic) to the original boundary complex.

Example 20. Consider the boundary complex

Δ′ = { /0,{v0},{v1},{v2},{v0,v1},{v0,v2},{v1,v2}}.
The stellar subdivision st(v,{v0})[Δ′] of {v0} with respect to a vertex v is (isomorphic
to) Δ′. The stellar subdivision st(v,{v0,v1})[Δ′] of the edge {v0,v1} with respect to a
vertex v is a 4−gon with vertices {v0},{v1},{v2},{v}, which is obtained by placing v
over the center of {v0,v1}, deleting the edge {v0,v1} and constructing the edges {v0,v}
and {v1,v}.



1.2 Graphs, operads and polytopes 13

Consider a regular convex polygon Pn with n vertices labelled 0 through n− 1 in
such a way, that vertex i is adjacent to the vertices i− 1 and i+ 1, 1 ≤ i ≤ n− 2. For
a given pair of numbers {i, j}, 1 ≤ i ≤ j ≤ n− 2, there is a diagonal (i− 1)( j + 1)
connecting vertices i − 1 and j + 1. Let us associate a set of consecutive numbers
i, i+1, . . . , j to this diagonal. In this way we generate all the diagonals of Pn. Thus
we have a bijective correspondence between the set of diagonals of Pn and the set V ∗
of all collections of consecutive numbers {i, i+1, . . . , j}, 1 ≤ i ≤ j ≤ n−2, except the
maximal collection {1,2, . . . ,n−2}.

Example 21. A pentagon P5 has vertices labelled 0 through 4. The set V ∗ for a poly-
gon P5 has form V ∗ = {{1},{2},{3},{1,2},{2,3}}. The corresponding diagonals are
02,13,24,03,14 respectively.

Denote by Σn the set of all collections of non-intersecting diagonals of Pn together
with the empty set. If F ∈ Σn, then any subset G of F is again a collection of non-
crossing diagonals or the empty set. Therefore, G ∈ Σn and Σn is a simplicial complex.
The dimension of facets, and therefore of Σn, is n−4, because the maximal number of
non-intersecting diagonals of Pn is n−3. The total number of vertices of Σn, which are

just single diagonals, is
n(n−3)

2 . (To draw a diagonal we need two distinct non-adjacent
vertices. The first one can be chosen in n ways, the second one in (n− 3) ways. The
order of picking does not matter, thus we divide n(n−3) by 2).

Consider an (n−3)−dimensional geometric simplex σn−3 with vertices labelled 1
through n−2. Let σn−3 have a boundary complex Δ′, which consists of all the proper
subsets of the vertex set {1, . . . ,n− 2}. Then each element v∗ of V ∗ corresponds to a
face of Δ′. Note that one-point elements of V ∗ are the vertices of Δ′.

Let us label all the elements of V ∗ by v∗1, . . . ,v
∗
m, cardV ∗ = m, in such a way that

v∗i ⊃ v∗j implies i < j. The elements of V ∗ with highest cardinality will come first, the

one-point elements will come last. We can assume that v∗m−n+2 = {1}, . . . ,v∗m = {n−2}.
Note that such a labelling is not unique. Each element v∗i ∈V ∗ is a face of Δ′.

Example 22. When n = 5 the polygon P5 is a pentagon, V ∗ has form V ∗ =
{{1},{2},{3},{1,2},{2,3}}, the corresponding geometric simplex is a triangle σ2,
its boundary complex has the form Δ′ = { /0,{1},{2},{3},{1,2},{2,3},{1,3}}. Let us
label the elements of V ∗ (faces of Δ′): v∗1 := {1,2}, v∗2 := {2,3}, v∗3 := {1}, v∗4 := {2},
v∗5 := {3}.

Consider Δ′, a sequence {v∗i } of faces of Δ′ corresponding to the elements of V ∗
and a sequence {vi} of new vertices, 1 ≤ i ≤ m. Let us construct a series of simplicial
complexes Δ1,Δ2, . . .Δm+1 in the following way. Δ1 := Δ′, Δi+1 := st(vi,v∗i )[Δi] for
1 < i ≤ m. The vertices v∗m−n+2 = {1}, . . .v∗m = {n− 2} are to be subdivided last. By
Remark 9 stellar subdivision of vertices gives the same simplicial complex, so we just
label the new vertices as the old ones: vm−n+2 = {1}, . . .vm = {n−2}.

Remark 10. Let us fix i, 1 ≤ i ≤ m. When we form Δi+1 := st(vi,v∗i )[Δi] we remove
only the faces of Δi which contain v∗i . All the faces v∗j , i < j ≤ m do not contain v∗i
because of the ordering. Therefore, Δ j are all well defined. Thus the construction of
the sequence Δ1,Δ2, . . .Δm+1 is well defined.
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There is one-to-one correspondence between the diagonals of Pn (that are on one
hand the elements of V ∗ and on the other hand the vertices of Σn) and the vertices
of Δm+1. Indeed, the set of vertices of Δm+1 consists of vertices 1, . . . ,n of Δ′ (that
appeared as a result of stellar subdivision of one-point sets of V ∗ ) and "new" vertices
that appeared as a result of stellar subdivision of the rest of V ∗. So we have a bijective
map f from the vertex set of Δm+1 to the vertex set of Σn. Our goal is to show that
f is an isomorphism, which means that Σn is isomorphic to a boundary complex of a
polytope.

Example 23. Consider Δ′ and sequence v∗1, . . . ,v
∗
5 from Example 22. Then Δ1 is a stellar

subdivision of the edge {1,2}; it is a 4−gon with vertices 1,2,3 and a "new" vertex
which we label by 12. Δ2 is a pentagon with vertices 1,2,3,12 and a "new" vertex
which we label by 23. Δ3, Δ4, Δ5 are stellar subdivisions of vertices {1},{2},{3} and
thus they all are identical to Δ2. The vertices 1,2,3,12,23 represent the diagonals of
the pentagon P5.

Theorem 11 (Lee [4], 1989). Let Σn be a simplicial complex, which consists of col-
lections of non-intersecting diagonals of a convex n−gon Pn. Then there exists an
isomorphism between Σn and a boundary complex of a convex (n− 3)−dimensional
polytope.

Remark 12. The theorem shows that Σn is realizable as a boundary complex of a con-
vex (n− 3)−dimensional polytope P. The Stasheff polytope is a polytope dual to the
polytope P. This illustrates the deep connection between the triangulations of a convex
polygon and the Stasheff polytope.

Proof. Let us prove that if u and u1 are vertices of Δm+1 which correspond to intersect-
ing diagonals of Pn, then {u,u1} is not an edge of Δm+1. Assume that u and u1 were
constructed during a stellar subdivision of F = {i, i+1, . . . , j} and G = {k,k+1, . . . , l}.
The diagonals intersect if the union E of the sets F and G consists of numbers that form
a sequence of consecutive numbers. Without loss of generality we may assume that
k ≤ j+1, l > j and i < k; thus the set E has form E = {i, i+1, . . . , l}.

We need the following lemma which can be found in [4].

Lemma 24. Assume that Δ1, . . . ,Δk+1 are boundary complexes, v1, . . . ,vk+1 are distinct
vertices, and F1, . . . ,Fk+1 are distinct faces, such that Δi+1 = stΔiFi, 1 ≤ i ≤ k. Assume
that there exist such numbers r,s, 1 ≤ r < s ≤ m, that Fs ∈ Δr and Fr ∪Fs /∈ Δr. Then
{vr,vs} /∈ Δk+1.

