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Abstract

With a constantly increasingly number of services in modern software systems (SOA and

micro services), managing such service infrastructure becomes a challenge. Docker Swarm is

a popular service orchestration solution that addressed this issue. This makes it a target for

attacks, as the orchestrator is entrusted with critical information for a system. This thesis

investigates the security of Docker Swarm and the underlying technologies used for providing

a secure orchestration service.

Despite the increasing popularity of Docker Swarm, the security properties of it are

poorly understood. The security mechanisms that underpin Docker Swarm are not well

documented if at all described. The custom protocols used in Docker Swarm for joining a

swarm and rotating manager keys lack public security evaluation. This thesis aims to improve

our understanding of the high-level security features of Docker Swarm by exploring several

attack vectors that are likely to be pursued by a real-world attacker, such as MITM and

DoS attacks. Results of investigation show that Docker Swarm provides a secure platform

for service orchestration, as it is resilient towards selected high level attacks and follows best

security practices.



Acknowledgements

First and foremost I wish to thank my supervisors, Tetiana Yarygina and Anya Helene Bagge.

Your knowledge and guidance has provided motivation and insightful conversations during

the development of this thesis, and thank you for helpful comments on the text.

I am grateful to all of those with whom I have had the pleasure to work with during

this thesis and other related projects. The students and faculty at the Department of Infor-

matics, University of Bergen have created an environment for engagement and excitement

for Computer Science. I am grateful for the countless hours spent at the study hall with

interesting discussions. A place where I have thrived. A special gratitude to the students at

JAFU; We few, we happy few, we band of brothers.

Lastly I want to thank my family, friends and especially Helga, my girlfriend for support-

ing me during my time as a student, and for always encouraging me.

Didrik Sæther

July 31, 2018



ii



Contents

1 Introduction 1

1.1 Problem statement and motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Goals and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background on distributed systems 7

2.1 Distributed computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Consensus protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Containerised applications . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Continuous integration and DevOps . . . . . . . . . . . . . . . . . . . . . . . 11

3 Docker, Docker Swarm and related infrastructure technologies 13

3.1 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Docker Swarm, SwarmKit, and Swarm mode . . . . . . . . . . . . . . . . . . 15

3.3 Etcd and raft logs in Docker Swarm . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Docker networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Golang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Golang TLS library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Protocol buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6.1 Comparing Protocol buffers to other message formats . . . . . . . . . 23

3.7 gRPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.1 gRPC security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 HTTP/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



4 Docker Swarm Security 31

4.1 Security basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Trust on first use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Mutual authentication and PKI . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Certificate management and PKI . . . . . . . . . . . . . . . . . . . . 33

4.1.4 Security in containerised environments . . . . . . . . . . . . . . . . . 34

4.1.5 Attack models for containerised environments . . . . . . . . . . . . . 35

4.2 Security features in ”Joining the swarm” . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Securely joining a swarm . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Root trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Communication security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Known security problems with the technology . . . . . . . . . . . . . . . . . 43

4.4.1 Common Vulnerabilities and Exposures . . . . . . . . . . . . . . . . . 43

4.4.2 Denial-of-service-attacks on Docker Swarm . . . . . . . . . . . . . . . 44

4.4.3 Malicious container images . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Experiments and results 47

5.1 Defining the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Virtual machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Cryptographic strength of the join-token . . . . . . . . . . . . . . . . . . . . 50

5.4 Man-in-the-middle attack with existing tools . . . . . . . . . . . . . . . . . . 51

5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Custom gRPC proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.2 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Dissecting the protocol for joining a swarm . . . . . . . . . . . . . . . . . . . 58

5.6.1 Creating a swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6.2 Modified manager node . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Input fuzzing on the manager node . . . . . . . . . . . . . . . . . . . . . . . 67

5.7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Discussion and conclusion 73

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

iv



6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Glossary 79

List of Acronyms and Abbreviations 80

Bibliography 81

A Generated code from Protocol buffers 86

B Wireshark output 90

C Snippets of code from Docker Swarm source code 92

D Certificate for a manager node 97

v



List of Figures

2.1 DevOps toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Docker upstream projects vs. downstream products . . . . . . . . . . . . . . 14

3.2 Example of a Docker Service illustrating service, tasks and containers . . . . 15

3.3 Docker single node networking . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Docker multi node networking . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Golangs rising popularity on Google Trends with the search term “Golang”. 19

3.6 Structure of Protocol buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Comparison of Protobuf/JSON performance on GET requests Java to Java . 24

3.8 Workflow of gRPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 System sequence diagram of bootstrapping a new worker node . . . . . . . . 37

4.2 Docker Swarm secure token example . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Visualisation of transparent root rotation. . . . . . . . . . . . . . . . . . . . 40

4.4 Docker network planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Setup of virtual machines for testing MITM attacks . . . . . . . . . . . . . . 49

5.2 Screenshot of Wireshark during bootstrap of a new node . . . . . . . . . . . 53

5.3 System sequence diagram of GCD client/server application . . . . . . . . . . 55

5.4 System sequence diagram of GCD client/server application with a proxy service 55

5.5 Communications diagram for a worker node joining a swarm . . . . . . . . . 65

B.1 Following the encrypted TCP Stream with Wireshark of a join-sequence . . . 91

vi



List of Tables

5.1 Parameters of Figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Available nodes in swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Inspection of service running 6 replicas of Redis . . . . . . . . . . . . . . . . 62

5.4 Running Docker containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 RootCA Struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Parameters of Figure 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Expected errors from bad CSR in cfssl . . . . . . . . . . . . . . . . . . . . . 69

vii



Listings

3.1 .proto-file for GCD-application defining the request and response . . . . . . . 23

4.1 Cryptographic node identity for a swarm node . . . . . . . . . . . . . . . . . 38

5.1 Client without encryption in gRPC . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Server without encryption in gRPC . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Client with encryption in gRPC . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Server with encryption in gRPC . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Generating certificate for secure communication in gRPC . . . . . . . . . . . 56

5.6 Starting the manager node from the shell . . . . . . . . . . . . . . . . . . . . 60

5.7 Inspecting the cluster to see the join-tokens . . . . . . . . . . . . . . . . . . 60

5.8 Starting the worker node from the shell . . . . . . . . . . . . . . . . . . . . . 60

5.9 Starting the manager node from the shell . . . . . . . . . . . . . . . . . . . . 61

5.10 Creating the root certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.11 Downloading the root certificate from manager node . . . . . . . . . . . . . . 63

5.12 Verbose output of creating the root certificate . . . . . . . . . . . . . . . . . 66

5.13 Struct for IssueNodeCertificateRequest . . . . . . . . . . . . . . . . . . . . . 67

5.14 Join-token from Big-list-of-naughty-strings . . . . . . . . . . . . . . . . . . . 68

5.15 Unexpected data as certificate signing request (CSR) . . . . . . . . . . . . . 69

5.16 Generating a malicious CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.17 Comparing the Join-tokens of the swarm with new nodes worker token . . . 71

5.18 Crafting a malicious CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.19 Resulting certificate of a malicious CSR . . . . . . . . . . . . . . . . . . . . . 72

A.1 Generated class in Golang for descriptor in Listing 3.1 . . . . . . . . . . . . 86

C.1 GetRemoteSignedCertificate from swarmkit/ca/certificates.go . . . . 92

C.2 RequestAndSaveNewCertificates from swarmkit/ca/certificates.go . . 94

C.3 Generating the join-token for a swarm from swarmkit/ca/config.go . . . . 96

D.1 Full certificate of a manager node . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



Chapter 1

Introduction

1.1 Problem statement and motivation

When preforming large scale software deployment, the problem of governing the software

system quickly becomes an issue. In fast-paced agile environments, developers want to

spend less time with administration, and more time writing code. For reaching this goal

they resort to automation of tasks like scaling, provisioning and deployment. The problem

is that there are many pitfalls in automating these tasks, especially in regard to security.

This type of automation is called service orchestration.

We can compare it to the actual orchestration of music. Where the developer is the

composer, the worker nodes are the musicians, the manager node is the conductor. There

are many ways and motives for an adversary to interrupt the sweet music played by the

orchestra. An attacker could throw rotten tomatoes. He could sit in the audience with a tape

recorder and sell the bootleg recording after the show. Or he could be more Machiavellian

and infiltrate the orchestra to play the wrong notes on his instrument with intent. The other

musicians would abruptly kick him out after this, but if the attacker can impersonate as

the conductor, he could wreak havoc in the orchestra, and the musicians would not dare to

question his leadership.

The trust given to an orchestration service makes it a target for attackers. If it was to

be successfully attacked, it would compromise a large portion of applications running in a
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container environment e.g., web services running on container virtualization in the cloud.

We want to investigate how secure Docker’s implementation of an orchestration service is, as

it is currently the most popular tool for natively managing a cluster of Docker Engines. It

also acts as an application programming interface (API) for Docker and operates with tools

like Flynn, Kubernetes and Jenkins.

1.2 Related work

Research on the topic of service orchestration is emerging, as well as in the security of

service orchestration. In regard to security analysis of modern container and data centre

orchestration services such as Docker Swarm, Kubernetes, and Apache Mesos the work in

academia and industry is scarce. What exists of academic work often mention the use of an

orchestrator to create a secure system but does not go in detail on the orchestrator itself.

Development of these systems are moving rapidly and the field of DevOps security1 is a

small subset of a subset of computer science, this can help explain the lack of formal work.

Much of the information about Docker Swarm comes from the official documentation and

talks/presentations on the topic, but as these are often as much of a sales pitch as they

are informal, we need to verify the authenticity of these presentations. Despite the software

being open source there is a lack of formal proof of security, information about the security

features and the frameworks they depend on.

Most closely related to our work is the masters thesis ”Security considerations in Docker

Swarm networking” by Brouwers [2] from 2017 which analyses network security in Docker

Swarm in respect to data plane traffic and overlay networks. Parts of this analysis are

strongly related to what we look at in this thesis, though we have chosen to focus on

management- and control plane traffic and the underlying protocols that Docker Swarm

uses for creating and managing a swarm. Brouwers was not able to find security issues

related to layer 2 (Data link layer) attacks.

Another master thesis, ”Security analysis of Docker containers in a production environ-

ment” by Kabbe [21] also from 2017, reviews security in Docker containers in production

environments, and tests known security vulnerabilities, like Dirty COW (CVE-2016-5195),

1DevOps security is an ambiguous term, as the community still is undecided in terms of calling it:
DevOpsSec, SecOps, DevSecOps, SecDevOps or OpSecDev.
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Heartbleed (CVE-2014-0160), Shellshock (CVE-2014-6271) and more. The results show

that the security of container environments preforms equal or better in comparison with a

hypervisor-based environment.

Dino Dai Zovi presented the talk Datacenter Orchestration Security and Insecurity: As-

sessing Kubernetes, Mesos, and Docker at Scale on BlackHat in the summer of 2017 (it was

not published for non-attendants of the conference before spring of 2018), where he discussed

security of data centre orchestration by showing attack models and evaluating the threats

for Kubernetes, Apache Mesos and Docker Swarm. After showing a successful attack to-

wards Docker Swarm and comparing it to the other orchestrators, he presented the security

in Docker Swarm as the current “gold standard”. For this talk there was not published

any paper or article, nor was the source code for the successful attacks published. We have

a successful demonstration, but no way to verify what was done. We have unsuccessfully

contacted Zovi in an attempt to gain access to the source material.

Yarygina [42] discuss security concerns specific to micro service architecture and possible

ways to address them. The paper elaborates why micro service security is a multi-facet

problem which requires a layered security solution that is not available at the moment. The

paper discuss Docker Swarm and Netflix’s solution to mutual authentication of services using

mutual transport layer security (MTLS). In this thesis we look deeper into the security of

Docker Swarm.

The short research paper ”Analysis of Docker Security” by Thanh Bui [3], though pub-

lished in 2015 (before Docker Swarm was revised in 2016), shows that Docker containers are

fairly secure, even with the default configuration. This is also relatable to Zovi’s work, as

it discusses the security implications of Docker as vulnerable to address resolution protocol

(ARP) spoofing. Bui states that the security level of Docker containers could be increased

if the operator runs them as ”non-privileged” and enables additional hardening solutions on

the Linux kernel, such as AppArmor or SELinux. We note that today’s Docker Swarm is

not comparable to the orchestration service in Docker from 2014, as it was rebuilt and split

out to a standalone project in 2016 with version 1.12.
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1.3 Goals and research questions

The overall goal of this thesis is to evaluate and explore the security features of orchestration

services for container-based virtualization. In order to achieve this goal, we attempt to answer

the following research questions:

Research questions:

• What security mechanisms are used in Docker Swarm?

• Is Docker Swarm secure against high level attacks?

• If the security is proven strong, what other applications can benefit from applying this

model?

In addition to the research questions, we want to provide a set of specific requirements the

Docker Swarm should comply with in order for us to have confidence in the security. These

requirements are modelled after the SMART principle (Specific, Measurable, Attainable,

Realistic, Traceable) for non-functional requirements, as this will provide us with test cases

that are not covered by single tests i.e. unit tests. Merkow and Raghavan [26] define the

need for non-functional requirements as:

Gaining confidence that a system does not do what it’s not supposed to do is akin

to proving a negative, and everyone knows that you can’t prove a negative. What

you can do, however, is subject a system to brutal resilience testing, and with

each resistance to an attack, gain increasing confidence that is was developed

with a secure and resilience mindset from the very beginning. [26, Chapter 2.2]

Evaluation criteria:

The following requirements should be satisfied, but are not limited to:

• Access to a swarm is limited to an authorised node.

• Nodes in a swarm should have strong identity.

• Management and control traffic sent on the network should be encrypted when possible.
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1.4 Chapter outline

Chapter 2 - Background on distributed systems

Introduces all concepts necessary to understand how distributed systems, containerised ap-

plications, and orchestration solutions function. continuous integration (CI) and DevOps

are discussed as well.

Chapter 3 - Docker, Docker Swarm and related infrastructure technologies

Provides relevant information about Docker, Docker Swarm, Docker networks. We look at

related technologies such as etcd from CoreOS, and what it provides for Docker Swarm. We

also discusses the languages and frameworks that are involved in creating Docker Swarm.

Chapter 4 - Docker Swarm security

Introduces basic security concepts, and key elements from security relevant to a distributed

architecture. In addition, it provides a basic understanding of the most common security

threats which a containerised environment is exposed to. A detailed outline of security

mechanisms implemented in Docker Swarm. We discuss disclosed security issues and known

problems with the technology used to make Docker Swarm.

Chapter 5 - Experiments and results

In this chapter we describe the testing environment for capturing and proxying traffic in a

swarm. We outline and explain the different experiments for verifying the goals and research

questions defined in Section 1.3, reviews the results of these experiments.

Chapter 6 - Discussion and conclusion

We discuss the findings from Section 5, and give our opinion on the technology and archi-

tecture. We then concluding by summarising how Docker Swarm performs in regard to the

research questions, and requirements listed in Section 1.3. We end by presenting a list of

future work.
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Chapter 2

Background on distributed systems

In this chapter we provide the background information necessary to understand how a dis-

tributed architecture works, and how containerisation of applications affect development

and the administration prossess. The concepts of CI and DevOps practices for a fast moving

development life cycle are also presented.

2.1 Distributed computing

The term distributed computing refers to a model where networked computers communicate

and coordinate their actions only by passing messages. A distributed system is a concurrent

system with no global clock and if designed and implemented correctly has independent

failures. This means that the system is decomposed into parts that can run independently

of each other. There is no notion of a correct time, only the execution order, and a failure

is independent and isolated to that system component alone. For example in a client-

server application when a client crashes, the server is not affected, and likewise if the server

crashes, the client is not affected [6, 36]. A distributed system is not only client-server

applications. Examples of other types of distributed systems are peer-to-peer that partitions

tasks or workloads between peers, and Network File System that enable access to files over

a computer network much like local storage is accessed [36].
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2.1.1 Consensus protocols

One of the problems in fault tolerant distributed systems is consensus. Consensus involves

multiple servers agreeing on values. Once servers reach a decision on a value, that decision

shall be final. Typical consensus algorithms make progress when any majority of their servers

is available; for example, a cluster of three servers can continue to operate even if one server

fail, and if more servers fail, they stop making progress.

There are a couple of algorithms that try to solve this problem. Paxos is a family of

protocols for solving consensus issues in distributed systems. Paxos is quite difficult to

understand, in spite of numerous attempts to make it more approachable. Furthermore,

its architecture requires complex changes to support real-world systems. As a result, both

system builders and students struggle with Paxos [31].

The Raft Consensus Algorithm [31] is an alternative to Paxos. Raft is a fault tolerant

distributed key-value store that solves the problem of consensus. Raft is equivalent to Paxos

in performance and fault tolerance, but it separates the key elements of consensus (leader

election, log replication, and safety) into smaller sub problems, and enforces a stronger degree

of coherency to reduce the number of states that must be considered. The fault tolerance

in Raft as Ongaro and Ousterhout states handles failure of up to (N − 1)/2 nodes, but to

make progress (agree on values) a quorum of (N/2) + 1 nodes is required. For example, in

a system with five manager nodes; if three of them are unavailable, existing tasks will keep

running but the system cannot process requests to schedule new tasks.

An easy way to understand how Raft Distributed Consensus works, we recommend look-

ing at Ben Johnson’s website, as he has made an intuitive visualisation of how a cluster

works in action1.

Known implementations of Raft is etcd from CoreOS which is a highly popular tool for

distributed key value store (see Section 3.3), and Kudu by The Apache Software Foundation

which provides column-oriented data store. Many other applications depend on etcd an

Kundu for realising their software, such as Docker Swarm which uses etcd. We note that

Apache Mesos uses Paxos. Their implementation of a service orchestrator use concepts from

Raft for avoiding problems such as livelock2.

1http://thesecretlivesofdata.com/raft/
2Livelock is (in contrast to deadlock) a condition that takes place when two or more programs change

their state continuously, with neither program making progress.

8
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2.1.2 Containerised applications

Containerised applications are applications running in an operating system (OS)-level vir-

tualized environment. Multiple isolated applications or services can run on a single host

and access the same OS-kernel. This is in contrast to hypervisor-based virtualization where

the OS may share the virtualized hardware resources. When a software system consists of

multiple container-based applications it is by definition a distributed system as the appli-

cations communicate via the network, has no concurrency or a global clock, and will fail

independently (given that the underlying OS itself does fail).

