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A CONTINUOUS DEPENDENCE RESULT FOR
NONLINEAR DEGENERATE PARABOLIC EQUATIONS

WITH SPATIALLY DEPENDENT FLUX FUNCTION

STEINAR EVJE, KENNETH HVISTENDAHL KARLSEN, AND NILS HENRIK RISEBRO

Abstract. We study entropy Solutions of nonlinear degenerate parabolic equations of
form ut + åiv[k{x]f (u)) AA{u), where k{x) is a vector-valued function and f{u),A{u)
are scalar functions. We prove a result concerning the continuous dependence on the initial
data, the flux function k{x)f{u), and the diffusion function A{u). This paper complements
previous work [7] by two of the authors, which contained a continuous dependence result
concerning the initial data and the flux function k{x)f{u).

1. Introduction

In this paper we are concerned with entropy Solutions of the initial valne problem

(i.i)

for [x,t) E llt = x (O,T) with T> 0 fixed. In (1.1), u{x,t) is the scalar unknown
function that is sought, k{x)f{u) is the flux function, and A = A{u) is the diffusion
function. We always assume that k : Rd —> M, f ; R—> E, and A : M -A R satisfy

(1.2)

Since A'{-) is allowed to be zero on an interval [a, (3] (the scalar conservation law is a
special case of (1.1)), Solutions may become discontinuous in hnite time even with a smooth
initial function. Consequently, one needs to interpret (1.1) in the weak sense. However,
weak Solutions are in general not uniquely determined by their initial data and an entropy
condition must be imposed to single out the physically correct solution.

Definition 1.1. A measurable function u = u{x,t) is an entropy solution of (1.1) if

D.l U G nL°°(nT ) n C(0, T; Lx (Md )) and A{u) G L2 (O, T ; H 1(Rd )).
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ut -f div[k{x)f{u)) = AA{u), u{x, 0) = uq{x)

{k € VV1*’cI (R'i ); k.div/c € L“(Rrf ); / € Lip loc (R); /(O) = 0
1 A G Lipi0C (E) and is nondecreasing with = 0.
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D.2 For all c G R and all non-negative test functions in (ILr),

Jj (ju- c\(f) t + sign (u -c) k{x) (/(w) - /(c)) •Vø + \A{u) - A(c)|Aø
(1.3) nt

- sign {u c) dt dx > 0.

D.3 Essentially as 1f 0, ||n(-,t) iio(^)||L l (Rd ) 0.
Following Kruzkov [9] and the recent work of Carrillo [3], two of the authors proved in

7] a uniqueness result for entropy Solutions of the more general equation

where the flux function f = f{x,t,u) may have a non-smooth spatial dependence, see [7]
for the precise assumptions on / and qin (1.4). Moreover, in the L°°(o, T; BV{Rd )) class of
entropy Solutions, the authors of [7] proved continuous dependence on the initial function
u 0 and flux function in the case f{x,t,u) = k(x)f{u). However, in [7] the question of
continuous dependence with respect to the diffusion function A was left open. Recently,
Cockburn and Gripenberg [4] have obtained such a result when k{x) = 1. Their result
does not, however, imply uniqueness of the entropy solution (from reasons that will become
apparent later). Let us also mention that results regarding continuous dependence on the
flux function in scalar conservation laws (A' =0) have been obtained in [ll, 1, B].

The purpose of the present paper is to combine the ideas in [7] with those in [4] and
prove a version of Theorem 1.3 in [7] which also includes continuous dependence on the
diffusion function A. To state our continuous dependence result, let us introduce

We assume that l : Rd R, g : E -> M, and B : R -) R satisfy the same conditions as
k, f, A, see (1.2). We now State our main result:
Theorem 1.1. Let v,u E L°°(o,T; BV(Rd )) be the unique entropy Solutions of (1.5), (1.1)
with initial data vO , u 0 G Ll {Rd ) fl L°°{Rd ) fl BV(Rd ), respectively. Suppose that v,u take
values in in the closed interval I C M and define Vv = supte (0T ) |u(-,t)|w(R<q- Suppose
k G Lip(Md ) and div/c G BV{Rd ). Then for almost all t G (O,T),

(1.6)

for some constants CLonv, Cbiff • Here CConv depends on Vvi ||fc|| Loo(Rd), \k\ BV^R ||<?||l°°(7))
lbllLip(/) and GoifF depends on K? ||^||LiP (R<i )j |div/c| By(Kd), ||p|| Lip(/)- The explicit
form of the constants Cconv, Ckiff can be traced from the proof of Theorem 1.1.