If E = {1,2, . . . ,n− 2}, then it is not a face of Δ1 = Δ′, because Δ′ contains sets
of cardinality not higher than n− 3. It does not belong to any of Δp, 1 ≤ p ≤ m+
1. The stellar subdivision st(v∗p,vp)[Δp] of v∗p produces only faces containing vp. If
{1,2, . . . ,n−2} is produced during a subdivision, then it must have been a subdivision
of a vertex {1} or {2}, . . . , or {n−2}. But during those subdivisions the complex stays
the same, no faces are added. Therefore, by Lemma 24 the pair {u,u1} does not belong
to Δm+1

If E �= {1,2, . . . ,n− 2}, then E belongs to V ∗ and thus is a face of Δ′ which is
supposed to be subdivided. Because it contains both F and G, it is subdivided before
them. Without loss of generality let us assume that F is v∗r and G is v∗s , r < s. Because
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E is subdivided before both v∗r and v∗s , it belongs to neither Δr nor Δs. Therefore, by
Lemma 24 {u,u1} does not belong to Δm+1.

We have proved that if uv ∈ Δm+1, then f (u) f (v) ∈ Σn. This implies that a face is
mapped by f onto a face, and a facet - onto a facet.

Let us show that a face is mapped onto a face. Since all the edges of Δm+1 cor-
respond to pairs of non-intersecting diagonals, we get that every face of Δm+1 corre-
sponds to a set of non-crossing diagonals. Any face F of Δm+1 consists of a certain
amount of vertices. An arbitrarily chosen pair of vertices in F constitutes an edge of
Δm+1, because Δm+1 is a complex. Every edge corresponds to a pair of non-intersecting
diagonals, and therefore F consists of vertices representing mutually non-crossing di-
agonals.

Since we have a bijection between vertices of Δm+1 and Σn, a facet of Δm+1 cor-
responds to a facet of Σn under this bijection. This together with the last paragraph
implies that a facet of Δm+1 corresponds to a complete triangulation of Pn, i.e. a facet
of Σn.

Both Σn and Δm+1 satisfy the following two properties:

1. Each subfacet is contained in exactly two facets;

2. For each pair F,F∗ of facets there exists a sequence F1 := F, F2, . . . , Fp := F∗,
such that Fi and Fi+1 have a common subfacet, 1 ≤ i ≤ p−1.

Let us note that a facet of Σn is a complete triangulation, a subfacet of Σn is a
collection of n− 4 diagonals, so that the interior of Pn is divided into triangles and
exactly one 4−gon. Because there are only two ways to triangulate this 4−gon, there
are only two facets which contain the subfacet.

The properties hold for Δm+1 because it corresponds to a boundary of a convex
polytope.

The fact that the properties 1 and 2 hold for Σn and Δm+1 implies that f is an iso-
morphism.

Recall that if F is a facet of Δm+1, then f (F) is a facet of Σn. Take an arbitrary facet
G∗ of Σn. Between f (F) and G∗ there is a path G1 := f (F), . . . , Gp := G∗, such that Gi
and Gi+1 share a subfacet, 1 ≤ i ≤ p−1. Let G1 = f (F) and G2 share a subfacet v, then
by property 1 above it is uniquely determined by these two facets. On the other hand,
v is an image of a subfacet u ∈ F : v = f (u). There is a unique facet F2 ∈ Δm+1 which
shares u with F . The image of F2 under f is a facet, it contains f (u) = v and it must be
equal to G2. So there is a facet F2 ∈ Δm+1 corresponding to G2 ∈ Σn. We continue this
process going along the sequence Gi and find a facet of Δm+1 that corresponds to G∗
under f . The correspondence f is a bijective correspondence between vertices of Δm+1

and Σn that preserves facets; thus f is an isomorphism.

Remark 13. Associahedron (Stasheff polytope) Kn is the polytope dual to the polytope
R whose boundary complex is Δm+1.

1.2.4 Braid groups

The braid groups were constructed explicitly in 1925 by Emil Artin, but they appeared
implicitly earlier in works of A. Hurwitz. Since then they have been actively studied
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from both algebraic and topological point of view. Braid groups have applications in
different areas, for example, in knot theory and in physics: they help to describe two-
dimensional Hall systems. In this subsection we define and describe braid groups from
algebraic and geometric point of view. We are particularly interested in action of a
braid group on a free group, which we describe at the end of the section. Our general
reference for the braid groups is [3].

Algebraic definition of a braid group

We begin with an algebraic definition of a braid group B̃n, n ∈ N.

Definition 25. Given a positive integer n, we define a braid group B̃n as a group on
n−1 generators satisfying the following relations:

B̃n = 〈σ1, . . . ,σn−1|σiσ j = σ jσi if |i− j|> 2, σiσi+1σi = σi+1σiσi+1〉. (1.5)

If n = 1 the group B̃ contains just one element - identity. If n ≥ 3 the braid group B̃n
is non-abelian.

The braid group B̃n admits an elegant geometrical interpretation: it can be realized
as a fundamental group of a configuration space. In what follows we construct the
configuration space and the geometrical braid group.

Braid group B∗
n: geometric representation

We define the configuration space Wn as the space of n−tuples of pairwise distinct
complex numbers:

Wn := {(z1, . . . ,zn) ∈ C
n|zk �= z j,k �= j}.

Topology on Wn is induced from a product topology. It is in fact a connected topological
space.

Definition 26. A pure braid group B∗
n on n strings is the fundamental group of Wn:

B∗
n := π(Wn(C),P), P ∈Wn.

An element of B∗
n is called a pure braid.

An ordered tuple of n distinct points can be represented by n different points on one
plane denoted by (1, . . . ,n). Imagine a Cartesian product of the plane and the interval
[0,1]. A continuous path starting and ending at (1, . . . ,n) can be then visualized as
n continuous paths in C× [0,1] which do not cross; each path connects two identical
points in the plane. A homotopy class of such paths forms a pure braid on n strings. We
can view the pure braid as a collection of all continuous deformations of the n paths,
such that there is no crossing and the ends of paths are fixed. This geometric illustration
of a representative of a pure braid is shown on Figure 1.6 (a). Imagine in addition that
the paths on Figure 1.6 (a) are physical elastic strings with fixed endpoints: we can
stretch them back and forth, but they can not go through each other.

Let Sn be a group of permutations of n elements {1, . . . ,n}. A permutation σ ∈ Sn
can be viewed as a bijective mapping of the set {1, . . . ,n} onto itself.
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(a) A pure braid. (b) A braid.

Figure 1.6: Braids

Figure 1.7: Visualization of a composition σk ◦σ−1
k .

Sn acts on the space Wn by permuting the coordinates:

σ(z1, . . . ,zn) = (zσ(1), . . . ,zσ(n)), σ ∈ Sn.

We construct a set SWn(C) := Wn(C)/Sn, each element of SWn is a collection of
n−tuples which differ only by permutation of coordinates. This is a connected topo-
logical space with quotient topology induced from the space Wn.

Definition 27. A braid group Bn on n strings is the fundamental group of SWn:

Bn := π(Wn(C),P), P ∈ SWn

An element of Bn is called a braid.

A braid can be viewed as continuous deformations of n continuous paths in C× [0,1]
which do not necessarily join two identical points on the plane, see Figure 1.6 (b).

It can be shown that the braid group Bn is generated by n−1 generators σ1, . . . ,σn−1

which satisfy relation (1.5). This makes the algebraic group B̃n and the geometric group
Bn isomorphic. The proof can be found in [3].

Let us give a geometric description of a generator σk of Bn, 1 ≤ k ≤ n− 1. The n
paths representing σk can be pictured as follows: the path connecting points k and k+1
goes over the path connecting the points k+1 and k; the rest of the paths are the identity
paths. A representative of σ1 is in fact shown on Figure 1.6 (b). An identity of the braid
group can be viewed as deformations of n identity paths. To obtain a representative of
an inverse of a braid b we flip a representive of b vertically. To imagine a geometric
representative of composition of two braids b1 and b2 we mount a representative of the
braid b1 on top of a representative of the the braid b2 and glue the paths together. The
process of obtaining a representative of σk ◦σ−1

k is illustrated on Figure 1.7.
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Action of Bn on a free group

In what follows we describe an action of Bn on a free group. We begin with recalling
the definition of a group action.

Definition 28. An action of a group G on a set S assigns to each pair (g,s), g∈G,s∈ S,
an element t ∈ S (denote: g(s) = t), such that:

1. e(s) = s ∀s ∈ S;

2. g◦h(s) = g(h(s)) ∀g,h ∈ G, ∀s ∈ S.