The advantage of using containers instead of hypervisors is higher server density by

removing redundant or unnecessary operating system elements from the virtual machines

(VMs) themselves. Containers provides high portability, by packaging VM stacks, and a

design where the underlying hardware is insignificant. Fast start-up times facilitate a more

flexible infrastructure allowing greater latitude to respond to the needs of the moment.

However, the use of a shared kernel does come with security implications. If a shared

kernel is compromised, all of the instances that employ that kernel are potentially compro-

mised. This is not unique for containers, as if a hypervisor is compromised the same security

implications are true.

Containerisation of applications has a long history, and Docker is not the first to do it.

In the early 2000s, FreeBSD Jails allowed administrators to partition a FreeBSD system

to smaller systems called jails. With this, each jail could get assigned an IP address and

configuration [22]. One year later, Linux VServer was introduced, and preformed many of

the same tasks as FreeBSD Jails did, but also included partitioning of file systems, network

addresses and memory [7]. In 2008, LXC (LinuX Containers) was introduced and was the

first complete implementation of Linux container management. Docker was released in 2013

and used LXC in the initial stages before replacing it for its own library later [25, 27].

2.2 Orchestration

The definition of orchestration is the automation of coordination, management and arrange-

ment of computer systems, services and tasks. The orchestrator becomes necessary for
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providing fast scaling and cluster management in order to coordinate running containers

across multiple nodes (computers) in a cluster. For example, orchestration reduces the time

and effort for deploying multiple instances of a single application. For software systems at

scale a centralised management of the resource pool becomes crucial for maintaining a high

server density as stated in Section 2.1.2. Erl [11] and Josuttis [19] ties orchestration closely

to service oriented architecture (SOA) as a separate layer in the architecture. The rise of

micro services and cloud computing amplified the need for service orchestration based on the

ideas from SOA. The orchestration we are concerned about in this thesis depend on SOAs

concepts, but rather than defining a separate layer in the application stack, orchestration is

a service, and manages containers and the tasks executed by the containers.

Orchestration is closely related to distributed computing. As SOA and micro services

are per definition distributed. In SOA, orchestration facilitates the automation of business

processes by loosely coupling services across different applications [19]. Micro service is

the architectural specialisation of SOA [42]. The architecture describes a particular way

of designing software applications as suites of independently deployable services, driven by

DevOps practices. We go deeper in detail about DevOps in Section 2.3. To summarise;

service orchestration is the combination of service interactions to create higher-level business

services.

There are multiple providers of orchestration services for containers. Kubernetes is a

container orchestration tool, originally designed by Google and made open source in 2014.

Apache Mesos is also an open source project, but focuses on cluster management designed

to scale to very large clusters (In the order of hundreds to thousands of hosts). Mesos

itself has no built in orchestrator, and uses Marathon as the orchestrator. Docker Swarm

is an orchestrator for Docker hosts specifically. A swarm is created by by joining multiple

machines into a cluster for providing multi-container, multi-machine applications. All these

orchestrators have the following in common:

• Ease of administration

Ease of administration provides an extensible architecture, where it is easy to incorpo-

rate in an existing infrastructure, with e.g., APIs.

• Provisioning

The tool is able to provision or schedule containers within the cluster and launch them.
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• Configuration-as-text

The tool can load an application specification from a schema e.g., javascript object

notation (JSON) or YAML.

• Monitoring

The health of a container is to be trackable, and a crash or fail will be recovered by

creating a new container or restarting the container.

• Rolling upgrades and rollback

Rolling upgrades ensures that there is no downtime when a new version of the appli-

cation is rolled out. This is achieved by creating redundancy in the number of healthy

containers. Rollback ensures that if a configuration did not work as expected the

applied change is reverted without downtime.

• Policies for scalability

The tool is able to automatically scale an application based on e.g. the CPU usage of

the containers, or numbers of users for a service.

• Service discovery

In a micro service architecture, it is important that the orchestrator provides automatic

detection of services offered by other containers.

2.3 Continuous integration and DevOps

We feel that it is important to mention continuous integration and DevOps as this has been

one of the driving forces for creating container orchestration services. As we described in

the introduction (Section 1.1) software developers want to spend more time with writing

code, and less time with managing it3. The practice of CI is about collaborating developers

merging their code frequently. Each merge is verified to detect integration errors at the

earliest possible time. Building and testing the code reduce integration problems, but also

helps develop cohesive software at a greater pace [18].

The two major phases in CI is to make sure the code compiles, and to ensure that the

code works as designed. The first part can be achieved by the use of continuous build. Every

time code is pushed to the single source repository a build is run to assert that the code

3We are aware that not every developer has to manage the code, and that in some cases this is done by
system administrators.
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compiles. The next part is the use of tests to programmatically validate the quality of the

software. This can be achieved by the use of tests, specifically unit, API, and functional

tests [34].

On the same topic we have DevOps where software engineering culture meets practice.

The aim is at unifying software development (Dev) and software operation (Ops). The

practice encourages automation and monitoring of the steps in software construction [30].

The steps in DevOps are illustrated in Figure 2.1. The orchestration service in combination

with the underlying container-based virtualization provides us with an easy way to release,

configure and monitor applications.

Figure 2.1: DevOps toolchain
Credit: Devops-toolchain by Kharnagy licence: CC BY-SA 4.0
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Chapter 3

Docker, Docker Swarm and related

infrastructure technologies

This chapter will provide relevant information about Docker and Docker Swarm and related

infrastructure technologies. Docker Swarm is built using a variety of technology and frame-

works. The use of Golang, gRPC remote procedure calls (gRPC) and Protocol buffers for

creating applications is emerging, and a new architectural style that fits the model of cloud

computing. We explore and debate the pros and cons of the architecture.

3.1 Docker

Docker is a software technology provider of container-based virtualization that is open source.

Docker provides both upstream projects and downstream products as Figure 3.1 depicts. The

illustration explains how the components of Docker are assembled into the finished product

software that developers can use for running containerised applications. Developers of the

Docker stack contribute to the individual components, that are built with the Moby project.

Docker community edition (CE) is the product of a Moby build, and the Docker that most

people know and use. Docker enterprise edition (EE) is another product of Docker, but not

the focus of this thesis, as it is built from Docker CE but is closed source, costs money and

focuses on enterprise support and features.
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Network
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swarmKIT
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DataKit

Registry

Compose

LibNetwork

HyperKit

Custom component

runc

Figure 3.1: Docker upstream projects vs. downstream products
Image is adapted from Coisne [5]

Important upstream components:

• containerd

A container runtime for managing a complete container lifecycle of its host system:

Image transfer and storage, container execution and supervision, low-level storage and

network attachments.

• SwarmKit

A toolkit for natively managing a cluster of Docker Engines: includes primitives for

node discovery, raft-based consensus and task scheduling.

• LinuxKit

A toolkit for building secure, portable and lean operating systems for containers.
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• InfraKit

A toolkit for creating and managing declarative, self-healing infrastructure. It pro-

vides infrastructure support for higher-level container orchestration systems (e.g.,

SwarmKit).

3.2 Docker Swarm, SwarmKit, and Swarm mode

Docker Swarm provides the orchestration service for containerised applications. A swarm

consists of multiple Docker hosts that run in a cluster. Hosts can be managers that preform

membership and delegation tasks, and/or workers that run swarm services. An advantage of

swarm services over standalone containers is that you can modify a service’s configuration

(including the networks and volumes it is connected to), without the need for a restart of

the service at once. Docker will update the configuration, stop the service tasks with the

out of date configuration, and create new ones matching the desired configuration.

To deploy an application to a swarm, a service definition is submitted to a manager node,

which dispatches units of work called tasks to worker nodes. An example of this is illustrated

in Figure3.2.

Figure 3.2: Example of a Docker Service illustrating service, tasks and containers
Credit: Docker Inc. https://docs.docker.com/
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When Docker Swarm was released in 2014, it was an approach to automatically pro-

visioning application clusters using CI and DevOps techniques. One of the objectives of

Docker Swarm is to provide an orchestrator with security built-in. By using the principle of

least privilege, each participant in a system must only have access to the information and

resources that are necessary for its legitimate purpose, and nothing more [28]. We go further

into detail about Docker Swarm security in Chapter 4.

In 2016 Docker released a major update with version 1.12 that split out the components

of Docker into the upstream projects from Figure 3.1. One of these upstream projects is

SwarmKit. Some of the new features were automatic scaling, rolling update, service discov-

ery, load balancing, and routing mesh. The legacy functionality of standalone Docker Swarm

is still included in the Docker Engine, but will probably be faced in the future according to

the documentation [9]. When SwarmKit is integrated into Docker CE it is referred to as

Swarm mode as it is cluster management integrated with the Docker Engine. The Docker

command line interface (CLI) or API is used to create a swarm, deploy application services

and manage swarm behaviour.

For this thesis, when using “Docker Swarm”, we refer to Docker SwarmKit as the stan-

dalone project integrated into Docker CE. We use SwarmKit to communicate with the Docker

Engine. This means that in the examples we use SwarmKit’s CLI and not the Docker En-

gine’s own CLI, unless specified.

3.3 Etcd and raft logs in Docker Swarm

Etcd from CoreOS is an open source implementation of the Raft Consensus Algorithm (see

Section 2.1.1) used in Docker Swarm. For the case we are concerned about in this thesis,

etcd solves the two problems of leader election and log replication. In Docker Swarm the

managers are part of a Raft consensus group. Raft elects a leader node that logs all actions,

for instance when a new node is added or removed and when a new service is created. This

log is then replicated to the other mangers, so that any other manager can overtake the

leader role if the current leader becomes unavailable. The log file is a write-ahead log (WAL)

file. Juggery [20] shows how it is possible to decrypt the WAL, to see what information is

stored in it. An excerpt of what is stored in the log:
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• Certificate authority (CA) config

◦ Node Certificate expiry

• Root CA

◦ CA Key

◦ CA Certificate

◦ CA Certificate hash

◦ Join-tokens

· worker

· manager

• Transport layer security (TLS) info

◦ Trust root

◦ Certificate issuer subject

◦ Certificate issuer public key

As we can see from the excerpt, critical security information is stored in the WAL. If this

file is compromised, the swarm as a whole would be compromised. From the documentation

of Docker Swarm [10] we also see that Docker secrets are stored in the WAL. This provides an

elegant way to store information that needs to be shared between services (e.g., SSH Keys,

Certificates, and usernames/passwords), but not with every service. The documentation

states that “secrets are encrypted during transit and at rest in a Docker swarm. A given

secret is only accessible to those services which have been granted explicit access to it, and

only while those service tasks are running”. The documentation does however not explain

how they are encrypted.

3.4 Docker networks

For isolation, containers are assigned a network namespace. This is an isolated network

stack with its own collection of interfaces, routes and firewall rules. Network namespaces are

used to provide isolation between processes. Analog to regular namespaces they ensure that

two containers, even if they are on the same host, won’t be able to communicate with each
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other unless explicitly configured to do so. A diagram of the network stack can be seen in

Figure 3.3

Docker Container
 

Docker Container
 

vethX vethY

docker0

eth0

Container network namespace

Host network namespace

eth0 eth0

Figure 3.3: Docker single node networking
Image is adapted from Church [4]
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Figure 3.4: Docker multi node networking
Image is adapted from Church [4]

For communication between Docker daemons (for instance in a Swarm) a distributed

network is created. This network overlays the host-specific networks and allows containers
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to connect to it to communicate securely. This is an extension of the single node networking

(Figure 3.3), but with overlay network added for communication between the different dae-

mons, as can be viewed in Figure 3.4. We note that these containers are not required to be

on the same network. For example the container marked with 1 can reside on one network,

and container 2,3 to n on its own subnet.

There are multiple ways of configuring networking in Docker, and it can be tailored to fit

most infrastructures. The scope of this thesis will be the default networking stack provided

by Docker.

3.5 Golang

When we investigated Docker Swarms security features, we were trying to figure out which

implementation of TLS that was used. If an application is using a library or implementations

with known errors or that are prone to downgrade attacks, this can compromise the security

of the communication. For that reason we investigate the underlying technology of Docker

Swarm to investigate if the architecture reliable.

Golang is a fairly young programming language created by Google in 2009. The current

version is 1.10.1, almost nine years in the making, and currently at the top of its peak in

popularity according to Google Trends as shown in Figure 3.5, of the period 01.10.2009 –

15.06.2018. Google Trends ranks a search result based on the interest over time on a scale

from 0-100 where 100 is the point in time when it was most popular1.

Figure 3.5: Golangs rising popularity on Google Trends with the search term “Golang”.
Note: An improvement to the data collection system was implemented on 01.01.2016

1https://trends.google.com/trends/explore?date=2009-10-01%202018-06-15&q=Golang
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The language paradigm is not straightforward as it falls into many categories. The

consensus is that it is multi-paradigm: procedural, concurrent, and allows an object-oriented

style of programming according to the Golang FAQ and Zhang [14, 44]. The language is

made to be simple to learn, as the developers deliberately limited the scope of the language

and built something that an experienced developer can learn in a short time. Simplicity

does however come with downsides, as the lack of generics and exceptions can discourage

developers with background in using those features. The syntax is similar to C/C++, and it

does not run the code on a VM, and hence will use less resources than e.g. Java, Scala and

Kotlin that are all JavaVM languages. The cross-platform support is still better than many

non-VM languages.

The built-in concurrency has the same static execution speed as C/C++ which enables

the developers to carry out many processes at the same time. Golang is statically typed

and provides type safety, this is an advantage in regard to security. In Go, every variable

must have a type associated with it, and the language also requires a developer to dedicate

attention to error handling. The compiler is strict, which again leads to a secure and robust

code. Another useful safety feature is a garbage collector, which languages like C++ lacks.

Built-in testing facilitates the process of testing your code.

A new language is not always a good thing, even if the ideas are good. Languages

like Esperanto, Ada and The Magnolia Language (we realise that one of these is a natural

language, and the other two are programming languages, but it is still a good comparison),

all had applications that would improve the current state, or solve a problem within existing

languages. Where they failed was in getting critical mass. There are a number of reasons

why a language has low adaptation rate. Either the syntax is too complicated, some language

feature is missing or the cost of dealing with the complexity is high.

The number of developers of the language is also very important. We want to mention

Golang and Kotlin that are developed by Google and JetBrains respectably, as open source

projects. We accredit the backing and development from large corporations with the reason

why these languages are currently rated as the some of the most popular according to

GitHub [17]. Octoverse looks at the number of pull requests for determining the popularity

of a language. The need for an active development community is important as the synergy

effect will drive popularity for a language.
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3.5.1 Golang TLS library

The implementation of TLS in Golang’s standard library (crypto/tls) is a partially imple-

mentation of TLS 1.2, as specified in RFC 5246. Adam Langly (Google Inc.), one of the

maintainers of OpenSSL, is in charge or security libraries for Golang, and is an active con-

tributor to the project2. One of the reasons for implementing their own security library, and

not employ existing libraries such as OpenSSL, was a wish by Google to have Golang written

in Go3. Rob Pike, co-designer and developer of Golang and co-author of The Unix Program-

ming Environment and The Practice of Programming summarises the 10th anniversary of

the creation of Go with this quote about Adam Langly’s work4:

Adam did a lot of things for us that are not widely known, [...] but of course

his biggest contribution was in the cryptographic libraries. At first, they seemed

disproportionate in both size and complexity, at least to some of us, but they

enabled so much important networking and security software later that they

become a crucial part of the Go story. Network infrastructure companies like

Cloudflare lean heavily on Adam’s work in Go, and the internet is better for it.

So is Go, and we thank him.

By not using OpenSSL, and with a minimum TLS-version of 1.2, Golang is immune

against known attacks such as POODLE (CVE-2014-3566) and Heartbleed (CVE-2014-

0160). However, a golden rule is to not create your own encryption scheme, as homemade

cryptography is generally considered to be more prone to bugs, and likely hasn’t been scruti-

nised by many other researchers or tested in the wild. This is further discussed in Section 6.

3.6 Protocol buffers

Protocol buffers provide a language-neutral, platform-neutral, extensible mechanism for se-

rialising structured data.

2https://github.com/golang/go/commits?author=agl
3https://groups.google.com/d/msg/Golang-Nuts/0za-R3wVaeQ/BAE0HbjLdpEJ
4https://commandcenter.blogspot.com/2017/09/go-ten-years-and-climbing.html
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In the early 2000s, the use of HTTP and XML offered a self-descriptive, language ag-

nostic and platform independent framework for remote communication. This combination

resulted in the standardisation of SOAP and Web Services Description Language (WSDL)

that promised interoperability among various runtimes and platforms. The SOAP standard

with HTTP and XML was for many developers too restrictive. This resulted in the devel-

opers moving to JavaScript and JSON, where APIs played a key role, and JSON replaced

XML as the preferred wire-format protocol. This combination of HTTP and JSON resulted

in the unofficial standard REST. SOAP was confined to large enterprise applications that de-

manded strict adherence to standards and schema definitions, while REST was a hit among

contemporary developers.

As an alternative to the message formats of SOAP and REST, Protocol buffers provide

efficient serialisation, a simple interface definition language (IDL), and easy interface up-

dating. All complexity of communication between different languages and environments is

handled by gRPC. Messages have to be encoded/decoded as the structure is not self describ-

ing without the definition-files. Figure 3.6 show the structure of Protocol buffers and how

messages can be encoded/decoded.

Message Message

Encoder Decoder

ProtosProtosProtos

Figure 3.6: Structure of Protocol buffers

With Protocol buffers, the developer creates a .proto description (file) of the data struc-

ture, see Listing 3.1. From that, the Protocol buffer compiler (protoc) creates a class that

implements automatic encoding and parsing of the Protocol buffer data in a binary format.

22



The generated Golang class for Listing 3.1 is shown in Listing A.1 in the Appendix. The

generated class provides getters and setters for the fields that make up a Protocol buffer and

cater details such as reading and writing the Protocol buffer as a unit.

When defining a .proto file for a service, we define the request and response as shown

in Listing 3.1. This means that the client and server must agree on guarantees about the

safety and interoperability between those architectures. The finer points of platform specific

data types should be handled in the target language implementation.

Listing 3.1: .proto-file for GCD-application defining the request and response
1 syntax = "proto3";
2
3 message GCDRequest {
4 uint64 a = 1;
5 uint64 b = 2;
6 }
7 message GCDResponse {
8 uint64 result = 1;
9 }

10 service GCDService {
11 rpc Compute (GCDRequest) returns (GCDResponse) {}
12 }

When using Protocol buffers for generating the client code for the languages Golang, C++

and Java, there are implemented various safeguards to protect against corrupt or malicious

data. For instance there are limits to the overall message size provided by the Protocol buffer

library as well as methods like CodedInputStream::SetTotalBytesLimit; for C++ that

sets the maximum number of bytes that this CodedInputStream will read before refusing to

continue. There are also recursion limits to prevent deeply nested messages from overflowing

the stack and memory exhaustion prevention (most specifically from receiving messages that

indicate a huge length-delimited value).

