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Preface

Until recently� it was generally accepted that we live in a universe with four in�nite �or
large	 dimensions� one of time and three of space� Over the last few years� several theories
with large extra dimensions have been proposed� The reason why these theories get a lot
of attention is that in addition to explaining why the di
erence between the weak scale
and the Planck scale is so huge� or why the GUT scale seems so large� these theories can
be tested experimentally in the next generation of hadron colliders�

One of the theories mentioned above� known as the Randall�Sundrum �RS	 scenario�
takes one compacti�ed extra dimension into consideration� To stabilize the compacti�ca�
tion radius of the extra dimension� a �eld called the radion �eld is introduced� The radion�
which is the quantum of the radion �eld in the RS scenario� is a massive scalar particle�
which has much in common with the more familiar �but still hypothetical	 Higgs particle
of the Standard Model� Thanks to this similarity� we can approach calculations concerning
radion cross section and decay rates by calculating the corresponding Higgs cross section
and decay rates�

The radion could be the �rst signature of the Randall�Sundrum scenario in the next
generation of proton�proton colliders� and therefore it is important to determine its phe�
nomenology� In this thesis we will calculate the cross section for Higgs production from
two gluons� via a quark loop� We can then use the obtained Higgs result to �nd the ra�
dion production cross section through gluon fusion� By using results for the decay of the
Higgs into two photons via a triangle diagram� we can also �nd the radion decay rate for
decay into two photons� Finally we compare the two processes� where two gluons go to
two photons via an intermediate radion or Higgs� by looking at some combinations of cross
sections and decay rates for the two cases�

In Chapter � we give a historical review together with a brief introduction to the nota�
tion of relativistic quantum mechanics and �eld theory� We also mention some aspects of
the two gauge �eld theories known as Quantum Electrodynamics and Quantum Chromo�
dynamics�

Chapter � is meant to explain how the theory of electroweak uni�cation leads to the
prediction of the Higgs boson� In this chapter we introduce the concept of spontaneous
symmetry breaking� which is crucial to the understanding of the Higgs mechanism� We also
take a look at the Goldstone model� the Higgs model and the Weinberg�Salam model before
we arrive at the electroweak theory� At the end of the chapter� we give the experimental
and theoretical constraints on the mass of the Higgs boson�

Since we need some concepts from Einstein
s general theory of relativity in our treat�
ment of the radion� a short introduction to this topic is given in Chapter �� Note that the
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notation in Chapter � di
ers from the rest of this thesis� since we use opposite sign in the
metric�

The cross section for Higgs production from two gluons via a quark loop is calculated
in Chapter �� We use this to estimate the number of Higgs events produced at the LHC
during one year�

In Chapter �� we review some recently proposed models concerning large extra dimen�
sions� To calculate the production cross section of the Randall�Sundrum radion� through
gluon fusion� we use the results reviewed in Chapter �� This radion cross section is then
compared to the corresponding Higgs cross section�

The decay of the radion into two photons via a triangle diagram is considered in Chapter
�� We also compare this radion decay rate to the corresponding Higgs decay rate�

In Chapter �� we look at the product of the cross section for radion production through
gluon fusion and the decay rate for radion decay into two photons� To compare the radion
to the Higgs� we take the ratio of these products for the radion case and the Higgs case� We
also look at the ratio of the cross section and decay rate in the radion case� and compare
it to the corresponding ratio in the Higgs case�

Some concluding remarks are given in Chapter ��

iv



Contents

� Introduction �

��� Historical Review � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Fundamental Building Blocks of Matter � � � � � � � � � � � � � � � � �
����� Fundamental Forces � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Quantum Mechanics � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Relativistic Quantum Mechanics � � � � � � � � � � � � � � � � � � � � � � � � �
����� Relativistic Notation � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Lorentz Transformation � � � � � � � � � � � � � � � � � � � � � � � � �
����� The Dirac Equation � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Quantum Field Theory � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Quantum Electrodynamics � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Quantum Chromodynamics � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� The Higgs Mechanism ��

��� Spontaneous Symmetry Breaking � � � � � � � � � � � � � � � � � � � � � � � ��
��� Goldstone Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Higgs Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Weinberg�Salam Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Standard Electroweak Theory � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Higgs Production � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� General Theory of Relativity ��

��� Notation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Principle of Equivalence � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Tensors and Curvature � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Einstein
s Field Equations � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� General De�nition of T �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Vierbeins � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Vielbeins � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Higgs Production through Gluon Fusion ��

��� QCD Improved Parton Model � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Feynman Amplitude � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

v



��� Cross Section for the Subprocess gg� H � � � � � � � � � � � � � � � � � � � ��
��� Cross Section for the Process p � p� H � X � � � � � � � � � � � � � � � � ��
��� Numerical Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Radion Production through Gluon Fusion ��

��� Extra Dimensions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The Randall�Sundrum Scenario � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Trace of the Energy�Momentum Tensor � � � � � � � � � � � � � � � � � � � � ��
��� Trace Anomaly � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Cross Section for the Process p � p� � � X � � � � � � � � � � � � � � � � � ��
��� Comparing Higgs and Radion Cross Sections � � � � � � � � � � � � � � � � � ��

� Radion Decay to Two Photons ��

��� Loop Contributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Trace Anomaly Contributions � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Decay Rate for the Process �� �� � � � � � � � � � � � � � � � � � � � � � � ��

� Radion Production and Decay ��

� Concluding Remarks ��

A Feynman Rules ��

B FORTRAN Subroutines in C�� ��

B�� FORTRAN Code � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
B�� C�� Code � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Bibliography ��

vi



Chapter �

Introduction

Particle physics is the study of elementary particles and their interactions� The particles
we today call elementary are six leptons and six quarks�� together with their antiparticles
and the force carriers� Some of these particles have been predicted by theorists before their
discovery� whereas others� like the muon for instance� came as a surprise to the physics
community�� Based on the outstanding success of the Standard Model and its predictions�
a particle known as the Higgs particle is believed to exist� In this thesis we consider the
most dominant Higgs production channel at proton�proton colliders� namely gluon fusion�
and also its decay to two photons�

In a recently proposed scenario with �ve space�time dimensions� referred to as the
Randall�Sundrum �RS	 scenario� a particle called the radion� which is very similar to the
Higgs particle of the Standard Model� is introduced� We will therefore take the Higgs
results and transfer them to the case of radion production through gluon fusion� and its
decay to two photons� There are some important di
erences between the Higgs and the
radion cases� as will be discussed�

After giving a short historical review� we will in this chapter focus on some aspects of
quantum �eld theory�

��� Historical Review

����� Fundamental Building Blocks of Matter

J� J� Thompson discovered the �rst elementary particle� the electron� in ����� This particle
was the �rst constituent of the atom to be identi�ed� and is still� after more than a century
of experiments� considered fundamental�

Through a series of experiments by E� Rutherford and his students� H� Geiger and E�
Marsden� Rutherford concluded that most of the atomic mass� and all of the positive charge�
lie in a minute central nucleus of the atom� Rutherford also found the �rst experimental

�Each quark comes in three di�erent colors�
�When the muon was discovered� I� I� Rabi asked� �Who ordered that��

�
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evidence for the proton in ����� After the discovery of the neutron in ����� by J� Chadwick�
there was no longer any doubt that the constituents of the atom are electrons� protons and
neutrons�

In ���� W� Pauli postulated a new particle� called the neutrino� to explain the apparent
loss of energy in ��decay� Since the neutrino had to interact very weakly with other
particles� Pauli said it could never be detected� However� the last statement was wrong�
In ���� the weakly interacting neutrino was discovered by F� Reines and C� Cowan� who
obtained a very high neutrino �ux by placing their detector nearby a nuclear reactor�

During the �fties and sixties� experiments at particle accelerators showed that protons
and neutrons are members of a huge family of particles called hadrons� In ���� M� Gell�
Mann and G� Zweig independently proposed that hadrons are composite systems� consisting
of two or three fundamental constituents called quarks�� Hadrons consisting of two quarks�

are called mesons and those consisting of three quarks are called baryons� In the original
quark model there were three types of quarks� up� down and strange� and with this model
Gell�Mann and Zweig made a giant step towards taming the hadronic zoo�

A fourth quark� charm� was proposed in ����� based on an underlying symmetry of
nature� to �balance� the number of leptons� known at the time� This assumption was
con�rmed in ����� when a new heavy meson called J�� was discovered independently by
two groups� one led by B� Richter at the Stanford Linear Accelerator �SLAC	 and the other
led by S� Ting at the Brookhaven National Laboratory �BNL	�

In the same spirit� the discovery of the tau lepton in ���� by researchers at Stanford
University� led to the proposal of two new quarks� bottom and top� Both of these were
�rst observed by researchers at the Fermi National Laboratory �FNAL	� the lightest one
�bottom	 in ���� and the heaviest one �top	 in ����� High precision experiments at CERN
and SLAC have con�rmed that there only exist three �light	 neutrino types� Based on
these results� no more quarks are expected to show up��

In July ����� the DONUT experiment at Fermilab announced the direct observation of
the third neutrino� namely the tau neutrino�

����� Fundamental Forces

At the beginning of the ��th century� four forces were considered to be fundamental� These
were gravity� electricity� magnetism and the forces between atoms and molecules� In ����
J� C� Maxwell succeeded in unifying the electric and magnetic forces into one single force�
known as the electromagnetic force� The forces between atoms and molecules were also
understood to be due to electromagnetism�

When nuclear physics entered the scene� two new forces had to be taken into account�

�Zweig called them �aces�� Gell�Mann borrowed the word quark from the passage �Three quarks for
Muster Mark� in James Joyce�s Finnegan�s Wake�

�One quark and one antiquark�
�Electron� muon� electron�neutrino and muon�neutrino�
�For simplicity� we often use u� d� s� c� b and t to label the di�erent quarks�
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namely the nuclear force� between nucleons�� and the weak force� which was �rst observed
in ��decay� The nuclear force is no longer considered fundamental� but due to the strong
force between quarks�

The electromagnetic and the weak force were uni�ed into the electroweak force� by S�
Glashow� S� Weinberg and A� Salam in the sixties� and had a great triumph in ����� when
C� Rubbia� S� Van der Meer and collaborators at CERN discovered the massive vector
bosons predicted by the theory� The electroweak uni�cation is widely accepted� although a
last challenge still remains since the Higgs boson� predicted by the theory� has not yet been
observed� In our summary of the forces considered to be fundamental� we will therefore
keep these two forces separate� The forces are listed according to their strength�

� The strong force is described in a theory formulated in the seventies� called Quantum

Chromodynamics �QCD	� and is due to the exchange of massless gluons� There are
eight gluons and they are spin�� particles� Only particles which have color charge�
i�e� quarks and gluons� feel the strong force� This force is responsible for binding
quarks together� to form color�neutral hadrons� and for binding nucleons together in
the nucleus� If we try to separate two colored objects� quark�antiquark pairs will be
created in the strong �eld between them� This process is called hadronization since
we are left with color�neutral hadrons� The range of the strong force is therefore
short� of the order of ����� m�

� The quantum theory of Electromagnetism is known as Quantum Electrodynamics

�QED	� and is believed to be fully understood� All particles with electric charge feel
the electromagnetic force� and they interact through the exchange of spin�� photons�
The electromagnetic force is what keeps the electrons and the nucleus together in
atoms� It has in�nite range since the photons are massless�

� The weak force is described by the exchange of massive spin�� particles known as
vector bosons� There are three massive vector bosons� two charged� W�� and one
neutral� Z�� Quarks� leptons and the massive vector bosons feel this force� Since the
force carriers are very heavy� the weak force has a very short range� of the order of
����� m�

� Gravity is felt by all massive particles� Einstein
s general theory of relativity has
turned out to be a very good description of this force� but every attempt at formu�
lating a quantum theory of gravity has failed� The quanta of the gravitational �eld
are called gravitons� and are massless spin�� particles� but such particles have never
been observed� Gravity is the weakest of the fundamental forces� but since it has
in�nite range and is always attractive� it dominates on large scales�

Note that all the force carriers have integer spin� and such particles are called bosons�
while leptons and quarks have half�integer spin� and are called fermions�

�Protons and neutrons�
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Today
s Standard Model �SM	 of particle physics consists of quantum theories for both
the strong and the electroweak interactions� There have been several attempts to unify the
strong and electroweak forces into a Grand Uni�ed Theory �GUT	 and also attempts to
make a Theory Of Everything �TOE	 which should include quantum gravity as well� Some
of these theories have already been excluded through experiments� while some theories
make predictions that remain to be tested�

����� Quantum Mechanics

When we observe nature on macroscopic scales� it seems obvious that the energy is part
of a continuous spectrum� On microscopic scales� however� this is not true� If we consider
the energy of an electron in an atom� the energy spectrum is discrete� We say that the
energy is quantized�

To explain the photoelectric e
ect� A� Einstein used the idea of quantization� �rst
proposed by M� Planck� Einstein assumed that electromagnetic waves were absorbed in
energy packets� called photons� and not as a continuous stream as previously thought�
Another phenomenon that needed explanation was why electrons do not radiate� and lose
energy by orbiting around the nucleus� This problem was solved by N� Bohr in �����
when he postulated that electrons can move in certain orbits without losing energy� Bohr
s
postulate together with L� de Broglie
s assumption that not only the photon� but also the
electron have both particle and wave nature led to the formulation of quantum mechanics�
Quantum mechanics is based on four postulates� and one of them introduces the famous
equation known as Schr�odinger�s wave equation� written down in �����

��� Relativistic Quantum Mechanics

����� Relativistic Notation

To be able to do relativistic quantum mechanics� it is convenient to have a relativistic
notation� We will in this thesis use the notation of Mandl and Shaw ���� in natural units�
which means that we put� c � �h � ��

In this notation we use the four�component vectors of space�time� where the �rst com�
ponent is the time component� t� and the last three are the space components� represented
by x� The contravariant four�vector� x�� is de�ned as

x� � �x�� x�� x�� x�	 � �t�x	 ����	

where the superscript � is called the Lorentz index�

Since we want the space component of the covariant vector� x�� to have opposite sign

�The constant� c� is the speed of light in vacuum and �h is Planck�s constant divided by 	��
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from the space component of x�� we de�ne the Minkowski tensor� ��� as

��� � ���

��� � �� � ��� � ��� � ��� � �� ����	

��� � � for � �� �

Now we can de�ne the covariant four�vector� x�� in terms of x� and ��� as

x� �
�X

�	�

���x
� � ���x

� � �x���x���x���x�	 � �t��x	 ����	

where we have used Einstein�s summation convention� Two repeated �Greek	 indices� one
covariant and one contravarinat� are summed over the values
 �� �� �� �� The scalar product
of two four�vectors� which is invariant under Lorentz transformations� can now be written
in di
erent ways�

a�b � a�b� � a�b
� � ���a

�b� � � � � � a�b� � a�b ����	

We will now introduce a generalization of r� the gradient operator in three dimensions�
In our four�dimensional picture it is denoted 	�� and has the following de�nition

	� � 	

	x�
����	

Note that the generalization of the Laplacian operator� ��� called the d
Alembertian op�
erator� �� which is de�ned by

� � 	�	
� �

	�

	t�
��� ����	

is a scalar�

����� Lorentz Transformation

A Lorentz transformation is a transformation between space�time coordinates of two di
er�
ent coordinate frames� The transformation can be written as a four�dimensional rotation
in space�time

x�� � ��
�x

� ����	

where the coe�cients� ��
�� depend on the relative velocity and spatial orientation of the

two frames� Such a transformation is therefore equivalent to a transformation from one
coordinate frame to another coordinate frame with a di
erent velocity� followed by a spatial
rotation�

Einstein
s theory of special relativity requires that laws of motion valid in one inertial
system must be valid in all inertial systems� Therefore we should demand our equations
to be Lorentz covariant� which means that they have the same form in all inertial systems�

�Repeated latin letters indicate summation over the values 
� 	 and ��
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����� The Dirac Equation

Since the Schr�odinger equation does not hold as a relativistic equation� it has to be modi�
�ed� In ���� P� Dirac proposed a relativistic wave equation for the electron� known as the
Dirac equation� The solution of this equation led Dirac to the remarkable conclusion that
there exists a particle with the same mass as the electron� but opposite charge� He called
this particle� which was the �rst example of an antiparticle� the positron� The positron
was discovered in ���� by C� Anderson� and was an enormous triumph for the theory of
relativistic quantum mechanics�

The Dirac equation applies to all fermions� and can be written

�i��	� �m	��x	 � �i�	 �m	��x	 � � ����	

where m is the fermion mass� �� are ��� matrices� and ��x	 is a ��component spinor� We
have also used the �slash� notation�

�p � ��p� � ��p
� ����	

Since we want the Dirac equation to be satis�ed for a free particle� we must require the
four ��matrices� ��� ��� �� and ��� to obey the following anticommutation relation

f��� ��g � ���� � ���� � ���� �����	

We also need the condition p� � m� to be satis�ed� If we let the four�momentum� p� be
denoted by p� � �E�p	� where E is the energy and p is the three�momentum� we get

p� � p�p
� � E� � p� � m� �����	

which is recognized as the relativistic energy�momentum condition�
The ��matrices are not unique� i�e� we can choose among di
erent representations�

Independent of representation� the ��matrices also have to satisfy the condition��

��y � ������ �����	

where the Hermitian conjugation� ��y� is obtained by taking the complex conjugate of the
transpose of ���

It is often convenient to introduce a �fth ��matrix� ��� which can be expressed in terms
of the four others as

�� � �� � i�������� �����	

In this section we introduced the concept of anticommutation relation� The anticom�

mutator between two operators� A and B� is de�ned as

fA�Bg � AB � BA �����	

�	This condition is to ensure Hermiticity of the Hamiltonian� which is necessary to obtain real eigen�
values�
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and in the same manner� we de�ne the commutator to be

�A�B� � AB � BA �����	

Two operators� A and B� are said to anticommute if fA�Bg � � and they commute if
�A�B� � ��

��� Quantum Field Theory

The starting point in quantum �eld theory is the classical Lagrangian formalism� We de�ne
the action integral as

J �
Z t�

t�

dt L �

Z t�

t�

dt

Z
d�xL �����	

where L is the Lagrangian and L is the Lagrangian density� By Hamilton
s principle we
require the action to be extremal� 
J � �� and from this we can obtain the Euler�Lagrange
equations