We remark that existence of BV{Ut) entropy Solutions of (1.1) (or (1.4)) can be proved
by the vanishing viscosity method provided /, A, q, u 0 are sufficiently smooth, see Vodpert

(1.4) u t + div/(:r, t, u) = AA{u) + q(x, t, u),

(1.5) vt + åiv{l{x)g{v)) = AB{v), v{x,o) vo {x).

\\v{ •, t) t) ||z,i(Rd) < ||wo ~ 1^)

+ Ccon\t{\\l d ) + ~ k\]3V{Rd ) + \\d ~ /||l°°(/) + ||<7 /||Lip(/))

+ Cdifr \/t \TB' \/~A!
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and Hudjaev [l3]. Existence of L°°(o, T; BV{Rd )) entropy Solutions of (1.1) is guaranteed
if divk G BV(Rd ). This follows from the results obtained by Karlsen and Risebro [6], who
proved convergence of finite difference schemes for degenerate parabolic equations with
rough coefficients. For an overview of the literature dealing with numerical methods for
approximating entropy Solutions of degenerate parabolic equations, we refer to [s]. In this
connection, we should mention that the arguments used to prove Theorem 1.1 can be used
to prove error estimates for numerical methods. This will be discussed elsewhere.

For later use, we mention that the results in [6] can be used to prove the existence of
L°°(o, T; BV{Rd )) entropy Solutions of (1.1) by the vanishing viscosity method. To this
end, consider the uniformly parabolic problem

for /i > 0. Provided k, /, A , u 0 are sufficiently smooth, it is well known that there exists
a unique classical (and hence entropy) solution of (1.7) which possesses all the continuous
derivatives occurring in the partial differential equation in (1.7). Using the space and
time translation estimates derived in [6], it is not difficult to show that u M converges in
Roc(nr) as \i | 0 to an entropy solution u of (1.1) (see also Vodpert and Hudjaev [l3]).
Convergence of the viscosity method and smoothness of the solution iC of (1.7) will be used
in the proof of Theorem 1.1. Finally, to relax the smoothness assumptions on k,f,A,uo
needed by the vanishing viscosity method to those actually required by Theorem 1.1, one
can approximate k,f,A,uo by smoother functions and then use Theorem 1.1 to pass to
the limit as the smoothing parameter tends to zero. We will not go into further details
about this limiting operation but instead leave this as an exercise for the interested reader.
Also, in this paper we have exclusively treated the initial value problem but it is possible
to treat various initial-boundary value problems. For some work in this direction, we refer
to Biirger, Evje, and Karlsen [2] and Rouvre and Gagneux [l2].

Before ending this section, we present an immediate corollary of Theorem 1.1 concerning
the convergence rate of the viscosity method.
Corollary 1.1. Let u G L°°(o, T; BV{Rd )) be the unique entropy solution of (1.1) with
initial data u 0 G L l {Rd ) fl L°°(Rd ) n BV{Rd ) and let be the corresponding viscous
approximation of u, i.e., iC is the unique classical solution of (1.7). Suppose k G Lip(Rd )
and divk G BV (Rd ). Then for almost all t G (0, T),

(1.8) IK-A) - Cvfø

for some non-negative constant C.
The remaining part of this paper is devoted to proving Theorem 1.1

2. Some preliminaries

Let u be an entropy solution of (1.1). It easy to see from Definition 1.1 that the equality

(2.1)