3.6.1 Comparing Protocol buffers to other message formats

Protocol buffers have many advantages over XML for serialising structured data. According

to van Winkel [41] and the documentation [13], Protocol buffers are simpler to use, 3 to 10

times smaller and 20 to 100 times faster, and less ambiguous. The problem with SOAP and

WSDL is that they are inextricably tied to XML, so that if a new serialisation format would

arise, it would not be able to move over to that format. The Protocol buffer format supports
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the idea of extending the format over time in such a way that the code can still read data

encoded with the old format. XML Schema Definition (XSD) used for validation of XML

documents has also seen a lot of criticism for being too complicated and lacks proper support

for backwards compatibility. This is not the fact with Protocol buffers.

In our opinion Protocol buffers can replace XML in large enterprise applications that

demand strict adherence to standards and schema definitions, as it supports the needs of

this domain, but still offers flexibility, a simple to understand message format and high

performance. Industry leaders such as Cisco, Square and Google rely heavily on Protocol

buffers, which demonstrate that Protocol buffers are capable of performing in enterprise

contexts.

Comparing JSON to Protocol buffers, Protocol buffers show many advantages, such as

type safety. Analysis of size and speed also suggest that Protocol buffers are much faster in

terms of encoding/decoding and size of the data on the wire. Krebs [23] shows the average

performance of 500 HTTP GET requests issued by one Spring Boot application to another

Spring Boot application with JSON and Protocol buffers. Figure 3.7 shows that Protocol

buffers outperforms JSON with 78% less time for non-compressed transfers, and 83% for

compressed transfers.
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Figure 3.7: Comparison of Protobuf/JSON performance on GET requests Java to Java
Image is adapted from Krebs [23] [23]
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In web services, JSON has been used for many years for making RESTful APIs, as it has

many advantages as a data interchange format; It is human readable and typically performs

well, but it is not without issues in a RESTful context. The specification is not enforced by

a machine, which has resulted in confusion amongst developers on what methods, payloads

and response codes really mean. This makes the RESTful pattern unpredictable.

Debugging RESTful APIs is not easy either. A complete transaction consists of many

pieces (HTTP request method, request address, request payload, response code and response

payload). That means that the developer can end up spending valuable time searching for

a bug in multiple locations, for just determining where the bug resides.

However most importantly in regard to this thesis; RESTful is not secure. According

to Yarygina [43] REST lacks a general agreement on how the REST paradigm addresses

security and what web security mechanisms adhere to the REST style. Yarygina also states

that message passing is complicated. Protocol buffers are immune to some of the problems

that arise with the RESTful style with JSON. Since it provides us with type safety, and a

strict message format, it becomes easier for the developer to create secure applications.

Protocol buffers does not provide a perfect substitute for XML and JSON, as there are

some disadvantages. For instance, Protocol buffers would not provide a good way to model

a text-based document with markup (e.g. HTML) because there is no easy way to interleave

structures with text. An advantage of XML and JSON is that it is human-readable and

human-editable; Protocol buffers, at least in their native format, are not. Though Protocol

buffers are claimed to be self-describing, this is only true if you have the message description

(.proto-file). Given an arbitrary Protocol buffer, there is no way to know the correct way

to deserialise/parse it unless you also have the corresponding descriptor. One could argue

that this provides some security by obfuscation. Protocol buffers are also not intended for

carrying large amounts of data, like JSON can. The recommended max message length

according to documentation is 1 MB.

3.7 gRPC

gRPC is the open source version of Google’s internal RPC (Remote Procedure Call) frame-

work used for their infrastructure, called Stubby. Van Winkel [41] describes that gRPC
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is based around the idea of defining a service, specifying the methods that can be called

remotely with their parameters and return types. gRPC is not a standard, so there is no

academic paper or article about it. Articles mention using the framework, but does not

analyse it, or go further in detail. The documentation shows examples of how to implement

functionality but does not document how they work.

By default, gRPC uses Protocol buffers as an IDL for describing the service interface and

the structure of the payload message. Protocol buffers provides us with many advantages

as described in Section 3.6. For transport gRPC uses HTTP/2, a binary fully multiplexed

protocol. We go further in detail about HTTP/2 in Section 3.8. The framework also offers

pluggable authentication and load balancing, as we demonstrate with the experiments in

Section 5.5.

gRPC provides four types of service methods by leveraging HTTP/2 as the technology

underneath, and as such benefits from the efficiencies of HTTP/2:

• Unary RPCs

Single request from client with a single response from the server.

• Server streaming RPCs

Single request from the client with a stream in response.

• Client streaming RPCs

Stream request from the client with a single response from the server.

• Bidirectional streaming RPCs

Both client and server send a sequence of messages using a read-write stream. Streams

operate independently, so clients and servers can read and write in different orders.

The use of bidirectional streaming means that we can reduce the number of TCP-

connections to one between two services. This removes the problem with head-of-line block-

ing, where protocols based on HTTP/1.x is a FIFO queue that suffers from requests getting

blocked on high latency requests in the front of the queue. Google boast that by harnessing

the power of bidirectional streams and a binary protocol they are able to handle O(1010)

RPC per. second [38].

The workflow for gRPC is interesting as well. When developing with Protocol buffers,

and gRPC the Protocol buffer compiler generates code for the languages that will implement
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the client and server. This reduces the risk of mismatch of interfaces when developing for

several languages (as micro service architectures often are) and provides interoperability

between polyglot applications. Figure 3.8 illustrates the gRPC workflow. We see that the

following steps corresponds with what we have described in Section 3.6

1. The first step is to define the service endpoint and the structure of the payload messages

in the Protocol buffer definition file.

2. By using the compiler protc, code is generated for the language of choice.

Generating code for Golang is as easy as running the command:

protoc -I . --go out=plugins=grpc:. *.proto

3. When the code is generated, the server and client application can be implemented.

Protocol buffer
definition protoc compiler Java

C#

Golang

gRPC Server

gRPC Client

1 2 3

Define Compile Generate code Implement

gRPC Server

gRPC Client

gRPC Server

gRPC Client

Figure 3.8: Workflow of gRPC
Image is adapted from Varghese [39]

gRPC is not a universal tool that can replace REST in a heartbeat. The fact is that

the learning curve is steep, and user-friendly tools such as curl for making HTTP requests
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and testing APIs are not available as of now. The textual nature of JSON/REST gives

it an advantage when it comes to human readable data compared to Protocol buffers and

gRPC. Load balancing is still a hot topic in the development of gRPC. As for now, it is hard

to figure out if load balancing should be done on client or server side, and with both pros

and cons of each model 5,6. We note that Docker Swarm will not generate enough traffic

on the management and control plane to need load balancing. OpenAPI and its precursor

Swagger is still textual, which makes is easy for developers to make JSON/REST APIs. In

contrast, gRPC focuses on delivering the highest performance and quality for APIs by asking

developers to follow a tight, well defined methodology that provides powerful streaming API

constructs and high-performance implementations.

3.7.1 gRPC security

Security in gRPC is equivalent with authentication, as the security features are that of the

implementation language. Currently the supported authentication mechanisms are SSL/TLS

and a generic mechanism to attach metadata based credentials to requests and responses,

such as OAuth2 tokens. From the documentation [12] gRPC provides an authentication

API based on the unified concept of “Credentials objects”. These objects can be either

channel credentials (typically SSL/TLS-credentials) or call credentials that are attached to

a specific network call. Optional mechanisms are available for clients to provide credentials

(i.e. certificates) for mutual authentication. We show in Section 5.5 how to implement

authentication for a client-server application in Golang with gRPC.

3.8 HTTP/2

HTTP/2 is a rewrite of the HTTP/1.x protocol and is formed by the specifications RFC 7540

and RFC 7541. Some of the key differences are that HTTP/2 is binary, instead of textual. It

is fully multiplexed, instead of ordered and blocking and uses header compression to reduce

overhead. The use of a binary protocol and header compression results in less data being

5https://grpc.io/blog/loadbalancing
6https://blog.bugsnag.com/envoy/
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transferred. The binary protocol provides less overhead when parsing data and is less prone

to errors. This eliminates response splitting attacks, that can occur in textual protocols.

The number of TCP-connections are also reduced, where a single TCP-connection is used

to ensure effective network resource utilization despite transmitting multiple data streams.

Modern browser implementations only support HTTP/2 with TLS (Mozilla Firefox and

Google Chrome). This means that HTTPS outperforms HTTP/1.x because of the multi-

plexing. This is also an advantage for mobile users, where battery life is important [16].
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Chapter 4

Docker Swarm Security

In this chapter we focus on some of the key security elements in distributed architectures;

trust, public key infrastructure (PKI), and certificate management. We also inspect the

security in containerised environments, as there are special considerations for this domain.

We provide information about the security features of Docker Swarm, as this information is

not easily obtainable, and disorganized. Furthermore, we discuss known security problems

with the technology that can affect a swarm, such as disclosed security flaws from CVEs,

denial-of-service (DoS) and malicious container images.

4.1 Security basics

4.1.1 Trust on first use

Trust on first use (TOFU) is a security model used by clients that needs to establish a trust

relationship with an unknown or not-yet-trusted endpoint. In a TOFU model, the client will

try to look up the identifier, often a public key, in a local trust database. If no identifier

exists yet for the endpoint, the client will either prompt for the user to determine if the client

should trust the identifier, or it will simply trust the identifier which was given and record

the trust relationship to its trust database. If a different identifier is received in subsequent

connections to the endpoint the client will consider it to be untrusted. This is often solved
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with a human interaction to verify the identity of the not-yet-trusted endpoint, but this

does not scale well. An example of TOFU is found in SSH. When connecting to a new host

for the first time, the user is prompted to manually verify key fingerprint, and accept the

certificate. This does not scale well because automation would defeat the security of the

manual verification.

4.1.2 Mutual authentication and PKI

Mutual authentication and mutual transport layer security is a way to enforce both entities of

a communication to authenticate each other and communicate over an encrypted channel. A

well-designed mutual authentication solution is a mitigation strategy for man-in-the-middle

(MITM) attacks.

HTTPS (TLS over HTTP) is extensively used on the web for providing data confidential-

ity and integrity, as well as authentication of the communicating parties. The web browser

verifies the identity of the web server based on the digital certificate. If the server is to verify

the identity of the client (to provide mutual authentication), the most common approach is

to verify a user name and password on the application layer. This is the primary way used

for verifying that the website a user is visiting is the correct one, the server to authenticate

the user, and ensure the communication is encrypted.

The use of certificates as credentials (instead of user names and passwords) allows the

authentication to happen on the transport layer instead of application layer. This is useful

in a micro service architecture, where it is important that both parties are authenticated,

and complexity of user-credentials is undesirable. Section 7.4.6 of the specification of TLS

1.2 (RFC 5246) outlines the use of client certificates for MTLS. It does not however have

strict requirements for what information is to be verified, and in which way. The most up-

to-date RFC to this topic is the draft for OAuth 2.0 Mutual TLS Client Authentication and

Certificate Bound Access Tokens1.

In a PKI a common problem is root of trust. We see this often in hierarchal PKI-designs

where commercial root CAs like DigiCert, Symantec and GoDaddy are issuing certificates

to end-entities, i.e., ebay.com or uib.no. A visitor of uib.no can trust that he is visiting the

1https://datatracker.ietf.org/doc/draft-ietf-oauth-mtls/
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correct site (and that the connection is encrypted), because he (the web browser) trusts the

root CA, in this example: DigiCert. This form of hierarchal trust can have intermediate CAs

but is always ending in root of trust. If the root CA gets compromised, all intermediate and

end-entities are compromised as well. An example of this happened in 2011 when DigiNotar

had a security breach [33]. Not long after the breach DigiNotar filed for bankruptcy. We see

how Docker Swarm tries to mitigate this in Section 4.2.2

4.1.3 Certificate management and PKI

Managing certificates and keys is a difficult task with many pitfalls. Without proper lifecycle

management the time consumed on rotating certificates manually was, according to a case

study done at Cisco, estimated to four hours of management per certificate. They also

showed that manual management increased the risk of human error, which in turn resulted

in security and operational risks2.

The agility of the system is also an important topic, where operational changes, such as

migration across data centres or responding to unanticipated events (e.g., Heartbleed (CVE-

2014-0160)) and accelerated end-of-life of SHA-1 hashing (CVE-2005-4900)) that require a

rapid certificate replacement, are almost impossible to respond to by using a decentralised

and manual management system.

The disadvantage of using certificates is that when a certificate has been issued, it will

have to be rotated at some point. Reasons for this can be that it is near the expiration date,

or that a certificate has been compromised and has to be revoked. Revocation is the process

of invalidating a certificate before its expiry date. Previous practices for revocation involved

using a certificate revocation list (CRL) (RFC 2459). The nature of the list will make it

grow in size, to a point where it will have to be cached, rather than downloaded by the client

for every lookup. This results in unnecessary large amounts of data being transferred, and

if cached it can result in making security decisions on stale data.

Other methods of checking for revocation has been online certificate status protocol

(OCSP) (RFC 2560), OCSP stapling (RFC 6066) and OCSP must staple (RFC 7633). These

2Case study: Scalable Key and Certificate Lifecycle Management with Cisco Systems.
Session ID: SP01-303, RSA Conference 2011, Cisco Systems Inc.
https://www.venafi.com/assets/pdf/ss/RSAC2011 Case Study Cisco Systems.pdf
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methods still have problems in regard to man-in-the-middle attacks as stated by Langley [24]

and are designed for server-to-browser environments rather than service-to-service.

Rivest [35] proposed in 1998 to eliminate certificate revocation. This was revisited by

Langley [24] the creator of the cryptographic libraries in Golang (see section 3.5.1) where

he refines the idea of certificate revocation. He urges to cease using revocation, and if it

must be done, employ OCSP must staple (RFC 7633). Instead he advocates the use of

short lived certificates. This is also supported by Payne [32] at Netflix, who argues that

expiration of a certificate is revocation in itself. Payne also describes why using short lived

certificates in a service-to-service environment is the better option than in web browser-

to-service environments. Acer et al. [1] at Google reports that a mismatch between the

certificates expiration date and client clocks is a widespread problem in Google Chrome.

Payne [32] has shown that clocks in a service-to-service environment can often be more in

sync as they often reside within the same data centre, and is not affected in the same way

as web browsers are to the lack of a global clock.

4.1.4 Security in containerised environments

Security in containerised virtualization is a topic that needs to be addressed with an in depth

defence strategy. To prevent container escapement and decrease the attack surface compared

to traditional hypervisor virtualization, some of the approaches employed are

• Kernel namespaces that provides an isolated view of the system from other containers.

• Each container gets its own network stack to prevent privileged access to sockets or

interfaces of other containers.

Systems requiring a higher level of security, Docker images can be extended with an extra

layer of security by enabling AppArmor, SELinux and Tomoyo Linux, or other hardening

systems [3]. For further hardening, Docker uses digital signature verification of all official

repositories to facilitate publisher authentication, image integrity and authorisation. We

write more about this in Section 4.4.3.

Managing a cluster of containerised services (e.g., in a micro service architecture) brings

new security challenges, as the applications in the containers need to exchange information,
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and as we saw in Section 2.2, to efficiently manage these large clusters an orchestration

service is often required. The orchestrator controls applications running in the containers,

and accordingly must be protected. According to Mónica [28], ”The distributed nature of

orchestrators and the ephemeral nature of resources in this environment makes securing

orchestrators a challenging task.”

4.1.5 Attack models for containerised environments

Containerised environments have multiple attack vectors for how it can be attacked. Some of

these are location-based, and some are classified based on the effort required by the attacker.

The following list classifies and describes some of these attacks and mitigation strategies in

ordered form of difficulty of mitigation:

1. Location-based attacks

1.1. An external attacker

An external attacker is someone on the outside of the firewall of the internal

network, with the target of acquiring access to the internal network. One way to

mitigate this threat is by using a positive security model, where an application is

whitelisting ports and protocols, and everything else is denied.

1.2. An internal attacker

An internal attacker is someone on the inside of the firewall with intent of acquiring

privileged information. The attacker can have gained access through other parts

of the network, or breached physical security, but can also be an employee. This

is mitigated by using fine-grained authorisation when defining services on the

network.

2. Based on abilities

2.1. A passive attacker

A passive listener on the network is someone having access to the internal net-

work and is listening to every communication with intent of acquiring privileged

information. This attack is mitigated by encrypting everything on ’the wire’.
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2.2. An active attacker

Active attacks are often aggressive and highly malicious in nature. Often locking

out users, destroying memory or files, or forcefully gaining access to a targeted

system or network. Malware, phishing, DoS-attacks and attacks directly towards

services are common conventions. Both a passive and active attack employ MITM

attacks, but the difference is that the active attacker alteres or spoofs the traffic

(tampering). Mitigation for active attacks are the same as for the location-based

attacks, but also intrusion detection and prevention systems.

3. Privilege-based attacks

These attacks are active in the sense that they require an action from the attacker such

as tampering.

3.1. A compromised non-privileged node

In a cluster where an attacker has gained access to and is controlling a non-

privileged node (for Docker Swarm a worker node), mitigation is done by having

privileged nodes pushing tasks to the workers, as opposed to them requesting

tasks. In that sense limiting what a compromised node can access of data.

3.2. A compromised privileged node

A cluster where a privileged node (for Docker Swarm a manager node) has been

compromised, would be the most difficult task to mitigate, as the privileged nodes

control the cluster. One current solution to this is using a signed specification,

where the developer signs what he/she wants to happen. The worker nodes do

not need to trust the privileged nodes but verifies the signatures from the devel-

opers. This way of removing trust from the orchestrator itself is reasonable, as

the orchestrator can still perform some orchestration decisions, but it does not

get to decide what is running where, which worker node is to perform the task or

what resources it can utilise.

The attacks listed here are directly transferable to the orchestra example given in the

introduction of this thesis in Section 1.1. The external attacker is comparable to the tomato

thrower, the passive listener is the person with the recording equipment, the compromised

worker node is the Machiavellian instrument player, and last but not least; the compromised

manager node is the rogue conductor.
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4.2 Security features in ”Joining the swarm”

Docker Swarm employs a PKI with X.509 certificates for providing security and strong

cryptographic identity for nodes in a swarm. As well as a join-token with TOFU built

in. The manager node is a CA, and generates a key-pair which is used to sign the X.509

certificate. A node wanting to join the swarm will download the root certificate from the

manager, then generate its own key-pair and submit a CSR for the manager to sign. The

manager will verify the join-token before issuing the X.509 certificate with the role of the

node (worker or manager) in the organisational unit field of the certificate. This certificate

is used to authenticate both parties and secure communications with MTLS. For large scale

installations a dedicated/external CA is often preferred, but not necessary. We show a

system sequence diagram (SSD) in Figure 4.1 of how a worker node verifies the identity of

the manager, and is issued a signed certificate when joining a swarm.