	L
	�r

� 	�
	L

	�	��r	
� �� r � �� �� � � � � n �����	

where the r in �r labels independent �elds�
In the procedure called canonical quantization we start by choosing a Lagrangian den�

sity� L� which will reproduce the classical equations of motion for the �elds when we insert
it in the Euler�Lagrange equations��� �����	�

To be able to quantize the �elds� we need to determine the conjugate momentum� �r�
of each �eld�

�r�x� t	 � 	L��r� 	��r	

	  �r�x� t	
�����	

where the �dot� notation indicates di
erentiation with respect to time�
We quantize boson �elds by imposing equal time commutation relations between the

�elds and their conjugate momenta���

��r�x� t	� �s�x
�� t	� � �

��r�x� t	� �s�x
�� t	� � �

��r�x� t	� �s�x
�� t	� � �i
rs
����x� x�	

�����	

The quantized �elds are now operators and the coordinates are numbers� in contrast to
non�relativistic quantum mechanics where the position coordinates are operators�

��In some situations there are no classical equations of motion� This is the case for fermion �elds� where
we use a Lagrangian density that reproduces the Dirac equation instead�

��For fermion �elds we impose anticommutation relations�
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It is also useful to have an expression for the Hamiltonian� H� where

H �

Z
d�xH �����	

The Hamiltonian density� H� can be written in terms of the �elds� their conjugate momenta
and the Lagrangian density

H�x	 �
X
r

�r  �r � L�x	 �����	

We end this section by mentioning Noether
s theorem� which states that��Any con�

tinuous symmetry transformation that leaves the Lagrangian invariant� corresponds to a

conserved current�� This theorem implies that to each internal symmetry there corresponds
a conserved charge�

��� Quantum Electrodynamics

In ���� the theory called Quantum Electrodynamics �QED	 was formulated� This theory
describes interactions between the Dirac �matter� �eld and the electromagnetic �eld�

We start by considering the free �eld Lagrangian density for the Dirac �eld� ��x	�

L�� �x	 � ��x	�i��	� �m	��x	 �����	

where the Dirac adjoint of a Lorentz spinor is de�ned as

��x	 � �y�x	�� �����	

To include the electromagnetic interaction� we adopt the minimal substitution from non�
relativistic quantum mechanics by replacing the derivative� 	�� with the covariant deriva�
tive� D��

	� � D� � 	� � iqA��x	 �����	

In eq� �����	� q is the charge annihilated by ��x	� and A��x	 is the electromagnetic �eld�
also called the photon �eld� After this substitution� the Lagrangian density becomes

L��x	 � ��x	�i��D� �m	��x	

� L�� �x	� q��x	����x	A��x	

� L�� �x	 � LI�x	 �����	

QED was the �rst gauge �eld theory� In such theories� the Lagrangian has to be invari�
ant under certain transformations called gauge transformations� A gauge transformation
of the electromagnetic �eld is of the form

A��x	 � A�
��x	 � A��x	 � 	�
�x	 �����	
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where 
�x	 is an arbitrary real di
erentiable function� Observable quantities are gauge

independent� which means that our choice of 
�x	 does not change the predictions of the
theory� Since there is no non�trivial group involved� QED is referred to as an Abelian
gauge �eld theory�

A gauge transformation of the Dirac �eld� which together with eq� �����	 leaves the
Lagrangian density in �����	 gauge invariant� is

��x	 � � ��x	 � e�iq��x���x	

��x	 � �
�
�x	 � ��x	eiq��x�

�����	

The coupled transformation �����	 and �����	 is called a local gauge transformation� since

�x	 depends on x�

It now remains to add a gauge invariant free��eld Lagrangian density for the photon
�eld� A��x	� It follows immediately that

F���x	 � 	�A��x	� 	�A��x	 �����	

is invariant under the transformation �����	� Since the Lagrangian density

LA� �x	 � ��
�
F���x	F ���x	 �����	

reproduces Maxwell
s equations when no charges are present� the total Lagrangian density
for QED can be written as

L�x	 � ��x	�i��	� �m	��x	� �
�
F���x	F ���x	

�q��x	����x	A��x	

� L��x	 � LI�x	 �����	

where the �rst line in �����	 is the free Lagrangian density� and the term in the second line
describes the interaction�

To avoid the problem of a vanishing conjugate momenta� ���x	 � �� which is incom�
patible with the canonical quantization� Fermi suggested the following replacement in the
Lagrangian density� �����	

LA� �x	 � ��
�
F���x	F ���x	 � ��

�
�	�A��x		�	�A��x		 �����	

This replacement is equivalent to imposing the Lorentz gauge condition� 	�A
��x	 � �� A

covariant quantization of the electromagnetic �eld can then be obtained by applying the so�
called Gupta�Bleuler procedure to the modi�ed Lagrangian density� In this procedure� the
Lorentz gauge condition is replaced by a weaker condition� which results in a modi�cation
of Hilbert space�

Note that the photon �eld is massless� i�e� it can not be given mass by adding a mass
term� m�A�A

�� since such a term would destroy the invariance of the Lagrangian den�
sity� �����	� under gauge transformations� This is related to the in�nite range of electro�
magnetic interactions�
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If we should generalize the procedure followed in this section� we would start by the
requirement of invariance with respect to local phase transformations of the matter �eld�
��x	� This is obtained by introducing a gauge �eld that couples to the matter �eld by the
minimal substitution 	���x	 � D���x	� where D���x	 transforms as ��x	 itself�

The interaction between the Dirac �eld and the electromagnetic �eld is known from
the classical limit� and con�rmed by high precision experiments� Also in cases without any
classical limit� this approach has been extremely successful�

��� Quantum Chromodynamics

As mentioned earlier� only colored objects feel the strong force� This force is described
by Quantum Chromodynamics �QCD	� which is a non�Abelian gauge �eld theory based
on the SU��	 group��� Experiments have shown that there are three color degrees of
freedom� which often are labelled by the colors red� blue and green� The quarks� which
come in six �avors� can carry one of these three colors� whereas there are eight gluons
which carry a combination of color and anticolor� Quarks and antiquarks form objects as
baryons� antibaryons and mesons� which are referred to as colorless objects because of their
invariance under rotation in color�space� Since only colorless objects can be observed� the
quarks are said to be con�ned�

We will now introduce some concepts used in the mathematical description of QCD�
The quark �eld can be represented by a color triplet�

�q�x	 �

�����x	
���x	
���x	

�A �����	

which� under a local SU��	 gauge transformation� transforms as

�q�x	 � ��q�x	 � e�igS��x��q�x	 �����	

where gS is the strong coupling constant� We express 
�x	 as


�x	 �

�X
a	�

T a
a�x	 � T a
a�x	 �����	

where 
a�x	 are real functions� and T a are hermitian ��� matrices which satisfy the SU��	
algebra

�T a� T b� � ifabcT c �����	

where fabc are the SU��	 structure constants�

��A non�Abelian �eld theory is a �eld theory based on a non�Abelian group� i�e�� a group with non�
commuting elements�
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Let us now turn to the description of QCD in terms of the Lagrangian density� which
has the following de�nition

LQCD�x	 � �q�x	�i �D �mq	�q�x	� �
�
Ga
���x	Ga ���x	 �����	

The gluon �eld�strength tensor� Ga
���x	� is de�ned as

Ga
���x	 � 	�A

a
��x	� 	�A

a
��x	 � gSf

abcAb
��x	Ac

��x	 �����	

where the gluon �eld is labelled Aa
��x	� and the indices a� b and c run over the eight �gluon	

color states� In QCD� the covariant derivative is de�ned� analogous to QED� as

D� � 	� � igSA��x	 � 	� � igST
aAa

��x	 �����	

Gauge invariance of the Lagrangian density� LQCD�x	� leads to the following �local	 gauge
transformation of the gluon �eld�

Aa
��x	 � Aa �

� �x	 � Aa
��x	 � 	�


a�x	� gSf
abcAb

��x	
c�x	 �����	

where we have dropped higher orders in 
a�x	� Note that except for the last term� which
originates from the non�commutativity of QCD� the gauge transformation of the gluon
�eld is exactly the same as in QED �see eq� �����		� The presence of this term gives rise
to three� and four�gluon couplings� which have no analogy in QED�

To describe the running of the coupling constant� g� in a renormalizable gauge �eld
theory� a function called the ��function is introduced� This function is de�ned as

� �g��		 � 	g��	

	 ln�
�����	

where � is the energy scale and g��	 is the coupling� Note that if the ��function is positive�
which is the case in QED� the coupling� g��	� increases when � increases� It is possible to
calculate the ��function in perturbation theory� and the general� lowest order expression
for the group SU�N	 is �see ���� p� ���	

��g	 � �
�

��

�
CA
� �

�

�
T

�
�

����
g� � � b

����
g� �����	

where�� CA
� � N � T � �

�
nf � and nf is the number of active quark �avors�

In the case of QCD �SU��		� the lowest�order term becomes

�QCD � �bQCD
����

g�S �����	

where

bQCD � ���� �
�
nf 	 �����	

��CA
� is the quadratic Casimir operator in the adjoint representation�



�� CHAPTER �� INTRODUCTION

From �����	 and �����	� we see that �QCD � � would require nf � ����� which is certainly
not realized in nature� The running coupling constant of QCD� which is large at low energy�
will therefore decrease when the energy increases� This is known as asymptotic freedom�
and ensures perturbation theory to be valid at high energies�

From �����	� �����	 and �����	 we see that

d

�
�

g�

�
� � �

g�
dg �

��� �nf
����

d�ln�	 �����	

for g� � �� After integration� we de�ne ���S � which is the inverse of the QCD analogue to
the �ne structure constant of QED� as

���S ��	 � ��

g�S
� ���S ���	� bQCD

��
ln

�
�

��

�
�����	

where we have introduced �� as a constant of integration� In this case� �� is the QCD
cut�o
 parameter� and �	 ��� Note that this expression is linear in ln���GeV	� since

d

d ln�
���S ��	 � �bQCD

��
�����	

is a constant�
It is possible to express �S in terms of the momentum transfer� Q� and the QCD cut�o


parameter� �� which can be thought of as the scale at which �S is O��	 �see ���� p� ��	� To
two�loop order�

�S�Q�	 �
���

���� �nf	 ln�Q����	

�
�� ������ ��nf	

���� nf	�
ln�ln�Q����		

ln�Q����	
� � � �

�
�����	

where nf is the number of active quark �avors� In our calculations� we use � � ��� MeV�
since this is the value used by the CTEQ collaboration in ���� which we will use later� By
inserting nf � �� and neglecting higher order terms� �����	 becomes approximately

�S�Q	 
 ��

�� ln�������Q�GeV	

�
�� ��� ln�� ln�������Q�GeV	�

��� ln�������Q�GeV	

�
�����	

Note that the sign of the ��function also determines whether � increases or decreases since
� is given by � � g�����
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The Higgs Mechanism

In the uni�cation of the weak and electromagnetic forces into the electroweak force� the
leptons and gauge bosons are �rst considered massless �see ���� pp� ������	� This uni�cation
is based on non�Abelian SU��	�U��	 gauge invariance under local phase transformations�

If we want our theory to be consistent with what we observe in nature� the assumption
of massless leptons and gauge bosons is far from realistic� The big question is therefore�
How can we get the particles to acquire mass� without spoiling the renormalizability of the
theory! The reason why we are so concerned about renormalizability is that we are unable
to make predictions from a non�renomalizable theory� To protect the renormalizability of
the theory� it is important that the gauge invariance be preserved� The mechanism which
will take care of this for us is called the Higgs mechanism�� and will be discussed in this
chapter� Our discussion closely follows the description given in Mandl and Shaw ����

��� Spontaneous Symmetry Breaking

The concept of spontaneous symmetry breaking is known from the physics of phase transi�
tions� where the best known examples are the magnetic properties of iron and the absence
of magnetic �elds in superconductors� also known as the Meissner e
ect�

We consider a system where the Hamiltonian is invariant with respect to a certain sym�
metry� This symmetry can be broken spontaneously if the lowest energy level is degenerate�
One of these degenerate energy states is chosen spontaneously as the ground state� which
no longer respects the symmetry� The underlying symmetry of the system is now �hidden�
in the Hamiltonian�

To apply this to gauge �eld theory� we must take the Lagrangian density to be invariant
under the symmetry transformation� but the vacuum to be characterized by some �eld
which is not invariant� The internal symmetry we want to break must be broken by a
scalar �eld ��x	� with a non�zero� but constant expectation value in vacuum

h�j��x	j�i � �� �� � ����	

�Proposed independently by F� Englert and R� Brout 
��� and by P� W� Higgs 
�� in 
����

��
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where �� is a constant� This is the condition for spontaneous symmetry breaking� On the
other hand� the vacuum expectation value for spinor �elds� ��x	� and vector �elds� V ��x	�
must vanish� i�e�

h�j��x	j�i � �� h�jV ��x	j�i � � ����	

The reason for this is that a non�zero spinor or vector �eld would break the rotational
symmetry by giving the vacuum a non�vanishing angular momentum� but that is not what
we want� since the vacuum is rotational invariant�

��� Goldstone Model

We will now consider a model� called the Goldstone model� were we break a global symme�
try� Let us start with a classical complex scalar �eld

��x	 � �p
�

����x	 � i���x	� ����	

where ���x	 and ���x	 are real� Hermitian� �elds� In this model� we take the Lagrangian
density to be

L�x	 � �	����x	��	���x	�� ��j��x	j� � �j��x	j� ����	

with �� and � real parameters�� The Lagrangian density in ����	 is invariant under a global

U��	 gauge transformation

��x	 � ���x	 � ei���x	

���x	 � ����x	 � ���x	e�i�
����	

since ��x	 and ���x	 in ����	 always appear in pairs� This leads to cancellation of the
phases from ����	�

If we insert ����	 into �����	� we get the following expressions for the conjugate momenta

��x	 �  ���x	

���x	 �  ��x	
����	

so the Hamiltonian density� de�ned in �����	� becomes

H�x	 �  ���x	  ��x	 �  ��x	  ���x	� L�x	

� �	����x	��	���x	� � �r���x	���r��x	� � V���x		 ����	

�A classical �eld� ��x�� is Hermitian if ��x� � ���x�� where ���x� is the complex conjugate of ��x��
�As we will see� the most interesting case is �� � �� therefore this notation is somewhat misleading�
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where the potential energy density� V���x		� is de�ned by

V���x		 � ��j��x	j� � �j��x	j� ����	

The �rst two terms in ����	 are positive de�nite� and vanish for ��x	 independent of x�
When ��x	 becomes large� the last term in ����	 dominates� and therefore we must require
� � � to have H�x	 bounded from below�

The vacuum is determined by the minimum value of H�x	� and therefore corresponds
to the minimum value of V���x		� If we write out V���x		 in terms of �� and ��� we get

V���x		 � �
�
�������x	 � ����x	� � �

�
������x	 � ����x	�� ����	

Depending on the sign of ��� two situations may occur�
�i	 �� � �� Both terms of V���x		 are positive de�nite� so there is a global minimum for

the unique solution ��x	 � ���x	 � ���x	 � �� Spontaneous symmetry breaking cannot
occur in this case� since h�j��x	j�i � �� If we now quantize the complex Klein�Gordon
�eld� ��x	� we get charged spin�� particles of mass �� In the quantized theory� the ��term
represents self�interaction�

�ii	 �� � �� By partial di
erentiation of ����	 with respect to �� and �� we �nd a local
maximum at ���x	 � ���x	 � �� and a whole circle of global minima at

�����x	 � ����x	� �
���
�

�����	

If we use ����	 to write this as

��x	 �

r
���
��

ei�� � � � � �� �����	

we see that the vacuum state is degenerate since a value for � must be chosen� Since the
phase� ei�� can be removed by a global phase transformation� we may take � � �� and
de�ne

�� �

r
���
��

� �p
�
v �� � 	 �����	

At this point we introduce new coordinates�

��x	 �
�p
�

�v � ��x	 � i��x	� �����	

If we substitute these new coordinates into the Lagrangian density in ����	� and collect
terms� we can express L�x	 as

L�x	 � �
�
�	���x	��	���x	�� �

�
���v�	���x	

��
�
�	���x	��	���x	�

��v��x	����x	 � ���x	�� �
�
�����x	 � ���x	�� �����	
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where we have used �� � �v�� and suppressed the constant �v���� which is of no signi�
�cance� We are allowed to cancel constant terms from a Lagrangian density� since the
Euler�Lagrange equation only contains derivatives of the Lagrangian density�

It is not possible to carry out perturbation theory around an unstable equilibrium�
without getting into trouble� We easily see this if we try to use perturbation theory
around ��x	 � � in ����	� by treating �j��x	j� as a perturbation� This leads to imaginary
mass for �� � �� Instead we can use perturbation theory around ��x	 � ��� and treat
the terms involving � in eq� �����	 as a perturbation� The free Lagrangian density now
becomes

L��x	 � �
�
�	���x	��	���x	�� �

�
���v�	���x	

��
�
�	���x	��	���x	� �����	

We see from L��x	 that ��x	 and ��x	 are real Klein�Gordon �elds� which we quantize
to get neutral spin�� particles� with the corresponding masses mH and m��

mH �
p

��v� � m� � � �����	

The massless quanta of the ���eld� which arise from the degeneracy of the vacuum state� are
called Goldstone bosons� Since these are not observed in nature� it is important that gauge
�eld theories with spontaneous symmetry breaking do not generate Goldstone bosons�

Since there are no particles in the vacuum� we can see from �����	 and �����	 that

h�j��x	j�i � �� �����	

which satis�es the condition for spontaneous symmetry breaking in ����	�

��� Higgs Model

Let us now try to break a local U��	 gauge symmetry spontaneously by generalizing the
Goldstone model� To get the Lagrangian density for this model� which is referred to as the
Higgs model� we replace 	���x	 in eq� ����	 by the covariant derivative

	���x	 � D���x	 � �	� � iqA��x	���x	 �����	

and add the free Lagrangian density of the photon �eld� The Lagrangian density for the
Higgs model then becomes

L�x	 � �D���x	���D���x	�� V���x		� �
�
F���x	F ���x	 �����	

where V���x		 and F���x	 are de�ned in ����	 and �����	 respectively� A gauge transfor�
mation� under which the Lagrangian density in �����	 is invariant� is