A free group Fn is a group on n generators without any relations. Bn is in fact a
group of automorphisms of the free group on n generators.

For 1 ≤ k ≤ n−1 we define an action of σk on the generators of Fn by

σk(x j) =

⎧⎨⎩
x j+1, j = k,
x−1

j x j−1x j, j = k+1,

x j, otherwise.
(1.6)

An action on generators of Fn determines an action on the entire group Fn: set σk(id) :=
id, σk(xy) := σk(x)σk(y), σk(x−1) := (σk(x))−1, where x,y ∈ Fn and id is the group
identity. In fact, we obtain that each σk is an automorphism of Fn. To show that σk
is a bijective mapping we need to check that there is a mapping σ−1

k , such that both

σk ◦σ−1
k and σ−1

k ◦σk are identity mappings.

Let us define σ−1
k as

σ−1
k (x j) =

⎧⎨⎩ x jx j+1x−1
j , j = k

x j−1, j = k+1,
x j, otherwise,

and check that this is indeed the inverse that we are looking for. It is sufficient to verify
the desired properties on generators of Fn.

σ−1
k (σk(xk)) = σ−1

k (xk+1) = xk,

σ−1
k (σk(xk+1)) = σ−1

k (x−1
k+1xkxk+1) = σ−1

k (x−1
k+1)σ

−1
k (xk)σ−1

k (xk+1) = xk+1,

σk(σ−1
k (xk)) = σk(xkxk+1x−1

k ) = xk,

σk(σ−1
k (xk+1)) = σk(xk) = xk+1.

The desired properties clearly hold for x j, where j �= k,k+1.
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Chapter 2

Main results

In this chapter we give an overview of new results introduced in the dissertation. In
Sections 2.1, 2.2 and 2.3 we summarize Paper A, Paper B and Paper C respectively,
as well as expand on our motivation for considering the corresponding problems. In
Section 2.4 we give an introduction to our Paper in progress D, summarize our results
and outline directions for further research.

2.1 Boundary distortion estimates for holomorphic maps

In Paper A we obtain Cowen-Pommerenke type estimates of angular derivatives of
univalent self-maps of the unit disk. Such inequalities can be considered an extension
of the Schwarz lemma; estimates of angular derivatives of holomorphic self-maps of
the unit disk play an important role in dynamic systems theory.

Let D denote the unit disk and T denote the unit circle in the complex plane. Con-
sider a univalent mapping ϕ : D→ D. A point ξ ∈ T is called a boundary fixed point
of ϕ if

lim
r→1−

ϕ(rξ ) = ξ .

If ξ is a boundary fixed point of ϕ , we write simply ϕ(ξ ) = ξ .
Let θ ∈ (0, π

2 ) and assume that ϕ(z) has boundary fixed points at eiθ and e−iθ , i.e.

ϕ(eiθ ) = eiθ ,
ϕ(e−iθ ) = e−iθ .

(2.1)

From the Julia-Wolff theory we obtain that equalities (2.1) imply that the limits

ϕ ′(eiθ ) := lim
z→eiθ ,z∈Δ(eiθ )

ϕ(z)−ϕ(eiθ )

z− eiθ ,

ϕ ′(e−iθ ) := lim
z→e−iθ ,z∈Δ(e−iθ )

ϕ(z)−ϕ(e−iθ )

z− e−iθ .

exist for any Stolz angle Δ(eiθ ) (respectively, Δ(e−iθ )) centred at eiθ (respectively,
e−iθ ). We call ϕ ′(eiθ ) and ϕ ′(e−iθ ) the angular derivatives of ϕ(z) at eiθ and e−iθ .
The Julia-Wolff theory implies that the angular derivatives in this case are real and pos-
itive or infinite, i.e. ϕ ′(e±iθ ) ∈ (0,∞)∪{∞}. More details about boundary fixed points,
angular derivatives and Julia-Wolff theory can be found in [12].
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Among all the fixed points and all the boundary fixed points of ϕ(z) there exists
only one point τ, such that |ϕ ′(τ)| < 1. The following theorem is due to Cowen and
Pommerenke [7].

Theorem 14. Let φ be a univalent self-mapping of the unit disk and let φ have bound-
ary fixed point at 1, φ ′(1) ≤ 1; ζ1, . . . ,ζn - other distinct boundary fixed points of φ .
Then

n

∑
j=1

|1−ζ j|2
φ ′(ζ j)−1

≤ 2Re

(
1

φ(0)
−1

)
. (2.2)

Julia-Carathéodory-Wolff results give the following estimate.

Theorem 15. Let φ be a univalent self-mapping of the unit disk and let φ have bound-
ary fixed points at ζ1,ζ2; ϕ ′(ζ1)≤ 1. Then

φ ′(ζ1)φ ′(ζ2)≥ 1. (2.3)

Remark 16. The notion of a boundary fixed point and an angular derivative can be
defined for a class Hol(D,D) of holomorphic self-mappings of the unit disk. The last
two theorems hold in fact for mappings in Hol(D,D).

Inequality (2.3) holds in particular for the angular derivatives of the univalent map-
ping ϕ : D→ D with boundary fixed points at e±iθ , θ ∈ (0,π/2), i.e.

ϕ ′(eiθ )ϕ ′(e−iθ )≥ 1.

In Paper A we obtain an estimate for the product of angular derivatives ϕ ′(eiθ ) and
ϕ ′(e−iθ ) from above with the value ϕ(0) ∈ D, that refines inequality (2.3). Such an
estimate is of Cowen-Pommerenke type, i.e. has similarities with inequality (2.2). Our
method is based on reduced moduli of digons and the extremal partition problem.

To state the obtained result and sketch the proof let us recall the transition rule of
the reduced moduli. The reduced modulus of a digon is not conformally invariant. If D
is a digon with vertices z1 and z2 and angles τ1 and τ2, f is a conformal mapping of D
onto a digon f (D) with vertices f (z1) and f (z2) and angles ψ1 and ψ2, then we have

m( f (D), f (z1), f (z2)) = m(D,z1,z2)+
1

ψ1
log | f ′(z1)|+ 1

ψ2
log | f ′(z2)|. (2.4)

The transition rule involves the reduced modulus of the original domain and angular
derivatives of the conformal mapping f .

We denote by D1
a0

the digon D \ [a0,1), a0 ≥ 0, with vertices at eiθ and e−iθ and
with angles π at them. This type of digon and its reduced modulus is one of the key
ingredients of the proof. Let us note that calculating the reduced modulus of a digon is
not a trivial task; there are only few canonical digons with known reduced moduli. In
Paper A we manage to find a canonical domain R with a known reduced modulus and a
conformal mapping of D1

a0
onto R and to find m(D1

a0
) with help of transition rule (2.4).

Namely, we choose the digon C\ [0,∞) with vertices at r > 0 and angles π at them as
the canonical digon. It is well-known that R has the reduced modulus 2/π log4r (see
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(a) D1
0 (b) D (c) Φ(D) (d) D1

Φ(ϕ(0))

Figure 2.1: Digons

[18] §2.4). Then we find a conformal mapping f of D1
a0

onto R and obtain the reduced

modulus of D1
a0

m
(
D1

a0

)
=

2

π
log

4(1− cosθ)
sinθ

1−2a0 cosθ +a2
0

(1−a0)2
. (2.5)

Consider a circle through the points eiθ , e−iθ and the origin. We denote by γ0 the
open arc of the circle that contains 0, eiθ , e−iθ . We denote by γ1 the open straight line
segment that connects eiθ and e−iθ . The unit disk is then divided into three domains:
domain U1 bounded by γ1 and the ark of the unit circle that connects eiθ , e−iθ and
contains 1; domain U2 bounded by the arcs γ0 and γ1 and domain U3 bounded by γ0 and
the arc of the unit circle that connects eiθ , e−iθ and contains −1.

