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Abstract Domain transformation methods are useful tech-
niques for solving problems on non-stationary domains. In
this work, we consider the evolution of the water table
in an unconfined aquifer. This nonlinear, time-dependent
problem is greatly simplified by using a mapping from the
physical domain to a reference domain and is then further
reduced to a single, (nonlinear) partial differential equation.
We show well-posedness of the approach and propose a sta-
ble and convergent discretization scheme. Numerical results
are presented supporting the theory.
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1 Introduction

The temporal change of the water table in an unconfined
aquifer is challenging to model efficiently while main-
taining a desired accuracy. Affected by natural processes
including precipitation and subsurface flows combined with
artificial factors such as wells and dams, this non-stationary
problem emerges in a variety of engineering applications.

From a modeling perspective, the water table evolution
problem is challenging because the computational domain
will typically depend on the solution to the problem. Specif-
ically, the hydraulic head is the unknown variable, yet it
defines the elevation of the water table and thereby the upper
boundary of the saturated region. As a result, the domain of
computation and the variables of interest cannot be consid-
ered independently. Several methods have been developed
to solve this problem, which we review concisely in the
following summary.

A first approach to describe the non-stationary domain
is to use a moving mesh. This way, the computational
domain is able to follow the dynamic geometry of the
saturated region [6]. However, this approach can be com-
putationally demanding for three-dimensional problems
and furthermore, large deformations of the domain may
cause instabilities [3]. The primary reason for this is that
significant stretching of the mesh may lead to undesirable
aspect ratios in the elements and cause oscillations in the
solution. For the problem considered here, it is imperative
that the solution method is able to handle such large defor-
mations and gradients, for example, those occurring in the
vicinity of wells.

Alternatively, it is possible to expand the domain of
computation towards the surface and treat this problem as
saturated-unsaturated flow governed by Richards’ equation.
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The solution is then obtained using, for example, finite dif-
ference [7, 8] or finite element methods [9]. A drawback
with this approach is the nonlinearity of Richards’ equation
which results in a substantial computational cost to obtain a
solution.

A third approach is to assume vertical equilibrium and
integrate all equations in the z-direction. The problem is
then simplified by reduction of dimensionality which allows
for the derivation of analytical solutions [2]. However, this
approach is only valid if vertical flows (and head gradients)
are negligible. Thus, for the sake of generality, we will not
make such an assumption in this work.

Finally, the use of coordinate transformations eliminates
the challenges of modeling deformable domains by map-
ping the problem to a stationary reference domain. This has
been applied successfully for saturated-unsaturated flow [1,
10]. In those works, the highly nonlinear Richards’ equa-
tion is considered leading to a computationally demanding
method.

Herein, we propose a discretization method by applying
a mapping from the saturated region to a reference domain,
therewith considering only saturated flow. We then further
reduce the original system of equations to a single, nonlin-
ear equation with a single variable, namely the hydraulic
head. These two manipulations simplify the problem to such
an extent that the stability and convergence of the proposed
discretization follow naturally.

The structure of this paper is as follows. Section 2 intro-
duces the governing equations and presents an explicit
choice for the mapping to a reference domain. Next, the
problem is reduced to a single equation in Section 3 as
part of the derivation of the variational form. Sections 4
and 5 are devoted to the discretizations in time and space,
respectively, and introduce the Picard scheme used to han-
dle the included nonlinearity. Numerical results confirming
the expected stability and convergence of the scheme are
presented in Section 6.

2 Model description

In this section, we introduce the water table evolution
problem from a modeling perspective. Here, we state the
necessary definitions and elaborate on the governing equa-
tions included in the model. First, let £2(¢) denote the
d-dimensional spatial domain representing the saturated
region with d equal to 2 or 3. In particular, the time-
dependent top boundary, I'(¢) is of interest since it repre-
sents the water table.

