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Abstract

Inattention in childhood is associated with academic problems later in life. The contribution

of specific aspects of inattentive behaviour is, however, less known. We investigated feature

importance of primary school teachers’ reports on nine aspects of inattentive behaviour,

gender and age in predicting future academic achievement. Primary school teachers of n =

2491 children (7–9 years) rated nine items reflecting different aspects of inattentive behav-

iour in 2002. A mean academic achievement score from the previous semester in high

school (2012) was available for each youth from an official school register. All scores were

at a categorical level. Feature importances were assessed by using multinominal logistic

regression, classification and regression trees analysis, and a random forest algorithm.

Finally, a comprehensive pattern classification procedure using k-fold cross-validation was

implemented. Overall, inattention was rated as more severe in boys, who also obtained

lower academic achievement scores in high school than girls. Problems related to sustained

attention and distractibility were together with age and gender defined as the most important

features to predict future achievement scores. Using these four features as input to a collec-

tion of classifiers employing k-fold cross-validation for prediction of academic achievement

level, we obtained classification accuracy, precision and recall that were clearly better than

chance levels. Primary school teachers’ reports of problems related to sustained attention

and distractibility were identified as the two most important features of inattentive behaviour

predicting academic achievement in high school. Identification and follow-up procedures of

primary school children showing these characteristics should be prioritised to prevent future

academic failure.

Introduction

Inattention in early childhood has been linked to a wide range of behavioural and social prob-

lems [1, 2], including poor academic achievement. This has been shown in several studies of
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individuals with Attention Deficit Hyperactivity disorder (ADHD, see e.g. [3, 4]), but is also

widely documented in studies including community samples [5–11]. In most of these studies,

inattention is defined as a sum score across a set of items.

Inattention is, however, a multidimensional concept, where the items reflect impairment of

sustained and focused attention, impaired working memory, distractibility, forgetfulness, as

well as impaired ability to organise and plan activities and tasks. These aspects of inattention

have been described as independent at a biological level [12], but may be extremely difficult to

disentangle behaviourally. They rather tend to occur as patterns of behaviour. For example,

most children may be distracted by external stimuli in a classroom situation [13], and these

distractions will probably be especially hard to handle by a child who has problems maintain-

ing attention and engagement in a task. Thus, it may not be the total inattention score, but

rather specific patterns of inattentive behaviour that have the most detrimental effect on the

child’s present and future function at school. Identification of important features of inattentive

behaviour will therefore be of great importance when developing remediation procedures.

Primary school teachers’ skills are crucial in the work to detect and help a child struggling

with inattention. They observe their pupils on a regular basis and in a wide range of situations

were inattention tends to have negative effects on performance. At the same time, one should

be aware of the risk of biases. Primary school teachers may for example be more tolerant to the

behaviour of a child in the lowest class levels, and previous studies have shown that teachers

tend to rate girls as less impaired than boys, even when the girls exhibit problematic behaviour

in the classroom [14–16]. The child’s gender and age should therefore be taken into account

when evaluating teacher ratings of inattentive behaviour.

The aim of the present study was to further investigate the importance of primary school

teachers’ reports of inattentive behaviour. To that end, we included data from the Bergen

Child Study, where primary school teachers completed a questionnaire including nine items

reflecting different aspects of inattentive behaviour when the children were between 7 and 9

years old. About ten years later, when the children had become high school students, academic

achievement scores from the official school registry of Norway were available for a subset of

the children from the original sample. Described as a key determinant of later occupational

career success and adult financial stability [17], there are strong arguments for using academic

achievement as an outcome variable. Each of the nine inattention items were rated on a Likert

scale with three response alternatives, and the outcome variable, academic achievement, was

discretised into three intervals, including an almost equal number of participants in each cate-

gory. Teacher scores on each of the nine items were used as predictors together with gender

and primary school class level (a proxy for age) to answer the following questions: (1) which

features of inattentive behaviour in primary school represent the strongest predictors of aca-

demic achievement in high school? (2) how well can the result be generalised to an indepen-

dent data set?, and (3) are gender and the age of the child when evaluated by their primary

school teachers of importance to the prediction?