Let ϕ(0) be the image of the origin under the univalent self-mapping of the unit
disk ϕ with fixed boundary points at e±iθ . Let Φ be a Möbius mapping that fixes eiθ

and e−iθ and moves the point ϕ(0) to the real line. Φ(ϕ(0)) is the point of intersection
of the real line with the arc of a circle that goes through eiθ , e−iθ and ϕ(0). Assume
that ϕ(0) lies in the union of U1, U2 and γ1. In this case we have that Φ(ϕ(0))> 0.

Consider the digon D1
0, its reduced modulus is given by formula (2.5) where a0 = 0.

Let D denote the image of D1
0 under the mapping ϕ(z). The domain D is a digon with

vertices at eiθ and e−iθ with angles π at them. Figures 2.1 (a) and 2.1 (b) illustrate the
digons D1

0 and D = ϕ(D1
0). Using (2.4) we obtain the reduced modulus of D

m(D) = m(D1
0)+

1

π
logϕ ′(eiθ )+

1

π
logϕ ′(e−iθ ).

The mapping Φ maps the digon D onto a digon Φ(D) with vertices at eiθ and e−iθ with
angles π at them (see Figure 2.1 (c)). We obtain

m(Φ(D)) = m(D1
0)+

1

π
logϕ ′(eiθ )ϕ ′(e−iθ )+

1

π
logΦ′(eiθ )Φ′(e−iθ ). (2.6)

The last term in the right hand side of (2.6) vanishes.
Denote by F1

Φ(ϕ(0)) the family of all digons Δ in D \ {Φ(ϕ(0))} with vertices at

eiθ ,e−iθ and angles π at them, such that any arc in Δ that connects the vertices, is
homotopic in D̂ \ {Φ(ϕ(0))} to the arc of the unit circle which goes through eiθ ,e−iθ

and −1. Then a general theorem ([9], [11], [18]) implies that

m(Δ)≥ m(D∗), (2.7)

where D∗ := D \ [Φ(ϕ(0)),1) = D1
Φ(ϕ(0)) is a digon with vertices eiθ ,e−iθ and angles

π at them. Figure 2.1 (d) illustrates the digon D∗. The domain D∗ is a strip domain
associated with trajectory structure of a quadratic differential.
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The digon Φ(D) belongs to the family F1
Φ(ϕ(0)), so inequality (2.7) holds for Δ =

Φ(D), i.e.

m(Φ(D))≥ m(D∗) = m
(

D1
Φ(ϕ(0))

)
. (2.8)

The reduced modulus m
(

D1
Φ(ϕ(0))

)
is given by the formula (2.5), where a0 =

Φ(ϕ(0)). Inequality (2.8) together with formula (2.6) gives us the estimate√
ϕ ′(eiθ )ϕ ′(e−iθ )≥ 1−2Φ(ϕ(0))cosθ +Φ2(ϕ(0))

(1−Φ(ϕ(0)))2
. (2.9)

We have obtained an inequality that refines estimate (2.3) in the case when ϕ(0) lies
to the right of γ0.

Let us assume that ϕ(0) lies to the left of γ0. In analogous manner we obtain the
following estimate√

ϕ ′(eiθ )ϕ ′(e−iθ )≥ 1−2Φ(ϕ(0))cosθ +Φ2(ϕ(0))
(1+Φ(ϕ(0)))2

. (2.10)

In the case when ϕ(0) ∈ γ0 we get that Φ(ϕ(0)) = 0, D∗ = D1
0 and inequality (2.3)

can not be refined.
Let us summarize these results in the following theorem

Theorem 17. Let ϕ be a univalent self-mapping of the unit disk, such that ϕ(e±iθ ) =
e±iθ , where θ ∈ (0,π/2).

1. If ϕ(0) lies to the right of γ0, then inequality (2.9) holds.

2. If ϕ(0) lies to the left of γ0, then inequality (2.10) holds.

The estimates are sharp.

A description of the extremal maps can be found in Paper A. In the cases when
ϕ(0) ∈U1 and ϕ(0) ∈U3 one can improve inequalities (2.9) and (2.10). We prove the
following result.

Corollary 1. If ϕ is a univalent self-mapping of the unit disk, such that ϕ(e±iθ ) = e±iθ ,
where θ ∈ (0,π/2), then the following sharp estimates hold:

1. If ϕ(0) ∈U1, then√
ϕ ′(eiθ )ϕ ′(e−iθ )≥ 1−2Re(ϕ(0))cosθ +(Re(ϕ(0)))2

(1−Re(ϕ(0)))2
;

2. If ϕ(0) ∈U3, then√
ϕ ′(eiθ )ϕ ′(e−iθ )≥ 1−2Re(ϕ(0))cosθ +(Re(ϕ(0)))2

(1+Re(ϕ(0)))2
.
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Remark 18. There are different ways of obtaining inequalities that involve moduli
or reduced moduli of domains, such as symmetrization, polarization and different ex-
tremal theorems (see [18]). Choosing the right tools and domains that have a modulus
or reduced modulus that can be calculated, is a challenge. The right choice of domains
and the extremal theorem, constructing an auxiliary function Φ gave us a successful
result that stands in a line with a myriad of classical inequalities that originate in the
Schwarz lemma.

2.2 Combinatorial description of jumps in spectral networks defined
by quadratic differentials

Consider quadratic differentials of the form

q(z)dz2 =
pk(z)

z
dz2, (2.11)

where pk(z) is a polynomial of degree k, on Ĉ. In Paper B we describe the set Λ of
quadratic differentials of form (2.11) that possess a short trajectory. In particular, we
establish a weighted graph representation of quadratic differentials of form (2.11). Let
us note that graphs in connection with quadratic differentials were used before, see for
example [3],[16]. Further on, we characterize the graphs representing quadratic differ-
entials of form (2.11) with a short trajectory. Finally, we describe the set Λ in terms of
Stasheff fans, using the connection between weighted graphs and Stasheff fans given
by Baryshnikov in [2]. Short trajectories of quadratic differentials are of particular in-
terest; for example, they have applications in problems related to the potential and the
approximation theories (e.g. [1],[15]), minimal surfaces (e.g. [4]), and mathematical
physics.

A quadratic differential of type (2.11) has k zeros, 1 simple pole at the origin and
a pole of order k+ 3 at infinity. There are k+ 1 distinguished directions in a neigh-
bourhood of infinity, such that trajectory rays tend to the pole in those directions. One
can associate strip domains and k+ 1 half-plane domains with its trajectory structure.
Let q(z)dz2 be a quadratic differential of type (2.11). We associate a graph Gh (respec-
tively, Gv) with its trajectory structure (respectively, orthogonal trajectory structure).
Let us describe the construction of Gh (respectively, Gv). We start by constructing a
regular (k+ 3)−gon whose vertices represent the k+ 1 distinguished directions about
infinity and edges represent the k+1 half-plane domains of the trajectory structure (re-
spectively, orthogonal trajectory structure) of q(z)dz2. In the geometric center of the
polygon we place a vertex O that represents the simple pole of the quadratic differen-
tial. Recall that a strip domain S of the trajectory structure (respectively, orthogonal
trajectory structure) of q(z)dz2 is swept out by trajectories (respectively, orthogonal
trajectories) with trajectory rays (respectively, orthogonal trajectory rays) that tend to
infinity in two distinguished directions. Assume that these directions are represented by
vertices v1 and v2 of the (k+3)−gon (that may coincide). Recall that S can be mapped
conformally by w(z) =

∫
z
√

q onto a strip a < Rew < b. If the simple pole of q(z)dz2

does not lie on the boundary of S, we add an edge v1v2 with weight b−a to the graph.
If the simple pole of q(z)dz2 belongs to the boundary of S, we add two edges v1 O and
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v2 O with weights b− a to the graph. When all the strip domains are marked on the
graph, the construction of Gh (respectively, Gv) is done, and the quadratic differential
is represented by the pair (Gh,Gv).