A��x	 � A�
��x	 � A��x	 � 	�
�x	

��x	 � ���x	 � e�iq��x���x	

���x	 � ����x	 � ���x	eiq��x�
�����	



���� HIGGS MODEL ��

where 
�x	 is real� Like in the Goldstone model� we start from a classical theory� and the
same argument as before forces us to take � � �� Again two situations occur� depending
on the sign of ���

�i	 �� � �� In this case� both ��x	 and A��x	 vanish in the vacuum� so the condition
for spontaneous symmetry breaking in ����	 is not ful�lled�

�ii	 �� � �� For the vector �eld� A�� we must require h�jA��x	j�i � � due to Lorentz
invariance� and the fact that the vacuum is invariant under rotation� We again get a circle
of absolute minima for V���x		� and choose ��� given in �����	� as the minimum value� If
we write the Lagrangian density in terms of the new coordinates in �����	� we get

L�x	 � �
�
�	���x	��	���x	�� �

�
���v�	���x	

��
�
F���x	F ���x	 � �

�
�qv	�A��x	A��x	

��
�
�	���x	��	���x	�

�qvA��x		���x	

�LI�x	 �����	

In this case LI�x	 contains cubic and quartic terms in the �elds� and the constant� �v���� has
been removed� Note that there is a problematic term in L�x	� namely the one containing
A��x		���x	� which tells us that these �elds are not independent�

Another problem is that the number of degrees of freedom in �����	 does not match the
number of degrees of freedom in �����	� In eq� �����	 we have a complex scalar �eld� ��x	�
representing two degrees of freedom� and a massless vector �eld� A��x	� also representing
two degrees of freedom� The total number of degrees of freedom in eq� �����	 is therefore
four� If we now look at eq� �����	 we see two real scalar �elds� ��x	 and ��x	� representing
one degree of freedom each� and a massive vector �eld A��x	 representing three degrees of
freedom� The total number of degrees of freedom in eq� �����	 is then �ve� We conclude
that �����	 contains an unphysical �eld� which can be removed by an appropriate choice
of gauge� In the gauge called unitary gauge� the ��x	��eld is removed by requiring ��x	 to
be real� and of the form

��x	 �
�p
�

�v � ��x	� �����	

We see that the vacuum expectation value in this case is

h�j��x	j�i � �� �����	

which is the condition for spontaneously broken symmetry given in ����	�
The Lagrangian density in unitary gauge is

LU�x	 � �
�
�	���x	��	���x	�� �

�
m�

��
��x	

��
�
F���x	F ���x	 � �

�
M�A��x	A��x	

��
�
q���v��x	 � ���x	�A��x	A��x	

��v���x	� �
�
����x	

� L��x	 � LI�x	 �����	
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where L��x	 is the �rst two lines and LI�x	 is the third and fourth lines of eq� �����	�
Treating LI�x	 as a perturbation� we see that ��x	 is a real Klein�Gordon �eld� and A��x	
is a massive vector �eld� If we now quantize� ��x	 corresponds to neutral spin�� bosons of
mass mH �

p
��v�� and A��x	 to neutral vector bosons of mass M � jqvj� The scalar �eld

��x	 is known as the Higgs �eld� and its quanta are called Higgs bosons�
To summarize� It seems possible to get a massless vector �eld to become massive

through spontaneously broken symmetry� without destroying renormalizability� which is
protected by the hidden symmetry of the Lagrangian density� The complex scalar �eld is
through this process transformed into a massive scalar �eld� and it seems like the Gold�
stone bosons have been �eaten� by the gauge transformed vector �eld� This phenomenon�
by which a vector boson acquires mass without destroying the gauge symmetry of the
Lagrangian density� is called the Higgs mechanism�

To show renormalizability� G� 
t Hooft used a technique similar to the one used in QED
by introducing a gauge condition

	�A
��x	 � M��x	� M � jqvj �����	

which is known as 
t Hooft gauge� This is equivalent to the following substitution in the
Lagrangian density in �����	

��
�
F���x	F ���x	 � ��

�
F���x	F ���x	� �

�
�	�A

��x	�M��x	�� �����	

The cross term in �����	 is combined with the problematic term A��x		���x	 in �����	� to
give a total derivative which is removed through integration by parts�

In 
t Hooft gauge� the ��x	��eld is reintroduced� This is� as we have previously seen�
not a physical �eld� The quanta of such �elds are called �ghosts�� and contribute only as
intermediate� or virtual� �particles�� Their properties are gauge dependent�

��� Weinberg�Salam Model

In this section� we will see how a local SU��	 � U��	 gauge symmetry can be broken
spontaneously� This was done independently by Weinberg in ���� and Salam in ����� and
it leads to the theory of electroweak interactions�

First we de�ne the �eld�strength tensors in terms of the �elds�

F ���x	 � 	�A��x	� 	�A��x	 �����	

Z���x	 � 	�Z��x	� 	�Z��x	 �����	

F ��
W �x	 � 	�W ��x	� 	�W ��x	 �����	

where the �elds A�� Z� and W � are related to the �elds W �
i and B� by

A��x	 � cos �WB
��x	 � sin �WW

�
� �x	 �����	

Z��x	 � � sin �WB
��x	 � cos �WW

�
� �x	 �����	

W ��x	 �
�p
�

�W �
� �x	� iW �

� �x	� �����	
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Note that W ��x	 is a non�Hermitian �eld� and that the weak mixing angle�� �W � relates
the coupling constants

gW sin �W � g�W cos �W � e �����	

Let us start from the gauge�invariant Lagrangian density given in ���� pp� ��� and ����

L�x	 � LL�x	 � LB�x	

� i
h
"
L

l �x	 �D"L
l �x	 � �

R

l �x	 �D�R
l �x	 � �

R

�l
�x	 �D�R

�l
�x	
i

�
h
��

�
F���x	F ���x	� �

�
F y
W���x	F ��

W �x	� �
�
Z���x	Z���x	

i
�LBI �x	 �����	

where LBI �x	 describes interactions among gauge bosons� and the covariant derivatives are
de�ned as�

D�"L
l �x	 � �	� � igW �jW

�
j �x	��� ig�WB

��x	���"L
l �x	 �����	

D��R
l �x	 � �	� � ig�WB

��x	��R
l �x	 �����	

D��R
�l

�x	 � 	��R
�l

�x	 �����	

In the de�nition of �L�x	 and �R�x	� the left and right projection operators� PL and PR�
are involved

�L�x	 � PL��x	 � �
�
��� ��	��x	 �����	

�R�x	 � PR��x	 � �
�
�� � ��	��x	 �����	

A two�component isospinor �eld� "L
l �x	� is also de�ned as

"L
l �x	 �

�
�L
�l

�x	

�L
l �x	

�
�����	

with

"
L

l �x	 �
	
�
L

�l
�x	 �

L

l �x	



�����	

The Lagrangian density in �����	 is invariant under SU��	�U��	 gauge transformation�
but in order to give the gauge bosons� W� and Z�� non�vanishing masses� we must apply
the Higgs mechanism� To break the SU��	 symmetry� we introduce the Higgs �eld as a
weak isospin doublet

#�x	 �

�
�a�x	

�b�x	

�
�����	

�Sometimes referred to as the Weinberg angle�
�The 	� 	 Pauli�matrices are represented by �j �
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where the components �a�x	 and �b�x	 are scalar �elds under Lorentz transformations� To
include the Higgs �eld� the Lagrangian density� �����	� is generalized to

L�x	 � LL�x	 � LB�x	 � LH�x	 �����	

where LH�x	 is

LH�x	 � �D�#�x	�y�D�#�x	�� ��#y�x	#�x	� ��#y�x	#�x	�� �����	

and the covariant derivative is de�ned analogous to �����	 as

D�#�x	 � �	� � igW �jW
�
j �x	�� � ig�WY B

��x	�#�x	 �����	

Note that the Lagrangian density in �����	 is still SU��	� U��	 invariant��
Analogous to the Higgs model� for � � � and �� � �� we get the minimum energy

density for

#�x	 � #� �

�
��a
��b

�
�����	

when

#y�x	#�x	 � j��aj� � j��bj� � ���

��
�����	

This corresponds to a circle of absolute minima as before� and we may choose #� to be

#� �

�
��a
��b

�
�

�
�

v�
p

�

�
�����	

where v is de�ned� according to �����	� as

v �
p
����� �����	

To ensure that the photon remains massless� we require the Higgs �eld in vacuum to be
invariant under a U��	 symmetry� Since there is no electric charge in vacuum� we must
require h�j#�j�i to be electrically neutral�

To determine the hypercharge of the Higgs �eld� we focus on the scalar �eld� ��b � which
has a non�vanishing expectation value in vacuum� The hypercharge� Y � has the following
de�nition

Y � Q�e� IW� �����	

where Q is the electric charge and IW� is the weak isocharge� Since the lower component of
a weak isospinor has IW� � ��

�
� and Q � � in this case� the hypercharge of the Higgs �eld�

#� is Y � �
�
�

�The hypercharge� Y � of the Higgs �eld will be determined later�
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To obtain non�vanishing lepton masses we introduce Yukawa couplings by adding the
following term to the Lagrangian

LLH�x	 � �gl
h
"
L

l �x	�R
l �x	#�x	 � #y�x	�

R

l �x	"L
l �x	

i
�g�l

h
"
L

l �x	�R
�l

�x	e#�x	 � e#y�x	�
R

�l
�x	"L

l �x	
i

�����	

where gl and g�l are dimensionless coupling constants� proportional to the lepton masses��

The de�nition of e#�x	 is

e#�x	 � �i
he#y�x	��

iT
�

�
��b�x	

���a�x	

�
�����	

Quark masses and quark�Higgs couplings are obtained in the same manner�
Note that in an arbitrary gauge� the Higgs �eld from �����	 can be written in terms of

four real �elds� ���x	� ���x	� ���x	 and ��x	� as

#�x	 �
�p
�

�
���x	 � i���x	

v � ��x	 � i���x	

�
�����	

��� Standard Electroweak Theory

The theory of electroweak interactions� developed by Glashow� Weinberg and Salam� leads
to predictions which are in excellent agreement with experiments� There is only one piece
missing in the puzzle� and that is the Higgs boson� We will in this section see why the
mass of the Higgs boson cannot be predicted from the electroweak theory�

In unitary gauge� the Higgs �eld� #�x	� from the previous section can be written as

#�x	 �
�p
�

�
�

v � ��x	

�
�����	

which can be used to rewrite the Lagrangian density obtained from �����	 and �����	� Here
we shall only quote the result �see ���� p� ���	�

L�x	 � LB�x	 � LH�x	 � LL�x	 � LLH�x	

� L��x	 � LI�x	 �����	

where

L��x	 � �l�x	�i�	 �ml	�l�x	 � ��l
�x	�i�	 �m�l	��l�x	

��
�
F���x	F ���x	

��
�
F y
W���x	F ��

W �x	 � m�
WW

y
��x	W ��x	

��
�
Z���x	Z���x	 � �

�
m�

ZZ��x	Z��x	

��
�
�	���x		�	���x		� �

�
m�

H�
��x	 �����	

�Summation over l � e� �� � is assumed�
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and

LI�x	 � LLBI �x	 � LBBI �x	 � LHH
I �x	 � LHB

I �x	 � LHL
I �x	 �����	

The di
erent terms in LI�x	 can be found in ���� pp� �������� Some new parameters have
been introduced in eq� �����	� which can be expressed as

mW � �
�
vgW � mZ �

mW

cos �W
� mH �

p���� �
p

�� v �����	

By using the relations in �����	 and �����	� the masses of the heavy vector bosons can
be predicted in terms of three experimentally well�known quantities� which are ����
The �ne�structure constant

� �
e�

��
� ������������ �����	

the Fermi coupling constant

GF �
�p
� v�

�

p
� g�W

�m�
W

� ��������� ���� GeV�� �����	

and the weak mixing angle�� �W � given by

sin� �W � ������� ������� � � �W � ��� �����	

The predictions are

mW �

�
��

GF

p
�

��

� �

sin �W
� mZ �

�
��

GF

p
�

��

� �

sin���W 	
�����	

If radiative corrections are taken into account
� these predictions are in good agreement
with the experimental values� but we do not know the mass of the Higgs boson� since the
self�interaction constant� �� is unknown�

Since the electromagnetic gauge symmetry has not been broken� the photon must re�
main massless� The gauge bosons W�� Z�� and the leptons however acquire mass��� We
again see that the Higgs �eld survives� and on quantization gives rise to massive Higgs
bosons� The standard electroweak theory is an attempt to unify the electromagnetic and
the weak force� If this model describes the world we live in� the Higgs boson must exist�
The only way to �nd out is through experiments�

�The value given here is obtained from measurements of mW and mZ � Historically� a value obtained
from neutrino scattering was used�

�Radiative corrections take into account corrections of higher order in the coupling constant� These
include self�energy corrections� vertex corrections and real �soft� emission�

�	If quarks were included in the theory� they would acquire mass the way leptons do�
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��� Higgs Production

Through their thorough experimental searches� physicists have excluded the existence of
a neutral scalar Higgs boson with a mass less than ����� GeV at a con�dence level of
�� $ �see ���	� From the requirement of perturbation theory to be valid� theorists have
established an upper mass limit of the order � TeV� Therefore� if the Higgs boson exists�
there are strong reasons to believe it will be found in the mass region

����� GeV � mH �
 � TeV �����	

The experimental mass limit has been obtained through experiments at LEP��� At
LEP� one has searched for the decay Z� � HZ��� where Z�� is a virtual Z� boson� or
e
e� � HZ�� If LEP fails in detecting the Higgs boson��� the challenge will go to future
experiments at the upgraded Tevatron at Fermilab� At Fermilab� where they have a proton�
antiproton collider� the background is larger� The most promising processes are p�p �
HZ�X and p�p� HW�X� where X can be �anything��

From the year ���� �or ����	� the Large Hadron Collider �LHC	 at CERN is expected
to collide protons at energies up to �� TeV in the center of mass� If the Higgs boson is
still undiscovered� the experiments at the LHC will determine if it exists or not� At LHC�
the production process gg � H� where g represents a gluon� will be dominant ���� Since
gluons are massless� and the Higgs boson couples to other particles proportional to their
masses� gluons will not couple directly to the Higgs boson� Instead we have to consider
one�loop Feynman diagrams as the lowest order in perturbation theory� Since gluons only
couple to color�charged particles� the loop will contain �heavy	 quarks� The two possible
one�loop Feynman diagrams for this process are shown in Figure ��� on page ���

If the Higgs boson has a relatively low mass� mH �
 ��� GeV� one possible way of
detecting it at the LHC is through two�photon decay� Although the branching ratio� which
gives us the probability of a Higgs decaying into two photons� is very low� this is a very
clean channel� by which we mean low background� The decay rate of a Higgs decaying
into two photons is to lowest order calculated from one�loop Feynman diagrams� which we
show schematically in Figure ��� on page ���

So far� we have only considered the Higgs boson of the Standard Model� Extensions
of this model often include several Higgs bosons� One of these extended models is the
Minimal Supersymmetric Standard Model �MSSM	� In supersymmetric models there is a
symmetry between bosons and fermions� which leads to supersymmetric partners�� for each
particle� Since sparticles should have the same mass as particles� but are not observed�

��Large Electron Positron collider at CERN�
��On the �th of September� 	���� the �Special LEPC Seminar� was held at CERN� The preliminary

combined result on the SM Higgs mass limit for the four LEP experiments� which was presented by C�
Tully� LEP Higgs working group� was mH � 

	��GeV at a con�dence level of ���� Due to some possible
Higgs events observed around 

�GeV� a proposal to extend the run of LEP for some months� to improve
the statistics� is now under evaluation�

��The superpartner of a boson is a fermion and vice versa� and they have the same name as their partner�
but normally with an �s� in front� like in squark and slepton� or an �ino� at the end� like in gluino�
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the symmetry has to be spontaneously broken� To avoid anomalies� two complex Higgs
doublets� with together eight degrees of freedom� have to be introduced� Three degrees
of freedom are absorbed in the longitudinal components of the massive electroweak gauge
bosons� and the �ve remaining degrees of freedom lead to �ve scalar Higgs particles� Two
of them� h� and H�� are CP�even��� two are charged� H�� and there is one pseudoscalar�
or CP�odd� A�� The Higgs sector of the MSSM is described by two parameters� the most
common choice is the mass of the pseudoscalar� mA� � and tan� � v��v�� where v� and v�
are the two non�vanishing vacuum expectation values� However� the discovery of a Higgs
boson with SM couplings would not exclude the MSSM since in the limit of large masses
for A� and H�� h� is indistinguishable from the Standard Model Higgs particle� HSM �

Let us de�ne the R�parity for a particle of spin S as

R � ���	��B�L�
�S �����	

where B is the baryon number and L is the lepton number��� The MSSM is an R�parity
conserving theory� and R�parity invariance implies that supersymmetric particles must be
pair�produced� Due to R�parity conservation� the sparticles will decay to the Lightest
Supersymmetric Particle �LSP	� which is stable� and therefore may contribute to the �cold
dark matter� in the universe� Based on cosmological observations� the LSP interacts weakly
with ordinary matter� and would therefore behave like a neutrino with an enormous mass�
If supersymmetry exists� but has not been discovered until ����� the experiments at LHC
will discover it�

��By convention� h	 is the lightest�
��Note that R � 
 for particles� and R � �
 for sparticles�



Chapter �

General Theory of Relativity

We will in this chapter give some de�nitions� and introduce some concepts of the general
theory of relativity�� Some of the concepts presented in this chapter will be useful in our
study of the radion in Chapter ��

In Einstein
s general theory of relativity� gravitation is understood as a consequence
of the curvature of space�time� The branch of mathematics used to describe this non�
Euclidean behavior of space�time is called di�erential� or Riemannian geometry� In �����
after several attempts� Einstein �nally succeeded in formulating the general theory of rel�
ativity� The hope was now that all forces could be uni�ed in a geometrical description�
As pointed out by S� Weinberg in ���� our present knowledge of strong� weak and electro�
magnetic interactions suggests that the geometrical approach is not the way to obtain a
complete uni�cation of the fundamental forces� The general theory of relativity can also be
derived from the principle of equivalence of gravitation and inertia� which is the approach
followed by Weinberg� In his approach� Riemannian geometry is only a mathematical tool�
whereas the principle of equivalence� which is the fundamental basis� can be con�rmed by
experiment�

��� Notation

We will now specify the notation we will use in this chapter� since it di
ers from the one used
in the previous chapters� In inertial coordinate systems� we use the familiar Minkowski
metric� ���� which corresponds to a ��at� space�time� but with diagonal elements� ���
��� ��� ��� We let the indices at the beginning of the Greek alphabet run over the four
coordinate labels in Minkowski space� �� �� �� �� with � as the time component� In a general
four�dimensional coordinate system� we use g�� as the metric tensor and let the indices
in the middle of the Greek alphabet run over the general coordinate labels� We will also
write out the partial derivatives instead of using the 	� notation� in order to clarify which
coordinates we di
erentiate with respect to�

�For more details� see 
���
�This metric will only be used in Chapter ��

��
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��� Principle of Equivalence

The principle of the equivalence of gravitation and inertia� which was introduced by Ein�
stein in ����� can be formulated as follows�� At every space�time point in an arbitrary

gravitational �eld it is possible to choose a �locally inertial coordinate system� such that�

within a su	ciently small region of the point in question� the laws of nature take the same

form as in unaccelerated Cartesian coordinate systems in the absence of gravitation
 In
this context� �su�ciently small region� means that the gravitational �eld can be consid�
ered constant within the region� and �the same form as in � � � �� refers to the laws of nature
given by special relativity� From Riemannian geometry� we know that at any point on a
curved surface� it is possible to �nd a locally Cartesian coordinate system� in which dis�
tances obey the law of Pythagoras� so a connection between the laws of gravitation and
the formulae of Riemannian geometry should not surprise us�

In a locally inertial coordinate frame� ��� of a freely falling massive particle� the equation
of motion is the equation of a straight line in space� which is

d���

d� �
� � ����	

where � is the proper time

d� � � dt� � dx� � ����d��d�� ����	

By a coordinate transformation� the equation of motion� ����	� can be expressed in any
other coordinate frame� x�� as ���

d�x	

d� �
� %	

��

dx�

d�

dx�

d�
� � ����	

where the a	ne connection�� %	
�� � is de�ned by

%	
�� �

	x	

	��
	���

	x�	x�
����	

If we de�ne the metric tensor� g��� by

g�� � 	��

	x�
	��

	x�
��� ����	

we may also write the proper time as

d� � � �g��dx�dx� ����	

To get the equations of motion for massless particles� we substitute the proper time� � � by
� � �� in the above equations�

�Quoted from 
���
�The elements of the a�ne connection are called Christo�el symbols�
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All information of the gravitational �eld is contained in %	
�� and g��� which also deter�

mine the locally inertial coordinate frame up to an inhomogeneous Lorentz transformation�
In order to �nd a relation between the a�ne connection and the metric tensor� we specify
the meaning of �locally inertial� in the principle of equivalence as� It is possible to choose
the locally inertial coordinates� ��X � that we construct in a given point� X� such that the
�rst derivatives of the metric tensor� gX
�� in the locally inertial coordinates vanish at X�
This means that the metric tensor at a point X � in the coordinate system ��X � which can
be expressed as

gX
��X
�	 �

�
	��X��x	

	�
X�x	

	��X��x	

	��X�x	
���

�
x	X�

����	

is stationary in X � at X � � X� We can now express the a�ne connection� %�
	�� in terms of

the metric tensor and its derivatives� as ���

%�
	� � �

�
g��



	g��
	x	

�
	g	�
	x�

� 	g�	
	x�

�
����	

The metric tensor can also be expressed in matrix notation as

g � DT�D ����	

where g and � are �� � matrices� with elements g�� and ��� respectively� and D is given
by

D�� � 	��

	x�
�����	

with DT as its transpose �
DT
�
��
� D�� �����	

This kind of transformation between the metric tensor� g��� and the Minkowski tensor�
���� ensures that both must have one positive eigenvalue and three negative eigenvalues�

Another formulation of the principle of equivalence is the principle of general covariance�
which states that a physical equation holds in a general gravitational �eld if the following
two conditions are satis�ed��

� The equation holds in the absence of gravitation� which means that it agrees with the
laws of special relativity when the metric tensor� g��� equals the Minkowski tensor
���� and when the a�ne connection� %�

�
 � vanishes�

� The equation is generally covariant� i�e� it preserves its form under a general coordi�
nate transformation� x� x��

When the principle of general covariance is applied on a small scale compared to the scale
of the gravitational �eld� we only expect g�� and its �rst derivatives to enter the generally
covariant equations�

�Quoted from 
���
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��� Tensors and Curvature

By de�nition� a tensor transforms like a product of contravariant and covariant vectors
under a coordinate transformation� Tensors with two indices are called second�rank tensors�
four�vectors are tensors of rank one� and scalars are tensors of rank zero� As an example�
we consider the transformation of a mixed third�rank tensor�

T �
�	 � T ��

�	 �
	x� �

	x�
	x


	x� �
	x�

	x� 	
T �


� �����	

The transformation of a tensor of rank n is a straightforward generalization� Note that we
can also have purely covariant or contravariant tensors� A theorem from tensor analysis�
which is important in the general theory of relativity says that any equation will be invariant
under general coordinate transformations if it states the equality of two tensors with the

same upper and lower indices


The a�ne connection is not a tensor� and another very important non�tensor is the
determinant of the metric tensor

g � Det g�� �����	

Note that the metric tensor has lower indices in the de�nition of g� It is also possible to
show that

p�g d�x is an invariant volume element�
We introduce the covariant derivative� V �

�	� of a contravariant four�vector� V �� which
is de�ned as

V �
�	 �

	V �

	x	
� %�

	�V
� �����	

When covariant four�vectors are considered� a minus sign enters in front of the a�ne
connection� We illustrate the generalization to the covariant derivative of a tensor by an
example �see ���� eq� �������		

T ��
	�
 �

	

	x

T ��

	 � %�

�T

��
	 � %�


�T
��
	 � %�

	
T
��
� �����	

If we take the covariant derivative of a tensor� the result is also a tensor� and in the absence
of gravity� i�e� when %�

�	 � �� covariant di
erentiation reduces to ordinary di
erentiation�
Equations that hold in a general coordinate system are obtained by replacing ��� with
g��� and all derivatives with covariant derivatives in the equations from special relativity�
The principle of general covariance ensures that the resulting equations will be true in the
presence of gravitational �elds�

From the metric tensor and its �rst and second derivatives� it is possible to construct
only one tensor which is linear in the second derivatives� This tensor is called the Riemann�
Christo�el curvature tensor� R	

���� and is de�ned as �see ���� eq� ������		

R	
��� �

	%	
��

	x�
� 	%	

��

	x�
� %�

��%
	
�� � %�

��%	
�� �����	

�A mixed tensor has both upper and lower indices�
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Related tensors are the Ricci tensor�

R�� � R	
�	� �����	

and the curvature scalar�

R � g��R�� �����	

The necessary and su�cient conditions for a metric� g��� to be equivalent to the
Minkowski metric� ���� are�

� The curvature tensor calculated from g�� must vanish everywhere� i�e� R	
��� � �

� At some point X� the matrix g���X	 has one positive eigenvalue and three negative
eigenvalues�

It is important to be able to make predictions from a theory� and the theory of general
relativity certainly satis�es this demand� Whether we interpret the predictions as a conse�
quence of the curvature of space and time� or as the physical e
ect of gravitational �elds
is of less importance�

��� Einstein�s Field Equations

Gravitational �elds are generated by energy and momentum� but since the �elds themselves
represent energy and momentum� they must contribute to their own source� and therefore
be described by nonlinear partial di
erential equations� In the case of the general theory
of relativity� these equations� known as Einstein�s �eld equations�� are

R�� � �
�
g��R � ���GT�� �����	

where G is Newton
s constant�� and T�� is the symmetric energy�momentum tensor� which
will be de�ned later �see eqs� �����	 and �����		� The left hand side is sometimes de�ned
as the Einstein tensor� G��� and eq� �����	 becomes

G�� � ���GT�� �����	

By contracting indices� �����	 can be written alternatively as

R�� � ���G�T�� � �
�
g��T

	
		 �����	

�Initially� Einstein had a term involving a cosmological constant� �� in his equations� This term was
introduced ad hoc in the theory� to give a static universe� Einstein later referred to this as the biggest
mistake of his life� but recent observations have suggested that maybe a cosmological constant has to be
reintroduced�

�G � ���
� 
�����GeV��� � ����� 
����m� kg��s���
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Since the energy�momentum tensor vanishes in vacuum� we see from �����	 that the
Einstein equations in empty space are simply

R�� � � �����	

In the case of three�dimensional space�time� the curvature tensor can be written as
 �see
����� p� ��	

R��
� � R�
g�� � R��g�
 � R��g�
 � R�
g�� � R

�
�g�
g�� � g��g�
	 �����	

From eqs� �����	� �����	 and �����	� we see that R��
� vanishes in this case� which means
that no gravitational �elds can exist� When two�dimensional space�time is considered� the
same conclusion is valid� since only the last term in eq� �����	 enters� Four�dimensional
space�time is therefore the lowest dimension in which true gravitational �elds can exist in
empty space�

When we consider a gravitational �eld far from its source� we may write the metric
tensor� g�� � as

g�� � ��� � h�� �����	

and treat the gravitational �eld� h�� � as a perturbation� If we neglect terms of second order
in h� we must have

g�� � ��� � h�� �����	

in order to satisfy the relation g�
g
� � 
��� This approach leads to wave equations for
a spin�� �eld� but since Einstein
s equations are nonlinear� the theory of gravitational
radiation is very complicated� The fact that gravitational waves� predicted by the general
theory of relativity� never have been detected is no surprise� because of the weakness of
gravity�

As mentioned in Chapter �� there does not exist any complete quantum theory of
gravity� However� the force carrier of gravity is expected to be a massless spin�� particle�
called the graviton� The problem with such a theory is that it is non�renormalizable�
i�e� it contains an in�nite number of divergent integrals which can not be absorbed into
rede�nitions of the parameters� According to Weinberg� it seems impossible to create a
Lorentz invariant quantum theory of gravity� without requiring the principle of equivalence�
on which the whole of classical general relativity is based� to be satis�ed�

��� General De	nition of T ��

The energy�momentum tensor� T ��� is of particular interest to us� since we will use it
in Chapter � to establish the relation between the Higgs and the radion couplings to

�The upper index in ���
�� has been lowered by the metric tensor� the indices run over three coordinate
labels�
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Standard Model particles��� We will in this section give the general de�nition of the
energy�momentum tensor�

Under an in�nitesimal variation of the metric tensor�

g�� � g�� � 
g�� �����	

the variation of the matter action� JM � of a system can be written


JM � �
�

R
d�x

p�g�x	T ���x	
g���x	 �����	

where the coe�cient� T ���x	� by de�nition� is the energy�momentum tensor of the system�
The energy�momentum tensor is symmetric� and it is also conserved in the covariant sense if
and only if the matter action is a scalar� From �����	 and the generalization�� of eq� �����	�
we see that T �� can be expressed as

T �� �
�p�g


 �
p�gLM	


g��
�����	

where LM is the matter Lagrangian density���
We will now consider the total action of a system� which can be expressed as

J � JM � JG �����	

Let us take the purely gravitational part of the action� JG� to be

JG � � �

���G

Z
d�x

p
�g�x	R�x	 �����	

where R is the curvature scalar��� Variation of the metric as indicated in �����	� leads to
the following change in the integrand


�
p�g R	 �

p�g R��
g
�� � R


p�g �
p�g g��
R�� �����	

It is possible to show that the last term in �����	 drops out when we integrate over all
space��� If we therefore focus on the �rst two terms� we see that expressions for 
g�� and


p�g are needed�

In order to �nd 

p�g� we shall �rst �nd 
g� The di
erential of the determinant of g��

is the sum of the di
erentials of each component� 
g��� multiplied by their corresponding

�	In this section� we follow the presentation given in 
��� Chapter 
	�
��We let d�x� p�g d�x to maintain an invariant volume element�
��The energy�momentum tensor for a gravitational �eld will also contain derivatives with respect to the

�rst derivative of the metric tensor� This is because Einstein�s equations are nonlinear partial di�erential
equations�

��If JG is de�ned with opposite sign �


�� eq� �

�
���� Einstein�s equations become G�� � ��GT��
�


�� eq� �

������

��This is shown in 
��� p� ����
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cofactors� An expression for the cofactor of the component� g�� � can be obtained from the
component g��� Since the matrices g�� and g�� are reciprocal� i�e� g�	g	� � 
�� � we may
use a result from linear algebra� Let A be the following �� � matrix

A �

����
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��

���� �����	

then A��� which is the inverse of A� is given by �see ����� p� ���	

A�� �
�

DetA

����
C�� C�� C�� C��

C�� C�� C�� C��

C�� C�� C�� C��

C�� C�� C�� C��

���� �����	

where C�� is the cofactor of the element a�� � From eqs� �����	 and �����	� we see that
the component g�� equals the cofactor of the element g��� divided by the determinant� g�
This allows us to express the cofactors of the determinant of g�� as gg��� but since g�� is
symmetric� we may write


g � gg��
g�� � � �p�g�� g��
g�� �����	

We can now use �����	 to express 

p�g as



p�g � � �

�
p�g
g � �

�

p�g g��
g�� �����	

Di
erentiation of the expression g
�g
�� � 
�
 � leads to

g��
g
� � g
�
g
�� � � �����	

and if we multiply �����	 by g�
� we get


g�� � �g�
g��
g
� �����	

Let us now use eqs� �����	� �����	 and �����	 to express 
JG as


JG �
�

���G

Z
d�x

p�g�R�� � �
�
g��R

�

g�� �����	

Equations �����	 and �����	 can be combined to give 
J � which is the di
erential of the
total action� J � JM � JG� By Hamilton
s principle� we require 
J � �� but since 
g�� is
arbitrary� this corresponds to

R�� � �
�
g��R � ��GT �� � � �����	

which we recognize as Einstein
s �eld equations with upper indices compared to �����	�
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��� Vierbeins

Since spinor �elds do not behave like tensors under Lorentz transformation� the formalism
in the previous section can not be used� In this section� we will introduce the concept of
vierbeins� which allow us to incorporate spinors in the theory�

The relation between the Minkowski tensor and the metric tensor� given in eq� ����	
can be written as

g���x	 � V �
��x	V �

��x	��� �����	

where

V �
��X	 �

�
	� �

X �x	

	x�

�
x	X

�����	

Since the locally inertial coordinates� � �
X � are �xed at each point� V �

� must transform like

V �
� � V ��

� �
	x�

	x� �
V �

� �����	

We see that V �
�� which is called a vierbein� or tetrad� behaves like four covariant vector

�elds� and not as a tensor� If A� is a vector �eld� we can use the de�nition

�A� � V �
�A

� �����	

to replace the vector �eld by a set of scalars� This de�nition is easily generalized� to
covariant vector �elds and tensors� Note that the � index of a vierbein is raised or lowered
by the Minkowski tensor� whereas for the � index we use the metric tensor

V �
� � ���g

��V �
� �����	

If we use �����	 and �����	� we see that

V �
� V �

� � ���g
�	V �

	V
�
� � g�	g	� � 
�� �����	

and

D�
� � V �

�V
�

� � V �
�V



���
g

�� � V �
�V



�V

�
� V �

� ��
�
��

� �V �
�V

�
� 	�V �

� V 

�	��
�

�� � �V �
�V

�
� 	�V �

�V
�

� 	

� D�
�D

�
� � 
�� �����	

which means that we can use �����	 to express �g�� as

�g�� � V �
� V �

� g�� � ��� �����	

Using this formalism� spinor �elds can be incorporated in the theory� but when spinor
�elds are involved� we have to change the de�nition of the energy�momentum tensor to

T�� � V��U
�
� �����	
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where U�
� comes from the change in the matter action as a consequence of variation in the

vierbein


JM �

Z
d�x

p�g U�
�
V

�
� �����	

Let us now �nd the vierbein relation� which corresponds to �����	� By di
erentiating
the expression V �

�V
�

� � 
�� we get

V �
� 
V �

� � �V �
�
V

�
� �����	

We multiply �����	 by V �
� and �nd


V �
�


V �
�

� �V �
�V

�
� �����	

where we have used �����	�

��
 Vielbeins

The formalism introduced in this chapter is also relevant in models with more than four
space�time dimensions� When the vierbein formalism is generalized to more than four di�
mensions� the vierbeins change name to vielbeins� We will use the notation GMN � where M
and N run over all space�time indices� for the metric tensor in more than four dimensions�



Chapter �

Higgs Production through Gluon

Fusion

As mentioned in Chapter �� the dominant production channel for Standard Model Higgs
bosons in proton�proton colliders is gg� H �see ref� ���	� In this chapter we will calculate
the cross section� �� for this process by using the QCD improved parton model�

��� QCD Improved Parton Model

The QCD improved parton model is based on the so�called �naive� parton model� which
describes the hadron in terms of distribution functions for its constituents� the partons��
We can express the momentum of a parton� ki� as ki � xip� where p is the momentum of
the hadron� and xi is the momentum fraction� If we sum over all momentum fractions� xi�
of the partons in a hadron� we get X

i

xi � � ����	

and another obvious restriction on xi is

� � xi � � � i ����	

Consider fAa �x	 to be the distribution function of parton�type a in hadron A� then
fAa �x	 dx is the expectation value for the number of partons of type a with momentum
fraction in the interval from x to x�dx� It follows that xfAa �x	 dx represents the momentum
fraction carried by these partons� but this interpretation only makes sense if we requireX

a

Z �

�

xfAa �x	 dx � � ����	

where we sum over all parton types� a�

�By partons� we mean constituents of the proton� namely quarks� antiquarks and gluons�

��
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Figure ���� The weighted gluon distribution function� xfg�x� �
�	� as a function of x� We

obtained fg�x� �
�	 from ���� with a factorization scale� � � ��� GeV�

In the QCD improved parton model� the distribution functions fAa �x	 are replaced by
fAa �x� ��	� which contain the factorization scale�� �� In Figure ��� we display the function
xfg�x� �

