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Preface

Small cyclonic spiral eddies with a scale of 10km are very frequently ob-
served, both from satellites and space shuttles, at the ocean surface. In
the “mesoscale revolution”, weather and baroclinic instabilities were at-
tributed to the ocean. This line of research is continued herein. It is
suggested that spiral eddies may possibly be the sea surface signature of
the “bad weather” below. The spiral-like cyclones generated and evolving
in this baroclinic model regime are found to be consistent with the observed
spatial and temporal scales. Both modelled and observed spiral eddies are
associated with streaks of strong cyclonic shear and convergence. The nu-
merical experiments presented indicate that spiral eddies are restricted to
the very upper ocean, and that they are a source of kinetic energy for the
mean flow.

The bad weather generated from ageostrophic baroclinic instabilities is
prone to strong cyclonic lows. This is a cornerstone in the spiral model put
forward, and has to be taken into account when choosing a model ocean.
In particular, the ability of the so-called variable-temperature layer model
to produce oceanic “bad weather” as defined herein, is found to be limited.
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Introduction

When I returned to Scripps Institution at the end of W.W.II as a student of
Harald Sverdrup, physical oceanography was still practiced in the tradition
of the “Challenger” expedition, with a few isolated research vessels probing
the world oceans. As a result, we were studying ocean climate rather than
ocean weather.

Munk (1997)

Going back to the seminal papers of Charney (1947) and Eady (1949), the
synoptic highs and lows in the extratropical atmosphere are understood to
be the result of baroclinic instabilities. At the time Charney and Eady pub-
lished their theories, weather forecasting had been treated as an initial value
problem of mathematical physics for almost half a century (c.f., Eliassen
1994). There was no such complex approach to dynamical oceanography.
The dynamics of the ocean were thought to be characterized by gyre scale
(O(1000 km)) circulations, and by western boundary currents like the Gulf
Stream and the Kuroshio. Then came the “mesoscale revolution”.

1. The mesoscale revolution

The phrase “mesoscale revolution” is due to Munk (1997). He dates the
revolution to the discovery of the Gulf Stream meanders in the fifties (c.f.,
Stommel 1965), and the revelation of strong variable currents in the deep
waters during the 1959-60 R/V Aries campaign (c.f., Swallow 1971). This
started off huge measurement programs. The MODE Group (1978) found
that the kinetic energy level associated with the mesoscale eddies is two
orders of magnitude larger than that of the gyre scale mean flow! The
mesoscale denotes the oceanic dynamic equivalent to the atmospheric syn-
optic scale, that is the scale of the weather. Thus, the existence, and
importance, of an oceanic counterpart to the atmospheric weather was es-
tablished. As cyclonic lows and anti-cyclonic highs constitute the synoptic
weather in the atmosphere, mesoscale eddies in the ocean may be termed
“oceanic weather”. The fundamental length scale of the baroclinic flow
that forms the weather is the internal radius of deformation. The mesoscale
therefore refers to horizontal variability on a scale from tens to some hun-
dreds of km. The lower range is referred to as the submesoscale. Weather
is herein restricted to mean the weather of middle and high latitudes.

A useful framework for modelling the mesoscale is the quasi-geostrophic
(QG) approximation, formalized by Charney (1948). The linear QG the-
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ories of Charney (1947) and Eady (1949) successfully predict the scale of
the synoptic weather. In a review paper, McWilliams (1979) reports that a
variety of mesoscale features may be interpreted quasi-geostrophically. Ex-

amples are the meanders of the Norwegian Coastal Current, and open-ocean
eddies.

Quasi-geostrophic instability, with its implicit requirement that the in-
ternal radius of deformation R is much larger than the inertial length scale
Ly, produces high and low pressure anomalies of equal strengths. Age-
strophic (R ~ Lg) baroclinic instabilities produce more dramatic events,
i.e., bad weather. When the QG restriction on the scales is lifted, intense
cyclonic lows is the result (e.g., Gill 1982, p. 575). For submesoscale baro-
clinic flow, R and Ly are of comparable magnitude. Submesoscale baroclinic
instabilities could therefore be expected to generate “oceanic bad weather”.
This is supported by the linear stability analyses of Barth (1994), and Fuka-
machi et al. (1995). Bottom frictional torques (D’Asaro 1988; Ohshima and
Wakatsuchi 1990), and the coastal ocean response to surface wind and stress
variations (Shay et al. 1998), have also been suggested to generate subme-
soscale eddies.