Furthermore we describe all admissible graphs, i.e. graphs that may represent the
trajectory structure (respectively, orthogonal trajectory structure) of a quadratic dif-
ferential of form (2.11). We show that for each pair of admissible graphs there is a
quadratic differential that is represented by them. In this way we establish one-to-one
correspondence between family (2.11) and the set of pairs of all admissible graphs.

A trajectory of q(z)dz2 with finite q−length and trajectory rays that tend to crit-
ical points of q(z)dz2 is called short. Using the established graph representation we
describe quadratic differentials of form (2.11) that possess a short trajectory.

With each admissible graph G we associate a regular n−gon P, where n = k + 1
or n = k + 2. The set of vertices of P is a subset of the set of vertices of G which
correspond to the distinguished directions at infinity. The set E of weighted edges of G
that connect the vertices of P produces a triangulation of P.

Definition 29. A regular convex polygon P together with a collection of non-
intersecting weighted diagonals is called a weighted diagram based on P.

P together with E forms a weighted diagram. In Paper B we establish the following
fact.

Proposition 1. Quadratic differential q(z)dz2 represented by G has a short trajectory
if and only if the triangulation of P is incomplete.

Let Λ ∼= R
2k be the set of all quadratic differentials in family (2.11) for a fixed k,

let the elements of Λ with short trajectories (respectively, orthogonal trajectories) form
set S ⊂ Λ. S can be divided into components Sh and Sv, where Sh (respectively, Sv) is
the set of quadratic differentials with a short trajectory (respectively, short orthogonal
trajectory). In Paper B we prove the following result that describes the combinatorial
structure of S.

Theorem 19. The sets Sh and Sv have the following form

Sh =
(

Σk ×R
k+2

)
∪
(

Σk+1 ×R
k+1

)
,

Sv =
(

Σk ×R
k+2

)
∪
(
R

k+1 ×Σk+1

)
.

The main ingredients of the proof are the graph representation described above,
Proposition 1 and a result from [2] by Baryshnikov, which we state later after introduc-
ing necessary terminology.

Given a regular convex n−gon P, a real-valued function f defined on its vertices
v1, . . . ,vn is called a balanced weight based on P if f (v1)+ · · ·+ f (vn) = 0 and the geo-
metric center of masses is at the origin. A balanced weight f based on P is degenerate
if there is a linear function L, such that L and f coincide at four vertices of P and L
majorizes f . The balanced weights based on a n−gon P form a real vector space of di-
mension n−3. Let C be a convex polytope in R

d . It is well-known that a vector w ∈R
d

defines a face Fw of C in the following way

Fw = {x ∈C : (x− y) ·w ≥ 0 ∀y ∈C}.
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Figure 2.2: Stasheff fan Σ4

The face Fw is an intersection of C with a hyperplane that has w as normal vector and
goes through the point argmaxx∈Cx ·w.

Any face F of C defines a normal cone N(F) of C in the following way

N(F) = {w ∈ R
d : F = Fw}.

The collection of all normal cones of C is called the normal fan of C. The normal fan
Σp of a Stasheff polytope Kp is called the Stasheff fan. The Figure 2.2 illustrates the
Stasheff fan Σ4.

The following theorem was proved by Baryshnikov in [2]. In Paper B we complete
some missing details of the proof.

Theorem 20. There is a one-to-one correspondence between the balanced weights
based on n−gon P and the weighted chord diagrams based on P. There is a one-
to-one correspondence between the degenerate balanced weights based on n−gon and
the weighted chord diagrams based on P with incomplete triangulations. The degener-
ate balanced weights based on P form a Stasheff fan Σn−1.

Baryshnikov used this theorem to describe combinatorial structure of the Stokes sets
for polynomials, and in particular, combinatorial structure of the quadratic differentials
of the form p(z)dz2 with a short trajectory, where p(z) is a polynomial.

We considered a more difficult case when quadratic differentials have form (2.11).
The trajectory structure of a quadratic differential of form (2.11) is more complicated
than the trajectory structure of a quadratic differential of the form p(z)dz2, as the pres-
ence of a simple pole changes significantly the configuration of strip domains. In order
to use Theorem 20 for our case, we had to establish a connection between the quadratic
differentials of type (2.11) with short trajectories and weighted diagrams, which was a
challenging task. We managed to construct advanced graphs that represent quadratic
differentials of form (2.11), to point out those graphs that correspond to quadratic dif-
ferentials with a short trajectory and to link them to weighted diagrams, which allowed
us to use Theorem 20 to establish a new result formulated in Theorem 19.

2.3 Polynomial lemniscates and their fingerprints: from geometry to
topology

Let Γ be a smooth C∞ closed Jordan curve in the complex plane C. Let Ĉ denote the
Riemann sphere, and let Ω+ and Ω− denote the connected components of Ĉ\Γ, where
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∞ ∈ Ω−. By the Riemann mapping theorem there exists a conformal mapping φ+ of
the unit disc D onto Ω+ and a conformal mapping φ− of Ĉ\ D̄ onto Ω−. The mappings
are uniquely determined by a normalization and can be extended as homeomorphisms
to the boundary. A fingerprint of Γ is a function k(θ) : [0,2π]→ [0,2π] defined by

eik(θ) = φ−1
− ◦φ+(eiθ ).

The fingerprint is monotone, smooth and satisfies k(θ +2π) = k(θ)+2π .
The curve Γ can be considered as a 2D shape in the plane; the study of two di-

mensional shapes plays an important role in vision theory, in particular in shape recog-
nition. Fingerprints are used to classify 2D shapes. Indeed, fingerprints are invariant
under affine transformations.

Given R ∈ R, a polynomial lemniscate Γ(R) is the level set |p(z)|= R of a polyno-
mial p(z) of degree n. We say in this case that the polynomial lemniscate has degree n.
The zeros of the polynomial are called the nodes of the lemniscate. We call a polyno-
mial lemniscate Γ(1) proper if the domain Ω+ bounded by Γ(1) is connected.

It was shown by P. Ebenfelt, D. Khavinson and H. S. Shapiro in [8] that a proper
polynomial lemniscate Γ(1) has a rather simple fingerprint, it is given by the n−th root
of a Blaschke product Bn(z) of degree n. Namely, the fingerprint k(θ) of Γ(1) is given
by

eik(θ) = n
√

Bn(eiθ ) = n

√
eiα

n

∏
k=1

eiθ −ak

1− eiθ āk
, (2.12)

where α is a real number and ak, 1 ≤ k ≤ n, are the preimages of the nodes of the
lemniscate by φ+. On the other hand, the n−th root of a Blaschke product of degree
n is realizable as a fingerprint of a polynomial lemniscate of degree n. In Paper C
we study properties of fingerprints of polynomial lemniscates, in particular, properties
related to their inflection points. We prove the following result:

Theorem 21. The fingerprint of a proper lemniscate has an even number of inflection
points, at least two and at most 4n−2.

Let us sketch the proof of the theorem. First we obtain from (2.12) the following
expressions for k′(θ) and k′′(θ):

k′(θ) =
1

n
Re

n

∑
k=1

ζ +ak

ζ −ak
, ζ = eiθ ;

k′′(θ) =− 1

2n

n

∑
k=1

(
2iζ ak

(ζ −ak)2
− 2iζ āk

(1−ζ āk)2

)
, ζ = eiθ .

Then we note that as a real part of the function ∑n
k=1

ζ+ak
ζ−ak

, the derivative k′(θ) attains at

least one maximum and minimum on [0,2π). The function k′(θ) is periodic and hence
its derivatives at the endpoints of the interval have the same sign, therefore k′(θ) has
an even number of critical points. The function

Z(ζ ) = ζ
n

∑
k=1

(
2iak

(ζ −ak)2
− 2iāk

(1−ζ āk)2

)
(2.13)
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has degree 4n, simple zeros at the origin and infinity, and satisfies Z̄(ζ ) = Z(1/ζ̄ ).
Therefore, number of zeros in D and Ĉ \ D̄ is equal to p+ 2 for some even p. The
number of zeros on the unit circle (which are precisely the zeros of k′′(θ)) is therefore
smaller than 4n−2.

