
University of Bergen

Likelihood Estimation of Jump-Diffusions

Extensions from Diffusions to Jump-Diffusions,

Implementation with Automatic Differentiation, and

Applications

Author:

Berent Å. S. Lunde

Supervisor:

Prof. Hans J. Skaug

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Mathematics and Natural Sciences

Department of Mathematics

June 1, 2016

http://www.uib.no/en
http://www.blu012@student.uib.no
http://www.uib.no/personer/Hans.Skaug
http://www.uib.no/en/matnat
http://www.uib.no/en/math

Abstract

This thesis considers the problem of likelihood-based parameter estimation for time-homoge-

neous jump-diffusion processes. The problem is that there often is no analytic solution to

the stochastic differential equations driving the process. Thus, the transition density of the

process is unknown. In this thesis we build on the solution presented in Preston and Wood

(2012), where the transition density of a time-homogeneous diffusion process is approxi-

mated by a saddlepoint approximation based on the approximated solution following from

discretization schemes, which in turn stems from an Itô-Taylor expansion of the stochastic

differential equation. The mathematical tools for understanding the method in Preston and

Wood (2012) and the extended methods to jump-diffusions are developed. We reproduce the

results found here, and extend the analysis with maximum likelihood estimation for bench-

mark processes such as the geometric Brownian motion, the Ornstein-Uhlenbeck process,

the Cox-Ingersoll-Ross process, and the Merton model. We also investigate the use of the

renormalized saddlepoint approximation in the context of maximum likelihood estimation.

The implementation of the methods is carried out with the newly released parallel pro-

gramming package, Template Model Builder, which uses automatic differentiation among

other things. We therefore give an introduction to the basics of automatic differentiation

in the context of our computational problems, and also extend the Template Model Builder

package to e.g. allow for complex numbers. Thereafter we apply the methods developed in

previous chapters to the analysis of stock prices modelled as nonlinear stochastic differential

equations, with and without jumps. Finally we briefly analyse some models for stochastic

volatility.