Manager node Worker node

Generate and
sign x.509 

certificate for
self

Verify Root CA
authenticity with

Join-token

Submit CSR with Join­token

Generate and
sign X.509

certificate for
worker node

Retreive signed X.509 certificate

Verify Join-
token

Root CA certificate

NodeID and NodeMembership

Signed X.509 certificate

Retreive Root CA certificate

Figure 4.1: System sequence diagram of bootstrapping a new worker node
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In Section 4.1.3 we discussed the use of short lived certificates as an alternative to re-

vocation lists. In Docker Swarm a certificate issued to a node with Docker Swarm is short

lived. The default is three months, but this can be configured to rotate as often as every

hour [8], and the certificate lifecycle is fully automated. This enables scalability and fast

moving development but is also a mitigation strategy for compromised certificates and keys.

If credentials are compromised or leaked, the window of time an attacker can make use of

those credentials is much smaller.

An example of a certificate for a manager node is shown in Listing 4.1 where we in line 8

see three interesting things:

• O (Organisation) is set to be the Swarm ID

• OU (Organisational Unit) is the Node role: swarm-manager or swarm-worker

• CN (Common Name) is set to be the Node ID

Listing 4.1: Cryptographic node identity for a swarm node in X.509 certificate. Ellipsis (. . . )

indicate truncation. A full version of the certificate can be found in Appendix D.1
1 $ openssl x509 -in swarm -node.crt -text
2 Certificate:
3 ...
4 Issuer: CN=swarm -ca
5 Validity
6 Not Before: Jun 4 14:14:00 2018 GMT
7 Not After : Sep 2 15:14:00 2018 GMT
8 Subject: O=j8e2jv0sms ..., OU=swarm -manager , CN=c52rwgu9uy ...
9 ...

10 X509v3 Subject Alternative Name:
11 DNS:swarm -manager , DNS:c52rwgu9uy ..., DNS:swarm -ca
12 ...
13 ----BEGIN CERTIFICATE -----
14 MIICNjCCAdugAwIBAgIUXnx0uzww3B5z
15 ...

By using X.509 certificates signed by the CA for distinguishing a node in the swarm, we

can assert that the node has a strong cryptographic identity as long as we trust the CA.

4.2.1 Securely joining a swarm

When introducing a node to a swarm (sometimes referred to as bootstrapping), Docker uses

a token for joining a node to a cluster. If a joining node presents a valid join-token, the
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manager verifies the join-token, and authorises the node to be issued a certificate. This

join-token is stored in the Raft store as part of the encrypted WAL that is handled by etcd

(see Section 3.3). Figure 4.2 shows an example of what a token looks like, and what the four

pars of a token are:

1. A known prefix. This makes it easy to detect if a token has been compromised by

searching for it in a version control system (VCS) or logging system.

2. Token version number. This makes it easy to manage multiple versions of a token.

3. SHA256 hash of the CA’s root certificate. The use of this hash means that the joining

node can verify that it is joining the correct swarm.

4. Randomly generated secret. Secrets can be rotated at any time and the managers are

in sync using the Raft consensus algorithm, so that any manager can verify that a

token is valid. We examine the secret in the experiments (Section 5.3).

Known prefix

SWMTKN - 1 - 3rui0rk3...021ze - chsoo4...ncxnc

Cryptographic hash of the CA  
Root certificate for bootstrap

Randomly generated secret
Token Version

50 characters 25 characters

Figure 4.2: Docker Swarm secure token example

Image is adapted from Mónica [29]

As we saw in Section 4.1.1, TOFU can become a problem as it scales poorly. This has

been solved by Docker Swarm with the use of the hash of CA’s root certificate in the join-

token. This enables the client to verify that the manager it is connecting to, is in fact the

correct manager.
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4.2.2 Root trust

As described in Section 4.1.2 the root of trust for a PKI is a critical component. For Docker

Swarm the root of trust is the Root CA private key and certificate. It is the CA that is the

workers root of trust. For an attack scenario where the root of trust (a privileged node) has

been compromised, Docker invented transparent root rotation. If there is suspicion or proof

that the root of trust has been compromised, a new root of trust can be added, and it is

done in four steps. Figure 4.3 visualises the following procedure:

1. Managers and workers trust the compromised root of trust (visualised with the blue

lock).

2. A new root of trust is introduced (visualised with the red lock).

The managers issue certificates for themselves with new root of trust. Trusting both

roots.

3. Managers force a certificate rotation of all nodes, enforces new root of trust, but does

not remove the trust of the compromised root.

4. When every node has root of trust to the new root, the trust for the compromised root

is removed.

We note that it is impossible to guarantee that a malicious attacker with access to a root

key cannot wreak havoc, but it is possible to limit the exposure of the system. As we see it,

this is a step in the right direction, though we are uncertain how much it would help.

4.3 Communication security

As we saw in Section 3.4, Docker has its own network stack with namespaces for each con-

tainer. In addition to this Docker Swarm uses three planes for communication, as illustrated

in Figure 4.4, Management plane, control plane, and data plane..
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Manager (s)

Worker nWorker 2

Management - TCP - 2377

Control - TCP/UDP - 7946

VXLAN Dataplane UDP - 4789

Encrypted:  
Management: Swarm manager ops, join/leave swarm 
Control plane: Failure detection and convergence.

Default unencrypted:
Data plane: Container to container communication via  
VXLAN encapsulation 

Worker 1

Figure 4.4: Docker network planes
Image is adapted from the reference implementation by Church [4]

All swarm service traffic (management and control plane) is encrypted by default, using

the AES algorithm in GCM mode. The management traffic uses TCP as transport protocol

and the framework gRPC is used for management and control plane traffic. gRPC (see

Section 3.7) uses HTTP/2 with mutual authentication and MTLS with X.509 certificates.

This means that both parties of a connection is authenticated as stated by Venugopal [40].

This is also addressed by Mónica [28], for securing clusters against an attack model where an

attacker controls the underlying communications networks or compromised cluster nodes.

Data plane traffic however is not encrypted by default. When enabled, IPSec encryption

at the level of the vxlan is created with the same AES and GCM security as with the swarm

service (control and management) traffic. This was confirmed by Zovi et al. [45], and the

keys are rotated every 12 hours, according to Brouwers’s master thesis on the topic [2]. It is

important to mention that enabling encryption for the data plane imposes a non-negligible

performance penalty. For enabling encryption on the data layer, Yarygina and Bagge [42]

found a penalty of 11% in the experiments. The tests where done with a limited data set

and did not test for difference sizes. We predict that bigger chunks of data will provide a

higher penalty in performance.
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4.4 Known security problems with the technology

Docker Swarm uses a variety of technologies and libraries. Some of these are vulnerable to

known attacks. We list some of the problems and discuss them where relevant.

4.4.1 Common Vulnerabilities and Exposures

CVEs provides a reference-method for publicly known information-security vulnerabilities

and exposures. Known CVEs for technology used by Docker Swarm is:

• CVE-2017-7860, CVE-2017-7861, CVE-2017-8359 and CVE-2017-9431 are related to

gRPC out-of-bounds write. All have been mitigated after release 1.2.2 (current version

is 1.11.0 (gorgeous)).

• CVE-2014-7189, CVE-2016-3959, CVE-2017-1000097 and CVE-2018-7187 are related

to Golang. Some of them show weaknesses in the implementation of crypto and secure

transport layer communications. All CVEs have a common vulnerability score of less

than or equal to 5.0 (of a maximum of 10.0). All have been mitigated after release

1.7.4 (current version is 1.10.1).

• CVE-2016-6595 is related to SwarmKit version 1.12.0 (current version of Docker CE

is 18.03.0-ce3) that allows remote authenticated users to cause a DoS. The CVE has

since been disputed by Docker4.

We discuss the CVEs more in Section 6.1 as they are disclosed and mitigated at the time of

writing this. We also investigated the implementation of the custom TLS library in Golang

in Section 3.5.1

3Starting with release 17.03.0-ce, Docker uses a monthly release cycle with YY.MM versioning scheme.
4https://github.com/moby/moby/issues/25629
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4.4.2 Denial-of-service-attacks on Docker Swarm

Zovi et al.[45] demonstrated a DoS-attack on Docker Swarm by ”disabling” the network con-

nectivity of legitimate worker nodes by hijacking their IP-address. The attack is constrained

to having root access on the underlying host of the swarm. This can be achieved by container

escapement or other security vulnerabilities on the host. As it is necessary for retrieving the

join-token from memory on the compromised host. The author is specifying that this is not

the most elegant technique, as it involves ARP spoofing and DoS on the network level.

What happens is that by hijacking the IP-address of a legitimate nodes, the nodes are

blocked from contacting the manager, and the manager node will set the legitimate nodes

status as unavailable. The result of this, is that the rogue node is reassigned all work for

the services. It is important to mention that the rogue node does not get the cryptographic

identity of the nodes they hijack the IP-address from, but instead uses the join-token to get

issued its own certificate. Nor that the rouge node can pick task from the orchestrator, it

just gets assigned all tasks as it is the only node available. This attack matches the attack

of a compromised worker node from Section 4.1.5.

4.4.3 Malicious container images

The images run on Docker hosts can be malicious, as Docker container images can originate

from disk or from a remote registry. A popular remote registry is Docker Hub, Docker’s own

repository. Which hosts over 100 thousand public and private images. There are reported

multiple malicious images on Docker Hub5,6. These images are obfuscated as legitimate ap-

plications, but contain crypto miners, or malware. Examples are: dockmylife/memorytest/

that mines cryptocurrency under the pretence of being a memory testing software. Three

other images: docker123321/tomcat/ and docker123321/kk/ had more than 100 thousand

pulls and docker123321/cron/ had 1 million pulls from Docker Hub before they where

removed.

Pulling an image uploaded by a malicious user from a large registry is one thing, but

the images are also transferred over an untrusted medium, for instance over the internet.

5https://github.com/docker/hub-feedback/issues/1121
6https://www.fortinet.com/blog/threat-research/yet-another-crypto-mining-botnet.html
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Docker provides a verification system that helps guard against MITM attacks, as it prevents

an attacker from secretly forging or tampering with content. To provide trust in the images,

Docker Content Trust can be enabled for client-side verification of integrity and publisher

for images. This lets publishers sign their images, and consumers ensure that the images

they use are signed.

Docker Content Trust is based on Docker Notary tool to publish and manage trusted

content and as Honnavalli [15] writes: ”The engine behind enforcing and managing this trust

is Docker Notary, a Docker service which is implemented based on The Update Framework

(TUF)”. TUF was created in 2010 as a framework and specification that can be used to

secure new and existing software update systems. The project is hosted and developed by

The Linux Foundation as part of the Cloud Native Computing Foundation (CNCF).

At some point the system administrator or developer must select an image from a trusted

software vendor from a trusted registry, the rest Docker takes care of. This feature is disabled

by default, as it will force all registry operations the use of signed and verified images. This

thesis will not look into the implementation of Docker Content trust.
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Chapter 5

Experiments and results

In this chapter we list and explain the experiments that we perform in order to gain confidence

in the requirements, and try to answer the research questions we listed in Section 1.1: What

security mechanisms are used in Docker Swarm? Is Docker Swarm secure against high level

attacks? If the security is proven strong, what other applications can benefit from applying

this model? We also attempt to answer the evaluation criteria:

• Access to a swarm is limited to an authorised node.

• Nodes in a swarm should have strong identity.

• Management and control traffic sent on the network should be encrypted when possible.

We start by defining our testing environment and give a detailed introduction to the various

test cases we create from these goals and criteria.

5.1 Defining the experiments

As described in Section 4.1.5, there are multiple attack models which can compromise a

swarm. It is therefore important to verify if there are mitigation strategies in place to

prevent these attacks. These attack models are permissive and do not provide us with good

test cases, but we can provide some test cases that will test one or more of them. We

investigate the following procedures and network calls:
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1. Evaluate cryptographic strength of the join-token as it provides access to the swarm,

but the finer details of the generation are not documented. In neither the official

documentation or in the code-base.

2. Investigate what an active attacker can do in a Swarm. Attempt MITM attack to view

the request and response sent between nodes in Docker Swarm to verify the security of

joining a node to a swarm. For testing this, we use different tools, such as mitmproxy,

tcpdump and Wireshark.

3. We develop a custom proxy-tool to act as an intermediate for traffic with Protocol

buffers and gRPC, to investigate if it is feasible to proxy the traffic. If this proves

fruitful, a custom proxy for Docker Swarm can be developed specifically.

4. Dissect and evaluate the custom protocol for joining the swarm. When a new node

joins an existing swarm. How is the new node issued an identity, and what security

features are used to securely introduce a new node. For investigating this, it will be

necessary to view the documentation and source code.

5. Investigate possibility of input fuzzing on the manger node. Is it possible to consume

resources on an existing swarm by crafting a malicious input? We generate a set of

misformatted join-tokens and a CSRs with a malformed and a fake payload. This will

reveal problems with input validation, or increase confidence in that input validation

is done correct.

5.2 Experiment setup

To be able to run through the tests as painless as possible, we prepared by setting up all of

the underlying tools beforehand. This section describes which tools we used, which versions

and how they were set up. The tests are performed on SwarmKit1 master-branch from the

GitHub-repository of Docker. The repository was cloned on 19.04.2018 2. The reason for

date and commit to timestamp our cloning is that here is no release schedule for SwarmKit in

the same way as there is with Docker CE and Docker EE. Instead, SwarmKit uses branches

named after the upcoming release of Docker CE, and merges to the master branch on release.

1https://github.com/docker/swarmkit/
2Commit identification 33d06bf5189881b4d1e371b5571f4d3acf832816
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Current master branch is a bump from version 18.03. The test computer is an MacBook

Pro from 2015 with MacOS High Sierra 10.13.3 installed, and the shell installed is fish3

version 2.7.1.

For modifying and building SwarmKit and creating the proxy-tool described in Sec-

tion 5.1, a Golang development environment is required. We installed Golang (version go

1.9.4 Darwin/amd64) and defined the system variables needed for building the code with

$ set -x -U GOPATH $HOME/go

5.2.1 Virtual machine

 
 
 
 
 
 
 
 

Debian 9.3
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Figure 5.1: Setup of virtual machines for testing MITM attacks

The VMs we used for the setup were created by setting up three VMs in VMWare Fusion.

The reason for this is that it provides isolation, and it removes noise (irrelevant network

3https://fishshell.com/
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traffic) generated by other hosts on the network. The virtual environment consists of two

Debian 9.3-machines working as a manager and a worker node, and in between them, a

machine running Kali Linux 2018.1. The choice of operating system was that the writer of

this thesis is familiar with the tools in the operating systems, and they are pretty lightweight,

so that they do not slow down the host machine.

The network interface cards (NICs) from the Debian machines were routed through the

Kali Linux-machine for easy interception, where the Kali Linux-machine has two NIC; one

for each of the Docker hosts. Figure 5.1 shows a visualisation of our setup.

5.3 Cryptographic strength of the join-token

The generation of the secret part of the join-token is done securely using "crypto/rand"

from the standard library of Golang. We have included the function for generating the join-

token in the Appendix C.3. From this function we can see that the generation of the token

does not use the whole hash of the certificate from the root CA, but instead it is a hash in

base 36, 0-left-padded to 50 characters, and the secret is 16-byte in base 36 0-left-padded to

25 characters. The 0-padding adds no actual zero-values as Base36 encoding requires 6 bits

to store a single character. The random generated sequence is 128 bits (16 ∗ 8 bits), and the

number of characters in Base36 encoding is:

log 2128

log36
= 25 characters

In Section 4.2 and Figure 4.2 we show the join-token and what the different parameters

of the join-token are. The first parameters of the token: Known prefix, token version number

and the hash from the RootCA, can be guessed or attained, and the only secret part is the

randomly generated secret of 25 characters. This secret consists of characters from only two

of the categories of characters; lower case letters and numbers (the two others categories are

upper case letters and non-alphanumeric characters) i.e., Base36.
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Using a same approach as for guessing passwords with brute force/exhaustive search, and

assuming one hundred trillion (1014) guesses per second4. To brute force the random secret

the time required will be ' 2.63 thousand trillion centuries:

∑25
n=1 36n

1 year in seconds
' 2, 63 ∗ 1017 years, where numerator is search space ∼ 8, 31 ∗ 1038

We will argue that this number is too high, as we know a lot about this randomly

generated secret. Contrariety a password we know the exact length and search space, so that

there is no need for testing strings that are longer or shorter, or containing other characters.

When taking this into account, we can reduce the search space size from ' 8, 31 ∗ 1038 to

' 8, 08 ∗ 1038. The time to brute force the secret will still take an inconceivable amount of

time.

The cryptographic strength of the join-token, and how the randomly generated secret

is created has not been disclosed or documented by Docker to the best of this author’s

knowledge. We are satisfied with the cryptographic strengt of the join-token.

5.4 Man-in-the-middle attack with existing tools

In this section we outline the attempted attack for capturing the packets in a join-sequence

between a worker node and a manger node. We know that when a swarm is initialised, the

manager node designates itself as a CA and signs a certificate. The hash of this certificate

is used in the join-token, so that the joining worker does not have to download a certificate

from a non-swarm participant. If the traffic can be decrypted, and tampered with, we could

potentially take control of the swarm, by compromising a manager node. To intercept the

traffic we used the tool mitmproxy5 which is an interactive MITM proxy for HTTP and

HTTPS with a console interface. mitmproxy is a suite of tools for MITM, with capabilities

such as intercepting HTTP and HTTPS requests and responses and modifying them extem-

poraneous, as well as and replay attacks. In addition to mitmproxy, we also use tcpdump

which is a popular tool amongst unix users and Wireshark.

4We note that to reach that many guesses/second would require a professional/governmental adversary
5https://mitmproxy.org/
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5.4.1 Results

Using mitmproxy for MITM attacking Docker Swarm yielded no results trying to capture

a join-sequence. We tested the connection to verify that we can capture other types of

traffic between the VMs, but no traffic was recorded using mitmproxy for capturing the

join-sequence of Docker Swarm. We tried using tcpdump but with no luck for intercepting

traffic on the management plane. We are pretty confident that the reason for this is that

mitmproxy and tcpdump currently does not support Protocol buffers and gRPC traffic. This

is caused by the binary protocol format used in Protocol buffers and gRPC.