In this context, statistical machine learning approaches were selected according to the fol-

lowing criteria: (i) the methods must handle multiple predictors with a small set of response

alternatives, and with a small set of outcome categories; (ii) the methods should be generic and

of interest to other similar data analysis situations and prediction challenges occurring in the

behavioural sciences, and (iii) the methods should produce results that are easy to interpret at

a clinical level. Based on these criteria we selected multinomial logistic regression (MLR), classi-
fication and regression trees (CART), and a random forest algorithm (RF) to assess feature

importance, and a k-fold cross-validation procedure to estimate the classification accuracy,

precision, and recall of a model using, in the prediction, the most important features being

identified.
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Materials and methods

The data included in the present study are from the Bergen Child Study (BCS), a longitudinal,

population-based study on mental health and development. The first wave of the BCS was

launched in October 2002, and included the total population of 9,430 children attending sec-

ond to fourth grade (7-9 years old, born in 1993, 1994 and 1995) in all public, private, and spe-

cial schools in Bergen. During the initial screening phase, parents and teachers were asked to

complete a four-page questionnaire, including, among other scales, a somewhat modified

Swanson, Nolan, and Pelham Questionnaire—Fourth Edition (SNAP-IV) [18]. Sample proto-

cols of the first wave have been described in several previous publications from the Bergen

Child Study group (e.g., [19–21]).

A fourth and final study-wave was conducted when the youth were between 16 and 19

years old. The sample for this wave included all adolescents born between 1993 and 1995 living

in the county of Hordaland (n = 10,222). This county includes the city of Bergen, and the BCS

sample was thus nested within this Hordaland sample. Academic achievement scores from the

previous semester in high school were made available from the official school registry. The

BCS was approved by the Regional Committee for Medical and Health Research Ethics (REC),

Western Norway (2015/800 Barn i Bergen/ung@hordaland). Parents gave written consent for

participation in the first wave of the study. In accordance with the regulations from the REC

and Norwegian health authorities, adolescents aged 16 years and older can make decisions

regarding their own health (including participation in health studies), and thus gave consent

themselves to participate in the fourth wave of the study. Parents/guardians have the right to

be informed, and in the current study, all parents/guardians received written information

about the study in advance. More information about the project is given at the BCS homepage:

http://uni.no/en/bergen-child-study.

The sample

The sample included n = 2491 participants (n = 1192 boys). All participants were rated by their

primary school teachers on all selected SNAP-IV items when they were 7 to 9 years old (pri-

mary school class levels 2, 3, or 4), and information about gender and academic achievement

score were available when they attended high school (16 to 19 years old). Within this sample,

the percentages of children attending 2nd, 3rd and 4th primary school class levels when evalu-

ated by their teachers were 42.3%, 34.4% and 23.4%, respectively.

Teacher reports

Inattention items were selected from the SNAP-IV [18], a scale which describes problems used

to define the inattentive symptoms of the Attention Deficit Hyperactivity Disorder (ADHD)

according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [22]. The

original SNAP-IV uses four levels to evaluate each item, whereas in our study, the teachers

evaluated each item on a 3-level Likert-type scale (“not true”, “somewhat true”, or “certainly

true”) in order to follow the response pattern of the remaining scales included in the first wave

of the BCS questionnaire. Each answer was assigned a value 0, 1, or 2. The nine inattention

items from SNAP-IV are listed in Table 1.

The percentages of children scored within the three response categories are given in

Table 2, confirming that the frequency of girls reported with a “not true” response was signifi-

cantly higher than in boys.
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Academic achievement

Academic achievement scores were provided by the official registers from the Hordaland

County. In Norway, secondary schools use a scale spanning from 1 to 6, with 6 being the high-

est grade (outstanding competence), 2 the lowest passing grade (low level of competence), and

1 being a fail. The scores included in the present study were the mean value of the grades dur-

ing the previous semester, comprising all school subjects except for physical education. The

mean score for girls was statistically significant higher (μ = 4.11 (SD = 0.72)) than for boys

(μ = 3.90 (SD = 0.72), p< .001). For the present study, the academic achievement scores were

categorised into three levels, calculated to generate groups with a similar number of partici-

pants (see details below).

Statistical analysis

The data analysis was divided into three parts: (a) data preparation, including discretising the

average academic achievement into three levels, (b) casting the data analysis problem into a

machine learning classification task assessing feature importances using both a multinomial

logistic regression (MLR), classification and regression trees (CART), and a random forest

(RF) algorithm, and (c) a pattern classification procedure using k-fold cross-validation with

Table 1. SNAP items, scored as “not true” (0), “somewhat true” (1), and “certainly true” (2).