�	� where fg�x� �
�	 is the gluon distribution function� Note that a gluon seldom

carries a large momentum fraction��
According to ���� p� ���� the cross section we are interested in can be written as�

��p�� p�	 �

Z
dx� dx� f

���
g �x�� �

�	f ���g �x�� �
�	&�gg�k�� k�� �S���	� Q����	 ����	

where �S is the running coupling constant of QCD� and &�gg is the short�distance cross
section for the subprocess gg � H� We have labelled the proton momenta by p� and p��
with the momenta of the respective gluons labelled as k� � x�p� and k� � x�p�� The
long�distance e
ects can be removed from the perturbative cross section and absorbed into
the parton distribution functions through factorization� Since � is arbitrary� and can be
considered as the scale which separates long� and short�distance physics� it is often set

�We will explain the factorization scale later�
�In total� the gluons carry approximately half of the momentum of a proton�
�To renormalize a theory� one must choose a renormalization scale� where the ultraviolet divergences

are removed� In order to simplify ������ the renormalization scale has been set equal to the factorization
scale� ��
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equal to Q� which is the scale of the parton�parton interaction� When we look at Higgs
production� it is therefore natural to insert Q � � � mH into �S� which is given in
eq� �����	� to get

�S�mH	 
 ��

�� ln�������mH�GeV	

�
�� ��� ln�� ln�������mH�GeV	�

��� ln�������mH�GeV	

�
����	

This expression for �S�mH	 will be used later in our numerical calculations�

��� Feynman Amplitude

Before we focus on the cross section for the subprocess� gg� H� we shall �nd the Feynman
amplitude� M� for this process� The Feynman amplitude can be found by applying the
Feynman rules of Appendix A to all Feynman diagrams of the process under consideration�
To leading order in perturbation theory� there are two Feynman diagrams� which are shown
in Figure ��� on page ��� Since the Feynman amplitude corresponding to these diagrams is
similar to the Feynman amplitude of the quark loop contribution in the process H � ���
we will refer to some of the results given in �����

If we look at Figure ���� we see that the amplitude has two contributions� M� and M��
By using the Feynman rules in Appendix A� we can write out the mathematical expressions
corresponding to each diagram��

M� � �Tr

Z
d�q

���	�
�igS�

��r��k�	T
a
ij	

i��q � �
�
�p � mq	

�q � �
�
p	� �m�

q

�
� i

�
gW

mq

mW

�
� i��q � �

�
�p � mq	

�q � �
�
p	� �m�

q

�igS�
��s��k�	T

b
ji	
i��q � �k � mq	

�q � k	� �m�
q

����	

and

M� � �Tr

Z
d�q

���	�
�igS�

��r��k�	T
a
ji	

i���q � �k � mq	

��q � k	� �m�
q

�igS�
��s��k�	T

b
ij	

� i���q � �
�
�p � mq	

��q � �
�
p	� �m�

q

�
� i

�
gW

mq

mW

�
i���q � �

�
�p � mq	

��q � �
�
p	� �m�

q

����	

where �m�
q in the denominators represents �m�

q � i�� We also de�ne the denominators of
the propagators as

d� � �q � �
�
p	� �m�

q

d� � �q � �
�
p	� �m�

q

d� � �q � k	� �m�
q

����	

�For simplicity we write ��k�� even tough the polarization vector only depends on the spatial part� k�
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Figure ���� Lowest order Feynman diagrams for the production of a Higgs boson from two
gluons� through a quark loop� We have used k� and k� for the gluon momenta� and p for
the momentum of the Higgs boson� where p � k� � k� and k � �

�
�k� � k�	� The quarks

have colors i and j� whereas the Higgs particle is color neutral�

Let us sum over quark colors� i and j� in the loop� then we get the following relation
involving the color matrices T a

ij and T b
ji�

T a
ijT

b
ji � Tr�T aT b	 � �

�

ab ����	

The Feynman amplitude� M� which is the sum of the two contributions� M� and M� given
in eqs� ����	 and ����	 respectively� can now be expressed as

M � M� �M� � �g
�
SgWmq

�mW

ab�r��k�	�s��k�	

Z
d�q

���	�
N ��

d�d�d�
�����	



���� FEYNMAN AMPLITUDE ��

where N �� � N ��
� �N ��

� � and

N ��
� �p� k	 � Tr



����q � �

�
�p � mq	��q � �

�
�p � mq	�

���q � �k � mq	

�
�����	

N ��
� �p� k	 � Tr



�����q � �k � mq	�

����q � �
�
�p � mq	���q � �

�
�p � mq	

�
�����	

By using the cyclic property of the trace and considering k � �k and p� �p� eqs� �����	
and �����	 can be written as

N ��
� ��p��k	 � Tr



����q � �

�
�p � mq	��q � �

�
�p � mq	�

���q � �k � mq	

�
�����	

N ��
� ��p��k	 � Tr



�����q � �

�
�p � mq	���q � �

�
�p � mq	�

����q � �k � mq	

�
�����	

If we compare eqs� �����	 and �����	 to eqs� ����	 and ����	 in ref� ����� respectively� we
see that they are equal� This allows us to use the result �����	 in ref� ���� directly� and
substitute back k � �k and p� �p� which gives��

N ���p� k	 � ��mq

h
�d� � �

�
p� � k�	g��

�q��p � �k	� � �p� �k	�q� � �q�q�
i

�����	

The same expression for N �� was also obtained by using parts of the REDUCE program
given in ����� Appendix C� If we insert �����	 into �����	� we get

M �
�g�SgWm

�
q

mW


ab�r��k�	�s��k�	

Z
d�q

���	�
�

d�d�d�

�
h
�d� � �

�
p� � k�	g�� � �p� �k	�q� � q��p � �k	� � �q�q�

i
�����	

A dimensionless tensor amplitude� M��
� �k�� k�	 is obtained by extracting some constants

and the two polarization vectors� �r��k�	 and �s��k�	� from M�

M � �i��	
g�SgWm

�
H

�mW ���	�

ab�r��k�	�s��k�	M��

� �k�� k�	 �����	

where M��
� �k�� k�	 is de�ned as

M��
� �k�� k�	 �

�m�
q

�i��	m�
H

Z
d�q

�

d�d�d�

�
h
�d� � �

�
p� � k�	g�� � �p� �k	�q� � q��p � �k	� � �q�q�

i
�����	

�A misprint in ref� 

�� has been corrected�
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By counting the momenta in the numerator and the denominator� we can see that the
integral in �����	 is logarithmically divergent in the UV region� i�e� as q ��� This problem
can be solved by a technique called dimensional regularization� where the calculations are
carried out in n dimensions� before the limit n � � is taken� These calculations can be
found in ����� Chapter �� and before we continue� we will quote some of the results�

The integral� Jq�n�� n�� n�	� is de�ned as

Jq���� ��� ��	 �
Z

dnq
�

d��� d
��
� d

��
�

�����	

where we have used the de�nitions in ����	� At the one loop level� we need the integrals
where �i � ��� �� �� The relation

Jq��� �� �	 � Jq��� �� �	 � Jq��� �� �	 �����	

is obtained by shifting the integration variable� If we substitute p� �p and k � �k� our
de�nitions of d�� d� and d� correspond to d�� d� and d� in ����� eq� ����	� We use these
substitutions in eqs� �����	 � �����	 in ref� ����� to get�

Jq���� �� �	 � Jq��� �� �	 � p���
�
p � k	Jq��� �� �	 �����	

Jq������ �	 � Jq��� �� �	 � p���
�
p� k	Jq��� �� �	 �����	

Jq��� ����	 � Jq��� �� �	 � �k� � �
�
p�	Jq��� �� �	 �����	

There are also some useful limits in eq� �����	 in ����� concerning the two�point functions�

lim
n� �

�n� �	Jq��� �� �	 � lim
n� �

�n� �	Jq��� �� �	 � lim
n� �

�n� �	Jq��� �� �	 � ��i�� �����	

Finally� we have Jq��� �� �	 which can be written

Jq��� �� �	 � �i�� ��q
�m�

q

f���q	 �����	

with f���q	 as

f���q	 �

�����
arcsin�

q
����q� �q � �

��
�

�
ln

�

p

����q
��
p

����q
� i�

��
� �q � �

�����	

and ��q � �m�
q�m

�
H �

The tensor amplitude� M��
� �k�� k�	� from eq� �����	 can be decomposed in terms of k�

and k� as

M��
� �k�� k�	 � A��

�� � A�k
�
� k

�
� � A�k

�
� k

�
� � A�k

�
� k

�
� � A�k

�
� k

�
� �����	

�Since d� � d� under these substitutions� we also have to interchange the �rst and second arguments
in Jq�	�� 	�� 	���
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To ensure gauge invariance of the Feynman amplitude� M� we must require

k��M��
� �k�� k�	 � �

k��M��
� �k�� k�	 � �

�����	

This condition leads to �see ����� Chapter �	

M��
� � A�

�
��� � �k�� k

�
�

m�
H

�
�����	

If we now use the relation

�X
r�s	�

�r��k�	�s��k�	�r
�k�	�s��k�	 � ��
��� �����	

which is valid for transverse� physical gluons� together with �����	� we �nd

�X
r�s	�

j�r��k�	�s��k�	M��
� �k�� k�	j� � �jA�j� �����	

The coe�cient A�� which we from now on shall label A��q	� can be expressed in terms of
the integrals Jq��� �� �	 and Jq��� �� �	 as�

A��q	 �
�m�

q

�i��	�n� �	


�
�n� �	� ���q

�Jq��� �� �	 �
��n� �	

m�
H

Jq��� �� �	

�
�����	

If we let n� �� use the relations �����	 and �����	� and sum over quark �avors� q� we get

A��q	 � �
X
q

��q
�
� � ��� ��q	f���q	

�
�����	

The u� d� s� c and b quark contributions are negligible compared to the t quark contribution
because of the quark mass dependence in ��q� Therefore� we will only consider the t quark
contribution�

A��t	 � ���t
�
� � ��� ��t 	f���t 	

�
�����	

in our calculations� where the de�nition of f���t 	 is given in �����	� and ��t � �m�
t �m

�
H �

�We again checked the result by using parts of the REDUCE program in ref� 

��� Appendix C�
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��� Cross Section for the Subprocess gg � H

In this section we will �nd the cross section� &��x�� x�	� for the subprocess of Higgs pro�
duction through gluon fusion� Since we are interested in the unpolarized cross section� we
must average over initial polarization and color degrees of freedom� There are two initial
gluons� each with two polarization states since they are massless vector bosons� and with
eight color degrees of freedom� Let us therefore de�ne X as the average

X � �

��
�

��

�X
r�s	�

�X
a�b	�

jMj� �����	

where r and s are polarization indices� whereas a and b are color indices� If we use
eqs� �����	� �����	� �����	 and the relation

�X
a�b	�

�
ab	� �

�X
a

� � � �����	

we can write X as

X �
GFm

�
H

�
p

�

	�S
��


�
jA��t	j� �����	

where A��t	 is given in �����	� and �S � g�S����
To �nd the unpolarized cross section for the subprocess gg � H� we start with a

formula from ���� p� ���

d�&� � ���	�
����p� k� � k�	
X

��k��k�vrel

d�p

���	��E
�����	

Since the gluons are massless� we have

��k��k�vrel � ��k� �k�	 � ��p� �p�x�x�	 � �sx�x� �����	

in any Lorentz frame �see ���� p� ���	� In �����	� we neglected the proton masses and used
s � �p� � p�	

�� where
p
s is the energy in the center of mass� By applying �����	 to �����	�

we get

d�&��x�� x�	 � 
����p� x�p� � x�p�	
�X

sx�x�

d�p

�E
�����	

If we require p� � �� we have


�p� �m�
H	 �

�

�E

�p� � E	 �����	
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which gives

d�p

�E
�

Z
dp� ��p�	 
�p� �m�

H	 d�p �����	

We use this to write eq� �����	 as

d�&��x�� x�	 �
�X

sx�x�

����p� x�p� � x�p�	��p�	
�p� �m�

H	 d�p �����	

Finally� we integrate over p and use �����	 to get

&��x�� x�	 �
�GFm

�
H

�
p

�x�x�s�

	�S
��


�
jA��t	j�


�
x�x� � m�

H

s

�
�����	

which is the unpolarized cross section for the subprocess gg� H�

��� Cross Section for the Process p � p� H �X

We will now use the results from the previous sections to �nd the unpolarized cross section�
��p� p� H �X	� for Higgs production through gluon fusion� in proton�proton colliders�
By using eq� ����	� we may write the di
erential cross section as

d��

dx�dx�
� &��x�� x�	f

���
g �x�� m

�
H	f ���g �x�� m

�
H	 �����	

where � � ��p � p � H � X	� Let us now express the cross section� �� in terms of new
variables� y and � � We de�ne the rapidity variable as y � �

�
ln�x�

x�
	� and � as � � x�x�� If

we express x� and x� in terms of y and � � we get

x� �
p
�ey � � � x� � � �����	

x� �
p
�e�y� � � x� � � �����	

From the constraints on the variables x� and x�� we see that � � � � �� Equation �����	
gives us an upper bound on y� which is y � ��

�
ln� � and from eq� �����	 we �nd a lower

bound� �
�
ln� � y� Since the absolute value of the Jacobian determinant is jJ��� y	j � ��

the di
erential cross section becomes

d��

d�dy
� &��

p
�ey�

p
�e�y	f ���g �

p
�ey� m�

H	f ���g �
p
�e�y� m�

H	

�
�GFm

�
H

�
p

��s�

	�S
��


�
jA��t	j� 


�
� � m�

H

s

�
f ���g �

p
�ey� m�

H	f ���g �
p
�e�y� m�

H	 �����	

If we integrate �����	 over � by using the 
�function� we get

d�

dy
�
�GF

�
p

�

	�S
��


�m�
H

s
jA��t	j�f ���g

�
mHp
s
ey� m�

H

�
f ���g

�
mHp
s
e�y� m�

H

�
�����	
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The integration over the rapidity� y� still remains� but since there is no analytical
expression for the distribution functions� such integrals must be performed numerically�
We may express the cross section� �� for Higgs production through gluon fusion� in terms
of an integral over y� as

� �
�GF

�
p

�

	�S
��


�m�
H

s
jA��t	j�

Z y�

y�

dy f ���g

�
mHp
s
ey� m�

H

�
f ���g

�
mHp
s
e�y� m�

H

�
�����	

where y� � ln
�
mHp
s

�
� y� � �ln

�
mHp
s

�
and A��t	 is given in �����	� The integral that appears

in �����	 is referred to as a convolution integral� By transforming the integral in ����	
to the integral in �����	� we have collected all the information about the partons in the
distribution functions� Since the distribution functions appearing in �����	 are multiplied
by the unpolarized cross section� &�� they yield the unpolarized gluon distribution� by which
we mean unspeci�ed color and polarization� Alternatively� we could use the polarized cross
section� combined with the polarized gluon distributions� which would give the same result
when appropriately summed over polarizations and colors�

We will now compare our result to the cross section given in ����� Let us de�ne the
di
erential gluon luminosity� dLgg�d��� in accordance with �����	 in ref� ���� as

��
dLgg
d��

�

Z �

�

dx�

Z �

�

dx� x�x�f
���
g �x�� m

�
H	f ���g �x�� m

�
H	
��� � x�x�	 �����	

If we again use the coordinate transformation in �����	 and �����	 to change the integration
variables from x� and x� to � and y� we get

dLgg
d��

�

Z y�

y�

dy

Z �

�

d�
�

��
f ���g

�
mHp
s
ey� m�

H

�
f ���g

�
mHp
s
e�y� m�

H

�

��� � �	 �����	

where y� and y� are the same as in �����	� After integration over � � the di
erential gluon
luminosity can be expressed as

dLgg
d��

�

Z y�

y�

dy f ���g

�
mHp
s
ey� m�

H

�
f ���g

�
mHp
s
e�y� m�

H

�
�����	

which is the convolution integral in �����	� Another way to express the di
erential lumi�
nosity would be to integrate �����	 over x�� to get

dLgg
d��

�

Z �

��

dx�
x�

f ���g �x�� m
�
H	f ���g

�
��
x�
� m�

H

�
�����	

which is the expression used in ref� ����� Note that �����	 is symmetric under the transfor�
mation x � ��x� If we compare the function AQ��Q	 in ����� eqs� ��	� ��	 and ��	 to our
notation� we see that it corresponds to ��A��t	 �see eq� �����		� When we take this into
account� we see that our result coincides with the result given by Spira et al� in ����� eqs�
���	� ���	 and ���	�
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��� Numerical Results

By using the result obtained in the previous section �see eq� �����		� we plot the cross
section� ��p� p� H �X	� for Higgs production through gluon fusion in pp�colliders� The
numerical integration was performed in C��� with a FORTRAN subroutine which provided us
with the gluon distribution functions from ���� In our calculations� we used the CTEQ�M
parametrization� which corresponds to � � ��� MeV and �ve active quark �avors
� In
Figure ��� we have plotted the cross section as a function of the Higgs mass� We used
�S�mH	 from ����	� and neglected the loop contributions from the light quarks� Note that
the t�t threshold represents a sign change in the second derivative of the cross section���

100 200 300 400 500 600 700 800 900 1000
10

-2

10
-1

1

10

10 2

Figure ���� The cross section� ��p � p � H � X	� as a function of the Higgs mass� mH �
We have used

p
s � �� TeV� which corresponds to the expected center of mass energy at

the LHC�

�This parameterization is chosen by assigning the value 
 to the ISET�parameter in the FORTRAN

subroutine�
�	The C�� program� used to compute the cross section� can be found in Appendix B�
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The number of events� N � which are generated in an accelerator during a certain time
interval� is given by the following formula

N � � �
Z

dt L �����	

where � is the cross section for the process� and
R

dt L is the integrated luminosity� Let us
now use �����	 to see how the number of Higgs particles created through gluon fusion at
the LHC can be estimated� The expected instantaneous luminosity� L� at the LHC is

LLHC � ���� cm��s�� �����	

If we integrate this expression over a time interval of ��� s� which is approximately one
e
ective year ���� days	 at the LHC� and use the relation pb�� � ���� cm��� we get

LLHC � ��� pb�� �����	

By inserting �����	 into �����	� we see that

NLHC � ��� � ��pb� �����	

where NLHC is the number of events generated through gluon fusion at the LHC during
one �e
ective	 year� From Figure ��� we see that NLHC� which depends on the mass of the
Higgs� is of the order of ��� for a light Higgs� and decreases to ��� for a heavy Higgs� Of
course� only some fraction of them can be identi�ed�



Chapter �

Radion Production through Gluon

Fusion

We will in this chapter take a look at the Randall�Sundrum �RS	 scenario ����� which is
a scenario with �ve space�time dimensions� A particle which is very similar to the Higgs
particle of the Standard Model is introduced in this scenario� and we can therefore use
the results obtained in the previous chapter to �nd the cross section for radion production
through gluon fusion� Analogous to the case of Higgs production� the dominant production
channel for radions in proton�proton colliders will be the process gg � �� where � is the
radion� However� there is an additional term in the Feynman amplitude� caused by the
trace anomaly of QCD� Before we calculate this cross section� and compare it to the cross
section of the Higgs boson� we will give a short review of some of the most popular models
concerning extra dimensions��

��� Extra Dimensions

There has recently been a lot of speculation concerning the possibility that there might be
more than four space�time dimensions� Already in ����� T� Kaluza solved the equations
of general relativity in �ve dimensions� His solutions were Einstein
s four�dimensional
equations� together with Maxwell
s equations� Some years later� O� Klein showed that if
the �fth dimension is periodic� and curled up into a tiny circle� it could be real� but yet
unseen�

This way of treating the extra dimensions is used in the so�called superstring theo�
ries� where the fundamental objects� instead of being point particles� are one�dimensional
strings� called superstrings� Superstrings must obey supersymmetry� but since they live in
a ���dimensional space�time� six of these dimensions have to be compacti�ed� These extra
dimensions should be very small� of the order of ����� m� which is known as the Planck
length�� Supersymmetry is however possible in up to �� dimensions� and there is also a

�We will in this chapter use the index notation� but not the metric� introduced in Chapter ��
�The scale at which gravity becomes strong�

��
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theory in �� dimensions� called M�theory� These theories also contain two� and higher�
dimensional objects� called branes� By shrinking one of the �� dimensions in M�theory
to a line segment� P� Ho'rava and E� Witten ended up with two ���dimensional universes�
The two branes in this scenario can only communicate through the ��th dimension via
gravity� It has been suggested that maybe the dark matter in the universe lies on one
of these branes� whereas the visible universe lies on the other� If the goal is to unify all
forces into a Theory Of Everything� a unique theory would be preferable� According to
M� J� Du
� there are �ve di
erent superstring theories� but two of these can be obtained
from M�theory by shrinking or curling up one of the �� dimensions� while the other three
can be related to M�theory via a concept he calls dualities �see ����	� From this point of
view� M�theory may be the most promising candidate to the ambitious title of a Theory
Of Everything�

Recently� some new ideas about extra dimensions have brought a lot of excitement
among theorists� A proposal by N� Arkani�Hamed� S� Dimopoulos and G� Dvali �����
states that gravity becomes strong at the electroweak scale� This is due to two or more
extra� gravity�only� dimensions� maybe as large as a millimeter �ADD scenario	� Since
gravity only has been directly measured down to distances of about a millimeter� large
extra dimensions are not excluded by experiment� If gravity is strong at short distances�
but falls o
 rapidly� due to extra dimensions� it becomes very weak before it transforms to
the inverse square law we know� Since the Planck scale is lowered when these large extra
dimensions are introduced� the hierarchy problem can be avoided�� The advantage of this
model� compared to models including extra dimensions of the order MP l 
 ����� m� is that
its predictions can be tested at accelerators like the LHC� Collider signatures would be
missing energy due to emission of real gravitons into extra dimensions� or deviations from
production cross sections of SM particles as a consequence of virtual graviton exchange
�see ����	�

Another suggestion� by K� R� Dienes� E� Dudas and T� Gherghetta ����� is that also SM
particles are allowed to propagate in extra dimensions� A consequence of this scenario is
that �standing waves� in the extra dimensions� which are referred to as Kaluza�Klein �KK	
excitations� would arise when the circumference of an extra dimension corresponds to a
multiple of the de Broglie wavelength associated with the particle� Since the momentum
in the extra dimensions is invisible in our four�dimensional world� the KK modes would
appear to us as particles with larger mass� KK modes of the SM particles could be an
experimental indication of this scenario� However� the size of such dimensions cannot be
larger than ����
 m� due to experimental limits on the electroweak parameters�

In contrast to the ADD scenario� where the Planck scale is lowered� it is now the GUT
scale� which is lowered from ���� GeV to ��� GeV� We will now use the result given in �����
eq� �����	� to �nd the derivative of the inverse of �i � g�i ��� with respect to the logarithm

�The hierarchy problem is the lack of explanation for why the ratioMPl
mEW � where MPl � 
���GeV
is the Planck scale and mEW � 
��GeV is the electroweak scale� is so huge�

�Uni�cation of the gauge couplings of the strong� electromagnetic and weak interactions occur at the
GUT scale�
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of the energy scale�� Here gi are the gauge couplings corresponding to the gauge groups
U��	� SU��	 and SU��	� The di
erentiation gives

d

d ln�
���i ��	 � �bi �

(bi
��

�
(biX�

��

�
�

��

��

����	

where bi are the one loop ��function coe�cients of the Minimal Supersymmetric Standard
Model �MSSM	� and (bi are ��function coe�cients corresponding to contributions from KK
excitations�� Note that since there are additional �s	particles in the MSSM� the beta�
function coe�cients are di
erent from those of the Standard Model� The number of extra
dimensions is labeled 
� �� sets the mass scale at which these extra dimensions become
signi�cant� and X� is the volume of a 
�dimensional unit sphere� Since �� � e� ln�� we see
from the comparison of �����	 and ����	 that the running of ���i versus the logarithm of
the energy scale changes from linear to exponential when additional dimensions are taken
into account� As a consequence of this change� the uni�cation scale is lowered��

The next section is devoted to a discussion of some aspects of the Randall�Sundrum
�RS	 scenario� which is based on an article by L� Randall and R� Sundrum� ����� They
consider �ve dimensions with a non�factorizable metric� where the four�dimensional metric
is multiplied by a �warp� factor
� According to G� F� Giudice et al� ����� the KK states of
a graviton in the RS scenario will be widely separated� in contrast to the ADD scenario�
where a �continuous� spectrum will appear� However� a particle called the radion may be
the �rst experimental signature of the RS scenario� In the rest of this chapter� we will take
a closer look at this particle� which has much in common with the Higgs particle�

��� The Randall�Sundrum Scenario

As mentioned in the previous section� we will now consider the Randall�Sundrum sce�
nario ����� which is a �ve�dimensional scenario with a non�factorizable metric� The �fth
dimension is periodic� and can be parameterized by �� where �� � � � �� An additional
constraint on the �fth dimension is to identify �x� �	 with �x���	� This construction� which
is referred to as an S��Z� orbifold� has two �xed points� � � � and � � �� At each of these
�xed points� there is a ��brane��� We label the ��brane at � � � hidden� whereas we live

�This result gives one�loop corrected values�
�See discussion of the ��function on page 

�
�Since the higher dimensional scenario in 

�� is non�renormalizable� a cut�o� parameter has to be

introduced� The gauge couplings receive �nite� cut�o� dependent� quantum corrections� and it is the one�
loop corrected values which are calculated as functions of the cut�o� parameter� Above �	� the energy
scale� �� is treated as the cut�o� parameter� By truncating the in�nite KK towers� it is demonstrated that
there exists an e�ective renormalizable theory� which succeeds in describing the evolution of the gauge
couplings�

�There is also an article by the same authors� where a scenario with an in�nite extra dimension is
proposed� This scenario will not be considered in this thesis�

�The warp factor is an exponential function� with an exponent depending on the extra dimension�
�	Generally� a p�brane is an object with �p � 
� space�time dimensions� If the brane has Dirichlet

boundary conditions� it is referred to as a D�brane�
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on the visible ��brane� localized at � � �� The metric in the RS�scenario can be expressed
as��

ds� � e��krcj�j���dx�dx� � r�cd�
� ����	

where e��krcj�j is the �warp� factor� k is a scale of the same order as the fundamental
Planck mass� and rc is the compacti�cation radius� If GMN is the �ve�dimensional metric
tensor��� we have

gvis�� �x�	 � G���x
�� � � �	� ghid�� �x�	 � G���x

�� � � �	 ����	

One of the motivations for proposing the RS scenario is that it solves the so�called gauge
hierarchy problem� which means that the model should eliminate the enormous di
erence
between the weak scale� v 
 ��� GeV� and the Planck scale� MP l 
 ���
 GeV� In the ADD
scenario� which is another proposal for solving this problem� a new hierarchy� between
�c � ��rc and the vacuum expectation value of the Higgs �eld� v� is introduced� Let us
now see why both of these hierarchies disappear in the RS scenario� In the RS scenario�
the e
ective four�dimensional Planck scale� MP l� can be expressed as ����

M�
P l �

M�

k

�
�� e��krc�

�
����	

where M is the fundamental Planck mass� Since k is of order M � we see from ����	 that
MP l and M are of the same order� Another result from ���� is that any mass parameter�
m�� corresponds� on the visible ��brane� to a physical mass

m � e�krc�m� ����	

We see from ����	 that krc 
 �� can give rise to mass scales of order TeV even though the
fundamental parameters� v�� M � k and �c� are all of order ���
 GeV� Also MP l will corre�
spond to a physical mass in the TeV range� since MP l 
M � By a rescaling of coordinates�
x� � ekrc�x�� one could choose the physical TeV mass scale to be the fundamental scale�
instead of the �ve�dimensional parameter scale�

To stabilize the value of rc� W� D� Goldberger and M� B� Wise introduce a bulk scalar
�eld��� �� called the radion �eld �see ���� and ����	� However� the purpose of this thesis is
not to discuss how rc is stabilized� we will instead use a result from Goldberger and Wise
���� as a starting�point� There is a massive radion �eld in the RS scenario� which arises
as a gravitational degree of freedom� Its couplings to brane matter are therefore �xed by
four�dimensional general covariance� and it couples to SM particles through the trace of
the energy�momentum tensor of the Standard Model��� T ��� The interaction Lagrangian
density for the coupling of the radion �eld� �� to ordinary matter� given in ���� is

Lint �
�

��
T �

� ����	

��To follow the notation of Randall and Sundrum� we use s instead of � which was used in Chapter ��
��M�N � �� ��
��A bulk �eld is a �eld that propagates in all dimensions� The gravitational �eld is also a bulk �eld�
��G� Nordstr�om 
	�� proposed a theory of gravity in 
�
	� with a scalar �eld coupled to T ���
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where �� is the non�vanishing vacuum expectation value for the radion �eld�� on �our�
brane� If the radion is lighter than the Kaluza�Klein excitations of bulk �elds� which is
likely� it may be the �rst experimental evidence of the Randall�Sundrum scenario�

��� Trace of the Energy�Momentum Tensor

To determine the radion coupling to the Standard Model particles� we will now �nd the
trace of the energy�momentum tensor of the Standard Model �elds� We shall use the
expression given in �����	� but when spinor �elds are involved� another de�nition of the
energy�momentum tensor is required �see �����		� At this point� we are interested in the
tree�level couplings� so we consider the free Lagrangian density of the Standard Model�
which is��

L� � �f �i�	 �mf 	�f � �
�
Ga
��G

a �� � �
�
F��F

��

��
�
F y
W��F

��
W � m�

WW
y
�W

�

��
�
Z��Z

�� � �
�
m�

ZZ�Z
�

��
�
�	��	�	��	� �

�
m�

H�
� ����	

where the di
erence from �����	 is that we have also included quarks�� and gluons� The
gluon �eld�strength tensor� Ga

��� is de�ned as

Ga
�� � 	�A

a
� � 	�A

a
� � gSf

abcAb
�A

c
� ����	

where the gluon �eld is denoted Aa
�� fabc are the SU��	 structure constants� and the indices

a� b and c run over the eight color states� Since we are only interested in couplings at tree�
level� the last term in ����	 will be ignored� To specify what we mean by ��matrices in a
general coordinate frame� we use the vierbein formalism from section ���� and de�ne

�� � V �
� �� ����	

Since we in Chapter � followed the notation of ���� with opposite sign in the metric� we
have to introduce a minus sign in the energy�momentum tensor��� T ��� de�ned in �����	�
When we consider Lagrangian densities without spinor �elds� and introduce this minus
sign� we see that the energy�momentum tensor can be written

T �� � � �p�g

 �
p�gLM	


g��
� ��


LM

g��

� g��LM �����	

���� is assumed to be in the TeV range�
��We will not study coupling to gravitons� and have therefore not introduced covariant derivatives in

the Lagrangian density �see Chapter ���
��The f in 
f and mf stands for �fermion��
��By comparing 
��� eq� ������� and the two �rst terms of 
	��� eq� �
��
���� we see that di�erent sign

conventions have been used�
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where we have used �����	 and �����	�
From eq� �����	 we �nd that


g��


g
�
� �g�
g�� �����	

If we start by looking at the Z�boson part of ����	� we have to �nd the derivative of LZ
with respect to g�� � By using �����	 we �nd


LZ

g��

�




g��

���
�
g
�g�	Z
�Z�	 � �

�
g
�m�

ZZ
Z�

�
� ��

�

�

g
�


g��
g�	 � g
�


g�	


g��

�
Z
�Z�	 �

�

�


g
�


g��
m�

ZZ
Z�

� ��
�

��g
�g��g�	 � g
�g��g�	
�
Z
�Z�	 � �

�
g
�g��m�

ZZ
Z�

� �
�
Z�	Z�

	 � �
�
m�

ZZ
�Z� �����	

We insert �����	 into �����	 to get

T ��
Z � �Z�	Z�

	 � m�
ZZ

�Z� � g��
���

�
Z
�Z


� � �
�
m�

ZZ
Z


�

�����	

If we take the trace� we �nd

T �
Z � � �m�

ZZ
�Z� �����	

The calculation for the photon part of ����	 is identical to the Z�boson part� but since
the photon is massless� we �nd T �

A� � �� Since we only consider tree level couplings� the
same holds for the gluon part� so we get T �

Aa � � ��
Let us now consider the case of the W �bosons� where the derivative of LW with respect

to g�� becomes


LW

g��

�




g��

	
��

�
g
�g�	F y

W 
�FW �	 � g
�m�
WW

y

W�



� ��

�

�

g
�


g��
g�	 � g
�


g�	


g��

�
F y
W 
�FW �	 �


g
�


g��
m�

WW
y

W�

� ��
�

��g
�g��g�	 � g
�g��g�	
�
F y
W 
�FW �	 � g
�g��m�

WW
y

W�

� F y�	
W F �

W 	 �m�
WW

y�W � �����	

If we use �����	� we can write �����	 as

T ��
W � ��F y�	

W F �
W 	 � �m�

WW
y�W �

�g��
	
��

�
F y
W
�F


�
W � m�

WW
y

W






�����	

The trace of the energy�momentum tensor becomes

T �
W � � ��m�

WW
y�W� �����	



���� TRACE OF THE ENERGY	MOMENTUM TENSOR ��

Next we consider the Higgs part of ����	� Equation �����	 will also be valid in this case�
and the derivative of L� with respect to g�� is


L�

g��

�




g��

�
�
�
g
��	
�	�	��	� �

�
m�

H�
�
�

�
�

�


g
�


g��
�	
�	�	��	 � ��

�
g
�g���	
�	�	��	

� ��
�
�	��	�	��	 �����	

When we combine �����	 and �����	� we get

T ��
� � �	��	�	��	� �

�
g���	
�	�	
�	 � �

�
g��m�

H�
� �����	

and the trace of the energy�momentum tensor becomes

T �
� � � ��	��	�	��	 � �m�

H�
� �����	

Finally we consider the fermion part of ����	� where we have to use the vierbein for�
malism introduced in Chapter �� From eqs� �����	 and �����	� we see that the energy�
momentum tensor for a fermion �eld is�


T�� � �V��U�
� � �V�� �

V


�V L�	


V �
�

� �V�� �

V


V


V �
�

L� � V��

L�

V �

�

�����	

where we have de�ned

p�g �
q
�det����V �

�V
�
�	 � detV �

� � V �����	

We need an expression for 
V � If we start from �����	 and �����	� we �nd


V � 

p�g � �

�

p�gg��
g�� � ��
�

p�gg��
g��
� ��

�
V V �

�V
�
����

�
V �
� �
�
V �


 � V �

 �
�
V �

� � V �

 V �

� 
�
�
�

� ��
�
V ����


�
�
V �

��V �
�V

�
� 	
V �


 � �V �
�V

�

 	V �

�
V
�

�

�
� ��

�
V ����


�
h
V �

�

�
� 
V

�

 � 
�
V

�
�
V

�
�

i
� ��

�
V
�
V �

�



�
V

�

 � 
��V

�
�
V

�
�

�
� ��

�
V
�
V �

�
V
�

� � V �
�
V

�
�

�
�����	

where we have used �����	� and the relation

g��
g�� � �g��
g�� �����	

��Also in the spinor case we have to introduce a minus sign in the de�nition of the energy�momentum
tensor�
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which is obtained by di
erentiating g��g
�� � 
�� � �� We have also used 
�
� � �� since

the Minkowski metric is constant under variation of the metric tensor�
Let us now look at the second term in �����	� and insert L� from ����	 to �nd the

derivative of L� with respect to the vierbein� V �
� � By using �����	� we �nd


L�

V �

�

�




V �
�

�f

�
�
�
iV �

����	� � ��	
�	�mf

�
�f � ��

�
V �

�V
�
��f�i��	� � i��	

�	�f

� ��
�
�f �i��	� � i��	

�	�f �����	

If we insert �����	 and �����	 into �����	� and again use �����	 we get

T�� � �V�� �

V


V


V �
�

L� � V��

L�

V �

�

� �
�
V��

�
V �

�

�
� � V �

�

�
�

�L� � �
�
V���f�i��	� � i��	

�	�f

� V��V
�
��f �i�	 �mf 	�f � �

�
�f �i��	� � i��	�	�f

� g���f�i�	 �mf 	�f � �
�
�f�i��	� � i��	�	�f �����	

By taking the trace� and using the Dirac equation� ����	� we obtain

T �
� � � g���f�i�	 �mf 	�f � �f�i�		�f

� mf�f�f �����	

We summarize our results by writing out the trace of the energy�momentum tensor of
the SM �elds