Contents

Abstract ii

List of Figures v

List of Tables vi

Abbreviations vii

1 Introduction 1

2 Itô Calculus and Applications 5

2.1 A Brief Introduction to Itô Calculus . 5

2.2 A Brief Introduction to Jump-Diffusions . 8

2.3 Benchmark Processes . 9

2.3.1 Geometric Brownian Motion . 10

2.3.2 Ornstein-Uhlenbeck Process . 11

2.3.3 Cox-Ingersoll-Ross Process . 13

2.3.4 Merton Jump-Diffusion . 16

2.4 Itô-Taylor Expansions . 20

3 Approximating the Inverse Fourier Transform 23

3.1 The Fourier Transform . 23

3.2 Derivation of the Saddlepoint Approximation 26

3.3 Renormalization of the Saddlepoint Approximation 28

3.4 Example: Noncentral Chi-Squared . 28

3.5 Example: Compounded Poisson Process . 30

4 Approximation Methods for small-time Jump-Diffusion Transition Densi-
ties 32

4.1 Discretization Schemes . 32

4.1.1 Scheme 1: The Euler-Maruyama Scheme 34

4.1.2 Scheme 2: The Milstein Scheme . 35

4.1.3 Scheme 3: The Itô-Taylor Scheme of Strong Order 1.5 37

4.2 Approximation Methods for small-time Jump-Diffusion Transition Densities . 38

iii

Contents iv

5 TMB and Automatic Differentiation 42

5.1 Motivation for Automatic Differentiation . 42

5.2 A Brief Introduction to Automatic Differentiation 43

5.3 TMB and CppAD . 46

5.3.1 Example: Cox-Ingersoll-Ross Maximum Likelihood Estimation 47

5.4 Implementation of Approximation Methods 50

6 Numerical Results 55

6.1 Approximation of Transition Densities . 55

6.2 Approximation methods applied to likelihood-based analysis 60

7 Case Studies: Analysis of Stock Prices as Nonlinear Processes 66

7.1 Background Theory . 67

7.2 Analysis of Stock Prices as Nonlinear Processes 69

7.3 Stochastic Volatility Models . 74

8 Conclusion and Comments 77

A Multiple Itô Integrals 80

B Code Snippets 83

B.1 Additions to the TMB Package . 83

Bibliography 94

List of Figures

1.1 Thesis structure . 4

2.1 Ornstein-Uhlenbeck trajectories . 12

2.2 Cox-Ingersoll-Ross trajectories . 16

3.1 Approximating the inverse Fourier transform: non-central chi-square 29

3.2 Approximating the inverse Fourier transform: compounded Poisson process . 30

4.1 Exact and approximate prediction bands for different discretization schemes . 35

5.1 Computational graph of the derivative of the inner problem 45

5.2 Illustration of the Itô-Taylor saddlepoint approximation 52

6.1 Transition densities: Cox-Ingersoll-Ross, small timestep 56

6.2 Transition densities: Cox-Ingersoll-Ross, large timestep 57

6.3 Transition densities: Merton jump-diffusion 58

6.4 Transition densities: bimodal Merton jump-diffusion 59

7.1 Histograms of transformed empirical data . 71

7.2 Profile likelihood versus logarithmic jump intensities 72

7.3 The scaled VIX for daily variance . 74

v

List of Tables

5.1 Algorithm broken down into elementary operations 44

5.2 Automatic differentiation in CppAD . 47

5.3 Complex AD data type: cType . 54

6.1 Parameter estimates: geometric Brownian motion 60

6.2 Parameter estimates: Ornstein-Uhlenbeck process 61

6.3 Parameter estimates: Cox-Ingersoll-Ross process. 62

6.4 Parameter estimates with standard deviations: Merton jump-diffusion model
for log-returns . 63

6.5 Microbenchmarking approximation methods 64

7.1 Stock price models . 69

7.2 Parameter estimates for empirical data . 70

7.3 Parameter estimates for empirical data: scaled VIX 75

vi

Abbreviations

AD Automatic Differentiation

AELD Absolute Error of the Log Density

CGF Cumulative Generating Function

CIR Cox-Ingersoll-Ross

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FGL Fourier Gauss Laguerre

GBM Geometric Brownian Motion

GMR General Mean Reverting process

IFT Inverse Fourier Transform

iid independent and identically distributed

ITSPA Itô-Taylor SaddlePoint Approximation

JNLL Joint Negative Log-Likelihood

MGF Moment Generating Function

MJD Merton Jump Diffusion

MLE Maximum Likelihood Estimation

OU Ornstein-Uhlenbeck

SDE Stochastic Differential Equation

SPA SaddlePoint Approximation

TMB Template Model Builder

vii

Chapter 1

Introduction

Itô calculus, first proposed by Kiyoshi Itô and popularized by the elegant solution to the

problem of pricing options proposed in Black and Scholes (1973), has become the focus of

many studies. It has applications to many fields of research, such as physics and chemistry,

but is perhaps mostly reckoned with in the context of mathematical finance. Stochastic

differential equations, governing the Itô process, are used to model a wide variety of objects

in mathematical finance, from stock prices to stochastic volatility, as in the Heston stochas-

tic volatility model (Heston, 1993). A good introduction to the subject can be found in

Øksendal (2003). Stochastic differential equations are often problematic in the sense that

it is, in general, not known how to solve them analytically. This is a problem for pricing

formulas in finance, for simulation of the process, and for inference about parameters. A

solution is to estimate the solution with a series expansion of the driving equation, similar to

that of the familiar Taylor expansions, indeed these series expansions are called Itô-Taylor

expansions. A rigorous development and application of the Itô-Taylor expansions can be

found in Kloeden and Platen (1992).

Models in finance are often modelled under the hypothesis that markets are efficient. This

implies that all valuable information for a stock is already embedded in the stock price. In

practice, the expectation of future values (and all other aspects) of the price of the stock

is the same whether you condition on the current state, or whether you condition on all

1

Chapter 1. Introduction 2

previous states. For these reasons, models will typically have the Markov property, and in

the case of continuous time models, they are typically specified by the time-homogeneous

stochastic differential equation:

dXt = µ(Xt; θ)dt+ σ(Xt; θ)dWt. (1.0.1)

Given discrete observations {Xti} of the process, where i ranges from i = 1, . . . , n, and due

to the Markov property of the Itô process, the log-likelihood can be written as:

l(θ|xt1 , ..., xtn) =

n∑
i=2

log p(xti |xti−1 , θ), (1.0.2)

where

p(xti |xti−1 , θ) =
d

dxti
P (Xti < xti |Xti−1 = xti−1 , θ) (1.0.3)

is the all important transition density (Preston and Wood, 2012; Lindström, 2007).