(1.7) u1? + = + 0) = uo {x),

JJ (u(f) t + [k{x)f{u) VA(u)] • dtdx = 0
riT1
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holds for all <f) G I/ 2 (0, T; Hq (Ed )) Cl Vfrl,1 (0, T ; L°°(Ed )). Let (•, •) denote the usual pairing
between H~ 1 {Md ) and Hq (W1 ). From (2.1), we conclude that dt u G L2 (O, T; so
that the equality (2.1) can restated as

for all (f) G L2 (O, T; i7o(Ed )) D W 1,:L (0, T; L°°(Ed )). The fact that an entropy solution u sat
isfies (2.2) is important for the uniqueness proof [3, 7]. We recall that after the recent work
of Carrillo [3], the uniquness proof for entropy Solutions of degenerate parabolic equations
has become very similar to the “doubling of variables” proof introduced by Kruzkov [9]
many years ago for hrst order hyperbolic equations. However, to apply the “doubling of
variables” device to second order equations, one needs a version of an important lemma
stated and proved hrst in [3j. This lemma indentihes a certain entropy dissipation term
that must be taken into account if the “doubling device” is going to work.

Before stating this lemma, we need to introduce some notation. For e > 0, set

Moreover, we let A 1 : E -A E denote the unique left-continuous function satisfying
A~ l {A{u)) = u for all mGR. By Ewe denote the set E={r : -1 (-) discontinuous at r}.
Note that E is associated with the set of points {u : A'{u) = 0} at which the operator
u ha AA{u) is degenerate elliptic. We can now State following lemma:
Lemma 2.1 ([7]). Let u be an entropy solution of (1.1), Then, for any non-negative
(f) G CJ°(FIt) and any c'G E such that A{c) £ E, we have

(2.3)

Note that if (1.1) is uniformly parabolic (A' > 0), then the set Eis empty and a weak
solution is automatically an entropy solution. The idea of the proof of Lemma 2.1 is to use
[signe (A(u) - A{c)) f] G L2 (O,T; Hq(R)) as a test function in (2.2) together with a “weak
chain rule” to deal with the time derivative and subsequently sending e | 0. We refer to
[7] for details on the proof of Lemma 2.1 (see Carrillo [3] when k(x) 1).

Although the Identification of the entropy dissipation term (i.e., the right-hand side of
(2.3)) is the cornerstone of the uniqueness proof as well as the proof of continuous depen
dence on the flux function k{x)f{u), it seems difficult to obtain continuous dependence on
the diffusion function A{u) with this form of the dissipation term. However, it is possible

(2.2) J ø) dt 4- jf (^[k{x)f{u)-'VA{u)]-\/(j)Sjdtdx = 0
n^1

r— i, r<e,

sign, (t) = < t/e , e<T< E,

[ 1 r >

jj {\ u ~ c \ fa + siSn iu -c) [Hx) (fiu) - /( c)) - Vi4(u)] • V(f)Ut

- sign {u —c) divk{x)f{c)(/)Sj dtdx = lim Jj | Vd(u) | 2 sign' (A{u) A{c)) (f)dtdx.
T\x
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to derive a version of (2.3) in which a different (form of the) entropy dissipation term ap
pears. But this seems possible only if uis smooth or at least belongs to L2 (O, T; H l {Md )).
Consequently, Theorem 1.1 does not yield uniqueness of the entropy solution.

Provided (1.1) is unformly parabolic and hence admits a unique classical solution, the
following version of Lemma 2.1 holds:

Lemma 2.2. Suppose (1.1) is uniformly parabolic (i.eA' > 0/ Let u be a classical
solution of (1-1). Then, for any non-negative f G and any cGR, we have

(2 ' 4) \ , |2 . ,
sign (u c) divk{x)f{c)(f)j dtdx lim // A!(u) |Vn| sign'£ {u c) fdt dx.

nx

This lemma can proved by using [signe (u —c) f] as a test function (this is indeed a test
function since u is smooth!) in (2.2) and then sending e | 0. The proof of Lemma 2.2
is similar to the proof of Lemma 2.1 and it is therefore omitted. Notice the difference
between the entropy dissipation terms in (2.3) and (2.4).