The governing equations for the problem are the mass
balance equation, Darcy’s law and the water table boundary
condition. For the mass conservation equation, we assume
incompressibility of both the fluid and the surrounding
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matrix. This allows us to reformulate mass conservation as
volume conservation given by the equation

5.9 4 v u=0 (1)
Sa[ - )

in which S; represents the specific storativity [%], h is the
hydraulic head [L], and u represents the volumetric flux
[%]. Secondly, we assume that the flux is governed by
Darcy’s law, i.e., it satisfies

u=-—KVh. ()

Here, K represents the conductivity tensor [%] which is
assumed to be symmetric and positive definite. Finally, a
key component of this problem is that the top boundary rep-
resents the water table and thus, it is time dependent. To
incorporate this in the model, we parametrize the boundary
I'(t) by x3 = ¢(x), t). Here, and later, we use the parallel
stroke to indicate the horizontal spatial components of a vec-
tor, e.g., X|| = (x1, x2) in the 3D case and x|, = x; in the 2D
case. In the following, we will continue with dimensionality
d = 3. The description in two dimensions is analogous.

The newly introduced variable ¢ which represents the
elevation of the water table is then subject to the evolution
equation [13]

tile
¢§=1(t)+u3—u\|-v||§, 3)

in which ¢ represents the porosity, /() is a function rep-
resenting the infiltration, and u3 is the third component of
the flux. 7 (¢) is positive for a downward flux. To close the
model, we impose boundary conditions on the boundary
d£2. For unconfined aquifers, the elevation of the water table
is equal to the hydraulic head at the water table [13]. Thus,
our first boundary condition becomes

h=¢ onI(). 4)

The remaining boundaries are split up into two parts,
namely I'p and I'y. On I'p, we assume that the hydraulic
head is given by a known function f. On the other hand,
we assume no flow is possible on I'y. These two conditions
are:

h=f,

n-u=0,

onI'p(1), (5a)
on 'y (f). (5b)

Here, n is the outward pointing, unit normal vector on the
boundary 952.

2.1 Transformation to reference space

The problem introduced up to this point may be diffi-
cult to solve since the spatial domain is not fixed in time.
Therefore, we transform the problem to a stationary domain
Q= £2) x [0, 1], i.e., a domain with unit height. In the sub-
sequent derivation of the transformed governing equations,
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the hat notation will consistently refer to variables in the
transformed domain.

Let W (1) 2 — £ denote any invertible trans-
formation and let @(¢) denote its inverse. For simplicity,
we will require that ¥ () leaves horizontal components
unchanged. In particular, this means that ¥ ([)A(H, 1], t) =
[x), £ (x|, t)]. The specific choice of ¥ (¢) is discussed in
Section 2.2, and an illustration of these definitions is shown
in Fig. 1. We continue with the transformation on the vari-
ables included in the model to the reference domain. The
hydraulic head in reference space h will be defined such that
h(x,t) = fz(q§(x, 1), t). For the flux vector @, we will use
the Piola transform in order to preserve the divergence struc-
ture of the original problem [4]. In particular, we define G
such that

vy ‘
u=—1i (6)

with J = det (@W) The transformed version of Eq. 1 then
becomes

S;— + V- =0. @)

Secondly, we reformulate Darcy’s law given by Eq. 2 for the
reference domain. Substitution of A(x,t) = h(®(x,1),1)
leads us to

ux, t) = —KVA(®(x, 1), 1). )

Next, we use Eq. 6 and the chain rule to obtain the following
formulation in transform space

VY Fean

It follows that we may write Darcy’s law in transform space

as

A A A

u=-KVh, (10)
in which the transformed conductivity K is given by
K=JV¥) ' Kve) T, (1)

Here, we have made the final substitution V& = (@II/)’1 .
Following the same procedure, we aim to find the equa-
tion for the water table evolution in reference space, i.e.,
the equivalent to Eq. 3. First, we note that since ¥ leaves

W(t)
(———

—
@(t)

Fig. 1 The transformations between the time-dependent, physical
domain £2(¢) and the stationary, reference domain 2

horizontal components unchanged, we can express ¥ in
terms of only the third component ¥3

v (X) =[x, ¥3(33, O] (12)