The problem of doing inference about parameters of processes where the transition density

is not known, has a variety of solutions. Likelihood-based estimation needs the transition

density to build the likelihood, and various methods have therefore been developed, either

to approximate it or to find it exactly. Preston and Wood (2012) place these approaches

into three categories. The first approach involves obtaining the transition density via the

Kolmogorov equations for the transition density (Lindström, 2007). The second involves

simulating the process, either approximately (Durham and Gallant, 2002) or exact (Beskos

et al., 2006). A third alternative is to replace the continuous process with a discrete approxi-

mation where it is possible to find the transition density (Shoji and Ozaki, 1998; Aı̈t-Sahalia,

1999). This third solution is well applicable when the time steps between the observations

are small, and this bodes well for financial data.

In this thesis we follow and extend the work done in Preston and Wood (2012), which

falls into the third category: replacing the continuous process with a discrete version. The

method in this paper can be broken down into the following three steps:

Chapter 1. Introduction 3

1. Develop an Itô-Taylor expansion of the sample path.

2. Calculate the moment generating function of the retained terms in the expansion.

3. Approximate the inverse Fourier transform by a saddlepoint approximation to the

transition density.

The extension of this method to a time-homogeneous jump-diffusion process is possible due

to the independence between the jump components and the pure diffusion parts. Such an

extension is already done by Zhang and Schmidt (2016), where the approximation in step 3

is carried out by the FFT algorithm.

The two chapters following the introduction are concerned with the mathematical tools

necessary to understand the method in Preston and Wood (2012), which we shall call the

Itô-Taylor saddlepoint approximation (ITSPA). In chapter 2 we explain the Itô-Taylor ex-

pansions, used for expanding the sample path of the process, and in chapter 3 we discuss

approximations of the inverse Fourier transform of the characteristic function, such as the

saddlepoint approximation. We continue in chapter 4 with the extensions of the ITSPA

to jump-diffusions, and the refinement of the method in Zhang and Schmidt (2016). In

chapter 5 we discuss the benefits of the newly developed Template Model Builder (TMB)

package, which by utilizing the techniques of automatic differentiation allows for exact nu-

merical derivatives of the likelihood, making the optimization faster and more robust. We

also extend the TMB package with some features, allowing us to implement the methods in

chapter 4. Chapter 6 presents numerical results for benchmark processes using the imple-

mented methods. Plotted transition densities and numerical results from likelihood-based

analysis are used to compare the discretization schemes, the methods, and refinements such

as renormalization of the saddlepoint approximation. Chapter 7 is devoted to two case stud-

ies: the study of stock prices as a nonlinear process versus a linear process, and comparisons

of stochastic volatility models. In chapter 8 we conclude and comment on the results.

Chapter 1. Introduction 4

Chapter 1
Introduction

Chapter 3
Approximating the

Inverse Fourier Transform

Chapter 2
Itô Calculus and

Applications

Chapter 5
TMB and Automatic

Differentiation

Chapter 4
Approximation Methods for small-time

Jump-Diffusion Transition Densities

Chapter 6
Numerical Results

Chapter 7
Case Studies:

Analysis of Stock Prices as Nonlinear Processes

Chapter 8
Conclusion and Comments

Preliminary mathematics and background theory

Figure 1.1: Structure of the thesis.

Chapter 2

Itô Calculus and Applications

In this chapter we will go through the first part of the mathematical preliminaries necessary

to understand the Itô-Taylor expansions. We start with the building block of Itô calculus, the

Brownian motion. Further we discuss the Itô integral, stochastic differential equations and

Itô’s lemma. Some applications of Itô’s lemma are shown, solving the stochastic differential

equations for benchmark processes that will be used later in this thesis. The extension to

jump-diffusion is discussed in the context of the Merton jump-diffusion model. We continue

with explaining the concept of the Itô-Taylor expansions. Throughout this thesis we shall

limit ourselves to one-dimensional problems.