SNAP1: Often fails to give close attention to details or makes careless mistakes in schoolwork, work, or

other activities

SNAP2: Often has difficulty sustaining attention in tasks or play activities

SNAP3: Often does not seem to listen when spoken to directly

SNAP4: Often does not follow through on instructions and fails to finish schoolwork, chores, or duties

SNAP5: Often has difficulty organising tasks and activities

SNAP6: Often avoids, dislikes, or is reluctant to engage in tasks that require sustained mental effort

SNAP7: Often loses things necessary for tasks or activities (e.g., toys, school assignments, pencils,

books, or tools)

SNAP8: Often is distracted by extraneous stimuli

SNAP9: Often is forgetful in daily activities

https://doi.org/10.1371/journal.pone.0188310.t001

Table 2. Percentage of children obtaining a given response from their teachers on each inattention item (SNAP-IV).

“Not true” “Somewhat true” “Certainly true”

n = All Girls Boys All Girls Boys All Girls Boys

2167 1186 981 278 97 181 46 6 30

SNAP1 87.0 91.3 82.3** 11.2 7.5 15.2 1.8 1.2 2.5

SNAP2 88.5 94.1 82.5** 9.5 5.5 13.8 2.0 0.5 3.7

SNAP3 92.0 96.7 86.9** 7.4 3.1 12.1 0.6 0.2 1.0

SNAP4 92.5 96.2 88.4** 6.8 3.6 10.4 0.7 0.2 1.1

SNAP5 91.5 96.1 86.5** 7.3 3.5 11.4 1.2 0.5 2.1

SNAP6 91.7 96.3 86.7** 7.0 3.3 11.1 1.3 0.4 2.3

SNAP7 96.5 98.5 94.4** 3.0 1.2 4.9 0.5 0.3 0.7

SNAP8 75.2 84.4 65.1** 21.0 14.1 28.4 3.9 1.5 6.5

SNAP9 89.5 93.4 85.2** 9.3 6.2 12.7 1.2 0.4 2.1

Note: The overall number of children (n) with a given response from their teachers are given in the third row.

**: p value <.001 according to a chi-square test comparing a “not true” report in boys and girls.

https://doi.org/10.1371/journal.pone.0188310.t002
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five different linear and nonlinear classifiers (MLR, MLP, XGB, SVM, KNN, each described

below) and incorporation of a voting classifier across these five. All these steps were imple-

mented in Jupyter notebooks using Python (3.5.4), Numpy (1.12), Pandas (0.20),

Statsmodels (0.8), XGBoost (0.6), Scikit-learn (0.19), rpy2 (2.8.5) and Matplotlib (2.0) for

producing Figs 1–3. Our Jupyter notebook for computing feature importances and classifica-

tion with k-fold cross-validation will be available on GitHub (https://github.com/arvidl/

inattention-populationsample).

(a) Data preparation and explorative data analysis. The original data, provided to us

as a SPSS-file, were imported into the Jupyter notebook environment via rpy2 and the

r-foreign packages. For the analysis we used the sample of n = 2491 children having com-

plete data on the 11 predictor variables and mean academic achievement as outcome variable,

cfr. Fig 1.

Fig 1. The predictor data (explanatory variables), the academic achievement outcome, and the types of classification analyses

being performed. Data values are represented as grey level heat maps. MLR = multinomial logistic regression, MLP = multi-layer

perceptron, XGB = extreme gradient boost, SVM = support vector machine, KNN = k-nearest neighbor, Voting = voting (argmax)

classifier across MLR, . . ., KNN.

https://doi.org/10.1371/journal.pone.0188310.g001
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For classification purposes, the average academic achievement scores (ave) were discretised

into three intervals (level of academic achievement) using Pandas qcut(), to include about

the same number of participants in each of the categories: low (ave 2 [1.000 − 3.714i, n = 834),

medium (ave 2 [3.714 − 4.375i, n = 831), and high (ave [4.375 − 6.000], n = 826). The distribu-

tion across the three levels—from low to high—was 40.3%, 33.3% and 26.4% for boys, and 27.3%,

33.4% and 39.3% for girls, confirming the overall higher academic scores achieved by the girls.