One advantage tpcdump has over the two other tools we tested with, is that for capturing

traffic on the data plane, tcpdump has the possibility of listening directly at namespaces,

instead of just on the NICs. When debugging distributed applications, this can be especially

useful.

In Wireshark we listened to the NIC and saved the traffic to a .pcap-file. From there

we can confirm that traffic is encrypted. Wireshark does not at this point support Protocol

buffers (proto3), but there exist an unofficial dissector for gRPC that uses proto3. This

dissector invokes the HTTP/2 dissector. This means that the Wireshark source code has to

be downloaded and built custom for it to work. We were not able to get this dissector to

work, as the traffic needs to be decrypted first.

In Figure 5.2 we see that Wireshark detects that the traffic is TLSv1.2, and when

a connection is established between a worker node (192.168.245.1), and manager node

(192.168.245.133). The worker node sends a client hello, to initiate the TLS hand-

shake, followed by the expected messages of a handshake. After this the communication

becomes encrypted, and we have not found any way to decrypt it in Wireshark. Wireshark

does not provide support for elliptic curve cryptography (ECC) certificates for decryption,

and any attempt we did at converting the private key to a format that Wireshark does ac-

cept, was declined. We have included a view of the entire conversation in Wireshark ”Follow

TCP Stream” in Appendix B.1.

As these experiments where unsuccessful, the next natural thing for us was to attempt to

create a custom proxy. The reason for this was to see if Protocol buffers can be intercepted.
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Figure 5.2: Screenshot of Wireshark during bootstrap of a new node



5.5 Custom gRPC proxy

Since no existing tools were able to capture the traffic of a join-sequence in Docker Swarm,

we build a custom application proxy for decoding Protocol buffers. The implementation is

written in Golang, and can be found at GitHub6. This implementation is not directly related

to Docker Swarm, but can provide valuable insights into the underlying technology that is

used for creating Docker Swarm, and perhaps also help us answer the research goal of what

other applications can benefit from applying the Docker Swarm-model.

As described in Section 3.6, the proxy-server must know of the .proto-files to deserialise

the binary messages sent between the client and server, and implement methods for han-

dling the services. To gain better understanding of Protocol buffers and gRPC, and to test

a potential future of a gRPC proxy tool, we started by creating a small client/server appli-

cation. The application is available at Github7. The client application takes two integers as

input and sends them via gRPC to the server application. The server calculates the greatest

common divisor (GCD) of the numbers, and returns the answer to the client.

Figure 5.3 is a SSD of how the application works. The client sends the GCDService an

RPC-message with the parameters: ctx and

&pb.GCDRequest{A:a,B:b}. The GCDService computes the result, and returns the RPC

message: &pb.GCDResponse{Result:a}. The different parameters are listed in Table 5.1.

Table 5.1: Parameters of Figure 5.3

Element Type
ctx context.WithTimeout(ctx, 5*time.Second)

A uint64

B uint64

Result uint64

The next step from here is to create a proxy-server to be placed in-between these two

applications, and forward the request from the client and response from the server, but most

importantly, it will log requests and responses. See Figure 5.4 for SSD of how the application

will work.

6https://github.com/Diddern/gIntercept
7https://github.com/Diddern/gRPC-simpleGCDService
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Client GDCService

Compute(ctx, &pb.GCDRequest{A: a, B: b}) 
:5001

Compute
gcd

&pb.GCDResponse{Result: a} 
:5001 

Figure 5.3: System sequence diagram of GCD client/server application

Client gIntercept GDCService

Compute(ctx, &pb.GCDRequest{A: a, B: b}) 
:5001

Log  
request 

Compute(ctx, &pb.GCDRequest{A: a, B: b}) 
:3000

Compute
gcd

&pb.GCDResponse{Result: a} 
:3000 

Log  
response

&pb.GCDResponse{Result: a} 
:5001 

Figure 5.4: System sequence diagram of GCD client/server application with a proxy service
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gRPC has options for encrypted and unencrypted communications. Setting up encrypted

transport layer communication is a part of the standard features of the gRPC-library. In

Listings 5.1 and 5.2 we can see the client and server implementation without encryption

enabled, and in listing 5.3 and 5.4 we can see the same client and server with encryption

enabled.

Listing 5.1: Client without encryption in gRPC
1 conn , err := grpc.Dial("localhost :5001", grpc.WithInsecure ())
2 // error handling omitted from listing
3 client := pb.NewGreeterClient(conn)
4 //...

Listing 5.2: Server without encryption in gRPC
1 lis , err := net.Listen("tcp", ":5001")
2 // error handling omitted from listing
3 server := grpc.NewServer ()

Listing 5.3: Client with encryption in gRPC
1 creds , err := credentials.NewClientTLSFromFile("certs/server -cert.pem",

↪→ "")
2 // error handling omitted from listing
3 conn , err := grpc.Dial("localhost :5001",

↪→ grpc.WithTransportCredentials(creds))
4 // error handling omitted from listing
5 client := pb.NewGreeterClient(conn)
6 //...

Listing 5.4: Server with encryption in gRPC
1 creds , err := credentials.NewServerTLSFromFile("certs/server -cert.pem",

↪→ "certs/server -key.pem")
2 // error handling omitted from listing
3 lis , err := net.Listen("tcp", 5001)
4 // error handling omitted from listing
5 server := grpc.NewServer(grpc.Creds(creds))

It should be mentioned that our implementation does not use a CA to generate unique

certificates for the clients. We generate a certificate with the method in Listing 5.5 with the

command line tool openssl. If we were to go further with this implementation a dedicated

CA would be needed for generating unique client-certificates.

Listing 5.5: Generating certificate for secure communication in gRPC
1 $ openssl req -x509 -newkey rsa :4096 -keyout certs/server -key.pem -out

↪→ certs/server -cert.pem -days 365 -nodes -subj ’/CN=localhost ’
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5.5.1 Results

The use of transport layer encryption in gRPC-applications has been made easy by the

developers, and as we can see in the Listings 5.1, 5.2, 5.3 and 5.4 there are only a few lines

of code in addition for securing the application. The hard part is securing certificates from

unauthorised access, securing the certificate generator from unauthorised use, and rotating

certificates in a secure manner. We did not look into creating a secure way of issuing, storing

or rotating certificates in this experiment.

We did not go further in creating a proxy tool for inspecting the traffic of Docker Swarm,

as that would require us to implement the 32 Protocol buffer files for making a swarm, and

this would in principle be considered to reinvent the wheel as it would do the same thing as

Docker Swarm does today. The way Docker Swarm handles certificates would also make it

difficult for us to create a proxy tool. Doing MITM on MTLS would mean that we would

need the certificate of both the worker node, and manager node to inspect traffic in each

direction.

5.5.2 Discussion of results

We learned a lot from implementing an application for inspecting protocol buffers over gRPC.

Such as that all methods from the .proto-files must be implemented for the proxy tool to

work. This is for all service calls and messages. That means that for the strongly typed

languages that Protocol buffers generate client code for, i.e., C++, Java and Golang, the type

must match as well. This provides security by obscurity. Another thing we learned was that

the prossess of defining service calls before writing the implementation is a positive for the

development flow. It encourages the developer to think about the messages and services

before writing the implementation. The fact that gRPC is asynchronous by nature was also

a valuable lesson. This is an elegant solution, in contrast to RESTs synchronous nature.

This security of all proto-files that must be implemented reminds us about the story

of Dan Kaminsky’s DNS attack in the summer of 2008 from the book Secure and Resilient

Software Development. The attack could allow an attacker to redirect clients to alternate

servers, leading to misuse. Eight years prior to this, the cryptographer Daniel J. Bernstein

had looked at DNS security and decided that Source Port Randomisation was a smart design
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choice for DNS. When DNS was patched for mitigating Kaminsky’s attack, the solution was

Source Port Randomisation. Bernstein had not known about the attack but had understood

and envisioned a general class of attacks and realised that this enhancement could provide

protection. The DNS application he wrote in the year 2000, djbdns, did not need patching

as it was not only immune to known attacks, but also secure to an unknown attack [26,

Chapter 6.1]. This shows that the use of a language and framework that is well implemented

can reduce the attack surface of an application.

In an application where the Protocol buffer files are unavailable to the adversary, e.g., in a

closed source project, reverse engineering of the protocol buffers is not easy. As we mentioned

it is a binary protocol, and without the descriptor it is mostly up to trial and error (or a

clever reverse engineer). A related project we found on GitHub8 called POGOProtos sparked

interest, as there was done a lot of work in reverse engineering protocol buffers for cheating

in the popular mobile game Pokémon GO. The community9,10 is very much active in abusing

the protocol buffers for capturing rare Pokémon, or gaining power ups by automating tedious

tasks, but the development of POGOPrototos has become stale. This is because Niantic,

the creators of Pokémon GO has started enforcing security measures like certificate pinning,

banning of VPN’s, and IP’s hosted at data centres for combatting cheaters. The way Docker

Swarm use MTLS to authenticate worker and manager nodes would make POGOPrototos

ineffective.

We now know that a custom proxy for Docker Swarm is impractical. The next natural

step is to inspect the source code of Docker Swarm, as this will provide us with answers to

what messages that are sent on the wire. Inspecting the source code, even though a consid-

erable work load will also remove some of the hinders we ran into in the other experiments,

such as not being able to decrypt the traffic from Wireshark.

5.6 Dissecting the protocol for joining a swarm

To verify that the security functionality of Docker Swarm, we investigate the creation of a

swarm, and the join-sequence of when a a new node joins the swarm by examining the source

8https://github.com/Furtif/POGOProtos
9https://www.reddit.com/r/pokemongodev/

10https://talk.pogodev.org/
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code and recompiling it with custom parameters. This is to confirm that the documentation

is correct, and to gain confidence in the security requirements from Section 1.3, where we

want to investigate that nodes in a swarm are given a strong cryptographic identity, and

that access to the swarm is limited to authorised nodes.

From the documentation of SwarmKit [10] we know that certificates are encrypted before

stored to disk, the keys are stored in a Secret which is saved to the Raft logs, and rotated

between the managers. To obtain a certificate without hacking a container we need to inspect

the code-base of SwarmKit. The code-base is currently around a half million lines of code.

This made it a very challenging task to find the code that generates the certificate, encrypts

it, and handles CSRs.

The project has been suffering from tests failing during build process11 on MacOS from

December 2017. This made the setup, first compilation, and building of SwarmKit a tedious

process. When these obstacles were overcome, the build process compiles multiple binaries.

For the scope of this thesis we used swarmd and swarmctl as they are the most important

ones.

• swarmctl

This is the client part of SwarmKit, and is the tool for operating SwarmKit clusters,

as it is capable of inspecting the cluster, the list of joined nodes and list of services

and tasks.

• swarmd

This is the core binary to start a SwarmKit service. It acts as the daemon to create

the nodes, and job queue manager for swarm workers.

To introduce the concepts behind the creation of a swarm, and present the modified

manager node is somewhat extended, but the meaning is to familiarise the reader with

important concepts before presenting the results.

5.6.1 Creating a swarm

In the listings 5.6, 5.7 and 5.8 we show how to create a cluster by starting a manager node,

and connect a worker node to that cluster. To explain what is happening, we go through

the listings and explain the different options added to the commands run.

11https://github.com/docker/swarmkit/issues/2479
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In Figure 5.6 we use the flag -d to state the directory we want the files to be stored

in. And the --listen-control-api defines that we want the control API to listen on the

socket located in "/tmp/node-1/swarm.sock". We also define the hostname to be node-1

and the log-level to be set to debug for the most verbose output.

As explained in Section 4.2 and illustrated in Figure 4.1 the manager becomes a CA and

has signed a root certificate.

In Listing 5.7 line 1 we export the sockets location to an environment variable, so that

the client (swarmctl) can access the cluster in line 2. From line 3-13 we see the information

about the cluster, and in line 12 we can see the generated worker-token.

In Listing 5.8 we create a node in the same way as we did with the manager node, but

with some modifications. We provide it with a --join-addr for the manager node, and the

--join-token described in Figure 4.2 and Section 4.2, and we also define an address for

listening for remote API (--listen-remote-api). The token provided is the worker-token

from Listing 5.7 line 12

Listing 5.6: Starting the manager node from the shell
1 $ swarmd -d /tmp/node -1 --listen -control -api /tmp/node -1/ swarm.sock

↪→ --hostname node -1 --log -level debug

Listing 5.7: Inspecting the cluster to see the join-tokens
1 $ export SWARM_SOCKET =/tmp/node -1/ swarm.sock
2 $ swarmctl cluster inspect default
3 ID : ly3pczj9ugjamqxokxlxdlkkw
4 Name : default
5 Orchestration settings:
6 Task history entries: 0
7 Dispatcher settings:
8 Dispatcher heartbeat period: 5s
9 Certificate Authority settings:

10 Certificate Validity Duration: 2160 h0m0s
11 Join Tokens:
12 Worker:

↪→ SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc4afmgyj7jzkk8lgqlwgf -
↪→ 6fum3wg9c15riy9xg43mkkv0z

13 Manager:
↪→ SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc4afmgyj7jzkk8lgqlwgf -
↪→ 6kst2vj5og9qk0coiq77i7cc9

Listing 5.8: Starting the worker node from the shell
1 $ swarmd -d /tmp/node -2 --hostname node -2 --join -addr 127.0.0.1:4242

↪→ --listen -remote -api 127.0.0.1:4343 --log -level debug --join -token
↪→ SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc4afmgyj7jzkk8lgqlwgf -
↪→ 6fum3wg9c15riy9xg43mkkv0z
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We now have a working manager node, and a worker node. These will communicate

via MTLS and the certificate will rotate every 2160 hour (90 days). This confirms the

documentation from Section 4.2. We then add more worker nodes by applying the same

strategy as in Listing 5.8 to prepare a service roll out. Table 5.2 lists the output of the

command swarmctl node ls that returns a list of active nodes in the swarm. A service

is then created with the command in Listing 5.9, where we define that the service is to be

named ”redis” for convenience, and the Docker image it should host is the latest version of

Redis from Docker Hub, and it should be made six replicas of it.

By inspecting the service in Table 5.3 we see that there are six running instances of

the image redis:latest running distributes amongst the four nodes. The service has a

unique ID (ss9eiks606mj6reqxjrq2rkb5), and each replica of the instance is assigned a

unique task-ID. If we look at running Docker containers by contacting the Docker CLI in

Table 5.4, we can see that there are six containers running, and that the containers also have

a unique ID, but the name of a container correspond to <service>.<slot>.<task-id>.

Table 5.2: Available nodes in swarm

$ swarmctl node ls

ID Name Membership Status Availability Manager Status

lri5mb7wv5rs3hohstvl8gofn node-2 ACCEPTED READY ACTIVE

rkc0er2dspx03dde3a79yl3le node-1 ACCEPTED READY ACTIVE REACHABLE *

wfw5fn951p08vmi225vj72w2k node-3 ACCEPTED READY ACTIVE

wglccu7f3jiz06b8ly98ydmut node-4 ACCEPTED READY ACTIVE

Listing 5.9: Starting the manager node from the shell
1 $ swarmctl service create --name redis --image redis:latest --replicas 6
2 ss9eiks606mj6reqxjrq2rkb5
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Table 5.3: Inspection of service running 6 replicas of Redis

$ swarmctl service inspect redis

ID: ss9eiks606mj6reqxjrq2rkb5

Name redis

Replicas 6/6

Template

Container

Image redis:latest

TaskID Service Slot Image Desired State Last State Node

80aflj7dkyxqmumfq6f7774ax redis 1 redis:latest RUNNING RUNNING 1

kivm7j95feo6801cmvg0x69ee redis 2 redis:latest RUNNING RUNNING 2

6v3pu4g6if1ya6fwp80of2z85 redis 3 redis:latest RUNNING RUNNING 1

ixlqi4yvhk12e5xnamsi24xu6 redis 4 redis:latest RUNNING RUNNING 2

18ghiedhux54xsh29pd1zscck redis 5 redis:latest RUNNING RUNNING 3

m75xrz9o8p92gb9htlj1q51nr redis 6 redis:latest RUNNING RUNNING 4

Table 5.4: Running Docker containers

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

29e0f51b250b redis:latest docker-entrypoint.s... 3 minutes 3 minutes 6379/tcp redis.6.m75xrz9o8p92gb9htlj1q51nr

6e134b62d0ab redis:latest docker-entrypoint.s... 3 minutes 3 minutes 6379/tcp redis.5.18ghiedhux54xsh29pd1zscck

8c42ed89bcd5 redis:latest docker-entrypoint.s... 3 minutes 3 minutes 6379/tcp redis.2.kivm7j95feo6801cmvg0x69ee

89c688181d49 redis:latest docker-entrypoint.s... 3 minutes 3 minutes 6379/tcp redis.4.ixlqi4yvhk12e5xnamsi24xu6

785727383b79 redis:latest docker-entrypoint.s... 3 minutes 3 minutes 6379/tcp redis.3.6v3pu4g6if1ya6fwp80of2z85

2d94ff97aa65 redis:latest docker-entrypoint.s... 3 minutes 3 minutes 6379/tcp redis.1.80aflj7dkyxqmumfq6f7774ax

5.6.2 Modified manager node

For confirming what messages are sent on the wire we need to recompile swarmd with logging

functionality on the method that are being called when the manager is starting, and when a

node is joining the swarm. In this section we focus on the manager node, and in Section 5.6.3

we look at how a new node joins the swarm.

Most of the logic for creating a self-signed CA lies in the file swarmkit/ca/certificates.go.

A pretty large file with 991 lines of code. The methods are fairly high in complexity as well,

with some methods exceeding 100 lines of code.