This allows us to derive the Jacobian matrix

%wz[ h 0 } atiy = 1. (13)
Vit a5

We now continue by rewriting Eq. 3 in the reference space.
First, we note that

~ T d

Vv | [VHCv %WS]A

=e3- —U=——"2—q. 14
uz =€ — 7 (14)

Secondly, the last term of Eq. 3 is rewritten using Egs. 6
and 13 as

VW L,0]
w - Ve = (elTTu) V)it = ([ 2] ]u) -Vji¢. (15)

With J = 3373!1/3, the water table evolution (3) is reformu-
lated as

0
d)a—i =1(t)+ 3. (16)

The three equations (7), (10), and (16) form our system in
reference space, which we repeat here for convenience:

=>
I

oh 4
Sio + V- 0, (17a)

i = —KVi, in £2,

% ro+a
¢8t - Ll3,

(17b)
onf. (17¢)

The associated boundary conditions are obtained from
(4) and (2):

h Z, on f‘, (18a)
h=f, on 'p, (18b)
n-a=0, on [y. (18¢)

2.2 A choice of transformation

The transformation ¥ (f) can in principle be chosen as
any monotone function. However, although certain complex
choices may hold desirable properties, we aim for a com-
putationally efficient discretization scheme. Therefore, we
choose ¥ (¢) to be a linear transformation in the vertical
coordinate, such that:

Xx=¥Q& 1) =X £30&),0]. (19)

The inverse transformation @ is then given by

A X3

x=¢(x,t)=|:x , j| (20)
! (x|, 1)
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Furthermore, the Jacobian matrices can be stated explicitly
as follows.

o I 0 _ I 0
VY = |:xA3VT§ §i| and Vo = |:_x3§_zvljl"€_ é__l ] .
(21

A more complex choice, adapted for layered systems, will
be considered in the numerical examples.

3 Time-continuous formulation

In this section, we establish some basic properties for the
time-continuous problem. We start by stating the variational
form and rewrite the system (17a—17c) to a single equa-
tion with a single unknown variable. In turn, this gives us
a noteworthy advantage in the consequent analysis of the
well-posedness of the problem.

3.1 Variational formulation

The first step is to note that according to Eq. 18a, the vari-
able ¢ is the trace of h on I, Thus, the definition of £ as an
independent variable is obsolete and it becomes convenient
to discard the notation of ¢ and use the variable h, instead.
However, it is important to note that the transformation ¥
and therewith the conductivity tensor K only depend on the
trace of 4 on I" and not the whole function /. To emphasize
this, we will occasionally revert to the notation

K(¢) = K(hlp). (22)

In the following steps, we will continue to simplify the
system (17a—17c). With the aim of solving this problem with
the use of the finite element method, we derive the vari-
ational formulation. For this, we employ the conventional
inner product notation

(hg)p = /Q h(®)g(R)ds, (23)

and omit hats on variables and gradients for brevity. Let us
multiply Eq. 7 with a test function g € H' and integrate
over the domain £2. We pay special attention to the second
term in Eq. 7, in which we first substitute Darcy’s law (10).
With the application of partial integration and the associated
boundary conditions, this term becomes

—(V - (K()Vh), g) s
= (K(h)Vh,Vg) s — (m- (K(W)Vh), g)n
= (K(W)Vh, Vg) s + (u3, &)p

A oh
= (K(W)Vh,Vg)g + ¢ (5 g) — U@, 9. (24
f
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Here, we have used Eq. 16 in order to eliminate u3. We are
now ready to write the weak form of Eq. 7 as

dh - dh
S, (zT’ g> + K(W)Vh,Vg)s + ¢ (—, g)ﬁ =@, &p-
t O ot 1
25

Thus, we have reduced the system of equations derived in
the previous section to a single equation. The advantage of
this becomes evident in the next sections.

3.2 Well-posedness

Next, we analyze the well-posedness of the derived problem
with the use of the following lemma.

Lemma 1 Let the initial and boundary conditions satisfy
hgo > 8 > 0and f > 0. Then the solution to Eq. 25 exists
and is unique.