2. Spiral eddies

Their (the spiral eddies’) almost ubiquitous occurrence. .. whenever subme-
soscale dynamics was revealed in the sun glitter, indicates that they are
perhaps the most fundamental entity in ocean dynamics at this scale.

Scully-Power (1986)

The so-called spiral eddies are a distinct submesoscale surface pattern. Up
to the eighties, they were considered to be rare dynamic features in the
ocean. Photographs of the world’s oceans from space shuttles (Scully-Power
1986; Munk et al. 2000), and images of Norwegian coastal waters from radar
satellites (Dokken and Wahl 1996), have shown that such eddies are indeed
common. An eddy street made visible by the sun’s reflection from the
surface of the sea is shown in Figure 1.

Surface convergence compacts naturally occurring surface active mate-
rial into slicks. Both SAR and sun-glitter images of the ocean surface have a
rather broad distribution of sea slicks, or streaks, with a spacing of the order
of 1km and a width of the order of 100 m (c.f., Figure 1). The streaks are
domains of reduced surface roughness, making them visible to the remote
instruments. It is the large-scale arrangement of these streaks that forms
the images of the spiral eddies. A small minority of the streaks are shear
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Figure 1: Photograph of a spiral eddy street in the Mediterranean Sea
off the coast of the Egyptian/Libyan border (Scully-Power 1986). The
diameter of the eddies is roughly 10 km.

lines. On the SAR and glitter images they can be identified when there is a
crossing ship wake. The wake is then dislocated across the shear line consis-
tent with a large cyclonic shear. In several cases (e.g., Scully-Power 1986;
Munk et al. 2000) the shear has been estimated to be of the order 10 3 s~
ten times the magnitude of the planetary vorticity f at mid-latitude. Munk
et al. (2000) find the shear lines to be exclusive to the spirals: “...spiral
features, unlike other surface features, reveal strong cyclonic displacements
of ship tracks”. The lines seem to persist, still tracing out spirals, in SAR
images at larger wind speeds when the regular slicks have been suppressed
(e.g., Dokken and Wahl 1996; Johannessen et al. 1994). Thus, we associate
these shear lines with the eddies.

Spiral eddies have been observed in many oceans in both hemispheres,
but not within 6 degrees of the Equator. They are found both in coastal
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areas and in the open ocean, generally in an interconnected pattern, but
it should be noted that observed patterns are frequently somewhat more
random than that of Figure 1 (c.f., Scully-Power 1986; Munk et al. 2000).
A quite extreme example is pictured in Figure 2. Scully-Power (1986)
describes spiral eddies to be always cyclonic, with a diameter of 12 to
15 km, while in the ERS SAR observations of Dokken and Wahl (1996) from
the Norwegian coast, 85% of the eddies are cyclones and 15% anti-cyclones.
The average diameter of the anti-cyclonic eddies was found to be more than
three times that of the cyclones, which was estimated to be approximately
7km. Munk et al. (2000) collected more than 400 photographs taken by
astronauts containing spiral eddies, and found them to be “10-25km in
size and overwhelmingly cyclonic”. The reader is referred to Munk et al.
(2000) for further observational characteristics and an historic account on
the discovery of spirals. The latter is as an outline of the history of space
oceanography in general. From the Apollo program of the 1960s, via the
launch of the first ocean satellite in 1978, to the variety of space-borne
instruments of today, remote sensing has been essential in revealing the
complexities of the dynamic ocean.

Figure 2: Photograph of a complex spiral eddy field in the Gulf Stream off
Long Island, New York state, U.S.A. (Scully-Power 1986).
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To sum up: Spiral eddies are cyclonic eddies with a horizontal scale of
the order of 10 km. The slicks that trace them out are associated with both
convergence and large cyclonic shears. Observations from space platforms
suggest spiral eddies to be plentiful in the world’s oceans.