3. Proof of Theorem 1.1

We are now interested in estimating the L l difference between the entropy solution v of
(1.5) and the entropy solution u of (1.1). In view of the discussion in Section 1, we will
prove Theorem 1.1 under the assumption that B\A' > 0 so that (1.5) and (1.1) become
uniformly parabolic problems and therefore admit unique classical Solutions. To treat the
degenerate parabolic case {B',A' > 0), we proceed via the vanishing viscosity method,
i.e., we replace AA[u) and AB[v) in (1.1) and (1.5) by AA{u) A pAu and AB[v) + pAv,
respectively, and then send p f 0.

The argument given below is based on Lemma 2.2 and Kruzkov’s idea of doubling the
number of dependent variables together with a penalization procedure. Moreover, it is
inspired by Carrillo [3] and Cockburn and Gripenberg [4]. Strictly speaking, we could have
carried out the argument below under the assumptions that the (entropy) Solutions v,u
belong to L2 (O, T; H l {Md )), i.e., v,u need not be (entirely!) classical Solutions.

Following [9, 10], we now specify a non-negative test function f G x LIt ). To this
end, introduce a nonnegative function 6 € which satisfies <s(cr) = s(—cr), s(cr) = 0
for \a\ > 1, and fß d(a) der = 1. For p 0 > 0, let åpo (a ) = Pick two (arbitrary but
hxed) Lebesgue points n,r G (0, T) of ||n(-, t) - u{- A)Hli(r<T

For any a 0 G (o,min - r)), let Wao {t) = Hao {t -v) - Hao {t - r), where Hao {t) =
floo åao ( s) ds. We then define <j> (j>{x, t, y, s) by

jj (V - c\(pt + sign (u -c) [k{x) ( f{u) - f{c)) - VA(u)] •Vø

(3.1) (j>(x,t,y,s) = Wao {t)6p (x - y)5Po (t - s), p, Po >O.

Observe that + (f)s = [åao {t -v) - Sao {t - t)]Sp {x - y)SPo {t -s) and Vx <£ + =O.
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Applying Lemma 2.2 with v = v{x,t) and c = u{y, s) and then integrating the resulting
equation with respect to (y, s) G Ut, we get

- JJJJ (l w “ u \& + si§n iv ~u) [l ix ) (ø W ~ 9{u)) - Vxß{v)] • V.,
Ylt x II71

sign (v u) diw x l(x)g(u)(f) Sj dt dx ds dy(3.2)

Similarly, applying Lemma 2.2 with u = u(y , s) and c = v{x, t) and then integrating the
resulting equation with respect to (x, t) G ILr, we get

(3.3)

Following [7] when adding (3.2) and (3.3), we get

(3.4)

where

= lim JJjJ B'[v) [ Vx t> | 2 [v -u)ødt dx ds dy.
Ht1 x nx

fjjj (V - v \(f>t + sign (u -v) [k(y){f{u) - f {v)) - Vy A(u)]  Vy <f)
ll7’ Xlljl

sign (u —v) diYyk{y)f{v)(f) >j dt dx ds dy

= lim JJJJ A'(u)\Vyu\ 2siga'E {u —v) <f> dt dx ds dy.
n T xnT

1111 O u ~ u^l+^+/c°nv ~ iff ) dtdxdsdy
nT x Ht1

= lim JJJJ (s'(^)|V^| 2 + A'(?/)|Vy w| 2 )sign; {v —u) cf) dt dx ds dy ,
nT xnT

= - lim jjjj {{VW)Vxv-/4WVs«) !x nT
+ 2\ZB'{v)\/A'{u)Wx v  Vyuj (v —u) <j> dt dx ds dy ,

< lim jjjj dtdxdsdy,
u T xnr

= sign (v -u) (divx [{k{y)f{u) - l{x)g(u))4>\ -divy [{l{x)g{v) - k(y)f{v))(f>\ ) ,

= sign iv ~u) Vxß{v) • Vxø + sign {u -v) Vy A{u)  Vy ø,

Iliff = (2y/B'{v)y/A'{u)Vx v • {v -u) <f>.
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By the triangle inequality, we get

where

Rx = - jjjf \v(x,t) - v{y,t)\[5Qo (t -v)- sao{t5ao {t - t)\Sp (x - y)SPo {t -s) dtdxdsdy
nT1 X W.T