Proof The proof is done by showing that the conductivity
tensor K(;) in Eq. 25 is symmetric and positive definite
under these assumptions. Then, the problem is identified as
a diffusion-type problem which is known to be well-posed.

Let us start with the assumption that the physical con-
ductivity tensor K is symmetric and positive definite.
Equation 11 states that K(;) is equal to K which is left-
and right- multiplied by transpose matrices. Thus, if ¢ is
bounded away from zero, it follows that K(;) is symmetric
and positive definite as well.

In order to ensure that ¢ is non-zero, it is essential that the
solution to Eq. 25 is also non-zero for all time. This property
can be shown by using the maximum (or rather, minimum)
principle related to problem (25).

From this principle, we deduce that the solution % attains
its minimum on the boundary. On this boundary, we distin-
guish three different cases. First, if the minimum is attained
on I"p, then it follows i = f- Since f > 0 by assumption,
it follows that 4 is strictly positive as well.

Secondly, the minimum could be attained in a point X
on I". We then introduce Hopf’s Lemma which states that
% (X0) < 0, yet this contradicts the homogeneous Neumann
boundary condition (2) prescribed there.

Finally, if the minimum is attained on Xy € f‘, we recall
that the boundary condition there is given by

R ah
1) =n-K@QVh=¢ . (26)

Again, using Hopf’s lemma, it follows that g—ﬁ(io) < 0. The
prescribed boundary condition then implies that % > 0
since the infiltration is a positive function. A positive tempo-
ral derivative in combination with the assumed ig > § > 0
means that the function /4 remains strictly positive in time.
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Thus, we conclude that the solution /4 is bounded away
from zero. This implies positive definiteness of the conduc-
tivity tensor K(h) and therewith the well-posedness of the
problem. O

4 Time-discrete formulation

In this section, we continue by discretizing problem (25)
in time. We show that using a Backward Euler approach is
sufficient to obtain a stable discretization.

Let us introduce At as the time step and 4,, as the solution
at time t,,. Using a Backward Euler discretization scheme,
we solve the following problem for /4,1

Sy A i, @) + (R Vhai, Vg)

+oAL (hg1. 9)f
= S Aty @)+ dA Iy, )5 + (T(1), 5. (27)

Note that the nonlinearity in the diffusive term requires spe-
cial attention. In order to solve the problem, we propose
using a Picard iterative scheme. In this context, let the super-
script k denote the iteration number. The next iterate can
then be found by solving the following problem:

2

Ssar il g + (Ko, ) valt]. ve)

oA (1 9y
= S0t (ha, §) g + 9O (i, @) + (1(1), )p. (28)
Each iterate remains subject to the Dirichlet boundary con-
dition

htl = f, onTp. (29)

A natural choice as an initial guess is h2+1 = h,, l.e., the
solution at the previous time step.

We are interested in convergence of this scheme to a
certain limit solution as this limit solution will solve the
nonlinear problem. Therefore, a formal proof concerning
the existence and uniqueness of such a limit solution is given
by the following lemma.

Lemma 2 Let the same assumptions from Lemma 1 hold
and let the time step At be sufficiently small. Then the time-
discrete problem (27) has a unique solution.

Proof For this proof, the essential tool is the set H;(f‘)
which contains (weakly) differentiable functions bounded
away from zero. More precisely, for a given § > 0, this set
is defined as follows

HI () ={he H'(D)| h =35, ae). (30)

Ifwe Hl(fZ) solves (28) for a given ¢ € H(Sl(f‘), then we
can construct the operator A : H 81 (f‘) — H Bl(f‘) given by

AlZ] = wlp. €19

With these definitions, the lemma states thatif f € H g) (f D)
and h, € H 51 ([} ) for some § > 0, then the system (27) has a
unique solution. The proof is done through an application of
Banach’s Fixed Point theorem on the introduced, nonlinear
mapping A related to system (28).