Let us note that the number 4n− 2 of inflection points is not necessarily achieved.
We give explanation of this fact in the following theorem.

Theorem 22. If all the zeros ak, 1 ≤ k ≤ n, of the n−th Blashke product lie on the
same radius of D, then the number of inflection points of the fingerprint k(θ) is at most
4n−4.

If n = 2, then the number of inflection points of the fingerprint k(θ) is at most 4 for
arbitrary position of the zeros of the Blashke product.

Let us give an example when n= 2 and the upper bound 4 of number of the inflection
points is attained. Consider the function (2.13) with a1 = 1/2 and a2 = −1/2. It has
zeros of order two at the origin and infinity and four zeros on the unit circle: −1,−i,1, i.

In Paper C we also describe the geometric meaning of inflection points of a finger-
print of a smooth Jordan curve. It is formulated in the following theorem.

Theorem 23. The inflection points of the fingerprint k(θ) divide the unit circle into m
arcs γ j = {eiθ : θ ∈ [θ j,θ j+1)}, θm+1 = θ1+2π , where j = 1, ...,m, so that the ratio of
the rates of change of the harmonic measures of the arc α ∈Γ, α = {φ+(s) : s∈ [θ1,θ)}
with respect to (Ω+,0) and (Ω−,∞) respectively, alternates its monotonicity.

In order to introduce the rest of results of Paper C, let us recall some terminology and
statements from paper [5] by Catanese and Paluszny. A polynomial p(z) of degree n is
lemniscate-generic if the zeros y1, . . . ,yn−1 of p′(z) (i.e. the critical points) are distinct,
the critical values wk = p(yk), 1 ≤ k ≤ n−1, do not vanish and |w j| < |wk| whenever
j < k. Each critical level set of p(z), i.e. the set of z, such that |p(z)| = |wk|,1 ≤ k ≤
n−1, is called a big lemniscate and consists of one "figure-eight" and possibly a number
of circumferences. Only critical level sets contain "figure-eights". Let Λ1 and Λ2 denote
the unions of big lemniscates of lemniscate-generic polynomials p1(z) and p2(z) of
degree n. We say that p1(z) and p2(z) have the same lemniscate configuration (Λ,C) if
there exists a homeomorphism h : C→C that maps Λ1 onto Λ2. Two polynomials with
the same lemniscate configuration have a similar structure of lemniscates. If Pn denotes
the space of all polynomials of degree n and Ln denotes the set of all lemniscate-generic
polynomials of degree n, then Ln is open and Pn \Ln is a union of real hypersurfaces.
There is a one-to-one correspondence between the connected components of Ln and the
lemniscate configurations that can be associated with lemniscate-generic polynomials
of degree n. In particular, any two polynomials that belong to a connected component of
Ln have the same lemniscate configuration [5]. It was also shown ([5]) that there exists
a bijection between the lemniscate configurations for lemniscate-generic polynomials
of degree n and central balanced trees of length n−1. A central balanced tree of length
n− 1 has a distinguished vertex of degree 2 called the center (which represents the
"figure-eight" |p(z)| = |wn−1|); it is at distance n− 1 from the n leaves that represent
the zeros of polynomial. There is exactly one vertex of degree three at distance j,
1≤ j ≤ n−2, from the center (it represents a "figure-eight"). There are (n−1)(n−2)/2
vertices of degree 2 that represent the circumferences of the lemniscate. Figure 2.3
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illustrates examples of lemniscate configurations and corresponding central balanced
trees of polynomials of degrees 2, 3 and 4.

By Hilbert’s theorem, any 2D shape can be approximated by polynomial lemnis-
cates. A better approximation algorithm was suggested by T. A. Rakcheeva in [13],
[14]. At each step of the algorithm one obtains a lemniscate of a higher degree by re-
placing a simple zero z of the polynomial with a zero zn of multiplicity n, which can
be considered as n simple zeros that coincide, and moving the n simple zeros apart. At
each step we obtain a lemniscate of a higher order that approximates the shape better.
We consider the following process which is based on this idea. We start with a circle
centered at z1, plant a zero of multiplicity n1 at z1, move the simple zeros apart. Then
we pick another simple zero z2 and repeat the process. At each step we move the sim-
ple zeros apart so that there is no significant change in the structure of the lemniscates.
We obtain a lemniscate-generic polynomial P(z) with a lemniscate configuration "in-
herited" from p(z), i.e. the singular level sets outside a small neighbourhood Uk of the
zero zk are similar to the singular level sets of p(z).

Remark 24. A significant change of lemniscate structure is a change of lemniscate
configuration. An example of such change is illustrated on Figure 2.4. The lemniscates
outside the shaded neighbourood Uk belong to different lemniscate configurations.

The process described above can be realized as a composition of lemniscate config-
urations (and, respectively, central balanced trees). Figure 2.3 (b) shows the lemniscate
configuration and the central balanced tree for a polynomial of the third degree. Figure
2.3 (c) shows the result of planting a double zero at the simple zero z and moving two
simple zeros apart, which can be viewed as a composition of the lemniscate configura-
tions (respectively, central balanced trees) on Figure 2.3 (a) and Figure 2.3 (b).

In Paper C we construct a non-unitary operad on a class of trees which contains
central balanced trees. Thus the non-unitary operad realizes the composition of central
balanced trees (respectively, lemniscate configurations).

Let us discuss now this process from analytical point of view. Given a polynomial
p ∈ Ln, consider its conjugacy class [p] with respect to precomposition from the right
with an affine map and postcomposition from the left with multiplication by a complex
constant. If p ∈ Ln, then [p] is contained in one connected component of Pn \Ln,
i.e. has the same lemniscate configuration and central balanced tree of length n− 1
[6]. Consider a simple zero zk of p ∈ Ln and another polynomial q ∈ Lm ⊂ Ln. The
operation of composition of lemniscate configurations (and corresponding trees) [p]◦k
[q] can be defined as follows. Let Ur(zk) denote a disk of radius r centered at zk,
where r is, such that all the singular level sets of p(z) lie outside of Ur(zk). Let q̃ be
a representative of [q], such that all big lemniscates of q̃ are contained in Ur(zk). We
define p̃ = (z− zk)

−1 p(z)q̃(z). If p̃ ∈ Ln−1+m, then [p̃] := [p] ◦k [q]. We establish the
following result.

Remark 25. Without loss of generality we can assume that zk is at the origin.

Theorem 26. Given lemniscate generic polynomials pn(z) = z∏n−1
k=1(z − zk) and

qm(z) = z∏m−1
j=1 (z−w j) with

|w j|< ε =
m

2(n−1)+m
min

k
|zk|,
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(a) (b)
(c)

Figure 2.3: Composition of lemniscates

(a) (b)

Figure 2.4: Different lemniscate configurations

the critical points of qm and m− 1 critical points of P(z) = z−1 qm pn ‘inherited’ from
qm lie within the same disk |z|< ε .

Namely, we show that P(z) and qm(z) have the same number of critical points within
the circle |z|< ε . We prove this using Rouchè’s theorem and the auxiliary result:∣∣∣∣ p′(z)

p(z)

∣∣∣∣> n
2

on the unit circle if the zeros of polynomial p(z) lie in the unit disk, see Paper C.
On the other hand, we prove the following theorem.

Theorem 27. Let a lemniscate generic polynomial pn(z) = z∏n−1
k=1(z− zk) belong to a

connected component E ′ ⊂ Ln, and let qm(z) = z∏m−1
j=1 (z−w j) belong to a connected

component E ′′ ⊂ Lm. There is a small deformation of the polynomial zm−1 pn(z), such
that the resulting polynomial P(z) belongs to a connected component E ′′′ ⊂ Ln+m−1,
such that its projection to Ln is from E ′ and its projection to Lm is from E ′′.

The theorem tells us that it is possible to find a polynomial q̃(z), such that
z−1 p(z)q̃(z) is lemniscate generic and has lemniscate configuration that represents the
composition of lemniscate configuration of q(z) and p(z). This is possible because of
the conic-like structure of the sets Ln, Lm, and Ln+m−1.