Modelling spiral eddies

Even though spiral eddies are frequently observed, it seems that surpris-
ingly little effort has been put into finding a model for their generation
and life. We are aware only of the contributions of Eldevik and Dysthe
(1999, 2000), and Munk et al. (2000). Apart from the need to understand
the phenomenon, there are several other important reasons to study such
submesoscale dynamics. It may have significance for the understanding
of the larger scale system. In a similar way that the “mesoscale revolu-
tion” introduced (quasi-geostrophic) weather to dynamical oceanography,
submesoscale dynamics can introduce the equivalent of bad (ageostrophic)
weather, as suggested in the introduction.

The submesoscale is rarely resolved by the spatial and temporal res-
olution used in numerical ocean models today. The parameterization of
sub-grid scale physical effects in such models is often essential for their
performance.

Eddies are important in the distribution of passive tracers like plankton
patchiness, both in the real ocean (e.g., Pingree 1978; Pingree et al. 1979),
and in ocean models (e.g., Abraham 1998). Models of how spiral eddies
are generated could also improve the interpretation of data from remote
sensing. This is particularly important as snapshots of spirals from space
are plentiful. There seems to exist no in situ measurements of the spirals,

and only one observation of temporal evolution (i.e., Flament and Armi
1985).

1. The Margules front (Paper 1, Eldevik and Dysthe 1999)

Spiral eddies have been described as cyclonic eddies with a horizontal scale
of O(10km), that is in the low range of the internal radius of deformation
in the ocean. Adding to this the absence of spirals in the vicinity of the
Equator makes a compelling argument that the phenomenon is baroclinic
and ageostrophic. A simple geostrophic flow that is both baroclinic and
has a surface shear line of strong cyclonic vorticity is the so-called Margules
density front. An example of a Margules front can be found in Figure 2 of
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Eldevik and Dysthe (1999).

The importance of such fronts for the development of intense low pres-
sure zones/cyclones in the synoptic weather, was put forward by the Bergen
school of meteorology (e.g., Bjerknes 1919; Solberg 1928). The generation
of spiral eddies through cyclogenesis at density fronts could be a common
denominator of the observations. Both Scully-Power (1986) and Munk et
al. (2000) believe strong cyclonic shears to be a characteristic of the spirals.
Dokken and Wahl (1996) find eddies to be “situated exactly at the border
between, in all probability, two different water masses” in several of the
images along the Norwegian Coast.

Eldevik and Dysthe (1999) investigate the possibility that the spirals are
generated due to instabilities at a Margules type front (c.f., their Figure 2).
The linear stability of such a simple two-layer geostrophic equilibrium has
been studied by several authors (e.g., Iga 1993, and references therein). The
findings of Iga (1993) suggest that the preferred length scale of an unstable
frontal wave can be submesoscale. In the nonlinear, three-dimensional nu-
merical experiment, Eldevik and Dysthe (1999) use as the initial condition
a slightly disturbed Margules type front that is diffused so that the frontal
width is a few kilometers. Initially, small scale frontal disturbances grow
according to the ageostrophic predictions of Iga (1993). In the nonlinear
stage of development, the frontal wave winds up cyclonically into spirals
of dimension less than half its wavelength (c.f., Figure 5 of Eldevik and
Dysthe 1999). It has a clear similarity to the eddy street in Figure 1. As-
sociated with the curl-up is a relatively strong convergence that is seen to
accumulate passive surface floats in the spirals. The instability is found to
be predominantly baroclinic and the dimension of the spirals is of the order
of 10 km.

The simulation demonstrates how a front with cyclonic shear will curl
up into cyclonic spiral eddies having the right dimension. The question of
why cyclonic shear seems to dominate in ocean fronts is not addressed, and
simply taken as a fact as static stability requires the shear across a Mar-
gules front to be cyclonic. Whether a Margules front is a likely geostrophic
flow is questionable. Since the work of Charney (1947) and Eady (1949),
extratropical fronts have been considered to be intrinsic to the evolution of
baroclinic instabilities in a continuously stratified atmosphere.