Let us consider two functions {1, € H(Sl (") and
denote the corresponding solutions to Eq. 28 by w; and wy,
respectively. Subtraction of these two equations leads us to

(KD Vwr — K(&)Vws, V),
+At7 (wy — w, g)p = 0. (32)

We then set g = wi — w» to obtain
-1 2 -1 2
SsAt lwy —wally o + @A [lwr — w2l 1

= — (R@)Vwi =K@ Vs, Vi —w)) |

1/ 4 .
5 (R@)—R@) Vi +wy), Vaw —w)

1/ 4 .
3 (R@)+R@) V@i = w). Vi —wy) . (33)
Next, we observe that (K(C 1) + K({z)) is positive defi-
nite. By rearranging the terms and applying the Cauchy-
Schwarz-Young inequality, we derive

—1 2 —1 2
SyAr flwr = wall? 5 + Ay — w2

+C1IV (i —w)|? 4

1 N A
< -3 ((K(gl) — K()V(w; + wy), V(w; — wz))f2

1 A A
< SIR@ =K@l ¢ IV @1 = )l 5 1 Vi + w2l g

L/1 4 N )
= 5(5IR@) -K@)I 4

€
+S IV = w3 51V + w2l 5 ). (34)

The next step is to choose the constant €. In order to do this,
we form a bound for |V(w; + w2)||§ & Let us reconsider

Eq. 28 and set g = w; — h,. This choice gives us
SsAr M wi = hally 5 + 1K@ 2Vwi [ 5
AL Jwi = ] 1

= (@, w1 =)+ (RE)Vwr, Vi, )

lqs“mnlmnz +l¢m—1||w — hl?
2 orf ' 2 1 nllg £

IA

| N | N
+5 IRED VWil o + SIKE@) 2 VR o (35)
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Using the positive definiteness of K once more, we obtain
IVwilly 5 < €5 K@DV 4
= G5 (7 AT OI ¢ + IRE) PIh2 ) - (36)

A bound on ||Vw2||(2)é is formed analogously. This

allows us to construct the desired bound on IV(w; +
wy) ||(2) 3 which takes the following form:

A

IV + w2 o < 2(IVwil2 5 + Vw212 )

< C3At + Cy. (37)
Note that if C3Ar + C4 = 0, then V(w; + wy) = 0 as well.
Consequently, we obtain w; = wy from inequality (34) and

conclude that A is a contraction.
Otherwise, we set € = C1(C3At + C4)_l and derive

_ Ci3At+ Cy4 A
At wr = w2l = =72 IRE) — K@l

(CsAt +Colllet = &2ll5 1o (38)

IA

Here, we used the property that K(§ ) is Lipschitz contin-
uous when ¢ is bounded away from zero. (Note, however,
that the values of C5 and Cg depend on 6 > 0.) After
multiplication with the time step A¢, we obtain

lwi = wall§ r < (CsAF + CeADIIE1 — &2 1 (39)

Substitution of A[¢] = w]|; and taking the square root leads
us to the main result

IAIGI1—Al]llor < (C5ALP+CeAD Pl|c1—52 ]l - (40)

Thus, A is a contraction if we choose the time step At
sufficiently small. Since we are considering the continuous
problem, this constraint is independent of grid size. Now,
by Banach’s Fixed Point Theorem, it follows that A has a
unique, fixed point ¢ € HJ (I") satisfying

Alg]l=¢. (41)
The unique solution /4 can then be obtained by solving
problem (28) with ¢ as the trace value. O

5 Finite element formulation

The analytical results shown up to this point all concern the
continuous case. The next step is to discretize the problem
spatially using the finite element method leading to a dis-
crete problem. First, the domain 2 is partitioned using a
Delaunay triangulation.

The Galerkin method is then applied to approximate the
solution by a combination of N known basis functions ¢; (X)

@ Springer

with j = 1, ..., N. In particular, we assume that the solution
can be written as follows:

N
h®) = hjp;R), (42)
j

with 1; constants representing the values of 4 at node X;.
These values are collected in a vector denoted by h. Finally,
the test functions g will be chosen as ¢; and the system (28)
is rewritten to the following matrix-vector multiplication.