We therefore get the following approximation inequality

(3.5)

where

JJJJ \ v ix i t) ~ u {y-> s )l {(l>t + øs) dt dx ds dy <l+ Rf + Rx ,
njl x n T

I= - JjjJ I v - u {y>t)\[5ao {t -v) - åao {t - r)]Sp {x - y)SPo {t -s) dtdxdsdy
nT xnr

Rt = ~ 1111 l|A»o(*- v ) - sa o{t0 {t - r)\Sp {x - y)SPo {t -s) dtdxdsdy
Ht1 x

It is fairly easy to see that limPo|0 Rf 0 and

lim Rx = / (\v{x,t) - v{y,r)\ - \v[x,v) - v{y,v)\]6p (x - y)dxao|o V /

<2p sup \v(‘,t)\ BV^d)
te{v,T)

lim/ = \\v{ -,r) - w(-,r)|| L i (Rd) - ||v(-,i/) - w(-, i/)|| Ll(Rd).QO4-O

\\ v {'i r ) - u(-,T)|| L i (Rd)

< \\ v {'i U) ~ U i'i iy )llL 1 (E<J ) + 2/) sup |u(-, £)|w(Md ) + ( + ) 5
te{i/,r) «o,Po|o \ /

—ffff dt dx ds dy ,
Hx x nT

= “ //// dt dx ds dy ~ el? //// dt dx dsdy= : -
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Observe that

(3.6)

Writing sign [u v) Wy A{u) = Vy \A{u) - A{v) | and using integration parts twice as well
as the relation Ax (f> = Ay (j>, one can easily show that

jjjJ s^Sn iu ~v) A iu ) • dt dx ds dy
Ut x Ut

(3.7)

(3.8)

qo4-0

2 d 2
<[r-v) sup |n(-A)| w(Rd) — y/B'{v) - y/A'{v)

te{u,T ) P L°°(Kd )

- _ li™ fJfj 2 (/" (v ~ ) VB'{v)\/xv4> dt dx ds dy
ll7’ x nr

= Urn jff j2( jsig< {v - 0 dx ds dy
Ut x Ht

=~ e™ JJjff 2{f “ 0 \/B' {v)Vxv\/x (f) dt dx ds dy
Ht1 x nT

= JJJJ 2sign {v —u) \JB'{v) \JA'[v)'SJxvVx (f) dt dx ds dy.
Yix x nr

JJJj §iSn iv ~u) Va;i4(u) • Vx ø dt dx ds dy.
x II71

From (3.6), (3.7), and - ?/)|| Ll(Rd) = we get

< - lim JJjj sign ( v ~u) + A'{v) - 2 y/B'{y) A' VxvVx(f) dt dx ds dy
n T xnT

< lim JIJI [VB'iv ) ~ VA> iv )) |Vx w| | VJp {x - y)\Wao {t)åpo {t - s)dtdxdsdy
Tlf xU T
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Arguing exactly as in [7], one can prove that

Econv = fJJJ (sign {v-u) [divyk{y){f{v) - g{v)) - (divy k{y) - divx /(:r))p(p)]
nT xnT

+ [k{y) • Vx G{v : u) + k{y)  Vx (F{v,u) G{v, ødtdxds dy

(3.9) + [k{x) /(x)) • Vx G{v, u) + k{y)  Vx (F{v,u) G[v , (/) dt dx ds dy

+ Ijjj s^Sn iv ~u) (diwx k[x) - divy k{y))g (v) <j> dt dx ds dy

Following [7], we derive the estimate

(3.10)

+ \k\BV{Rd ) ||/ ~ #||l°°(7) + Pllz,°o(Rd ) SUP \ v i'G)\BV{Rd )\\f - g\\up{I)]  
t£(u,r) '

Taking into account divk G RR(Md ) and k G Lip(Ed ), it is easy to show that

Inserting (3.8), (3.10), (3.11), and (3.12) into (3.5), minimizing the result with respect to
p > 0, and subsequently sending v | 0, we get (1.6). This concludes the proof of Theorem
1.1 when B f ,A' > 0. Note that (1.6) does not depend on the smoothness of v,u. Hence
the proof in the general case A' > 0 can proceed via the L 1 convergence of the viscosity
method (see Section 1).
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