2. Oceanic “bad weather” (Paper 2, Eldevik and Dysthe 2000)

In addition to their observational material, Munk et al. (2000) offer a model
for the generation of spiral eddies. The preference for cyclonic shears is ad-
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dressed. They present a sequential process consisting of two essentially
two-dimensional stages. First there is an ageostrophic frontal precondi-
tioning phase, producing strong cyclonic shears. Then they assume a shear
instability to wind up spirals in the established shear zone. Separating the
problem into these two distinct phases, Munk et al. (2000) give the reader
an appealing image of the generation of ocean spirals. What is excluded,
however, are the details on the transition between, and the possible coex-
istence of, the two phases. In meteorology, sharp fronts and cyclones are
understood to be generated in the same baroclinic instability process (e.g.,
Garnier et al. 1998). As an unstable frontal wave evolves, there is both
sharpening of horizontal gradients perpendicular to the wave and nonlin-
ear windup of the wave to produce cyclones. An estimate of the preferred
length scale of the corresponding oceanic frontal waves is therefore required
in order to apply such a model to the spiral eddies.

Along these lines, Eldevik and Dysthe (2000) find that spiral eddies
may possibly be described as oceanic bad weather. They suggest that
buoyant geostrophic jets in the upper ocean are prone to produce unstable
frontal waves that provide a suitable horizontal restriction for the spirals,
and with an ageostrophic growth rate in agreement with the temporal evo-
lution estimated from Flament and Armi (1985). The argument, that is
based on dimensional analysis and a variety of previous relevant research
on baroclinic instability, is strengthened by the results of the accompanying
numerical experiments.

A number of different experiments were conducted. The initial geo-
strophic flow of the reference experiment, displayed in Figure 5 of Eldevik
and Dysthe (2000), has a weak horizontal stratification with a correspond-
ing wide surface velocity jet. There is no external forcing present. Emerging
anomalies must draw their kinetic energy from either the mean kinetic en-
ergy or the (available) potential energy of the flow. As the disturbance
grows, frontogenesis sets in, and the velocity shear is strongly amplified
by convergence on the cyclonic side of the jet. In Figure 6 of Eldevik and
Dysthe (2000), the frontal wave is seen to wind up nonlinearly to reveal
a cyclonic spiral. Due to the accompanying convergence, passive surface
floats accumulate to delineate the eddies in their Figure 13. The horizontal
dimension and the time scale for the windup of eddies displayed in the nu-
merical experiments, as well as the associated shear and convergence, are
in good agreement with estimates from observations. Eddy motion extends
down to the model thermocline, but the actual spiral eddies are seen to be
concentrated in the upper 2040 meters (c.f., their figures 9, 10, and 12).
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Secondary instabilities eventually set in to produce a more complex
pattern of similar cyclones (c.f., their figures 17 and 18). For relevance to
observations, the reader should compare their figures 13a—c and 18 with
the sun glitter images in figures 1 and 2.

In agreement with Eldevik and Dysthe (1999), but contrary to the in-
stability model of Munk et al. (2000), the generation and life of spiral eddies
are found to be of baroclinic nature. For large periods of the simulations,
the kinetic energy of the mean flow is found to feed on that of the eddies.
In other words, the spiral eddies accelerate the mean flow. Orlanski and
Cox (1973), Qiu et al. (1988), and Wang (1993), all find a similar transfer
of energy in their numerical studies of larger scale baroclinic instabilities
of ocean currents. As the observational material suggests spiral eddies are
abundant in the ocean, they may be an important source of kinetic energy
for the meso- and larger scale flow. In most non-eddy-resolving experi-
ments, this “up the gradient” transfer of energy is not possible because
energy is continuously dissipated from the flow through eddy viscosity.