T �
� � T �

� � � T �
Z � � T �

Aa � � T �
A � � T �

W � � T �
� �

� mf�f�f �m�
ZZ

�Z� � �m�
WW

y�W� � �m�
H�

� � �	��	�	��	 �����	

which is identical to the result given in ����� eq� ��	�
From ����	 and �����	 we can �nd Lint� If we compare this to the Higgs coupling to two

fermions� or to a gauge boson pair� given in ���� p� ���� we see that if we rescale the Higgs
coupling by a factor ��v���	� where v is the vacuum expectation value of the Higgs �eld�
we get the radion coupling to the same particles� Note that the last term in �����	 gives
rise to a momentum dependent Higgs�Higgs�radion vertex� If m� � �mH � the decay into
two Higgs bosons would be an additional decay channel for the radion�

��� Trace Anomaly

Classically� the trace of the energy�momentum tensor� T �
�� vanishes for a massless� scale

invariant theory� but when quantum corrections are included� scale invariance is violated�
and we get a non�vanishing trace� In this section� we will �nd an expression for this
non�vanishing trace� often called the trace anomaly�
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From the de�nition of the ��function in �����	� we see that a transformation of the
energy scale

�� �e� �����	

where � is the energy scale� and � is an arbitrary constant� leads to the following expression
for ��g��		

� �g��		 �

g��	


 ln�
�


g��	

�
�����	

where g��	 is the coupling �constant�� which should not be confused with the determinant
of the metric tensor��� We see from �����	 that the change in the Lagrangian density can
be written


L � ���g	
	

	g
L �����	

Application of Noethers theorem �see page �	 leads to a conserved current� D��

	�D
� � ��g	

	

	g
L �����	

According to ����� p� ���� the relation between the dilatation current� D�� and the energy�
momentum tensor is D� � T ��x�� Since we use the same sign in T �� as in ����� we can use
this to write �����	 as

T �
� � ��g	

	

	g
L �����	

As we mentioned earlier� this non�vanishing trace of the energy momentum tensor is re�
ferred to as the trace anomaly� and is due to the fact that in a quantum theory� the coupling
�constant� is scale dependent�

��� Cross Section for the Process p � p� � �X

Like Higgs particles� radions can be produced from two gluons� via a quark loop� There
is however an additional term in the cross section� as mentioned in the introduction to
this chapter� caused by the anomalous breaking of scale invariance in QCD� This trace
anomaly term enters the cross section since the radion couples to the trace of the energy�
momentum tensor� In this section� we will �rst �nd the Feynman amplitude for radion
production through gluon fusion� and then use the results from Chapter � to �nd the
corresponding cross section�

�	Throughout this section� the coupling� g���� is labeled g�
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To �nd the trace anomaly of QCD� we shall use the result from the previous section on
the Lagrangian density of QCD� which was introduced in eq� �����	 as

LQCD � �q�i �D �mq	�q � �
�
Ga
��G

a�� �����	

Note that we choose to go to Minkowski space here� since we used the Minkowski metric
in our loop calculations in Chapter �� If we rescale the gluon �eld by gSA

a
� � Aa

�� the
coupling constant is removed from the covariant derivative� After this rescaling� gS only
appears in the �eld strength tensor part of LQCD�

LQCD � � �

�g�S
�	�A

a
� � 	�A

a
� � fabcAb

�A
c
�	�	�Aa � � 	�Aa � � fabcAb �Ac �	 � � � � �����	

From �����	� we �nd

T �
� �

��g	

�g�S
�	�A

a
� � 	�A

a
� � fabcAb

�A
c
�	�	�Aa � � 	�Aa � � fabcAb �Ac �	 �����	

To recover the conventional normalization of the �eld strength tensors� we let Aa
� � gSA

a
��

From eqs� �����	 and �����	� we see that to lowest order in the ��function� T �
� becomes

T �
� �

��g	

�gS
Ga
��G

a�� � ����� �

�
nf 	

�S
��

Ga
��G

a�� � ��S
��

bQCDG
a
��G

a �� �����	

We see from eq� ����	 that the trace anomaly gives the following term in the radion�
gluon interaction Lagrangian density

Lanom
int � � �

��

	�S
��



bQCDG

a
��G

a��� �����	

Let us now try to �nd the contribution to the Feynman amplitude from the trace
anomaly term� For incoming gluons� with momenta k� and k�� we take Aa

� � Aa
��ki	e

�ikix �
Aa���ki	� and since we are not interested in terms containing more than two gluon �elds�
we may drop the two terms involving gSf

abc� This gives

Ga
��G

a�� �
h
�ik� �Aa

��k�	 � ik��Aa
��k�	

i h
�ik��Aa��k�	 � ik��Aa ��k�	

i
e�i�k�
k��x �����	

By multiplying out the terms in �����	� we �nd

Ga
��G

a�� � ��
�
k��Aa

��k�	� k��Aa
��k�	

�
k��Aa��k�	e

�i�k�
k��x

� �� ��k� �k�	�Aa�k�	�Aa�k�		� �k� �Aa�k�		�k� �Aa�k�		� e
�i�k�
k��x

� �� ��k� �k�	��r�k�	��s�k�		� �k� ��s�k�		�k� ��r�k�		�AaAa

� ���k� �k�	��r �k�	�
�
s �k�	

�
��� � k��k��

k� �k�

�
AaAa �����	
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This term is gauge invariant� as it has to be� since

k��

�
��� � k��k� �

k� �k�

�
� �� k��

�
��� � k��k��

k� �k�

�
� � �����	

If we insert this into �����	� and use �����	 and �����	� we get

Hanom
int � �Lanom

int �����	

Since the incoming gluons are identical particles� we get a symmetry factor of � in
the anomaly vertex� The reason for this is that Aa

� can either annihilate jAa�k�� r	i or
jAa�k�� s	i� If we use this� together with �����	� �����	� �����	 and the relation �k��k� � m�

��
we �nd the trace anomaly contribution to the Feynman amplitude��� Manom� which is

Manom � i
�m�

�

��

	�S
��



bQCD

�
��� � �k��k��

m�
�

�
��r �

�
s �����	

The anomaly contribution should be added to the loop contribution� which can be
obtained by rescaling the Higgs result with the factor ��v���	� and changing the Higgs
mass� mH � to the radion mass� m� �see Section ���	� Instead of summing �����	 over color
a� as implied in �����	� we can instead introduce a Kronecker�delta� 
ab� in �����	 and take
the sum over a and b instead� If we now rescale �����	� and combine it with �����	 by
using �����	 together with the relations �S � g�S��� and ��v � gW��mW � we �nd

M � i
ab
�m�

�

��

	�S
��



�bQCD � A��t		

�
��� � �k��k��

m�
�

�
��r �

�
s �����	

where A��t	 is de�ned in �����	 as

A��t	 � ���t
�
� � ��� ��t 	f���t 	

�
�����	

but now it is the radion mass which enters in the de�nition of ��t � �m�
t�m

�
��

Since we are interested in the unpolarized cross section� we must sum and average over
polarizations and colors� We see from eqs� �����	� �����	 �����	� �����	� and �����	 that

X �
�

��
�

��

�X
r�s	�

�X
a	�

jMj� �
m�

�

���
�

	�S
��


�
jbQCD � A��t	j� �����	

By using the same procedure as in the previous chapter��� we obtain an expression for
��p � p� � � X	

� �
�

���
�

	�S
��


�m�
�

s
jbQCD � A��t	j�

Z y�

y�

dy f ���g

�
m�p
s
ey� m�

�

�
f ���g

�
m�p
s
e�y� m�

�

�
�����	

��We have introduced a factor of �i� which comes from the S�matrix �see 

�� p� 
�
��
��Compare eqs� ������ and �������
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where y� � ln
�m�p

s

�
� y� � �ln

�m�p
s

�
�
p
s is the center of mass energy� and f

�i�
g are the gluon

distribution functions� The de�nition of bQCD� which can be found implicitly in �����	� is
bQCD � ���� �

�
nf 	� and A��t	 is given in �����	�

If we now compare our result to some of the existing literature� we see that in ����� eqs�
���	 and ���	� we �nd an expression for the cross section we are interested in� The Iq�xq	
in ���� corresponds to �A��t	 in our notation� provided we let q � t� We also recognize the
di
erential gluon luminosity from eq� �����	 in ����� which corresponds to the convolution
integral in �����	� The only di
erence is that they consider all quark �avors� and have
included a K factor to account for QCD corrections�

Giudice et al
 ���� have an expression for the e
ective vertex of the gg� interaction �see
eq� ���		� which we understand as the factor in front of the radion �eld in the e
ective
Lagrangian density� Since the F�����t	 in ���� corresponds to �A��t	 in our notation� we
�nd that our result in �����	 di
ers from ���� by a relative sign��� which is due to opposite
sign in the de�nition of T �� � Since the cross section depends on the amplitude squared�
a relative sign in the amplitude is of no consequence for the result� The reason why the
di
erence in sign enters in both the trace anomaly term and the loop contribution is that
the scaling factor� which we use in the loop term� is determined from the relation between
trace of the energy�momentum tensor and the interaction Lagrangian density of the SM
�elds�

��� Comparing Higgs and Radion Cross Sections

We will now compare the cross sections for Higgs and radion production through gluon
fusion� In the upper panel in Figure ��� on page ��� we show ����v	���p � p � � � X	
as a function of the radion mass� where ��p � p � � � X	 is the cross section for radion
production through gluon fusion� given in eq� �����	� To cancel the unknown vacuum
expectation value� ��� of the radion �eld that appears in �����	� we have introduced a
scaling factor of ����v	� in the radion cross section� where v is the vacuum expectation
value of the Higgs �eld� The corresponding Higgs cross section��� which we have plotted
without the scaling factor� as a function of the Higgs mass� is shown in the same plot
�the dotted curve	� In both cases� we used �ve active quark �avors in the numerical
calculations� and therefore there are some corrections at very high� or very low energies�
The same parametrization� ���� as in Chapter � was used �see page ��	� We use a center of
mass energy of �� TeV� since this is the expected energy at the LHC� If we look carefully�
we see that the t�t threshold is barely visible in the radion case� We also see that the trace
anomaly term� which is the only di
erence� gives a considerable contribution to the radion
cross section� This is because bQCD � ���� for �ve active quark �avors� whereas the real
part of �A��t	 is less than ��� and the imaginary part of �A��t	 is less than � in the whole
mass region� However� mass di
erences and di
erent vacuum expectation values will also
be important since they adjust the predicted value of the cross section�

��These equations can be compared by carrying out the same calculation as we did in ��������������
��This is the Higgs cross section from Figure ����
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Figure ���� The cross sections �above	� and the ratio de�ned in �����	 �below	� as functions
of the mass of the boson �radion or Higgs	� In both cross sections we use

p
s � �� TeV�
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Let us now de�ne the ratio� R�� as

R� � ����v	���p � p� � � X	

��p � p� H � X	
�����	

where ��p � p� H � X	 is given by eq� �����	 and ����v	���p � p� � � X	 is given by
eq� �����	� In the lower panel in Figure ��� on page ��� we have plotted R� as a function
of the mass of the boson �radion or Higgs	� The reason why we see the t�t threshold here�
is that it was clearly visible in the Higgs cross section� but barely visible in the radion
cross section �see Figure ���	� Note that after rescaling� the radion cross section is O����	
larger than the Higgs cross section� If however �� 
 ��v� the cross sections would be of
the same order of magnitude� We should emphasize that since �� is unknown� R� is not
directly measurable� but on the other hand� if ��p� p� ��X	 was measured� one could
compare with the calculated ��p � p � H � X	 for a Higgs boson with the same mass
as the radion� By taking the ratio of the two cross sections� and compare it to R�� the
vacuum expectation value� ��� of the radion �eld could be determined�

If we are interested in the number of radion events produced through gluon fusion at
the LHC during one year� eq� �����	 is still valid� There is however the problem with the
unknown vacuum expectation value� ��� which enters in the radion cross section�



Chapter 	

Radion Decay to Two Photons

One possible way to detect the radion at proton�proton colliders is through its decay to
two photons� We will in this chapter consider the process of radion decay into two photons
to lowest order� A detailed calculation of the Higgs decay to two photons� in a notation
close to ours�� can be found in ����� In addition to the quark loop contribution and the
trace anomaly term we can also have contributions from loops of charged gauge bosons�
W�� and related ghost �elds� We used some of the results for the quark loop in Chapter ��
and we will follow the same recipe in this chapter��

��� Loop Contributions

First we shall �nd the decay rate in the case of radion decay to two photons by using the
corresponding Higgs result �see ����� eq� ����		

% �
�

���mH
jMj� ����	

where M is the Feynman amplitude for the process H � ��� We can easily obtain the loop
contributions to the corresponding radion decay from the results in ����� by the rescaling
�v��� �see page ��	� and by changing the mass from mH to m�� In ����� some factors
are extracted from the Feynman amplitude� M �see ����� eqs� ����	� ����	 and �����		� By
following this approach� we may write the loop contribution to the Feynman amplitude as

Mloop � �i �m
�
H

����
A�

�
��� � �k��k��

m�
H

�
��r �

�
s ����	

where � � e���� is the �ne structure constant� Note that the vacuum expectation value��
v � �mW�gW � of the Higgs �eld has been replaced by the vacuum expectation value� ���
of the radion �eld through the rescaling� which also gives an extra minus sign�

�For references to the original literature� see 

���
�The calculation in 

�� is done in �t Hooft�Feynman gauge�
�This relation can be obtained from �	�����

��
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Since the photon couples to all charged particles� loop diagrams with W �bosons and
related ghost �elds also contribute to the Feynman amplitude� In Figure ���� we show a
schematic triangle diagram of the radion decay into two photons�� The A� in eq� ����	 is
de�ned as A� � A��t	 � A��W 	� where A��t	 is the quark loop contribution�� and A��W 	
is the contribution from W and ghost loops� If we substitute mH by m� in the de�nition
of ��t and ��W � we can use the expression for A�� given in ����� eq� �����	� to �nd the loop
contribution to the Feynman amplitude for radion decay into two photons� We get

A� � A��t	 � A��W 	

� �Q�
tNc�

�
t

�
� � ��� ��t 	f���t 	

�
��

�
�� � ���W � ���W ��� ��W 	f���W 	� ����	

where the de�nition of f���t 	 is given in �����	� and ��t � �m�
t�m

�
�� The de�nitions of ��W

and f���W 	 are the same as in the quark case� provided we substitute mt by mW � Note
that the quark�loop contribution to the Feynman amplitude is the same as in the two�
gluon case� provided we substitute g�STr�T aT b	 by �eQt	

�Nc� where Qt is the charge of the
t�quark� and Nc is the number of quark colors�� Therefore we could have got the expression
for A��t	� given in ����	� from the expression given in �����	 by multiplying with the factor
Q�
tNc�

�

�

�

k�

q � �

�
p

q � k

�

�

p

q � �

�
p

k�

Figure ���� Schematic Feynman diagram for the one�loop contribution to the decay of a
radion into two photons� Note that since the photon couples to all charged particles� also
W� and their ghosts are allowed to propagate in the loop� We have used k� and k� for
the photon momenta� and p for the momentum of the radion� where p � k� � k� and
k � �

�
�k� � k�	�

�One loop diagrams with quartic couplings between e�g� WW�� must also be taken into account�
�Again we leave out the light quark contributions�
�Nc � ��
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��� Trace Anomaly Contributions

In section ���� we found an expression for the trace anomaly term in the interaction La�
grangian density for radion production through gluon fusion �see eq� �����		� When we
consider the decay of a radion to two photons� we get a similar expression� but since pho�
tons are involved instead of gluons� we have to substitute �S by the �ne structure constant�
�� We also have to replace the strong ��function coe�cient� bQCD� by its electroweak coun�
terparts� The group representation of the electroweak force is SU��	L � U��	Y � where L
stands for left�handed� and Y represents the hypercharge�

To �nd the respective ��function coe�cients� b� and bY � we shall use the formulae
given in ����� eqs� �������	 and �������	� Due to di
erent ways of de�ning the ��function
coe�cients� we must multiply the coe�cients from ���� by �� in order to be consistent with
the notation introduced earlier� If we also put the number of generations� ng � nf��� we
�nd b� to be

b� �
��� �nf

�
� nH

�
�

��

�
����	

where nf � � is the number of active quark �avors�� and nH � � stands for the number
of Higgs particles� The �rst term can be found from �����	� whereas the second term was
neglected� in ����� In the case of bY � we �nd

bY �
�

�
b� � ���

�
nf � nH

�
� ����

��
����	

where the �rst term is the fermion contribution�
We may now use eqs� ����	 and ����	 to write down the trace anomaly contribution to

the interaction Lagrangian density for radion decay into two photons� which is analogous
to �����	�

Lanom
int � � �

��

	 �

��



�b� � bY 	F��F

��� ����	

By following the same procedure as we did in Chapter �� when we considered radion
production through gluon fusion� we �nd the trace anomaly contribution to the Feynman
amplitude to be �see eq� �����		

Manom � i
�m�

�

��

	 �

��



�b� � bY 	

�
��� � �k��k��

m�
�

�
��r �

�
s ����	

where we� as we did in the case of gluon fusion� have introduced a symmetry factor of ��
since the outgoing photons are identical particles�

�In 
	��� nf � � is used� and therefore they give di�erent values for b� and bY �
�This term was included in the CERN 	��� Summer Student lectures given by C� Quigg�
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��� Decay Rate for the Process �� ��

We will now use the results from the previous sections to �nd the decay rate for radion
into two photons� %��� ��	� By combining the loop contribution and the trace anomaly
contribution from eqs� ����	 and ����	 respectively� we �nd the total Feynman amplitude�
M� for the decay process �� ��� to be

M � i
�m�

�

��

	 �

��



�b� � bY � �A�	

�
��� � �k��k��

m�
�

�
��r �

�
s ����	

Since we are interested in the unpolarized decay rate� summation over outgoing polarization
is required� By using �����	 and �����	 in ����	� we get

X �
�X

r�s	�

jMj� �
�m�

�

��
�

	 �

��


�
jb� � bY � �A�j� ����	

Since eq� ����	 is valid for radion decay into two photons if we substitute mH by m�� we
see that %��� ��	 can be expressed as