Depiction of the complete dataset is given in Fig 1, using gray scale heatmap columns for

the n = 2491 participants comprising the predictor variables gender, grade, SNAP1, . . ., SNAP9,

and the outcome variable academic achievement. In Fig 1 we have also listed the six classifiers

being used for prediction in a k-fold cross validation scheme. The observations above the hori-

zontal dotted line represent girls and below the dotted line are the boys.

(b) Assessment of feature importance. To assess feature importances of the 11 candidate

variables for predicting low, medium, and high academic achievement in the whole cohort, we

performed three types of analyses: (i) Multinomial logistic regression with consideration of

each parameter, i.e. the magnitude of its coefficient, the standard error of the corresponding

parameter, and the odds ratio, (ii) a CART analysis with assessment of the top important deci-

sion nodes, and (iii) a random forest classification using a forest of 10000 trees (“weak learn-

ers”) and ordering of features importance according to the ‘gini’ information criterion.

Multinomial logistic regression model (MLR). The multinomial logistic regression anal-

ysis included the following set of variables on a nominal level: the three levels of academic

achievement scores as outcome variable, and gender, primary school class level (grade), and

teacher reports on the nine inattention items SNAP1,. . .,SNAP9 as predictors. Generally, the

multinomial logistic regression model relates a set of explanatory variables x1, . . ., xp to a set of

Fig 2. Fitted classification tree (CART analysis), including the predictor variables SNAP-IV items 1 to 9 (0 = “not true”; 1 =

“somewhat true”; 2 = “certainly true”); gender (0 = girl; 1 = boy); grade (primary school class level 2, 3, 4) and the academic

achievement outcome (L = low, M = medium, H = high). The percentage in each node box denote the percentage of samples routed

to that particular node—where the root node will contain 100% of the samples, and a leaf node will contain the least number of samples

along a rooted path in the decision tree. The node numbers are given on top of each node box. For each split decision, True denotes that

the corresponding statement is true and then pointing to the left child node (that is either a new internal decision node or a final leaf

node), and False denotes that the corresponding statement is false and then pointing to the right child node (that is either a new internal

decision node or a final leaf node).

https://doi.org/10.1371/journal.pone.0188310.g002
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log-odds, log(π2/π1), . . . log(πJ/π1) according to

log ðpj=p1Þ ¼ bj0 þ bj1x1 þ � � � þ bjpxp ð1Þ

for j = 2, . . ., J. Here, j = 1 represents the base level category, πj = P(academic achievement

level = j), πj/πj0 denotes the odds of category j relative to j0 (i.e. odds ratio, OR), and
PJ

j¼1
pj ¼ 1

(see e.g. [23] for details). In our case, we let the base level category j = 1 be the low mean aca-

demic achievement, meaning that the low was compared separately to the medium and high cat-

egories. For computations we used mnlogit() from the statsmodels.formula.api.

Classification trees (CART). The SNAP1,. . .,SNAP9 items were included together with

demographics (gender and primary school class level (grade)) as predictor variables in a CART

analysis [24] used to predict level of academic achievement score {low, medium, high}. In brief,

the root of the classification tree is the top node and input patterns are passed down the tree

such that decisions are made at each node until a terminal node (a leaf) is reached. At each

non-terminal node a question is posed on which a binary split is made such that the “child”

nodes are on average “purer” than their “parent”. A measure of “impurity” is low (i.e. close to

0) if the probability of the occurrence of a class at a given node for all subsets of patterns reach-

ing that node is concentrated on that class. The “impurity” is maximal (i.e. close to 1) if the

class probabilities at that node is uniform.

Fig 3. The ranked importance of SNAP2, SNAP8, gender and grade (primary school class level) in predicting academic

achievement outcome according to the random forest algorithm.

https://doi.org/10.1371/journal.pone.0188310.g003

Inattention predicts academic achievement

PLOS ONE | https://doi.org/10.1371/journal.pone.0188310 November 28, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0188310.g003
https://doi.org/10.1371/journal.pone.0188310


In our analysis we used the DecisionTreeClassifier() from sklearn.tree
with impurity criterion = ‘gini’ and max_depth = 2 for growing the classification tree.