2.1 A Brief Introduction to Itô Calculus

Consider the stochastic differential equation (SDE) (1.0.1), which is shorthand for the inte-

gral equation,

Xt = Xt0 +

∫ t

t0

µ(Xs; θ)ds+

∫ t

t0

σ(Xs; θ)dWs. (2.1.1)

The first integral is a standard deterministic integral, while the second is the Itô Integral.

To define the Itô integral, we first need to define the ”noise” term Wt. The building block

of Itô Calculus is the Brownian motion, Wt, defined as follows:

5

Chapter 2. Itô Calculus and Applications 6

Definition 2.1.1 (standard Brownian motion). A stochastic process, {Wt : 0 ≤ t ≤ ∞}, is a

standard Brownian motion if

1. W0 = 0,

2. it has continuous sample paths,

3. it has independent, normally-distributed increments,

4. Wt+s −Wt ∼ N(0, s) for s > 0.

From now on, a Brownian motion is assumed to be a standard Brownian motion if nothing

else is mentioned, and it is denoted by Wt.

When defining an integral of a function g(x) with respect to a Brownian motion, care must

be taken of where to evaluate the function. The standard way of defining an integral is to

define a partition from the respective integration area, evaluate the function at some point

in each subinterval, sum up the function value times the length of each subinterval and

evaluate the limit. It can be shown that, for a nondeterministic integrator, it is not trivial

where one chooses to evaluate the function in the subinterval. Itô’s choice is to evaluate at

the left endpoint of each subinterval. We now define the Itô integral:

Theorem 2.1. Let f be a right-continuous, adapted, and locally bounded process (Øksendal,

2003, p. 25), let {φn} be a sequence of elementary functions:

φ(t, w) =
∑
j

ej(w)1[tj ,tj+1)(t), (2.1.2)

so that

E

[∫ T

S
(f(t, w)− φn(t, w))2 dt

]
→ 0, (2.1.3)

as n→∞. Further, let Wt be a standard Brownian motion and define the integral

∫ T

S
φn(t, w)dWt(w) =

∑
j≥0

φj(w)
[
Wtj+1(w)−Wtj (w)

]
. (2.1.4)

Chapter 2. Itô Calculus and Applications 7

Then the Itô integral of f(t, w) is defined by

I[f](w) =

∫ T

S
f(t, w)dWt(w) = lim

n→∞

∫ T

S
φn(t, w)dWt(w), (2.1.5)

which can be shown to converge in probability (Øksendal, 2003).

For properties of the Itô integral, see Øksendal (2003, Chapter 3.2, p. 30). For the remainder

of this thesis we shall adapt the notation Wt, instead of Wt(w).

We then state one of the most important theorems in Itô calculus, which is repeatedly used

when developing the stochastic analogy to Taylor series, Itô’s Lemma. Consider a general

SDE,

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt, (2.1.6)

and its solution Xt. To handle another stochastic process, defined as a function of the

solution, Yt = f(t,Xt), we need a stochastic analogue to the chain rule. This is precisely

what Itô’s Lemma gives us.

Theorem 2.2. Let Xt be an Itô process satisfying the SDE

dXt = µtdt+ σtdWt. (2.1.7)

If f(t, x) is a twice continuously differentiable function on [0,∞)× R, then

Yt = f(t,Xt) (2.1.8)

is again an Itô process, and

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt) (dXt)

2 , (2.1.9)

where (dXt)
2 is computed according to the following rules:

dtdt = dtdWt = dWtdt = 0, dWtdWt = dt. (2.1.10)

Chapter 2. Itô Calculus and Applications 8

(Øksendal, 2003)

2.2 A Brief Introduction to Jump-Diffusions

A more general process than the Itô process can be obtained by incorporating a jump process

component. To this end we first define the Poisson process.