When the manager starts up, the method CreateRootCA is called, it takes the parameters

rootCN and returns a struct of the rootCA. We revisit this struct in Section 5.6.3 (see

Table 5.5). The method is shown in Listing 5.10. For viewing the data we attached a logger

to the application shown in line 20,21,22. This lets us output to the terminal the private key

of the root certificate, which is only stored to disk encrypted under normal circumstances.
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Listing 5.10: Creating the root certificate
1 func CreateRootCA(rootCN string) (RootCA , error) {
2 // Create a simple CSR for the CA using the default CA validator and

↪→ policy
3 req := cfcsr.CertificateRequest{
4 CN: rootCN ,
5 KeyRequest: &cfcsr.BasicKeyRequest{A: RootKeyAlgo , S:

↪→ RootKeySize},
6 CA: &cfcsr.CAConfig{Expiry: RootCAExpiration},
7 }
8 // Generate the CA and get the certificate and private key
9 cert , _, key , err := initca.New(&req)

10 // error handling omitted from listing
11
12 // Convert key to PKCS#8 in FIPS mode
13 if fips.Enabled () {
14 key , err = pkcs8.ConvertECPrivateKeyPEM(key)
15 // error handling omitted from listing
16 }
17 rootCA , err := NewRootCA(cert , cert , key , DefaultNodeCertExpiration ,

↪→ nil)
18 // error handling omitted from listing
19
20 log.G(context.TODO()).Debugf("The certificate is:\n %s",cert)
21 log.G(context.TODO()).Debugf("The Elliptic Curve key is:\n %s",key)
22 log.G(context.TODO()).Debugf("Resulting in the RootCA :\n %s",rootCA)
23
24 return rootCA , nil
25 }

Listing 5.11: Downloading the root certificate from manager node
1 func GetRemoteCA(ctx context.Context , d digest.Digest , connBroker

↪→ *connectionbroker.Broker) (RootCA , error) {
2 insecureCreds := credentials.NewTLS (&tls.Config{InsecureSkipVerify:

↪→ true})
3 conn , err := getGRPCConnection(insecureCreds , connBroker , false)
4 // error handling omitted from listing
5 client := api.NewCAClient(conn.ClientConn)
6 ctx , cancel := context.WithTimeout(ctx , 5*time.Second)
7 // closing connection omitted from listing
8 response , err := client.GetRootCACertificate(ctx ,

↪→ &api.GetRootCACertificateRequest {})
9 // error handling omitted from listing

10 if d != "" {
11 verifier := d.Verifier ()
12 if err != nil {
13 return RootCA{}, errors.Wrap(err , "unexpected error getting

↪→ digest verifier")
14 }
15 io.Copy(verifier , bytes.NewReader(response.Certificate))
16 if !verifier.Verified () {
17 return RootCA{}, errors.Errorf(" remote CA does not match

↪→ fingerprint. Expected: %s", d.Hex())
18 }
19 }
20 return NewRootCA(response.Certificate , nil , nil ,

↪→ DefaultNodeCertExpiration , nil)
21 }
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The logger in line 20,21,22 of Listing 5.10 is the standard logger used for the rest of

Docker Swarm, but is non-existent in the file swarmkit/ca/certificates.go, as the logger

is usually attached to higher order functions. We have implemented it with a dummy-context

(context.TODO()) which is not important to us at the current moment.

5.6.3 Results

After not being able to decrypt or decode the protocol from the MITM experiments with

mitmproxy, tcpdump, Wireshark and custom gRPC proxy, we wanted to confirm what mes-

sages that are sent on the wire. The recompilation described in Section 5.6 let us view some

logs of what happens when a root certificate is generated. The results of logging parameters

from Listing 5.10 are shown in Listing 5.1212. The RootCA is a struct (see Glossary for

definition), and in the Listing 5.5 we show what the declared fields of the struct are. The

explanation is from comments in the code, but we have verified that they are correct.

In Listing 5.12 we were curious to what the (EXTRA string=) value in Line 29 is, and

after looking at the struct for a RootCA we have concluded that it is the list of intermediates

as described in Table 5.5.

Joining an existing swarm

A new node joining an existing swarm is sometimes referred to as secure node introduction,

or bootstrapping. We made a communications diagram for this procedure. This is illustrated

in Figure 5.5, and Table 2 describes the different parameters of the communication. This

is based on analysis of the code from Listings C.1, C.2, 5.11 and 5.12. We see in the com-

munications diagram (Figure 5.5) that the node wanting to join the swarm, first downloads

the certificate bundle from the manager node, and verifies the hash of the certificate with

the hash of the join-token. When this is done, the worker node creates a CSR and sends the

request for getting a signed certificate. The manager node verifies the join-token and signs

the certificate. The worker token then sends a request for the singed certificate.

The first method is for downloading the root certificate, as shown in Listing 5.11. We

want to point out a clever function in Line 11. The digest covers the entire bundle of

12Ellipsis (. . . ) indicate truncation such as full certificates.

64



certificates, and not only only a single certificate. This prevents MITM attacks where a

MITMed CA can provide a single certificate which matches the digest, and then provide

arbitrary other non-verified root certificates that the manager certificate actually chains up

to.

Worker node Manager node

Enter join-token

GetRemoteCA

GetRootCACertificate(ctx, GetRootCACertificateRequest{}) 

Remote endpoint's CA certificate bundle 

GetRemoteSignedCertificate

Verify hash of certificate with hash from join-token

IssueNodeCertificate(issueCtx, IssueNodeCertificateRequest{CSR,  
                                  Token, Availability})

IssueNodeCertificateResponse{NodeID, NodeMembership}

Verify token,
sign certificate

Generate CSR

NodeCertificateStatusRequest{NodeID}

Signed X.509 Certificate

Figure 5.5: Communications diagram for a worker node joining a swarm
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When the certificate is downloaded by the worker node, the worker compares the hash

of the certificate with the hash of the join-token, and if they match, the worker sends a CSR

to the manager. This is done by the method GetRemoteSignedCertificate. We have put

this method in the Appendix C.1 due to the size and complexity that surpasses 100 lines of

code. This method has the only non-MTLS request that we could find in the source code.

It is used for the bootstrapping of the TLS certificates, and by definition cannot use MTLS.

After the worker has acquired its signed certificate, all communication is secured by MTLS.

This adheres to our requirement for ”management and control traffic sent on the network

should be encrypted when possible”.

Table 5.5: RootCA Struct

Element Description
Certs []byte Certs contains a bundle of self-signed, PEM encoded certificates

for the Root CA to be used as the root of trust.
Intermediates []byte Intermediates contains a bundle of PEM encoded intermediate

CA certificates to append to any issued TLS (leaf) certificates.
The first one must have the same public key and subject as the
signing root certificate, and the rest must form a chain, each one
certifying the one above it, as per RFC 5246 Section 7.4.2.

Pool *x509.CertPool Pool is the root pool used to validate TLS certificates
Digest digest.Digest Digest of the serialised bytes of the certificate(s)
signer *LocalSigner This signer will be nil if the node does not have the appropriate

key material

Listing 5.12: Verbose output of creating the root certificate
1 $ swarmd -d /tmp/node -1 --listen -control -api /tmp/node -1/ swarm.sock

↪→ --hostname node -1 --log -level debug
2
3 [INFO] generate received request
4 [INFO] received CSR
5 generating key: ecdsa -256
6 [INFO] encoded CSR
7 [INFO] signed certificate with serial number 4625933...4240060632
8 DEBU [0000] The certificate is:
9 -----BEGIN CERTIFICATE -----

10 MIIBazCCARCgAwIBAgIUUQdnHaqDoNSEfw9kAwrldpiFuNgwCgYIKoZIzj0EAwIw
11 ...
12 WBP93a6CVDNtic8vr7TXqCqW7hYdiSfmZjUatcA ==
13 -----END CERTIFICATE -----
14
15 DEBU [0000] The Elliptic Curve key is:
16 -----BEGIN EC PRIVATE KEY -----
17 MHcCAQEEIMTopYpPy+HQAakz/L/B9If64DRF4jB4e4h9FvNEGGayoAoGCCqGSM49
18 AwEHoUQDQgAEp7bAqmHJWk+xuwkV27iZzlZC5N8Ljo8nstbUX06DYW1cy0o4o7e1
19 rZk0N0TBDo43mCnqSlpsi+vyM6zuNJNmNg ==
20 -----END EC PRIVATE KEY -----
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21
22 DEBU [0000] Resulting in the RootCA:
23 -----BEGIN CERTIFICATE -----
24 MIIBazCCARCgAwIBAgIUUQdnHaqDoNSEfw9kAwrldpiFuNgwCgYIKoZIzj0EAwIw
25 ...
26 WBP93a6CVDNtic8vr7TXqCqW7hYdiSfmZjUatcA ==
27 -----END CERTIFICATE -----
28 %!s(*x509.CertPool =&{ map [...:[0]] map [010 swarm -ca :[0]] [0 xc42016f900 ]})

↪→ sha256 :12 bf30634b ... b61a79a439b
29 %!s(*ca.LocalSigner =&{0 xc42013e4c0 [45 66 69 ... 10] 0xc420352000

↪→ 0xc420278540 })}%!( EXTRA string =)
30 ...

Table 5.6: Parameters of Figure 5.5

Element Description
ctx context.WithTimeout(ctx, 5*time.Second)

GetRootCACertificateRequest Empty struct
issueCtx context.WithTimeout(ctx, 5*time.Second)

IssueNodeCertificateRequest Struct. See Listing 5.13 for values
CSR []byte
Token String
Availability NodeSpec Availability: int32
NodeID String
NodeMembership ”PENDING” or ”ACCEPTED”

Listing 5.13: Struct for IssueNodeCertificateRequest
1 struct {
2 Role NodeRole ‘protobuf :"varint ,1,opt ,name=role ,proto3 ,enum=

↪→ docker.swarmkit.v1.NodeRole" json:"role ,omitempty"‘
3 CSR []byte ‘protobuf :"bytes ,2,opt ,name=csr ,proto3"

↪→ json:"csr ,omitempty"‘
4 Token string ‘protobuf :"bytes ,3,opt ,name=token ,proto3"

↪→ json:"token ,omitempty"‘
5 Availability NodeSpec_Availability

↪→ ‘protobuf :"varint ,4,opt ,name=availability ,proto3 ,enum=
↪→ docker.swarmkit.v1.NodeSpec_Availability"
↪→ json:" availability ,omitempty"‘ailability
↪→ ‘protobuf:‘varint ,4,opt ,name=availability ,proto3 ,enum=
↪→ docker.swarmkit.v1.NodeSpec_Availability ‘
↪→ json:‘availability ,omitempty ‘‘

5.7 Input fuzzing on the manager node

A critical test to perform is to verify what inputs can be sent to a manger node. If the

input is processed without authentication, the input can be crafted to consume resources
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on the manager node. When a new node is joining the swarm, the manager takes data

from a potentially unauthenticated service, as seen in the Listing C.1 in the Appendix. We

know that the join-token must be parsed by the manager, so we are curious about the input

validation that is performed by a manager node.

To test if a bad input can cause problems we use strings from the GitHub-repository big-

list-of-naughty-strings13, a popular list of about 500 strings that have a high probability of

causing issues when used as user-input data. The list includes strings which contain emojis

(should produce the same behaviour as two-byte characters), right-to-left strings, zalgo text,

script injection, SQL injection, server code injection and more. We expect the error message

"invalid join token" for us to have confidence in the join-token validator to be safe from

malicious strings. We show a snippet of the code for testing the strings in Listing 5.14.

Line 7 is an example of the 500 line long list that we omit from the listing because LaTeX

or cannot handle the strings.

By filling the CSR byte array with a random string, we want to see the response from

the manager node. In Line 24 of Listing C.1 we see that the request consists of a CSR, the

join-token, and the availability of the node joining the swarm. If we change the CSR

to be "Hello Mars" instead of the expected CSR from CloudFlare’s PKI and TLS toolkit

called cfssl14 as shown in Listing 5.15. Table 5.7 lists the predefined errors for a CSR. If

the return value matches on of these inputs, that means that our "Hello Mars" input was

denied successfully.

CloudFlare’s PKI and TLS toolkit is a software suite with tools for building custom TLS

PKI tools. The implementation is written in Golang and actively maintained by Cloud-

Flare. After inspecting the source code of Docker Swarm we can see that much of the PKI

infrastructure is derived from this toolkit.

Listing 5.14: Join-token from Big-list-of-naughty-strings
1 for _, invalidToken := range [] string{
2 "LuguberToken", // invalid token
3 "SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc4afmgyj7jzkk8lgqlwgf -

↪→ 6fum3wg9c15riy9xg43mk6", // mistyped
4 "SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc4afmgyj7jzkk8lgqlwgf -

↪→ 6fum3wg9c15riy9xg43mkkv0z", // expiredToken
5 "SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc8daertj7jzkk8lgqlwgf -

↪→ 6fum3wg9c15riy9xg43mkkv0z", // invalid hash valid secret

13https://github.com/minimaxir/big-list-of-naughty-strings
14https://github.com/cloudflare/cfssl/blob/master/csr/
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6 "SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc4afmgyj7jzkk8lgqlwgf -
↪→ 6fum3wg9c15riasdf43mkkv0z", //valid hash invalid secret

7 "’ OR ’1’=’1",
8 ...
9 } {

10 issueRequest := &api.IssueNodeCertificateRequest{CSR: csr , Token:
↪→ invalidToken , Availability: config.Availability}

11 issueResponse , err := caClient.IssueNodeCertificate(issueCtx ,
↪→ issueRequest)

Listing 5.15: Unexpected data as CSR
1 var joinToken =

↪→ SWMTKN -1-0 fepd7636a2g596d1751y1sl9jqbgc4afmgyj7jzkk8lgqlwgf -
↪→ 6fum3wg9c15riy9xg43mkkv0z

2 issueRequest := &api.IssueNodeCertificateRequest{CSR: []byte("Hello
↪→ Mars"), Token: joinToken}

Table 5.7: Expected errors from bad CSR in cfssl

Case msg
Unknown ”CSR parsing failed due to unknown error”
ReadFailed ”CSR file read failed”
ParseFailed ”CSR Parsing failed”
DecodeFailed ”CSR Decode failed”
BadRequest ”CSR Bad request”
default: panic(fmt.Sprintf(”Unsupported CF-SSL error reason %d under category

APIClientError.”, reason))

We also want to check if we can craft a malicious CSR using CloudFlare’s PKI and TLS

toolkit. This is done by altering the method RequestAndSaveNewCertificates in the file

swarmkit/ca/certificates.go from Appendix C.2 Line 3 to the lines in Listing 5.16. As

we can see, we are invoking the generation of a custom CSR to see if this can provoke an

alternative behaviour.

Listing 5.16: Generating a malicious CSR
1 request := &cfcsr.CertificateRequest{
2 Names: []cfcsr.Name{
3 {
4 O: "LuguberOrganisation",
5 OU: "LuguberOrganisationalUnit ",
6 L: "LuguberLocality",
7 },
8 },
9 CN: "LuguberCN",

10 Hosts: [] string{"luguber.no"},
11 KeyRequest: &cfcsr.BasicKeyRequest{A: "ecdsa", S: 256},
12 }
13 csr , _, err := cfcsr.ParseRequest(request)
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5.7.1 Results

The results of sending malformed join-tokens to the manager resulted in "invalid join

token" for all strings except empty string that returns nil. For the tokens with invalid

hash of root CA and expired tokens the error returned is "remote CA does not match

fingerprint". We note that the list of tested strings has more effect on dynamic languages

and strings that are consumed in client-to-server applications, as many of them are web

browser exploits (XSS, SQL injections and script injections). The experiment shows that

Docker Swarm by means of Golang is capable of handling characters from multiple character

sets without problems. We can also gain confidence in the requirement listed in Section 1.3

about ”Access to a swarm is limited to an authorised node” as we test with many strings that

are known to cause problems for other implementations that takes input from an unauthen-

ticated party. As there are no errors in parsing the misformatted strings, we are confident

in stating that the manager node is immune to a DoS-attack by misformatted join-tokens.

The results of sending the false CSR to the manager node with a valid token, re-

sults in "CSR Decode failed" as is consistent with Table 5.7 for an unexpected er-

ror when processing the CSR. We note that in the method IssueNodeCertificate of

swarmkit/certificate/ca/server.go the token is verified before processing the CSR. In

Listing 5.17 we show a snippet for this. This prevents an unauthenticated user to sending

input to the manager node that will be processed. The method used for comparing the token

is in our view secure as well, as an insecure comparison can be used for a timing attack.

The method used is from the package "crypto/subtle" and uses a ConstantTimeCompare.

From the language documentation:

ConstantTimeCompare returns 1 if and only if the two slices, x and y, have

equal contents. The time taken is a function of the length of the slices and is

independent of the contents.

This is wrapped in a mutex lock that enforces limits on access to a resource (tokens) during

the comparison, and we see that if none of the cases match, we return an error message

about the need for a valid token to join the cluster.

70



Listing 5.17: Comparing the Join-tokens of the swarm with new nodes worker token
1 role := api.NodeRole (-1)
2 s.mu.Lock()
3 if subtle.ConstantTimeCompare ([] byte(s.joinTokens.Manager),

↪→ []byte(request.Token)) == 1 {
4 role = api.NodeRoleManager
5 } else if subtle.ConstantTimeCompare ([] byte(s.joinTokens.Worker),

↪→ []byte(request.Token)) == 1 {
6 role = api.NodeRoleWorker
7 }
8 s.mu.Unlock ()
9 if role < 0 {

10 return nil , status.Errorf(codes.InvalidArgument , "A valid join token
↪→ is necessary to join this cluster")

11 }

We generated a full CSR for trying to provoke alternative behaviour. As we can see

in Listing 5.18 Line 5 and 20 the Luguber-parameters have been applied to the ”Subject”,

and the Hostname has been set in the ”DNS”-field. Given that the join-token is valid (for

a worker node in our example) the resulting certificate is signed. The certificate for the

worker is shown in Listing 5.19. In Lines 12 and 36 we can see that the signed certificate has

altered the fields to reflect the worker nodes identity (Subject-fields), and the DNS is set to

be swarm-worker and the Node ID. We also see in Line 8 that the issuer of the certificate is

the Root CA.