Random forest ensemble learning (RF). Random forest (RF) is an ensemble learning

method for classification that constructs a multitude of decision trees at training time and out-

put the mode class among the generated classes. The RF algorithm involves the construction of

n trees and ensures that each tree uses a different set of data (bootstrapping) and a different set

of variables (“feature bagging”) at each candidate split. Thus, RF is less prone to overfitting com-

pared to CART, and will therefore produce more generalisable results [24]. Moreover, the order

of decisions in the hierarchies of trees will reflect the importance of the corresponding feature

variables being involved. In our setting, the variables gender, grade, and the SNAP1,. . .,SNAP9
items were included as predictors of the outcome level of academic achievement: low (L),

medium (M), or high (H). In the analysis we used the RandomForestClassifier() from

sklearn.ensemblewith impurity criterion = ‘gini’, n_estimators = 10000, bootstrap = True,

max_features = None, and max_depth = None. After fitting the forest with the 2491 × 11 predic-

tor matrix X and academic achievement outcome y 2 {L, M, H}, i.e. forest.fit(X,y), the

Scikit-learn RF algorithm enables the calculation of forest.feature_importances_.

(c) Prediction using k-fold cross-validation. From the feature importance step, the top

ranked predictors of academic achievement scores were selected for a comprehensive classifica-

tion study using k-fold cross-validation to assess prediction properties (accuracy, precision, and

recall). In this procedure we used both linear classifiers (multinomial logistic regression = MLR)

and non-linear classifiers (multi-layer perceptron = MLP, extreme gradient boosting = XGB, a

radial basis function kernel support vector machine = SVM, and k-nearest neighbours = KNN).

For the k-fold cross-validation we used StratifiedKFold() from sklearn.mod-
el_selectionwith n_splits = 10 and shuffle = True, where the folds (splits) are made by

preserving the percentage of samples for each class. For a given fold 1, . . ., k = 10, fixed pairs

of (X_train, y_train) and (X_test, y_test) datasets were provided for each of the six classifiers

using the Pipelinemechanism in Scikit-learn, and the feature vectors were standardized to

zero mean and unit variance using the StandardScaler() from sklearn.prepro-
cessing. For the individual classifications we used the LogisticRegression()
with solver = ‘saga’ and multi_class = ‘multinomial’ from sklearn.linear_model; the

MLPClassifier()with hidden_layer_size = 3, activation = ‘relu’, and solver = ‘adam’
from sklearn.neural_network; the XGBClassifierwith n_estimators = 1000 and

max_depth = 3 from xgboost; the SVC()with C = 1.0, kernel = ‘rbf ’, and degree = 3 from

sklearn.svm; and the KNeighborsClassifier()with n_neighbors = 5 and metric =
‘minkowski’ from sklearn.neighbors. To obtain an ensemble voting across the five dif-

ferent classifier we used the VotingClassifier()with estimators = [MLR, MLP, XGB,
SVM, KNN] and voting = ‘soft’ from sklearn.ensemble, predicting the class label based

on the argmax of the sums of the predicted probabilities.

For the performance assessment on each (X_test, y_test) we used accuracy_score (the ratio

of correct classifications), precision_score (the ratio tp/(tp + fp), where tp is the number of true

positives and fp number of false positives), recall_score (sensitivity, the ratio tp/(tp + fn) where

fn is the number of false negatives), and f1_score (harmonic mean of the precision and recall)

from sklearn.metrics. Finally we computed the mean and standard deviations of these

classifier-specific performance measures across the k folds.

Results

We first report the results from the analysis of feature importance, then the prediction results

from k-fold cross validation using the six different classifiers.
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Assessment of feature importance

Multinomial logistic regression model (MLR). Performing MLR on the complete data-

set, gender significantly predicted whether a child obtained a low rather than a high academic

achievement score in high school (OR = 0.60, p< .002) as well as a low rather than a medium
score (OR = 0.79, p< 0.001). This shows that the boys (1) were overall more likely to obtain a

low academic achievement score in high school than the girls (0) (Table 3).

Two of the teacher reported inattention items significantly predicted a low rather than a

medium academic achievement score. The strongest effect was found for an item reflecting

problems related to sustained attention, SNAP2 (p = 0.001). An odds ratio of .54 tells us that

for each unit change in the score given by the teacher, the child was almost two times less likely

to obtain a medium compared to a low academic achievement score (1/.54 = 1.9). The second

item reflects distractibility, SNAP8 (p = 0.02, OR = 0.75), leaving the child with a somewhat

increased odds (1.3) of obtaining a low score.