% �
m�

�

����
�

	 �

��


�
jb� � bY � �A�j� �����	

where A�� b� and bY are given in ����	� ����	 and ����	 respectively�
Let us now compare the expression in ����	 to similar expressions found in literature�

The F�����t	 function in ���� corresponds to �A��t	 without the Q�
tNc factor� and F���W 	

corresponds to �A��W 	� in our notation� If we use this� together with the procedure used
in Chapter �� to compare eq� ����	 to the e
ective vertex given in ����� eq� ���	� we �nd
the same relative sign di
erence as discussed on page ��� Note the relative factor of �
between the ��function coe�cients and A� in ����	� which was not present in the gluon
fusion amplitude �see �����		� The reason why this factor did not occur in the gluon case
is due to a factor of ��� from eq� ����	� which we do not get in the photon case�

In Fig� ��� on page �� we show ����v	�%��� ��	� where %��� ��	 is the decay rate
of radion decay into two photons� As in the cross section plot in the previous chapter� we
have introduced a scaling factor of ����v	� to remove the unknown vacuum expectation
value� ��� of the radion �eld� We have used a center of mass energy of

p
s � �� TeV� and

�ve active quark �avors
� The thresholds for both t�t and W �pair production are visible in
the decay rates� This is because ��W � � and ��t � � at these thresholds� Since f���	� given
in �����	� changes from one function to another at �� � �� and since A� depends on f���	�
we can easily see these thresholds� In the previous chapter we found that in the cross
section for radion production through gluon fusion� the trace anomaly term� bQCD� gave a
considerable contribution� Here we see that the trace anomaly term does not give a very
large contribution in the case of two�photon decay rates� at least not for m � ��� GeV�

�Corrections due to nf �� � for very high� or very low� energies have not been considered�
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Figure ���� The decay rate� %�� � ��	� of radion decay into two photons� with a scaling
factor of ����v	�� We have also shown the corresponding Higgs decay rate �the dotted
line	 without the scaling factor� Five active quark �avors� and an energy of

p
s � �� TeV

in the center of mass was used�

We can understand this by noticing that the ��function coe�cients in ����	 and ����	 have
opposite sign� b� � bY � ������ There is also a relative factor of � between A� and the
��function coe�cients� which makes the trace anomaly contribution less important�

If we consider the Higgs decay rate �the dotted line	� we see that there is a local
minimum around ��� GeV� This happens because the real part of A��W 	 cancels the real
part of A��t	 at almost the same mass as where the imaginary parts cancel� Note that
the radion cross section also has a local minimum around ��� GeV� but because of the
�real	 ��function coe�cients� the cancellations of the real and the imaginary parts in the
amplitude do not occur near each other� and the e
ect is not as prominent as in the Higgs
case� We also see that both decay rates increase for large masses� due to the m� behavior in
the decay rate� Again we emphasize that mass di
erence and di
erent vacuum expectation
values are of importance for the relation between the two decay rates� Since Figure ��� is
of greatest interest for a light radion� m� � ��� GeV� where the branching ratio into two
photons is signi�cant� we have shown this mass region in greater detail in Figure ��� on
page �� �upper panel	�
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Figure ���� The decay rates �above	� and the ratio de�ned in �����	 �below	� as functions
of the mass of the boson �radion or Higgs	� In both cross sections we use

p
s � �� TeV�
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Since the upper panel on page ��� which shows the decay rates� has a logarithmic scale�
we also show the ratio� R� �lower panel	� de�ned as

R� �
����v	�%��� ��	

%�H � ��	
�����	

as a function of the mass of the boson �radion or Higgs	� We see that R� � � in the whole
mass region� which is interesting� but we have to remember that R� contains an unknown
scaling factor� The total cross section for radion decay will also contain two�gluon decay�
which should be strongly enhanced due to the QCD trace anomaly term we discussed in
the previous chapter� Therefore� the probability of a radion decaying into two photons
may be lower than the probability of the corresponding Higgs decay� Note that since the
radion coupling to all SM �elds has a ���� dependence� the probability mentioned above�
which often is referred to as the branching ratio� is independent of ���



Chapter 


Radion Production and Decay

In this chapter we will use the results from the previous two chapters to study the combined
process of a radion� which is produced through gluon fusion in a pp collider� decaying into
two photons� In Figure ��� we have plotted the product of ����v	���p � p� � � X	 and
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Figure ���� The product of the cross section� ��p � p � � � X	 and the decay rate�
%�� � ��	� with a scaling factor of ����v	�� and the corresponding quantities for the
Higgs case �without the scaling factor	� We have used �ve active quark �avors� and a
center of mass energy of

p
s � �� TeV�

��



��

����v	�%�� � ��	 as a function of m�� where the cross section and the decay rate are
given in �����	 and �����	 respectively� We have also shown the corresponding quantities
for the Higgs case as a function of mH � but without the scaling factors� Since Figure ���
is the product of the curves shown in Figure ��� �upper panel	 and Figure ��� on pages ��
and �� respectively� we get a total scaling factor of ����v	� in the product of the radion
cross section and decay rate� This is� as we have mentioned before� to remove the unknown
vacuum expectation value� ��� of the radion �eld� As we can see� the thresholds for t�t and
W �pair production are both visible� Note that the shapes of the two curves in Figure ���
are similar to those in Figure ���� This is since the ratio of the cross sections �see Figure ����
lower panel	 has no strong variation�

Roughly speaking� the radion curve di
ers from the Higgs curve by two to three orders
of magnitude� In order to better see this� we de�ne the ratio� R� as

R � ����v	���p � p� � � X	� %��� ��	

��p � p� H � X	� %�H � ��	
����	

In Figure ��� on page �� �upper panel	 we have plotted the quantity R as a function of
the mass of the boson �radion or Higgs	� This ratio is however not an observable� since ��

is unknown�
If the total decay rates� %��� X	 and %��� X	� had been calculated� we could have

found the so�called branching ratio� B�

 � de�ned as

B�

 �
%��� ��	

%��� X	
����	

where BH

 is de�ned analogously� By using �����	� the total number of events� NH

 � of
the process pp � HX � ��X� generated at the LHC during one year� could have been
calculated from the formula

NH � ��� � ��pb�� BH

 ����	

where only gluon fusion� which is the most dominant production process ���� has been
taken into consideration� We could have followed the same procedure in the radion case�
but since the vacuum expectation value� ��� is unknown� we would have to introduce a
scaling factor of ����v	� in N� to remove the �� dependence from the cross section� It
would still have been interesting to do these calculations� and compare the two cases for
di
erent values of ���

Let us now de�ne the ratio� R�� as follows

R� � ��p � p� � � X	

%��� ��	
����	

where RH is de�ned analogously in the corresponding Higgs case� Note that the vacuum
expectation values cancel� and there is no need for a scaling factor� In Figure ��� on page ��
�lower panel	 we show R��RH as a function of the mass of the boson �radion or Higgs	�
The ratio� R��RH � is an observable� in contrast to R� and R in eqs� �����	 and ����	� and
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Figure ���� The ratio� R �above	� which is de�ned in ����	� and the ratio R��RH �below	�
where R� is de�ned in ����	 and RH is analogously de�ned� as a function of the mass� m�
of the boson �radion or Higgs	 at a center of mass energy of

p
s � �� TeV�



��

it is of greatest interest for a light radion� m� �
 ��� GeV� where the branching ratio� B�



is signi�cant ����� The fact that this ratio� given in Figure ��� on page �� �lower panel	 is
signi�cantly di
erent from �� suggests that ��p � p� ��H � X	�%���H � ��	 is a very
informative observable for distinguishing between a radion and a Higgs particle�



Chapter �

Concluding Remarks

In this thesis we have studied production of the Randall�Sundrum radion through gluon
fusion at the LHC� We have also investigated the decay of a radion into two photons�
The radion couples to the Standard Model �SM	 particles through the trace of the energy�
momentum tensor� By comparing the couplings of the radion to those of the SM Higgs
boson� we were able to use the calculations for the cross section of Higgs production through
gluon fusion� and its decay rate for decay into two photons� to �nd the loop contributions
in the radion case��

Since the vacuum expectation value� ��� of the radion �eld is unknown� we have in�
troduced a scaling factor in our plots of the radion cross section and decay rate� After
rescaling� we were able to compare the radion results to the results for the SM Higgs
boson� We found that the trace anomaly terms� which enter in the radion case� give a sig�
ni�cant contribution to the production cross section� and a more moderate contribution to
the �� decay rate� Mass di
erences and di
erent vacuum expectation values of the Higgs
and the radion �eld are of course very important� but since only one of these parameters�
namely the vacuum expectation value� v� of the Higgs �eld� is known� we are not in position
to determine these e
ects�

We also studied the product of the cross section for radion production through gluon
fusion and the decay rate of a radion into two photons� This product was compared to the
corresponding product in the Higgs case by looking at the ratio of the two products�� A
similar comparison was made� where we �rst considered the ratio� R�� between the cross
section for radion production through gluon fusion and the decay rate of a radion into two
photons� Then we plotted the ratio between R� and the corresponding Higgs ratio� RH �
The ratio� R��RH � is independent of the unknown ��� and is an observable quantity� We
found that this ratio is signi�cantly di
erent from � in the mass region m� �
 ��� GeV�
This is interesting� since it is in this region the �� channel has a signi�cant branching ratio�
In this context� it would be interesting to calculate the branching ratio for radion decay
into two photons� which should be independent of the vacuum expectation value� ��� of

�All results in this thesis are one�loop results�
�We introduced a scaling factor of ���
v�

�� since the vacuum expectation value� ��� of the radion �eld
is unknown�

��



��

the radion �eld�
The Randall�Sundrum scenario is just one out of many proposed scenarios involving

extra dimensions� If it turns out that nature has chosen a di
erent solution� the Randall�
Sundrum radion would of course not exist� However� the calculations in this thesis are
valid for all scalar particles which couple to SM particles through the trace of the energy�
momentum tensor�

One of the reasons why scenarios involving large extra dimensions have got a lot of
attention over the last years is due to the possibility that� within a few years time� one may
determine experimentally if such extra dimensions exist or not� Until the next generation
of hadron colliders will be turned on� these scenarios are just speculations� We do not
know which scenario� if any� is correct� but the progress in this �eld over the last years
illustrates the validity of the following statement� made by Pauli�

The question is never� Will the present theory remain as it is or not� The

question is always� In what direction will it change�

W
 Pauli



Appendix A

Feynman Rules

The Feynman amplitude� M� to a given order� n� is obtained by drawing all Feynman
diagrams which are connected� topologically di
erent� have n vertices and correct external
lines� Each diagram represents a mathematical expression� which is given by the Feynman
rules� The Feynman amplitude is the sum of all such contributions� Below� we have listed
the Feynman rules which are relevant for the calculations in this thesis�

� Follow the fermion line against its arrow� and write non�commuting factors ���
matrices and fermion propagators	 from left to right�

� For each closed loop with loop momentum q� carry out the integration�
R

d�q
�����

� For each closed quark loop� multiply by ���	 and take the trace�

� For each initial gluon� �r��k	

� For each quark propagator �

i��p�mq�

p� �m�
q
� i�

p

q

� For each gluon�quark�antiquark vertex�

g igS�
�T a

ij

j

i
q

q

�� a
k���

��



��

� For each Higgs�quark�antiquark vertex��

H �

i

�
gW

mq

mW

q

q

�
p

�Since the Higgs particle is color�neutral� the quark and the antiquark must have the same color�
anticolor�



Appendix B

FORTRAN Subroutines in C��

B�� FORTRAN Code

The following FORTRAN code was used as a subroutine in our C�� program� We choose
gluon distribution by the parameter Iparton � ��

�����������������������������������������������������������

� Test CTEQ� pdf�s

�����������������������������������������������������������

real�� function gluondist�x�Q�

implicit none

double precision x�Q�res

double precision Ctq�Pdf

integer Iset�Iparton

Iset�	

Call SetCtq��Iset�

Iparton�


res�Ctq�Pdf �Iparton� X� Q�

gluondist�res

return

end

�����������������������������������������������������������

include ��gruppe�hepteori�osland�ctq��pdf�Ctq�Pdf
f�

��



B��� C�� CODE ��

B�� C�� Code

If we want to declare the function gluondist� from the FORTRAN code on the previous page
as a subroutine in a C�� program� we write

extern �C�

�

double gluondist��double��double���

�

By using the extern �C��� � � � command� we can declare subroutines which are not written
in C�� code� The appended underscore in the declaration of gluondist� must also be
included in a C�� call� to specify that this is a FORTRAN subroutine or function� Since
FORTRAN subroutines and functions expect call�by�reference arguments� it is necessary to
use the address�of ��	 operator in the C�� function prototypes�� An example of how
we used the FORTRAN code on the previous page as a subroutine in a C�� program can
be found below� where we have listed the C�� code� used to compute the cross section�
��p � p� H � X	� in Chapter ��

�� This program computes the cross section of the process pp �� HX�

�� by computing the convolution integral numerically
 Simpson�s 	�� rule

�� is used to perform the integral


�� To compile the FORTRAN file� use�

�� f�� �c gluondist
f

�� Compile this file by�

�� g�� �o sigmafortr sigmafortr
cc gluondist
o �lfor

�include �iostream� �� cout� cin


�include �math
h� �� asin��� pow��� sqrt��


�include �complex
h� �� Complex numbers


�include �fstream
h� �� Writing to file


�� Define the coefficient A
t�� in the Feynman amplitude�

complex �double� A
t�double mt�double mh�double PI�

�

double mut� � ��pow�mt����pow�mh���� �� This is mu squared


double x	�y	�x��

x	 � log��	�sqrt�	�mut�����	�sqrt�	�mut�����

�
C�� passes all parameters by value �except arrays and structures�� while FORTRAN passes them by

reference�
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y	 � �PI�

x� � pow�asin�	�sqrt�mut�������

complex �double� z	�x	�y	�� �� Declare a complex z	


�� �double� means that x	

�� and y	 are �double�


complex �double� fmut�� �� f�mu�squared�


if �sqrt�mut���	�

fmut� � �

���pow�z	����

else

fmut� � x��

complex �double� A
t�

A
t � �mut���	 � �	�mut���fmut���

return A
t�

�

�� Declare the FORTRAN subroutine� gluondist����

extern �C�

�

double gluondist��double��double���

�

�� Define the integrand in the convolution integral�

double integrand�double y� double ECoM� double mh�

�

double xp � �mh�ECoM��exp�y��

if�xp�	� �� To handle round�off

xp � 	� �� errors


double xm � �mh�ECoM��exp��y��

if�xm�	� �� To handle round�off

xm � 	� �� errors


return gluondist��xp�mh��gluondist��xm�mh��

�

�� Define convolution�� as the convolution integral�

double convolution�double ECoM�double mh�double c�



B��� C�� CODE ��

�

double a�b�

double integral�integralnull�ans�diff�

double dy�y
�y	�y��dA�

a � log�mh�ECoM�� �� Lower limit in integral


b � �log�mh�ECoM�� �� Upper limit in integral


dy � 

���b � a�� �� First approximation


ans � 
�

do �

integralnull � ans�

ans � 
�

for �y
 � a� y
 �� b���dy� y
 � y
���dy�

�

y	 � y
 � dy�

y� � y
 � ��dy�

dA � �y� � y
���integrand�y
�ECoM�mh�

� ��integrand�y	�ECoM�mh�

� integrand�y��ECoM�mh�����

ans � ans � dA�

�

integral � ans�

if�integral � integralnull�

�

diff � integral � integralnull�

�

else

�

diff � integralnull � integral�

�

dy � 

��dy�

� while�diff � c��

return ans�

�

�� Define alphaS as the running coupling constant


�� nf � � �active colors� and Lambda � ��� MeV


double alphaS�double mh�double PI�

�

return ���PI�����log��
����mh���

��	 � �	���log���log��
����mh���������log��
����mh����

�
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�� The main program�

main��

�

cout
precision�	
�� �� To get 	
 digits in output answer


double mh� �� Higgs mass


double ECoM� �� Center of mass energy �sqrt�s��


double c� �� Precision in convolution��


double PI � �
	�	�����

double GF � 	
	��e��� �� Fermi coupling constant� �GeV����


double mt � 	��
�� �� Top�quark mass �GeV�


double mhmin�mhmax�step�

complex �double� i�
�	��

�� Remove comments to specify variables each time�

�� cout �� �Compute until correction in convolution�� is less than� ��

�� cin �� c�

�� cout���Set energy in center of mass �TeV�� ECoM � ��

�� cin��ECoM�

�� cout���Set minimum value for Higgs mass �GeV�� mhmin � ��

�� cin��mhmin�

�� cout���Set maximum value for Higgs mass �GeV�� mhmax � ��

�� cin��mhmax�

�� cout �� �Set step value for loop �GeV� � step � ��

�� cin��step�

c � 


	�

ECoM � 	��

mhmin � �
�

mhmax � 	


�

step � 	
�

ECoM � 	


�ECoM� �� To get GeV instead of TeV


�� remove old 
dat file�

system��rm sigmafortr
dat���

ofstream outSigmaFortrFile��sigmafortr
dat�� ios��app��

�� Creates an ofstream object called outSigmaFortrFile


�� outSigmaFortrFile creates a file sigmafortr
dat� and ios��app

�� means that all output is written to the file� without deleting



B��� C�� CODE ��

�� anything


for �mh � mhmin� mh �� mhmax� mh � mh�step�

�� for�loop computes cross section for mh between �mhmin� and

�� �mhmax� GeV� in steps of �step� GeV


�

�� Compute cross section� sigma� as complex despite the fact that

�� it is real
 This is bechause it contains complex variables


complex �double� sigma�

sigma��PI�GF�pow�alphaS�mh�PI��mh�������sqrt����pow���PI�ECoM�����

�A
t�mt�mh�PI��conj�A
t�mt�mh�PI���convolution�ECoM�mh�c��

��Convert sigma to real form since it is a real number


double Sigma�

Sigma � �������e���sigma
real��� �� To get cross section in pb

�� instead of �GeV����� use

�� hbar�c�	��
���MeV�fm

outSigmaFortrFile �� mh �� � � �� Sigma �� endl�

�� For each loop� put mh and Sigma in sigmafortr
dat� with a space

�� between


�

return 
�

�
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