Definition 2.2.1. If a stochastic process {N(t)}t≥0 has the following properties:

1. N(0) = 0,

2. the process has stationary increments,

3. P (N(h) = 1) = λh+ o(h), h→ 0 for some λ > 0,

4. P (N(h) ≥ 2) = o(h), h→ 0 for some λ > 0,

where limh→0
o(h)
h = 0, then {N(t)}t≥0 is a Poisson process. For convenience, we shall often

denote this simply by Nt.

Let Nt denote a Poisson process with intensity λ > 0, independent of the Brownian motion

Wt. We could then express the governing dynamics of a more general process with the SDE

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt + c(t,Xt− , ξNt−+1)dNt (2.2.1)

for t ≥ 0, with initial value X0, and with c determining the jump size in the case of a jump

(Platen and Bruti-Liberati, 2010). The subscript in Nt− is used to indicate the left limit

of the interval before the Nt’th jump occurs. Such a process is known as a jump-diffusion

process.

For our purpose we consider models where c(Xt− , ξNt−+1)dNt = dYt and Yt is a compounded

Poisson process, such that

Yt =

Nt∑
k=1

Zk, (2.2.2)

Chapter 2. Itô Calculus and Applications 9

and thus

dYt = ZNt−+1dNt, (2.2.3)

where the Zi’s are i.i.d. and independent of the Poisson process.

Due to the jump part of the SDE, we need an extension of Itô’s lemma 2.2. This can be

found in Tankov (2003) and reads:

Theorem 2.3. A stochastic process Yt defined as a function Yt = f(t,Xt) of a general

jump-diffusion process

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

Nt∑
i=1

∆Xτi ,

will be governed by the following SDE

dYt =

(
∂f(t,Xt)

∂t
+ bt

∂f(t,Xt)

∂x
+
σ2t
2

∂2f(t,Xt)

∂x2

)
dt

+ σt
∂f(t,Xt)

∂x
dWt + [f (Xt− + ∆Xt)− f (Xt−)] dNt, (2.2.4)

assuming coefficients bt and σt are sufficiently smooth.

Here, the time τi is the i’th jump time, such that ∆Xτi = Xτi −Xτ−i
.

For a rigorous development of jump-diffusion processes we refer to Tankov (2003).

2.3 Benchmark Processes

We will now consider some standard applications of Itô’s lemma 2.2 to some benchmark pro-

cesses. We will use these processes throughout the thesis for testing accuracy of estimation

methods.

Chapter 2. Itô Calculus and Applications 10

2.3.1 Geometric Brownian Motion

In the derivation of the famous Black and Scholes formula geometric Brownian motion

(GBM) is used to model the dynamics of asset prices. Suppose a stock price, Xt, satisfies

the SDE

dXt = µtXtdt+ σtXtdWt. (2.3.1)

To solve the SDE, define Yt = f(t,X) = log(Xt) and apply Itô’s lemma (2.2).The partial

derivatives are:

∂f

∂t
(t,Xt) = 0,

∂f

∂x
(t,Xt) =

1

Xt
,
∂2f

∂2x
(t,Xt) = − 1

X2
t

. (2.3.2)

Then:

dYt =

(
µtXt

Xt
− σ2tX

2
t

2X2
t

)
dt+

σtXt

Xt
dWt, (2.3.3)

or in integral form:

Yt = X0 +

∫ t

0

(
µs −

σ2s
2

)
ds+

∫ t

0
σsdWs. (2.3.4)

Therefore, by definition of Yt, we have

Xt = X0 exp

[∫ t

0

(
µs −

σ2s
2

)
ds+

∫ t

0
σsdWs

]
, (2.3.5)

Note that if µt and σt are constants, i.e.: µt = µ and σt = σ, we have

Xt = X0 exp

[(
µ− σ2

2

)
t+ σWt

]
⇒ Yt = log(Xt) ∼ N

[(
µ− σ2

2

)
t, σ2t

]
.

We note that holding the drift and diffusion coefficient constant is what is done in the

derivation of the Black and Scholes formula (Black and Scholes, 1973).