Each polynomial p(z) gives rise to a quadratic differential, such that the polynomial
lemniscates Γ(R) are trajectories of the quadratic differential. This subject is discussed
in the next section.

2.4 Pure braids and homotopy classes of closed loops. Directions
for further research

Let Xn denote the complex plane with n punctures z1, . . . ,zn. Denote by Gs,t the set of
homotopy classes generated by closed Jordan curves that separate zs,zt from the rest of
the punctures. In Paper D we define an action of a braid group Bn on Gs,t and prove
a number of properties of the action. The goal of Paper D is to give a braid b ∈ Bn,



32 Main results

such that for arbitrary elements Γ1,Γ2 ∈ Gs,t we have b(Γ1) = Γ2. Paper D contains
some results and work in progress, which is a natural continuation of Paper C. Let us
outline the structure of this section. We begin with general motivation and describe
the connection to the previous work. Then we give a brief introduction to the terms
and constructions we use, state the obtained results and outline the further work on the
project.

Motivation

On the Riemann sphere S with p punctures we define a collection of piecewise smooth
curves γ = (γ1, . . . ,γm) of two types I, II. The first one (I) consists of simple loops on
S that are not freely homotopic pairwise, do not intersect and are homotopic neither
to a point of S nor to a puncture. The second one (II) consists of loops homotopic to
the punctures. Such a collection is called the admissible system of curves. A set Γ j
of piecewise smooth curves is said to be a homotopy class generated by γ j from the
admissible system (γ1, . . . ,γm), m ≤ 2p−3, if this set consists of all curves of type I or
II that are freely homotopic to γ j on S. A collection of the homotopy classes of curves
Γ := (Γ1, . . . ,Γm) generated by the admissible system (γ1, . . . ,γm) on S is said to be the
free family of homotopy classes of curves. Jenkins [10] proved that given a free family
Γ of homotopy classes of curves and a non-zero vector α := (α1, . . . ,αm) with non-
negative coordinates, there exists a unique quadratic differential q, such that the regular
trajectories are of homotopy type Γ and the q−lengths of its trajectories are essentially
α . Namely, the domains of the trajectory structure of q are ring or circular domains Dk,
1 ≤ k ≤ m, that are swept out by closed trajectories of q−length αk. Note that there
exist positive numbers α0

k , such that if 0 ≤ αk ≤ α0
k , then the corresponding domain Dk

degenerates. Let us summarize the result by Jenkins in the following lemma.

Lemma 30. The following data defines a quadratic differential q(z)dz2 on the Riemann
sphere uniquely:

1. p punctures;

2. free family of homotopy classes of curves Γ = (Γ1, . . . ,Γm), m ≤ 2p−3;

3. a set of lengths α = (α1, . . . ,αm), α �= 0̄.

Any domain D of trajectory structure of q(z)dz2 is a circular or a ring domain swept
out by regular trajectories that belong to a homotopy class γk and have length αk for
some k, 1 ≤ k ≤ m.

Let p(z) be a lemniscate-generic polynomial of degree n. The set of lemniscates
associated with p, i.e. the level sets |p(z)|= R, is the set of trajectories of the quadratic
differential

q(z)dz2 =− 1

n2

(
p′(z)
p(z)

)2

dz2. (2.14)

We formulate our result in the following proposition.

Proposition 2. For any polynomial p(z) of degree n there exists a quadratic differential
of form (2.14), whose trajectories describe level curves of p(z).
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Proof. Let p(z) satisfy the assumption of the lemma and q(z)dz2 be a quadratic differ-
ential defined by (2.14). The equation (see [17])

q(z)
(

dz
dτ

)2

= 1,

for trajectories of q(z)dz2 has the following form

− 1

n2

(
p′(z)
p(z)

)2( dz
dτ

)2

= 1.

The latter gives us

p′(z)
p(z)

dz
dτ

=
d

dτ
Log [p(z(τ))] = in

and

Re

[
d

dτ

(
ln|p(z(τ))|+ iargp(z(τ))

)]
= 0.

Thus we obtain that |p(z(τ))|= const. The trajectories of (2.14) are the level curves of
p(z).

The "figure-eights" of the polynomial p(z) are the critical trajectories of q(z)dz2.
The domains of the trajectory structure of q(z)dz2 are ring and circular domains. All
regular trajectories of q(z)dz2 are closed.

The quadratic differential satisfies n−1 length relations:

α0
1 = α0

2 = · · ·= α0
n =

2π
n
,

α1 = α0
1 +α0

2 ,

· · · · · · · · · , (2.15)

αn−1 =
n

∑
k=1

α0
k = 2π = αn−2 +αn−3 or = αn−2 +

2π
n
,

where α0
k , 1 ≤ k ≤ n, α j, 1 ≤ j ≤ n−1 are the q−lengths of the regular trajectories of

q(z)dz2. The numbers α0
k , 1 ≤ k ≤ n are the q−lengths of the regular trajectories of

q(z)dz2 that are homotopic to the zeros z1, . . . ,zn of the polynomial p(z). The number
α2 is the q−length of the trajectories that separate two zeros of p(z) from the rest of
the zeros of p(z) and the infinity. The number αn−1 is the q−length of the trajectories
that separate z1, . . . ,zn from infinity. Figure 2.6 illustrates the relation α1 = α0

2 +α0
3 .

Example 31. Consider p(z) = z3

3 − z+ 1 and let z1,z2,z3 denote its zeros. Some of
the level sets of p(z) are illustrated on Figure 2.5 (a). The set of polynomial lemnis-
cates of p(z) is given by a quadratic differential q(z)dz2 of form (2.14). The quadratic
differential satisfies the length relations
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(a)

(b)
(c)

Figure 2.5: Lemniscates and free family of homotopy classes

α0
1 = α0

2 = α0
3 = 2π

3 ,
α1 = α0

2 +α0
3 ,

α2 = α1 +α0
1 .

(2.16)

Schematic example of trajectories of q(z)dz2 with q−lengths α0
1 ,α

0
2 ,α

0
3 ,α

1,α2 is
shown on Figure 2.5 (b).

The quadratic differential q(z)dz2 is determined by the lemniscate-generic polyno-
mial p(z). With p(z) we associate a central balanced tree T of length n− 1. Recall
that the leaves of the tree correspond to the zeros of p(z). Let us mark the leaves by la-
bels z1 . . . ,zn. The vertices of degree 3 and the center correspond to the "figure-eights",
which are components of the critical level sets of p(z). The structure of the tree shows
the position of the critical level sets relative to each other. As q(z)dz2 is uniquely de-
termined by p(z), let T serve as a tree representation of q(z)dz2.

Let us consider regular trajectories γ1, . . . ,γ2n−1 of q(z)dz2 with lengths α0
k , 1 ≤ k ≤

n, α j, 1 ≤ j ≤ n−1. They form an admissible system of 2n−1 curves on the Riemann
sphere with punctures at z1, . . . ,zn and ∞. By Lemma 30 the free family of homotopy
classes of curves generated by (γ1, . . . ,γ2n−1) together with the vector of the q−lengths
of γ1, . . . ,γ2n−1 define a unique quadratic differential, that is the quadratic differential
q(z)dz2.

Example 32. The zeros z1,z2,z3 of p(z) = z3

3 − z+ 1, the free family of homotopy
classes of curves generated by the curves shown on Figure 2.5 (b) and relations (2.16)
determine the quadratic differential (2.14) uniquely. The tree T for p(z) is illustrated
on Figure 2.5 (c).

We obtain that on one hand, q(z)dz2 defined by (2.14) is determined uniquely by
p(z) and can be represented by T . On the other hand, q(z)dz2 is determined uniquely
by the points z1, . . . ,zn, free family of homotopy classes of curves generated by the
loops (γ1, . . . ,γ2n−1) and the vector (α1

0 , . . . ,α
n
0 ,α

1, . . . ,αn−1) defined by (2.15).