Listing 5.18: Crafting a malicious CSR
1 $ openssl req -in MaliciousCSR.csr -text
2 Certificate Request:
3 Data:
4 Version: 0 (0x0)
5 Subject: L=LuguberLocality , O=LuguberOrganization ,

↪→ OU=LuguberOrganizationUnit , CN=LuguberCN
6 Subject Public Key Info:
7 Public Key Algorithm: id -ecPublicKey
8 Public -Key: (256 bit)
9 pub:

10 04:8e:ea:a2:a0:d9:1e:18:3f:d8:cf:28:da:df:0a:
11 73:d1:2c:10:49:91:8f:28:b0:b3:6f:92:38: fc:b6:
12 34:38:11:2b:e8:4a:03:e3:d8:5d:a6:8d:99:b2:7f:
13 7b:c5:8b:7f:05:66:0d:f7:eb:2a:02:bc:f8:5d:5e:
14 bd:ba:02:c8:fc
15 ASN1 OID: prime256v1
16 NIST CURVE: P-256
17 Attributes:
18 Requested Extensions:
19 X509v3 Subject Alternative Name:
20 DNS:luguber.no
21 Signature Algorithm: ecdsa -with -SHA256
22 30:45:02:20:46: ba:45:a8:8c:da:5b:13:ed :55:54:78:78: b9:
23 91:cf:8d:f7:d6:68:d2:5e:d5:4b:b0:be:b5 :35:56:51:11:1c:
24 02:21:00: c1:6b:83:de:e6:5d:03:14:41: d6:2e:96:16: fc:3c:
25 26:98: e2:e7:ba:9b:01:95:84:6c:42:2f:25:02:42:82: ca
26 -----BEGIN CERTIFICATE REQUEST -----
27 MIIBUTCB+AIBADBuMRgwFgYDVQQHEw9MdWd1YmVyTG9jYWxpdHkxHDAaBgNVBAoT
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28 ..
29 JQJCgso=
30 -----END CERTIFICATE REQUEST -----

Listing 5.19: Resulting certificate of a malicious CSR
1 $ openssl x509 -in CertFromMaliciousCSR.crt -noout -text
2 Certificate:
3 Data:
4 Version: 3 (0x2)
5 Serial Number:
6 7b:50:bc:8b:71:62:4a:83:29: ef:6e:fa:a4:f5:db:8f:1a:70:8f:5b
7 Signature Algorithm: ecdsa -with -SHA256
8 Issuer: CN=swarm -ca
9 Validity

10 Not Before: Jun 14 12:58:00 2018 GMT
11 Not After : Sep 12 13:58:00 2018 GMT
12 Subject: O=qug50tv9c3r5ivrg1e05p4t4m , OU=swarm -worker ,

↪→ CN=z532qsy9y6potlnuubvktexn3
13 Subject Public Key Info:
14 Public Key Algorithm: id -ecPublicKey
15 Public -Key: (256 bit)
16 pub:
17 04:8e:ea:a2:a0:d9:1e:18:3f:d8:cf:28:da:df:0a:
18 73:d1:2c:10:49:91:8f:28:b0:b3:6f:92:38: fc:b6:
19 34:38:11:2b:e8:4a:03:e3:d8:5d:a6:8d:99:b2:7f:
20 7b:c5:8b:7f:05:66:0d:f7:eb:2a:02:bc:f8:5d:5e:
21 bd:ba:02:c8:fc
22 ASN1 OID: prime256v1
23 NIST CURVE: P-256
24 X509v3 extensions:
25 X509v3 Key Usage: critical
26 Digital Signature , Key Encipherment
27 X509v3 Extended Key Usage:
28 TLS Web Server Authentication , TLS Web Client Authentication
29 X509v3 Basic Constraints: critical
30 CA:FALSE
31 X509v3 Subject Key Identifier:
32 83:FA:7F:36:DD :88:67: F0:5C:B4:2C:B7 :72:56:76:43:5C:E4:E8:DF
33 X509v3 Authority Key Identifier:
34 keyid :7B:E0:4C:3E:43:45:8E:1B:B5:E9:8D:6B:3E:9A:66:12:8D:15:58: A7
35 X509v3 Subject Alternative Name:
36 DNS:swarm -worker , DNS:z532qsy9y6potlnuubvktexn3
37 Signature Algorithm: ecdsa -with -SHA256
38 30:46:02:21:00: a1:e6:2d:0d:41:df:9a:ca:1e:46:15: d0:35:
39 ..
40 10:f4

As we can see in Listing 5.19, the CSR ignores the malicious parameters of our CSR and

signs a valid certificate for the worker-node, with the only authentication mechanism being

the join-token. This is interesting, as we expected the certificate to be rejected. It contains

unexpected input, and should in our opinion be be rejected. From a best security practice

perspective we suggest that any misformatted request should be rejected.
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Chapter 6

Discussion and conclusion

In this chapter we discuss the findings from Chapter 5, and give our opinion on the technology

used for creating Docker Swarm and the general security of an orchestration service. We

conclude by summarising how Docker Swarm preforms in regard to the research questions,

and requirements listed in Section 1.3. We then end by presenting a list of future work in

regard to security of orchestration services, Golang and Protocol buffers.

6.1 Discussion

The reason why the MITM attacks with mitmproxy, tcpdump and Wireshark where not

successful is that one of the threat models that Docker Swarm protects itself from is both

passive and active attacks, where an adversary has control of the underlying network, and

can capture network traffic. As long as the certificate is stored securely, it will not be able

to eavesdrop on the traffic on the control or management plane. We are happy with the

learning outcome from trying to write a proxy tool for gRPC/Protocol buffers, as it shows

that the security of Docker Swarm is well constructed, and the problems we encountered are

the parts of overlapping security well embedded in the design.

The idea of Protocol buffers and gRPC is not new. After maturing as internal Google

projects from the early 2000s, they were open sourced in 2015, and has been the building

blocks of highly successful companies like Square, Netflix, Cisco and Juniper networks.
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Bekk Consulting, a reputable technology consulting firm in Norway, publishes every

spring a ”technology radar” to assess how they see the current landscape in technology

by determining potential, maturity and available competence. In the published version from

the summer of 2018, Protocol buffers are rated as ”employ”, and is given high remarks for

being language and platform agnostic, fast, and light on the wire1. We agree with this and

would like to see Protocol buffers becoming the successor to JSON when developing web

services.

Many of the ideas and people behind Docker Swarm comes from Square, and Google as

they have been using Protocol buffers and gRPC (Stubby) extensively from the beginning

of the technology. Docker Swarm’s Security lead, Diogo Mónica has a history at Square, as

well as Dino Dai Zovi. John Hanke, the CEO of Niantic, Inc. and creator of Pokémon Go

has an extensive background at Google where we assume that he understood the potential of

gRPC and Protocol buffers, this might be one of the reasons why Pokémon Go is the most

popular game ever, with 750 million global downloads in the first year [37]. We believe that

the innovations done by the people at Square and Google will make the internet a better

place in the future.

Golang is from our point of view a robust and fast programming language with great

security features. Its immaturity has good and bad sides; As a positive, since it is fairly

new, it does not support older protocols. This makes Golang immune to downgrade attacks

previous to TLS version 1.2. A negative is that the community and adoption rate is currently

not big enough to provide us with good documentation and guides. Flaws or zero days

found in other implementations of security features can potentially stay undetected. We will

critique their own implementation of TLS, mentioned in Section 3.5.1, as there may exist

flaws or bugs that can potentially compromise infrastructures by not using well established

and rigorously tested frameworks for transport layer security.

On the subject of the disputed CVE (CVE-2016-6595) registered for Docker SwarmKit,

the developing community responded quickly to the incident, and we agree with Diogo

Mónica that this is not CVE worthy, as the DoS-attack cannot be performed by an adversary

without access to a valid join-token. In this thesis we showed that sending non-valid join-

tokens to a manager node, did not exhaust resources on the manager, and that input from

an unauthenticated user was handled in a way that satisfies the security requirement. Zovi

1https://radar.bekk.no/tech2018/sprak-og-rammeverk/protobuf
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et al. [45] discusses the fact that least privilege orchestration model minimises the attack

surface exposed to a compromised container. He describes the experiment with Shellshock

(CVE-2014-0160) as ”pretty uninteresting”, because the attacker would get a shell in the

container, and the attack surface is only a highly constrained container on a single system.

This results in few avenues for lateral movement, with remaining attacks possible being for

example traditional data plane attacks, container escapes and OS privilege escalation.

The big cloud providers, Amazon, Google and Microsoft, all heavily depend on containers.

Containers provide the infrastructure for creating the next generation of cloud services.

Server-less computing (also referred to as ”Backend as a service” or ”Function as a service”)

is on the rise as the next big thing. The developer writes the code, sets a few parameters

and uploads the code to e.g., AWS Lambda or Google Cloud Functions, and when the code

is called the code is deployed to a container. When the function is done executing, the

container disappears.

6.2 Conclusion

After working through all parts of this thesis we are able to answer the research questions

presented in Chapter 1:

• ”What security mechanisms are used in Docker Swarm?”

We uncover that Docker Swarm depends on a variety of existing frameworks for pro-

viding a secure orchestration service. The use of fairly new technology stack limits

the attack surface as we see with Golang not supporting older versions of TLS for

encrypting network traffic. The use of Protocol buffers and gRPC empowers Docker

Swarm to leave a small footprint on the network by using a binary protocol and few

TCP-connections. Ergo the security features pose a negligible loss in performance.

As nodes show to have strong identity with the use of X.509-certificates, the join-

token limits access to a swarm in an acceptable way, and the traffic for control and

management is encrypted where possible. Docker is not vulnerable to timing attacks

as it uses ConstantTimeCompares that in a mutex lock enforces limits on access to

a resource during the comparison. The use of good security practices such as secure

defaults, strong cryptographic identities and namespaces results in us having gained
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confidence in that Docker Swarm was developed with a secure and resilience mindset

from the very beginning. We are however concerned by the fact that Docker Content

Trust is not enabled by default, even though it is not a part of Docker Swarm. This is

in our view in direct contradiction with the principle of secure by default.

• ”Is Docker Swarm secure against high level attacks?”

Docker Swarm has also shown resilience towards high level attacks, and we found no

vulnerabilities for the cases we tested on the current version. The join-tokens length

provides enough entropy with 25 characters that we do not need to recommend adding

upper case and non-alphanumeric characters to increase the search space. No misfor-

matted requests were accepted by the manager, for the join-token or for tampering

with X.509-CSRs. We consider the security satisfactory.

• ”If the security is proven strong, what other applications can benefit from applying this

model?”

The architecture and ideas are better than many existing solutions and can be adopted

in other settings for distributed systems. For service-to-service communication the use

of Protocol buffers and gRPC provides a better infrastructure for service calls in micro

service architecture than REST does, as security and type safety has been incorporated

and enforced at compilation.

The experiments creating a GCD application and custom proxy server for that ap-

plication shows that the use of Protocol buffers and gRPC is a secure choice as it

reduces the attack surface of an application. Our implementations can be found at

github.com/Diddern/gRPC-simpleGCDService and github.com/Diddern/gIntercept. In

addition to the implementations, our contribution is a comprehensive investigation to the

security features of Docker Swarm. It provides documentation and insight to undisclosed

and dispersed information.

Apart from the security of Docker networking, and the underlying technology of Docker,

much of the security will rely on the trust we can have in the veracity of the container

images, as discussed in Section 4.4.3. The developers must be cautious when picking images

for hosting their applications.

Docker Swarm is built of existing language components and frameworks and does not

reinvent the wheel where it is not needed. It provides a simple to use, secure by default

set of best practices for managing a cluster of nodes. It has quickly become the de facto
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standard for orchestration services and provides a secure platform and API for developers to

manage their applications. With larger applications that cannot run as a one-time-function,

a scalable container cluster demands a secure and reliable orchestration service. We are

confident that Docker Swarm is currently a secure and good solution for administration of

such a cluster. Both in regard to flexibility, and functionality, but also in terms of creating

a secure tool for employing faster moving development in DevOps spirit. The splitting of

Dockers components into upstream projects, and downstream products is consistent with

the Unix philosophy of ”do one thing well”, and makes it easy to contribute to the open

source project as it will be less overwhelming.

6.3 Future work

The presented research in this thesis is a good starting point for further security analysis

and development of service orchestration solutions. The test cases we looked into point to

the fact that it is possible to create a proxy tool for inspecting swarm traffic and provide us

with a way to efficiently decode the gRPC traffic. When all gRPC calls for Docker Swarm

can be decrypted, a formal proof of security can be made to verify the security of the service.

In no particular order we suggest the following list as possible future work for strengthening

the trust in Docker Swarm:

• Implement gRPC proxy that will automatically parse provided protocol buffer descrip-

tion. Alternatively, create a Wireshark plugin for Protocol buffers version 3 (proto3)

type files. This will provide a good basis for a debugging tool for gRPC calls, as there

is no such tool equivalent to Postman or Curl for REST.

• Apply formal verification techniques to prove (or disprove) the correctness of the se-

curity protocols used in Docker Swarm. Since the protocol for a new node joining an

existing swarm was extensively examined in this thesis, this protocol is a good first

candidate.

• Compare other orchestration services (Apache Mesos and Kubernetes) to Docker

Swarm in a security perspective.

• Security analysis of Golang’s TLS libraries. We predict that investigation has been

done, but the results have not been disclosed to the public. Multiple studies are

needed to provide confidence in the security of a TLS library.
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• As we see in this thesis, trusting the publisher of images for the containers can be

difficult. An investigation of the difficulty of activating Docker Content Trust as the

default configuration and validating the security should be performed. The impact of

only being able to use signed images should also be measured.

• Inspect the use of ASLR (Address space layout randomisation) in Golang. Golang is

stated to be memory safe but does not use ASLR. If libraries written in C/C++ are

imported, the application can suffer from memory corruption vulnerabilities. Golang

binaries can be compiled with PIE (Position-independent code), why is not Docker

using it?

• Improvement of the verbose logging for Docker Swarm. This can be very useful in

debugging of Swarm problems.
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Glossary

AES Advanced Encryption Standard is a specification for the encryption of electronic data.

The algorithm described by AES is a symmetric-key algorithm, meaning the same key is

used for both encrypting and decrypting the data.

CVE Common Vulnerabilities and Exposures (CVE) system provides a reference-method for

publicly known information-security vulnerabilities and exposures. The maintainer of the

system is Mitre Corporation, with funding from the National Cyber Security Division of

the United States Department of Homeland Security.

DevOps Combination of ”Development” and ”operations”. Set of practices intended to reduce the

time from committing code to the code being live in production. Spawns from the Agile

software development methods, and has common goals as continues delivery practices.

GCM Galois/Counter Mode is a block cipher mode of operation for symmetric key cryptogra-

phy. It uses a universal hash function over a binary Galois field to provide authenticated

encryption.

struct Golang structs are typed collections of fields. Golang supports empty structs as well as

nested structs, and importantly structs are mutable.

Zero day A zero-day (or 0-day) vulnerability refers to a security flaw in software that is unknown

to the software maker or to antivirus vendors until they are disclosed.
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List of Acronyms and Abbreviations

API application programming interface.

ARP address resolution protocol.

CA certificate authority.

CE community edition.

CI continuous integration.

CLI command line interface.

CRL certificate revocation list.

CSR certificate signing request.

DoS denial-of-service.

ECC elliptic curve cryptography.

EE enterprise edition.

GCD greatest common divisor.

gRPC gRPC remote procedure calls.

IDL interface definition language.

JSON javascript object notation.

MITM man-in-the-middle.

MTLS mutual transport layer security.

NIC network interface card.

OCSP online certificate status protocol.

OS operating system.

PKI public key infrastructure.

SOA service oriented architecture.

SSD system sequence diagram.

TLS transport layer security.

TOFU trust on first use.

VCS version control system.

VM virtual machine.

WAL write-ahead log.
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Appendix A

Generated code from Protocol buffers

Listing A.1: Generated class in Golang for descriptor in Listing 3.1
1 /* Package pb is a generated protocol buffer package.
2
3 It is generated from these files:
4 gcd.proto
5
6 It has these top -level messages:
7 GCDRequest
8 GCDResponse
9 */

10 package pb
11
12 import proto "github.com/golang/protobuf/proto"
13 import fmt "fmt"
14 import math "math"
15
16 import (
17 context "golang.org/x/net/context"
18 grpc "google.golang.org/grpc"
19 )
20
21 // Reference imports to suppress errors if they are not otherwise used.
22 var _ = proto.Marshal
23 var _ = fmt.Errorf
24 var _ = math.Inf
25
26 //This is a compile -time assertion to ensure that this generated file is

↪→ compatible with the proto package it is being compiled against. A
↪→ compilation error at this line likely means your copy of the proto
↪→ package needs to be updated.

27 const _ = proto.ProtoPackageIsVersion2 // please upgrade the proto package
28
29 type GCDRequest struct {
30 A uint64 ‘protobuf :"varint ,1,opt ,name=a" json:"a,omitempty"‘
31 B uint64 ‘protobuf :"varint ,2,opt ,name=b" json:"b,omitempty"‘
32 }
33
34 func (m *GCDRequest) Reset() { *m = GCDRequest {} }
35 func (m *GCDRequest) String () string { return

↪→ proto.CompactTextString(m) }
36 func (* GCDRequest) ProtoMessage () {}
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37 func (* GCDRequest) Descriptor () ([]byte , []int) { return fileDescriptor0 ,
↪→ []int {0} }

38
39 func (m *GCDRequest) GetA() uint64 {
40 if m != nil {
41 return m.A
42 }
43 return 0
44 }
45
46 func (m *GCDRequest) GetB() uint64 {
47 if m != nil {
48 return m.B
49 }
50 return 0
51 }
52
53 type GCDResponse struct {
54 Result uint64 ‘protobuf :"varint ,1,opt ,name=result"

↪→ json:"result ,omitempty"‘
55 }
56
57 func (m *GCDResponse) Reset() { *m = GCDResponse {} }
58 func (m *GCDResponse) String () string { return

↪→ proto.CompactTextString(m) }
59 func (* GCDResponse) ProtoMessage () {}
60 func (* GCDResponse) Descriptor () ([]byte , []int) { return

↪→ fileDescriptor0 , []int{1} }
61
62 func (m *GCDResponse) GetResult () uint64 {
63 if m != nil {
64 return m.Result
65 }
66 return 0
67 }
68
69 func init() {
70 proto.RegisterType ((* GCDRequest)(nil), "pb.GCDRequest")
71 proto.RegisterType ((* GCDResponse)(nil), "pb.GCDResponse")
72 }
73
74 // Reference imports to suppress errors if they are not otherwise used.
75 var _ context.Context
76 var _ grpc.ClientConn
77
78 //This is a compile -time assertion to ensure that this generated file is

↪→ compatible with the grpc package it is being compiled against.
79 const _ = grpc.SupportPackageIsVersion4
80
81 // Client API for GCDService service
82
83 type GCDServiceClient interface {
84 Compute(ctx context.Context , in *GCDRequest , opts ... grpc.CallOption)

↪→ (* GCDResponse , error)
85 }
86
87 type gCDServiceClient struct {
88 cc *grpc.ClientConn
89 }
90
91 func NewGCDServiceClient(cc *grpc.ClientConn) GCDServiceClient {
92 return &gCDServiceClient{cc}
93 }
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94
95 func (c *gCDServiceClient) Compute(ctx context.Context , in *GCDRequest ,

↪→ opts ... grpc.CallOption) (* GCDResponse , error) {
96 out := new(GCDResponse)
97 err := grpc.Invoke(ctx , "/pb.GCDService/Compute", in , out , c.cc ,