3. Choosing a model ocean (Paper 3, Eldevik 2000)

Numerical modelling has for the last thirty years been an integrated part of
dynamical oceanography. There exists a variety of numerical model oceans.
They vary in both physical and numerical complexity (c.f., Kowalik and
Murty 1993; Roed 1996). Orlanski and Cox (1973) were probably the first
to model baroclinic instabilities in the ocean with a full three-dimensional
numerical model. The approach to mesoscale modelling is quite similar
today (e.g., Samelson and Chapman 1995; Erasmi et al. 1998). The major
difference is the increased spatial and temporal resolution allowed for by
the increase in computer power.

The proper representation of submesoscale dynamics in numerical ocean
models requires a horizontal resolution of 1 km or less. Eldevik and Dysthe
(1999, 2000) used the primitive equations, o-coordinate numerical model of
Berntsen et al. (1996) for the modelling of spiral eddies. Even such idealized
process studies are computationally expensive at the required resolution.
A typical experiment took 48 hours of CPU on an SGI Origin 2000.

Vertically homogeneous variable-temperature layer (VTL) models, orig-
inally due to Lavoie (1972), are often used as an alternative to three-
dimensional primitive equations models. This is motivated by the fact
that the upper ocean is often relatively well-mixed and separated from the
underlying heavier water by a well-defined thermocline. In particular, it
has been argued that VTL models are suitable for describing the dynamics
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of ocean jets and fronts (c.f., Rged and Shi 1999, and references therein).
In the widely used isopycnic-coordinate numerical ocean model MICOM,
the upper layer is frequently chosen to be a VTL as described by Bleck et
al. (1992). For a given computational cost, two-dimensional VTL models
can resolve smaller horizontal scales than full three-dimensional primitive
equations models, making the former amiable for the study of mesoscale
ocean dynamics.

For the above reasons, the numerical experiments of Eldevik and Dysthe
(2000) were originally planned to be performed in a VTL model ocean.
The results of the preliminary simulations were surprising. Contrary to the
expected scenario, i.e., spiral eddies as a surface signature of bad weather
in the ocean (c.f., section 2 of Eldevik and Dysthe 2000), the unstable
frontal wave emerging from any given initially geostrophic jet showed no
preference for cyclones. Staggered rows of cyclonic and anti-cyclonic vortex
pairs analogous to the Karman vortex street was the result (e.g., Figure 4
of Eldevik 2000). Thus, the VTL model ocean was discarded.

The seeming failure of the VTL model to produce spiral eddies, and
the oceanic bad weather associated, is addressed by Eldevik (2000). The
VTL model is based on the three-dimensional primitive equations model.
The former model is the result when a suitable mixing of horizontal mo-
mentum is prescribed to the latter. See section 2 of Eldevik (2000) for
details and the assumptions required. Through simple manipulations of
the governing equations and numerical experiments, Eldevik (2000) finds
that the added mixing dominates the VTL vortex dynamics. Conservation
of potential vorticity, a key element in describing and understanding baro-
clinic dynamics, appears to fail in particular. This explains why staggered
rows of vortices, and not the expected spiral-like cyclones, emerge from the
initial geostrophic flow; compare figures 3 and 4 of Eldevik (2000).

Concluding remarks

In the “mesoscale revolution”, weather and baroclinic instabilities were
attributed to the ocean. This line of research has been continued herein.
The findings of Eldevik and Dysthe (1999, 2000) suggest that spiral eddies
may possibly be the sea surface signature of the “bad weather” below. The
spiral-like cyclones generated and evolving in this baroclinic model regime
are found to be consistent with the observed spatial and temporal scales.
Both modelled and observed spiral eddies are associated with streaks of
strong cyclonic shear and convergence. The numerical experiments indicate



10 On spiral eddies in the ocean

that spiral eddies are restricted to the very upper ocean, and that they are
a source of kinetic energy for the mean flow.

The bad weather generated from ageostrophic baroclinic instabilities is
prone to strong cyclonic lows. This is a cornerstone in the spiral model put
forward, and had to be taken into account when choosing a model ocean. In
particular, the ability of the so-called variable-temperature layer model to
produce oceanic “bad weather” as defined herein, was found to be limited
(i.e., Eldevik 2000).
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