Let us fix the punctures z1, . . . ,zn,∞ of the Riemann sphere, the relations (2.15) and
change the free family of homotopy classes of curves. Each choice of a free family of
homotopy classes of curves gives us a different quadratic differential with circular and
ring domains of trajectory structure, n double poles at z1, . . . ,zn,∞, n−1 simple zeros
and regular trajectories with lengths satisfying (2.15).
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Figure 2.6: The relation α1 = α0
2 +α0

3

(a) (b)

Figure 2.7: Free families of homotopy classes

Example 33. The zeros z1,z2,z3 of p(z) = z3

3 − z+ 1, relations (2.16) and each of the
sets of loops shown on Figure 2.7 determine a unique quadratic differential.

Our goal is to extend the tree representation of p(z) to the whole family of differ-
ent quadratic differentials obtained in this way and to extend the non-unitary operad
constructed in Paper C to an operad in the category of quadratic differentials.

Our hypothesis is that the change of the homotopy classes can be realized through
an action of the braid group Bn on the fundamental group of the complex plane with
n punctures, which is a free group on n generators. In this case the vector of lengths
defined by (2.15) together with the labelled central balanced tree of length n−1 and a
braid gives us the desired representation of a quadratic differential and an extension of
the non-unitary operad constructed in Paper C.

Pure braids and homotopy classes of closed loops

Without loss of generality we can place n punctures at the points {1, . . . ,n} on the real
line and the base point P over the real line. The punctured complex plane is denoted by
Xn. The fundamental group π(Xn,P) has n generators γ1, . . . ,γn, where γk is a homotopy
class generated by a loop based at P that is homotopic to the puncture k, 1 ≤ k ≤ n, and
is oriented counter-clockwise. The group π(Xn,P) is a free group on n generators.

Let Γ denote a free homotopy class of closed curves homotopic on Xn to a simple
loop that separates the punctures s and t from the other n−2 punctures and is oriented
counter-clockwise.

We can easily show that there exists an element γΓ ∈ π(Xn,P), such that the loops
Γ and the loops γ−1

Γ γsγΓγt ∈ π(Xn,P) are freely homotopic. Let us write in this case

Γ= f γ−1
Γ γsγΓγt meaning that the corresponding loops belong to the same free homotopy

class.

Recall that the braid group Bn acts on the free group π(Xn,P) as follows. Let σk,
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(a)
(b)

(c)
(d)

Figure 2.8: Homotopic loops

1 ≤ k ≤ n−1, denote the k−th generator of Bn, then

σk(γ j) =

⎧⎨⎩
γ j+1, j = k,
γ−1

j γ j−1γ j, j = k+1,

γ j, otherwise.
(2.17)

We have also

σ−1
k (γ j) =

⎧⎨⎩ γ jγ j+1x−1
j , j = k

γ j−1, j = k+1,
γ j, otherwise.

(2.18)

Let Γ be a free homotopy class generated by a simple loop and let γ ∈ π(Xn,P) be
such that Γ = f γ .

Remark 28. If Γ = f γ , then Γ = f γ∗ for any γ∗ in conjugacy class of γ .

The braid group Bn acts on γ through (2.17) and (2.18). Let [γ] denote the conjugacy
class of γ . An element b of the braid group Bn acts on [γ] as follows

b([γ ]) := [b(γ)].

We establish that the action is well-defined.

Example 34. Figure 2.8 (a) shows a closed Jordan curve that separates on X3 the punc-
tures 1 and 3 from 2 and ∞. We can see that the curve is freely homotopic to a repre-
sentative of the element γ1γ3 ∈ π(Xn,P) shown of Figure 2.8 (b). The loops γ1γ3 are
freely homotopic to the closed Jordan curve on 2.8 (a).

The braid σ2
1 acts on γ1γ3 in the following way.

σ2
1 (γ1γ3) = γ−1

2 γ1γ2γ3.

A representative of σ2
1 (γ1γ3) is illustrated on Figure 2.8 (d). The loops γ−1

2 γ1γ2γ3 are
freely homotopic to the closed Jordan curve shown on Figure 2.8 (c).

The pure braid group Pn on n strings is generated by the elements

Ai,s = σs−1 · · ·σi+1σ2
i σ−1

i+1 · · ·σ−1
s−1,

where 1 ≤ i < s ≤ n. Let us define Ai,s for 1 ≤ s < i ≤ n in the following way

Ai,s = σ−1
s · · ·σ−1

i−2σ2
i−1σi−2 · · ·σs.

We define in addition As,s = id. Note that Ai,s = As,i.
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Let us fix s, 1 ≤ s ≤ n. The elements Ai,s, 1 ≤ i ≤ n generate a subgroup As
n of the

pure braid group Pn. Let Φs : π(Xn,P)→ As
n be a homomorphism defined by

Φs(γi) = Ai,s, 1 ≤ i ≤ n.

We fix γsγt and define a function from As
n to π(Xn,P) by

a �→ a(γsγt) := a(γs)a(γt).

In Paper D we prove the following theorems.

Theorem 29. Let a be an element of As
n and let Γ be a free homotopy class generated by

a closed counter-clockwise oriented Jordan curve that separates on Xn the punctures s
and t from the rest of the punctures. Let the loops γ ∈ π(Xn,P) be freely homotopic with
the loops Γ. Then a(γ) is a homotopy class generated by a closed counter-clockwise
oriented Jordan curve that separates on Xn the punctures s and t from the rest of the
punctures.

Example 35. There are many elements of π(Xn,P) that do not contain a closed Jordan
curve. For example, any representative of γ1γ1 is not homotopic to any closed non-self-
intersecting loop based at P. But even if we choose an element γ of π(Xn,P) which
contains a non-self-intersecting loop based at P, the result of an action by an arbitrary
braid b on γ does not necessarily contain a non-self-intersecting loop based at P.

Also, there are many braids that map a class of loops separating given punctures
s and t from the other punctures onto a class of loops that separate two absolutely
different punctures from the rest of the punctures. For example,

σ2(γ2γ4) = γ3γ4.

Therefore the theorem above describes quite special class of braids.

Theorem 30. Let s and t be fixed punctures of Xn. For any a ∈ As
n there exists γ ∈

π(Xn,P), such that

1. there is a counter-clockwise oriented closed Jordan curve Γ that separates s and
t from the rest of the punctures, such that loops γ are freely homotopic with Γ;

2. the element γ has form γ = γ−1
Γ γsγΓγt , such that

Φs(γΓ) = aAv
t,s

for some integer v.

Let us state the following hypothesis.
Hypothesis

Let Γ be a free homotopy class generated by a closed Jordan curve that separates on
Xn the punctures s and t from the rest of the n−2 punctures. Let

Γ = f γ−1
Γ γsγΓγt ∈ π(Xn,P)

for some γΓ ∈ π(Xn,P). Then

Φs(γΓ)(γsγt) = γ−1
Γ γsγΓγt

up to a cyclic permutation, i.e. Φs(γΓ)(γsγt) and γ−1
Γ γsγΓγt belong to the same conjugacy

class.
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Remark 31. Let Γ and Γ∗ be two free homotopy classes generated by non-self-
intersecting loops that separate the fixed punctures s and t from the rest of the punc-
tures. Let γ ∈ π(Xn,P) (respectively, γ∗ ∈ π(Xn,P)) be a class of loops based at P that
are freely homotopic with loops Γ1 (respectively, Γ∗). Then the hypothesis above gives
us a braid b ∈ Bn (more precisely, b ∈ As

n), such that b([γ]) = [γ∗]. In this way one can
realize the change of homotopy classes of loops of this type by action of a braid group.

The proof of the hypothesis is in general completed.

Future plans and open questions

Further research can be directed towards generalizing the results of this section to the
case of homotopy classes of closed Jordan curves separating arbitrary number of punc-
tures of Xn from the rest of the punctures. If this is possible, one could pose a question
if a free family of homotopy classes can be mapped onto an arbitrary free family of ho-
motopy classes by a single braid. The next possible step is to incorporate the obtained
braids into the construction of an operad on quadratic differentials.
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