Predictions from the two inattention items were even stronger when comparing low to high
academic achievement scores, with the highest estimate on SNAP2 (p< 0.001) followed by

SNAP8 (p< 0.001). The odds ratios show that the child was 2.5 times more likely to obtain a

low than high score in high school for each more severe step in problems reported on SNAP2
(OR = 0.40) and 1.8 times more likely for each step on SNAP8 (OR = 0.55). The prediction of

Table 3. Multinomial logistic regression model.

Ref. category: 95%CI

Low score Variable Estimate SE z P>|z| OR [0.025 0975]

Medium score intercept 0.74 0.20 3.72 <0.001 2.09 0.35 1.12

gender -0.24 0.11 -2.29 0.022 0.79 -0.44 -0.03

grade -0.15 0.07 -2.51 0.023 0.86 0.29 -0.04

SNAP1 -0.01 0.14 -0.04 0.970 0.99 -0.27 0.26

SNAP2 -0.62 0.19 -3.24 0.001 0.54 -1.00 -0.25

SNAP3 0.06 0.19 0.31 0.757 1.06 -0.32 0.44

SNAP4 0.21 0.23 0.89 0.374 1.23 -0.25 0.67

SNAP5 0.01 0.22 0.04 0.970 1.01 -0.42 0.44

SNAP6 -0.19 0.20 -0.94 0.350 0.83 -0.58 0.21

SNAP7 0.16 0.26 0.60 0.550 1.17 -0.35 0.67

SNAP8 -0.28 0.13 -2.27 0.023 0.75 -0.53 -0.04

SNAP9 -0.09 0.16 -0.55 0.581 0.92 -0.40 0.23

High score intercept 0.78 0.20 3,88 <0.001 2.19 0.39 1.18

gender -0.51 0.11 -4.83 <0.001 0.60 -0.72 -0.30

grade -0.07 0.07 -1.05 0.292 0.93 -0.20 0.06

SNAP1 -0.50 0.18 -2.80 0.005 0.61 -0.85 -0.15

SNAP2 -0.93 0.26 -3.55 <0.001 0.40 -1.44 -0.42

SNAP3 -0.09 0.25 -0.38 0.704 0.91 -0.57 0.39

SNAP4 0.18 0.32 0.57 0.567 1.20 0.44 0.80

SNAP5 0.46 0.27 1.69 0.091 1.58 -0.07 0.99

SNAP6 -0.74 0.29 -2.58 0.010 0.48 -1.30 -0.18

SNAP7 -0.28 0.43 -0.66 0.511 0.75 1.13 0.56

SNAP8 -0.61 0.15 -4.16 <0.001 0.55 -0.89 -0.32

SNAP9 -0.14 0.19 -0.74 0.462 0.87 -0.51 0.23

Reference group = low academic achievement. OR = Odds ratio.

https://doi.org/10.1371/journal.pone.0188310.t003
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low rather than high academic achievement score was also significant for two other items

reflecting problems related to sustained attention, SNAP1 (p = 0.05) and SNAP6 (p = 0.001).

With ORs of 0.61 and 0.48, the increase was around twofold (1.6 and 2, 1, respectively). SNAP5
(p = 0.009) gave a more surprising result, with a higher likelihood to obtain a high academic

achievement level if reported with disorganised behaviour by your primary school teacher.

To sum up the results from the MLR, inattentive behaviour associated with problems

related to sustained attention and distractibility predicted low rather than medium or high aca-

demic achievement levels in high school, with an overall higher odds-ratio in boys than in girls

(Table 3).

Classification trees (CART). The CART analysis, using maximum depth = 2, generated

four terminal nodes (Fig 2).

The first and most important split (the top node #0) was on SNAP2, assessing problems

related to sustained attention. The “False” branch at this node, i.e. teachers reporting “some-

what true” or “certainly true” on this item, arriving at node #4 (11.5% of the sample), were

mainly associated with a low academic achievement score in high school. In this subsample,

primary school class level (grade) did matter. A higher portion of those those with “somewhat

true” or “certainly true” reports on SNAP2 in the 3rd and 4th grades (node #6) obtained lower
academic scores than those in the 2nd grade (node #5), 71% and 57%, respectively.