AMHRF! = p. (43)
The elements in the matrix A and vector b can be computed

as follows

A (0%

Ssar @ e g + (RMOVe, Vo))
+o At (@1, )5, (44)
bi = SsAt i, ) g + OATT (i, 9) s + (L), 1)1 (45)

Here, in an abuse of notation, K acts upon the function hk
given by the vector h¥.

During the transition to a discrete problem, it is not trivial
that the resulting, discrete problem is also well-posed. We
therefore present the following, separate lemma concerning
the discrete problem.

Lemma 3 Let the the assumptions from Lemma I hold and
let the spatial discretization be linear Lagrange elements
on a Delaunay triangulation. If, furthermore, a sufficiently
small time step is chosen, then the solution to the fully
discrete problem (43) exists and is unique.

Proof The choice of linear Lagrange elements on a Delau-
nay triangulation ensures that the matrix A is an M-matrix
[11, 14]. In turn, the discrete maximum principle holds [5,
14]. Thus, following the same arguments from the proofs of
Lemmas 1 and 2, we obtain the result. O

Finally, we note that Eq. 43 is a diffusion-type problem
and Lagrangian finite elements are a classic choice to obtain
a stable discretization. Together with the well-posedness
from the Lemma 3, quadratic convergence of the hydraulic
head and linear converge of its gradient are to be expected.

6 Numerical results

In this section, we introduce a model problem in order to
demonstrate the theoretical results concerning stability and
convergence. To capture the importance of vertical flows,
we base our example on the water table evolution in the
vicinity of an extraction well. A broader comparison to
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1.0

0.5

X
1.0

Fig. 2 The computational domain is split into two layers with (possi-
bly different) permeabilities

existing numerical techniques and application to field data
is forthcoming.

As an initial condition, we will assume that the hydraulic
head is equal to one uniformly, i.e.,

ho=1. (46)

The extraction well is incorporated as a Neumann bound-
ary condition and starts to operate at time t = 0. We will
assume no flow conditions on the bottom boundary and a
constant unit head on the boundaries far from the well, i.e.
f = 1. Furthermore, the top boundary is governed by the
water table evolution as prescribed by Eq. 16.

The (dimensionless) parameters are as follows, K = 1
where I is the d x d identity tensor, S = 0.1, ¢ = 0.1,
and we introduce a small, constant infiltration I (f) = 1073.
As a result of the previous analysis, the magnitude of the
extraction rate may not be too large in order to ensure that
the hydraulic head remains strictly positive. Thus, we set
this rate to —0.3 in the 2D case and to —1.0 for the 3D
equivalent.

095 1
091
085 .-

0.8

Water table height

0.75

0.7

0.65 T T T
0 0.2 0.4 0.6 08 1

Distance from well

Fig. 3 Water table evolution for the two-dimensional, homogeneous
case at different times. The solution is monotone, approaching an
equilibrium state at t = 1.0

Table 1 Convergence results for the 2D, homogeneous test case show-
ing the expected quadratic convergence of the hydraulic head and
linear converge of its gradient

h Vh

Nmesh error rate error rate
172 7.02E-03 1.04E-01

1/4 1.89E-03 1.89 5.57E-02 0.90
1/8 4.86E-04 1.96 2.90E-02 0.94
1/16 1.21E-04 2.00 1.48E-02 0.97
1/32 2.91E-05 2.06 7.38E-03 1.01
1/64 6.13E-06 2.25 3.35E-03 1.14

Although these values may not coincide with physical
values, this choice suffices to demonstrate the performance
of the scheme. All computations are implemented within
the open-source environment FEniCS [12]. In the follow-
ing subsections, the model problem is considered on a
two-dimensional domain followed by a 3D equivalent.

6.1 2D test case

Let us introduce the two-dimensional, reference domain .Q
which we define as the unit square. Heterogeneity is incor-
porated by defining two permeability tensors K; and Kj
(Fig. 2). We emphasize that radial symmetry is not assumed
here and therefore the left boundary can be viewed as an
infinite strip sink rather than an extraction well.