↪→ opts ...)
98 if err != nil {
99 return nil , err

100 }
101 return out , nil
102 }
103
104 // Server API for GCDService service
105
106 type GCDServiceServer interface {
107 Compute(context.Context , *GCDRequest) (* GCDResponse , error)
108 }
109
110 func RegisterGCDServiceServer(s *grpc.Server , srv GCDServiceServer) {
111 s.RegisterService (& _GCDService_serviceDesc , srv)
112 }
113
114 func _GCDService_Compute_Handler(srv interface{}, ctx context.Context ,

↪→ dec func(interface {}) error , interceptor
↪→ grpc.UnaryServerInterceptor) (interface{}, error) {

115 in := new(GCDRequest)
116 if err := dec(in); err != nil {
117 return nil , err
118 }
119 if interceptor == nil {
120 return srv.( GCDServiceServer).Compute(ctx , in)
121 }
122 info := &grpc.UnaryServerInfo{
123 Server: srv ,
124 FullMethod: "/pb.GCDService/Compute",
125 }
126 handler := func(ctx context.Context , req interface {}) (interface{},

↪→ error) {
127 return srv.( GCDServiceServer).Compute(ctx , req .(* GCDRequest))
128 }
129 return interceptor(ctx , in , info , handler)
130 }
131
132 var _GCDService_serviceDesc = grpc.ServiceDesc{
133 ServiceName: "pb.GCDService",
134 HandlerType: (* GCDServiceServer)(nil),
135 Methods: []grpc.MethodDesc{
136 {
137 MethodName: "Compute",
138 Handler: _GCDService_Compute_Handler ,
139 },
140 },
141 Streams: []grpc.StreamDesc {},
142 Metadata: "gcd.proto",
143 }
144
145 func init() { proto.RegisterFile("gcd.proto", fileDescriptor0) }
146
147 var fileDescriptor0 = []byte{
148 //144 bytes of a gzipped FileDescriptorProto
149 0x1f , 0x8b , 0x08 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x02 , 0xff , 0xe2 ,

↪→ 0xe2 , 0x4c , 0x4f , 0x4e , 0xd1 ,
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150 0x2b , 0x28 , 0xca , 0x2f , 0xc9 , 0x17 , 0x62 , 0x2a , 0x48 , 0x52 , 0xd2 ,
↪→ 0xe0 , 0xe2 , 0x72 , 0x77 , 0x76 ,

151 0x09 , 0x4a , 0x2d , 0x2c , 0x4d , 0x2d , 0x2e , 0x11 , 0xe2 , 0xe1 , 0x62 ,
↪→ 0x4c , 0x94 , 0x60 , 0x54 , 0x60 ,

152 0xd4 , 0x60 , 0x09 , 0x62 , 0x4c , 0x04 , 0xf1 , 0x92 , 0x24 , 0x98 , 0x20 ,
↪→ 0xbc , 0x24 , 0x25 , 0x55 , 0x2e ,

153 0x6e , 0xb0 , 0xca , 0xe2 , 0x82 , 0xfc , 0xbc , 0xe2 , 0x54 , 0x21 , 0x31 ,
↪→ 0x2e , 0xb6 , 0xa2 , 0xd4 , 0xe2 ,

154 0xd2 , 0x9c , 0x12 , 0xa8 , 0x7a , 0x28 , 0xcf , 0xc8 , 0x0a , 0x6c , 0x60 ,
↪→ 0x70 , 0x6a , 0x51 , 0x59 , 0x66 ,

155 0x72 , 0xaa , 0x90 , 0x0e , 0x17 , 0xbb , 0x73 , 0x7e , 0x6e , 0x41 , 0x69 ,
↪→ 0x49 , 0xaa , 0x10 , 0x9f , 0x5e ,

156 0x41 , 0x92 , 0x1e , 0xc2 , 0x2e , 0x29 , 0x7e , 0x38 , 0x1f , 0x62 , 0xa2 ,
↪→ 0x12 , 0x43 , 0x12 , 0x1b , 0xd8 ,

157 0x5d , 0xc6 , 0x80 , 0x00 , 0x00 , 0x00 , 0xff , 0xff , 0x00 , 0x5f , 0x20 ,
↪→ 0xdc , 0xa4 , 0x00 , 0x00 , 0x00 ,

158 }
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Appendix B

Wireshark output

Wireshark has a feature to follow a TCP stream. In Figure B.1 we show a printscreen of the

join-sequence captured by Wireshark. Text in red is the joining worker-node, and the blue is

the manager. This ”conversation” is encrypted, as Wireshark does not support decryption

of this stream as we see in Section 5.4.1.

The text with red background is sent from the worker node (192.168.245.1) and the

text with the blue background is sent from the manager node (192.168.245.133).
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Figure B.1: Following the encrypted TCP Stream with Wireshark of a join-sequence



Appendix C

Snippets of code from Docker Swarm source code

Listing C.1: GetRemoteSignedCertificate from swarmkit/ca/certificates.go

1 func GetRemoteSignedCertificate(ctx context.Context , csr []byte ,
↪→ rootCAPool *x509.CertPool , config CertificateRequestConfig)
↪→ ([]byte , error) {

2 if rootCAPool == nil {
3 return nil , errors.New("valid root CA pool required")
4 }
5 creds := config.Credentials
6
7 if creds == nil {
8 //This is our only non -MTLS request , and it happens when we are

↪→ boostraping our TLS certs We’re using CARole as server
↪→ name , so an external CA doesn’t also have to have
↪→ ManagerRole in the cert SANs

9 creds = credentials.NewTLS (&tls.Config{ServerName: CARole ,
↪→ RootCAs: rootCAPool })

10 }
11
12 conn , err := getGRPCConnection(creds , config.ConnBroker ,

↪→ config.ForceRemote)
13 if err != nil {
14 return nil , err
15 }
16
17 // Create a CAClient to retrieve a new Certificate
18 caClient := api.NewNodeCAClient(conn.ClientConn)
19
20 issueCtx , issueCancel := context.WithTimeout(ctx , 5*time.Second)
21 defer issueCancel ()
22
23 //Send the Request and retrieve the request token
24 issueRequest := &api.IssueNodeCertificateRequest{CSR: csr , Token:

↪→ config.Token , Availability: config.Availability}
25 issueResponse , err := caClient.IssueNodeCertificate(issueCtx ,

↪→ issueRequest)
26
27 if err != nil {
28 conn.Close(false)
29 return nil , err
30 }
31
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32 statusRequest := &api.NodeCertificateStatusRequest{NodeID:
↪→ issueResponse.NodeID}

33 expBackoff :=
↪→ events.NewExponentialBackoff(events.ExponentialBackoffConfig{

34 Base: time.Second ,
35 Factor: time.Second ,
36 Max: 30 * time.Second ,
37 })
38
39 // Exponential backoff with Max of 30 seconds to wait for a new retry
40 for {
41 timeout := 5 * time.Second
42 if config.NodeCertificateStatusRequestTimeout > 0 {
43 timeout = config.NodeCertificateStatusRequestTimeout
44 }
45 //Send the Request and retrieve the certificate
46 stateCtx , cancel := context.WithTimeout(ctx , timeout)
47 defer cancel ()
48 statusResponse , err := caClient.NodeCertificateStatus(stateCtx ,

↪→ statusRequest)
49 switch {
50 case err != nil && grpc.Code(err) != codes.DeadlineExceeded:
51 conn.Close(false)
52 // Because IssueNodeCertificate succeeded , if this call failed

↪→ likely it is due to an issue with this particular
↪→ connection , so we need to get another. We should try a
↪→ remote connection - the local node may be a manager
↪→ that was demoted , so the local connection (which is
↪→ preferred) may not work.

53 config.ForceRemote = true
54 conn , err = getGRPCConnection(creds , config.ConnBroker ,

↪→ config.ForceRemote)
55 if err != nil {
56 return nil , err
57 }
58 caClient = api.NewNodeCAClient(conn.ClientConn)
59
60 //If there was no deadline exceeded error , and the certificate

↪→ was issued , return
61 case err == nil && (statusResponse.Status.State ==

↪→ api.IssuanceStateIssued statusResponse.Status.State ==
↪→ api.IssuanceStateRotate):

62 if statusResponse.Certificate == nil {
63 conn.Close(false)
64 return nil , errors.New("no certificate in

↪→ CertificateStatus response")
65 }
66
67 //The certificate in the response must match the CSR we

↪→ submitted. If we are getting a response for a
↪→ certificate that was previously issued , we need to
↪→ retry until the certificate gets updated per our
↪→ current request.

68 if bytes.Equal(statusResponse.Certificate.CSR , csr) {
69 conn.Close(true)
70 return statusResponse.Certificate.Certificate , nil
71 }
72 }
73
74 //If NodeCertificateStatus timed out , we’re still pending , the

↪→ issuance failed , or the state is unknown let’s continue
↪→ trying after an exponential backoff

75 expBackoff.Failure(nil , nil)
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76 select {
77 case <-ctx.Done():
78 conn.Close(true)
79 return nil , err
80 case <-time.After(expBackoff.Proceed(nil)):
81 }
82 }
83 }

Note: In Line 30 of Listing C.2 we have translated a comment in Cyrillic script to english

using Google Translate. The reason for this is that LaTeX does not treat unicode characters

in listings well.

Listing C.2: RequestAndSaveNewCertificates from swarmkit/ca/certificates.go

1 func (rca *RootCA) RequestAndSaveNewCertificates(ctx context.Context , kw
↪→ KeyWriter , config CertificateRequestConfig) (*tls.Certificate ,
↪→ *IssuerInfo , error) {

2 // Create a new key/pair and CSR
3 csr , key , err := GenerateNewCSR ()
4 if err != nil {
5 return nil , nil , errors.Wrap(err , "error when generating new node

↪→ certs")
6 }
7
8 //Get the remote manager to issue a CA signed certificate for this

↪→ node. Retry up to 5 times in case the manager we first try to
↪→ contact isn’t responding properly (for example , it may have
↪→ just been demoted).

9 var signedCert []byte
10 for i := 0; i != 5; i++ {
11 signedCert , err = GetRemoteSignedCertificate(ctx , csr , rca.Pool ,

↪→ config)
12 if err == nil {
13 break
14 }
15
16 //If the first attempt fails , we should try a remote connection.

↪→ The local node may be a manager that was demoted , so the
↪→ local connection (which is preferred) may not work. If we
↪→ are successful in renewing the certificate , the local
↪→ connection will not be returned by the connection broker
↪→ anymore.

17 config.ForceRemote = true
18
19 //Wait a moment , in case a leader election was taking place.
20 select {
21 case <-time.After(config.RetryInterval):
22 case <-ctx.Done():
23 return nil , nil , ctx.Err()
24 }
25 }
26 if err != nil {
27 return nil , nil , err
28 }
29
30 //Trust , but verify.
31 // Before we overwrite our local key + certificate , let’s make sure

↪→ the server gave us one that is valid. Create an X509Cert so we
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↪→ can .Verify (). Check to see if this certificate was signed by
↪→ our CA , and isn’t expired

32
33 parsedCerts , chains , err := ValidateCertChain(rca.Pool , signedCert ,

↪→ false).
34 //TODO(cyli): - right now we need the invalid certificate in order to

↪→ determine whether or not we should download a new root , because
↪→ we only want to do that in the case of workers. When we have a
↪→ single codepath for updating the root CAs for both managers and
↪→ workers , this snippet can go.

35 if _, ok := err.(x509.UnknownAuthorityError); ok {
36 if parsedCerts , parseErr :=

↪→ helpers.ParseCertificatesPEM(signedCert); parseErr == nil
↪→ && len(parsedCerts) > 0 {

37 return nil , nil , x509UnknownAuthError{
38 error: err ,
39 failedLeafCert: parsedCerts [0],
40 }
41 }
42 }
43 if err != nil {
44 return nil , nil , err
45 }
46
47 // ValidateChain , if successful , will always return at least 1 parsed

↪→ cert and at least 1 chain containing at least 2 certificates:
↪→ the leaf and the root.

48 leafCert := parsedCerts [0]
49 issuer := chains [0][1]
50
51 // Create a valid TLSKeyPair out of the PEM encoded private key and

↪→ certificate
52 tlsKeyPair , err := tls.X509KeyPair(signedCert , key)
53 if err != nil {
54 return nil , nil , err
55 }
56
57 var kekUpdate *KEKData
58 for i := 0; i < 5; i++ {
59 // ValidateCertChain will always return at least 1 cert , so

↪→ indexing at 0 is safe
60 kekUpdate , err = rca.getKEKUpdate(ctx , leafCert , tlsKeyPair ,

↪→ config)
61 if err == nil {
62 break
63 }
64
65 config.ForceRemote = true
66
67 //Wait a moment , in case a leader election was taking place.
68 select {
69 case <-time.After(config.RetryInterval):
70 case <-ctx.Done():
71 return nil , nil , ctx.Err()
72 }
73 }
74 if err != nil {
75 return nil , nil , err
76 }
77
78 if err := kw.Write(NormalizePEMs(signedCert), key , kekUpdate); err !=

↪→ nil {
79 return nil , nil , err
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80 }
81
82 return &tlsKeyPair , &IssuerInfo{
83 PublicKey: issuer.RawSubjectPublicKeyInfo ,
84 Subject: issuer.RawSubject ,
85 }, nil
86 }

Listing C.3: Generating the join-token for a swarm from swarmkit/ca/config.go

1 func GenerateJoinToken(rootCA *RootCA) string {
2 var secretBytes [generatedSecretEntropyBytes]byte
3
4 if _, err := cryptorand.Read(secretBytes [:]); err != nil {
5 panic(fmt.Errorf("failed to read random bytes: %v", err))
6 }
7
8 var nn , digest big.Int
9 nn.SetBytes(secretBytes [:])

10 digest.SetString(rootCA.Digest.Hex(), 16)
11 return fmt.Sprintf("SWMTKN -1 -%0[1]*s -%0[3]*s", base36DigestLen ,

↪→ digest.Text(joinTokenBase), maxGeneratedSecretLength ,
↪→ nn.Text(joinTokenBase))

12 }
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Appendix D

Certificate for a manager node

Disclaimer: We have put full certificates in this appendix, but they have all been revoked,

and are not valid anymore, as they would pose a security risk to the writer of this thesis if

they where.

Listing D.1: Full certificate of a manager node
1 $ openssl x509 -in swarm -node.crt -text
2 Certificate:
3 Data:
4 Version: 3 (0x2)
5 Serial Number:
6 5e:7c:74:bb:3c:30:dc:1e:73:6d:b0:fa:8e:66:f7 :94:80: cd:c5:54
7 Signature Algorithm: ecdsa -with -SHA256
8 Issuer: CN=swarm -ca
9 Validity

10 Not Before: Jun 4 14:14:00 2018 GMT
11 Not After : Sep 2 15:14:00 2018 GMT
12 Subject: O=j8e2jv0smsnmuiha3yjysm2sa , OU=swarm -manager ,

↪→ CN=c52rwgu9uy7mxdvvn98jzhiqf
13 Subject Public Key Info:
14 Public Key Algorithm: id -ecPublicKey
15 Public -Key: (256 bit)
16 pub:
17 04:1b:80:56:92: d0:64:df:c1 :59:34:22:98:03: dc:
18 d6:ad:94:ae:4a:45:cd:38:f7 :61:4f:fb:eb:9b:f5:
19 ef:1a:57:8d:c4:e3:59:e5:5d:1b:6a:6d:7d:d6:b9:
20 60:4a:e5:9f:68:29: cb:6f:3d:c0 :79:2f:f7:af:ba:
21 52:68: f2:75:c8
22 ASN1 OID: prime256v1
23 NIST CURVE: P-256
24 X509v3 extensions:
25 X509v3 Key Usage: critical
26 Digital Signature , Key Encipherment
27 X509v3 Extended Key Usage:
28 TLS Web Server Authentication , TLS Web Client

↪→ Authentication
29 X509v3 Basic Constraints: critical
30 CA:FALSE
31 X509v3 Subject Key Identifier:
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32 07:E4:2F:A6:3D:A9 :08:37:72: DC:43:D5:6B
↪→ :95:D2 :98:21:06:91:88

33 X509v3 Authority Key Identifier:
34 keyid :0A:9F:F5 :72:54: A2:26:E7:E1:08:BB

↪→ :59:74:10: C8:E2:27:DE:6D:83
35
36 X509v3 Subject Alternative Name:
37 DNS:swarm -manager , DNS:c52rwgu9uy7mxdvvn98jzhiqf ,

↪→ DNS:swarm -ca
38 Signature Algorithm: ecdsa -with -SHA256
39 30:46:02:21:00: d3 :10:84:90:14:46: c7:e0:39:ac :98:21:81:
40 6e:82:b6:5c:68:96: bf:4f:5c:b0:e9:0c:1c:f9:02:f5:b0:f6:
41 bb :02:21:00:83:6b:96:b9:fc:8a:ee :40:76: b3:5f:4a:f8:e2:
42 73:53:2a:ca:f6 :82:14: f8:98:f7:c7:50:fe :83:22:26: c9:58
43 -----BEGIN CERTIFICATE -----
44 MIICNjCCAdugAwIBAgIUXnx0uzww3B5zbbD6jmb3lIDNxVQwCgYIKoZIzj0EAwIw
45 EzERMA8GA1UEAxMIc3dhcm0tY2EwHhcNMTgwNjA0MTQxNDAwWhcNMTgwOTAyMTUx
46 NDAwWjBgMSIwIAYDVQQKExlqOGUyanYwc21zbm11aWhhM3lqeXNtMnNhMRYwFAYD
47 VQQLEw1zd2FybS1tYW5hZ2VyMSIwIAYDVQQDExljNTJyd2d1OXV5N214ZHZ2bjk4
48 anpoaXFmMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEG4BWktBk38FZNCKYA9zW
49 rZSuSkXNOPdhT/vrm/XvGleNxONZ5V0bam191rlgSuWfaCnLbz3AeS /3 r7pSaPJ1
50 yKOBvzCBvDAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
51 AQUFBwMCMAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFAfkL6Y9qQg3ctxD1WuV0pgh
52 BpGIMB8GA1UdIwQYMBaAFAqf9XJUoibn4Qi7WXQQyOIn3m2DMD0GA1UdEQQ2MDSC
53 DXN3YXJtLW1hbmFnZXKCGWM1MnJ3Z3U5dXk3bXhkdnZuOThqemhpcWaCCHN3YXJt
54 LWNhMAoGCCqGSM49BAMCA0kAMEYCIQDTEISQFEbH4DmsmCGBboK2XGiWv09csOkM
55 HPkC9bD2uwIhAINrlrn8iu5AdrNfSvjic1MqyvaCFPiY98dQ/oMiJslY
56 -----END CERTIFICATE -----
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