If primary school teachers reported “not true” on SNAP2, then the reports on problems

related to distractibility (SNAP8) was important for prediction, i.e. node #1 comprising 88.5%

of the sample. Reporting “somewhat true” or “certainly true” on SNAP8, i.e. the “false” branch

from node #1 to node #3, led to the highest percentages towards a low academic achievement

score (42%), while a “not true” report (node #2, 74.5% of the sample) was associated with the

highest percentages towards the high score (39%).

To sum up the results from the CART analysis, problems related to sustained attention

(SNAP2) or distractibility (SNAP8) were important predictors of low school academic achieve-

ment scores in 25.5% (nodes #3 and #4) of the children. Primary school class grade did also

matter, with a higher percentage of children obtaining a low score when assessments were

done at 3rd or 4th grade.

Random forest ensemble learning (RF). The random forest algorithm with 10000 trees

further explored feature importances in the cohort. Fig 3 shows the ranked importance of the

11 predictor variables, confirming the main findings from the MLR and CART analyses,

where to top three most important features were SNAP2> SNAP8> grade.

Prediction using k-fold cross-validation

The cross-validation procedure was performed separately for the three top features selected by

the RF analysis. Gender was included due to its effect upon both the SNAP-IV items and the

academic achievement score, and the statistically significant effect revealed by the MLR.

Table 4 shows the results from the selected classifiers and the overall voting on the accuracy,

Table 4. Classification performance using k-fold cross-validation (k = 10).

MLR MLP XGB SVM KNN Voting

Accuracy 0.43 (0.03) 0.43 (0.03) 0.44 (0.02) 0.44 (0.02) 0.39 (0.03) 0.42 (0.02)

Precision 0.43 (0.04) 0.42 (0.04) 0.45 (0.03) 0.45 (0.04) 0.38 (0.03) 0.42 (0.03)

Recall 0.43 (0.03) 0.43 (0.03) 0.44 (0.02) 0.44 (0.02) 0.39 (0.03) 0.42 (0.02)

Note: MLR = multinomial logistic regression; MLP = multi-layer perceptron; XGB = extreme gradient boosting; SVN = support vector machine; KNN = k-

nearest neighbour; Voting = voting classifier across MLR, MLP, XGB, SVN, and KNN.

https://doi.org/10.1371/journal.pone.0188310.t004
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precision and recall measures. All values were above chance level (> 33%) for the three catego-

ries of academic achievement scores.

Discussion

Summary of results

The present study asked if specific features of inattentive behaviour in primary school—as

reported by teachers—act as predictors of academic achievement in high school. Different

types of multivariate analyses were used to handle the set of categorical variables. Overall,

items reflecting problems related to sustained attention and distractibility were selected as the

two most important features of inattention in predicting the achievement score. Gender and a

proxy for age (primary school class level) were added as important features by the MLR analy-

sis. The CART analysis showed that as many as 25.5% of the children were reported with either

of the two inattention problems, and that these children had a high risk of obtaining a low aca-

demic achievement score. Age when assessed by their primary school teachers was of some

importance, in that the chance of obtaining a low achievement score was somewhat lower

when reported with problems in the 2nd than in higher grades (3rd and 4th grades). Age and

the items reflecting sustained attention and distractibility were also identified with the highest

importance by the RF analysis, suggesting that these results are expected to generalise to other

samples. This was confirmed by the k-fold cross-validation analyses.

Early predictors of academic achievement in high school

The present results showed that problems related to sustained attention and distractibility in

primary school are important drivers of poor academic performance in high school. By this,

the results partly overlapped with findings previously reported in a study by Holmberg et al.

[9], where teacher reports of failure to finish a task were found to be one of the main factors

explaining academic outcome. Our study add to this by revealing the importance of problems

related to distractibility. The MLR analysis showed that this problem was associated with an

almost two-fold increase in OR of an achievement score in the lower than higher end of the

scale. Its importance as a predictor of poor achievement scores was also supported by the

CART analysis, with the strongest effect when reported as a problem in the 3rd and 4th grades.

In a class situation, the relation between the two is obvious. A child with the ability to stay

focused on a task over a longer period of time is expected to be less disturbed by habits and

cues in the environment than a child with poor vigilance. This enables the child to obtain the

basic skills and knowledge that are of importance to the academic achievement scores as the

curriculum becomes more complex at higher grade levels.