The problem is solved on a uniform, triangular mesh
using a fixed time step At = 0.1. Adaptive time stepping or
local grid refinement may hold certain advantages, but this
exceeds the focus of this work.

Let us first consider the homogeneous case, i.e.,
K; = K; = 1. As depicted in Fig. 3, the solution obtained
is stable in space and time, showing no sign of oscillations.
Furthermore, the water table evolves rapidly to a steady
state, which is to be expected.

Table 2 The scheme remains convergent when heterogeneities are
included with a slight deterioration in the rates

h Vh

Nimesh error rate error rate
12 7.70E-03 3.44E-01

1/4 4.88E-03 0.66 2.48E-01 0.47
1/8 3.24E-03 0.59 1.66E-01 0.58
1/16 5.34E-04 2.60 7.96E-02 1.06
1/32 1.67E-04 1.68 5.20E-02 0.62
1/64 6.86E-05 1.28 3.25E-02 0.68
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Table 3 The convergence rates can be recovered in the heterogeneous
case by only applying the coordinate transformation in the upper part
of the domain

h Vh

PMmesh error rate error rate
172 3.28E-03 8.30E-02

1/4 8.84E-04 1.89 4.45E-02 0.90
1/8 2.31E-04 1.94 2.32E-02 0.94
1/16 5.90E-05 1.97 1.19E-02 0.97
1/32 1.49E-05 1.99 5.93E-03 1.00
1/64 3.60E-06 2.05 2.70E-03 1.14

Next, we consider the convergence of the discretization.
Due to the nonlinearity of the problem, an analytical solu-
tion is not at our disposal. Instead, the relative error is
computed with respect to a solution obtained on a fine mesh
at time ¢ = 1.0. The results in Table 1 show that the scheme
is convergent with rates as expected from linear finite ele-
ments, namely second-order convergence of the LZ-error in
h and first-order convergence of its gradient.

The incorporation of heterogeneity is done by choos-
ing a higher permeability in the upper domain. Specifically,
we set K; = 4K, = 4I. As the numerical results show
in Table 2, the scheme remains convergent with a moder-
ate decrease in the convergence rates. The deterioration is
mainly due to the fact that the heterogeneities are not sta-
tionary in the reference domain. Nevertheless, the results
show that convergence is maintained despite the unresolved
heterogeneities.

If the water table remains within the upper region, a full
recovery of the convergence rates from the homogeneous

Fig. 4 The hydraulic head in the 3D test case represented in the
physical domain at time t = 1.0
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Table 4 Convergence results for the 3D test case. The observed rates
approach the rates expected from the theory

h Vh
Nimesh error rate error rate
1 3.62E-02 6.45E-01
1/2 1.66E-02 1.13 4.61E-01 0.48
1/4 6.30E-03 1.40 2.87E-01 0.68
1/8 1.95E-03 1.69 1.60E-01 0.84

problem can be achieved by choosing a transformation
which allows the heterogeneity to be stationary in the com-
putational domain. For this purpose, the transformation is
chosen such that it only applies to the upper layer. The
recovered convergence rates are shown in Table 3.

We emphasize that this choice of coordinate transfor-
mation gives rise to a natural coupling with the saturated
region situated below. This is an advantage compared to
approaches with Richards’ equation where the coupling
with deeper, saturated layers is typically less trivial.

6.2 3D test case

In the 3D case, we consider 2 to be a unit cube. The well,
positioned along the z-axis with radius 0.2 is removed from
the domain and is incorporated as a Neumann boundary
condition.

As shown in Fig. 4, the scheme once again produces a
stable solution. Qualitatively, a decrease in the water table
can be seen in the vicinity of the well, as expected. The
equilibrium state, depicted in Fig. 4, is attained at time
t =1.0.

Table 4 shows that the convergence rates approach the
asymptotic rates as the nonlinearities are resolved. These
numerical results therefore support the theory presented in
previous sections.

Open Access This article is distributed under the terms of the
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