Inclusion of information about nine aspects of inattentive behaviour separately in the statis-

tical analyses revealed their relative importance to high school academic performance. Most

previous studies have defined inattention as a sum-score from reports of problems reflecting a

range of different behaviours. A significant relation between such a sum score and academic

achievement was shown in one of our previous studies, including subsamples from BCS and

the Berkeley Girls with ADHD Longitudinal Study (BGALS). Inattention was found to be sig-

nificant across these two culturally and diagnostically diverse groups, and the effect was over

and above the effect of demographics and intellectual function [25]. The present results indi-

cate that the effect on academic achievement is driven by a few features defined within the full

inattention score.

The cross-diagnostically effect of inattention was confirmed by the present study. Although

inattention is one of the core symptoms of ADHD, the importance of inattentive behaviour in

explaining future academic success is definitely not restricted to a diagnostic category; the
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present study documented this effect in a population-based sample. However, although a high

proportion of children obtaining a low academic achievement score were reported as inatten-

tive by their primary school teachers, the cross-validation analyses revealed that more informa-

tion about the child is needed to obtain an improved validation of the prediction. This

probably reflects both the instability of inattentive behaviour and the large number of co-exist-

ing and new challenges influencing a child through childhood and adolescence. Previous stud-

ies have for example shown the importance of socio-economic factors in general (e.g., [26]),

with some cultural differences regarding the importance of its subcomponents [27] and conse-

quences [28]. Further studies should thus include a larger number of predictors and a more

diverse sample than in the present study.

Taken together, the present results should inspire assessment and treatment efforts in pri-

mary school children vulnerable to distractibility and with problems to sustain their attention

in school-related work. The close relationship between inattentive behaviour and cognitive

function [29, 30] has lead to increased popularity of presenting cognitive training programs to

school children with ADHD (see e.g., [31, 32]). A sole focus on cognitive training of the child

is, however, not expected to lead to successful alleviation of the inattentive behaviour described

in the present paper. This was supported by the results from the meta-analysis presented by

Cortese and collaborators [33], showing that cognitive training procedures had limited effects

on ADHD symptoms. Positive contributions from parents and teachers seem to be essential

(see e.g., [34]). Whereas parent-focused training produces improvements in negative parenting

and impairment at home, incorporation of child skill training and teacher consultation may be

necessary to produce improvements at school [35].

Gender turned out to be another important predictor. Girls were reported by their pri-

mary school teachers to have less inattention symptoms and to obtain higher academic

achievement in high school than boys. Although gender was identified as one of the main

predictors of academic achievement scores in the feature extraction by the MLR analysis, it

was not selected among the top features of importance by the the CART and RF analyses.

Further gender balanced longitudinal studies of functional outcomes of early inattentive

behaviour are warranted.

Strengths and limitations

The large population-based sample of high school students followed from childhood, inclusion

of a standardised questionnaire assessing inattention, and inclusion of academic achievement

scores from official National registers are main strengths of the present study. Another

strength is the inclusion of several statistical methods to assess patterns in the data and to per-

form predictions—the use of the MLR, CART, and RF algorithms to assess feature impor-

tances and select features, and the comprehensive k-fold cross-validation procedure. We

believe that the relevance of the present analytic approach is not restricted to the topic of the

present study, in that questionnaire data with a few response categories are commonly used in

psychological research.

In spite of the strengths and the importance of the present study, several limitations must

be mentioned. Inclusion of very few features when predicting an outcome about 10 years

ahead, is an obvious limitation of the present study. A stronger model could have been

obtained by including results from a psychometric test assessing vigilance and distractibility,

similar to the one developed by Cassuto et al. [36], or a more ecological valid virtual reality test

as the one described by Pelham et al. [37]. Inclusion of teacher reports only may also be con-

sidered as a limitation. Furthermore, stronger conclusions could have been obtained by

including information from repeated inattention reports to understand the trajectory from
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early symptoms of inattention to function in adolescence and adulthood. The importance of

the latter was demonstrated in a study by Pingault and collaborators [7], showing that increase

in symptoms of inattention during childhood really matters when it comes to school gradua-

tion failure. Such studies are important and should include analysis of behavioural patterns,

because a specific pattern of vigilance and distraction was suggested by the present study.

Finally, academic achievement level did not reflect overall high school achievement, in that it

was operationalised as the mean of grades for one semester only.
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