Chapter 2. Itô Calculus and Applications 11

2.3.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process (OU) is uniquely defined by the SDE

dXt = κ(µ−Xt)dt+ σdWt. (2.3.6)

It is a ”mean reverting process”, which means that over time the process tends to drift

towards its long-term mean (Rampertshammer, 2007), it is often used to model interest

rates, currency exchange rates, and stochastic volatility. To solve the SDE, we apply Itô’s

lemma to the function f(t, x) = xeκt to obtain

df(t,Xt) = κXte
κtdt+ eκtdXt

= eκtκµdt+ σeκtdWt. (2.3.7)

Writing this equation in integral form yields

f(t,Xt) = X0 +

∫ t

0
eκsκµds+

∫ t

0
σeκsdWs, (2.3.8)

and hence, from the definition of f(t,Xt), we have our solution

Xt = X0e
−κt + µ(1− e−κt) + e−κt

∫ t

0
σeκsdWs, (2.3.9)

which is normal, from the properties of the Itô integral. The first moment is readily calcu-

lated to be

E[Xt] = X0e
−κt + µ(1− e−κt), (2.3.10)

Chapter 2. Itô Calculus and Applications 12

and by using the Itô isometry we can calculate the covariance function:

Cov(Xs, Xt) = E[(Xs − E[Xs])(Xt − E[Xt])]

= E

[∫ s

0
σeκ(u−s)dWu

∫ t

0
σeκ(v−t)dWv

]
= σ2e−κ(s+t)E

[∫ s

0
eκudWu

∫ t

0
eκvdWv

]
=
σ2

2κ
e−κ(s+t)

(
e2κmin{s,t} − 1

)
. (2.3.11)

Choosing min{s, t} = s, we obtain

Cov(Xs, Xt) =
σ2

2κ

(
e−κ(t−) − e−κ(t+s)

)
, (2.3.12)

and we find thatXt is normal with expectationX0e
−κt+µ(1−e−κt) and variance σ2

2κ

(
1− e−2κt

)
.

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time

x0=2

x0=1.2

x0=0

Figure 2.1: Three sample paths of different OU processes with κ = 1, µ = 1.2, and
σ = 0.3, but with different initial values. Simulation was done in R, using the solution of

the SDE.

Chapter 2. Itô Calculus and Applications 13

2.3.3 Cox-Ingersoll-Ross Process

As stated earlier, the OU process is often used to model interest rates. However, as we

have seen, the solution is normal and can therefore take negative values. This is for obvious

reasons not a good model for interest rates. The Cox-Ingersoll-Ross process (CIR) takes

non-negative or only positive values depending on the parameters. Like the OU process it

is often used to model interest rates (Cox et al., 1985), but also volatility, as is the case in

the Heston stochastic volatility model (Heston, 1993).

The CIR process is defined by the SDE

dYt = κ(α− Yt)dt+ σ
√
YtdWt. (2.3.13)

We will here show that for some parameter choices, the CIR process can be defined in terms

of OU processes1. Consider a d-dimensional vector of Brownian motions (W1,W2, ...,Wd)
T

and constants κ > 0, σ > 0, then for j = 1, 2, ..., d let Xj be the solution to the SDE

dX
(j)
t = −1

2
κX

(j)
t dt+

1

2
σdW

(j)
t , (2.3.14)

which is an OU process with drift −1
2κX

(j)
t and diffusion 1

2σ. Define the function

f(x1, x2, ..., xd) = x21 + x22 + · · ·+ x2d, (2.3.15)

then the partial derivatives are ∂f
∂xi

= 2xi and

∂2f

∂xi∂xj
=

 2 if i = j

0 if i 6= j.
(2.3.16)

1 The essence of the following account is taken from http://janroman.dhis.org/finance/Books%

20Notes%20Thesises%20etc/Shrive%20Finance/chap31.pdf. In textbooks we have found no equivalent ac-
count.

http://janroman.dhis.org/finance/Books%20Notes%20Thesises%20etc/Shrive%20Finance/chap31.pdf
http://janroman.dhis.org/finance/Books%20Notes%20Thesises%20etc/Shrive%20Finance/chap31.pdf

Chapter 2. Itô Calculus and Applications 14

Applying this to our OU processes using the multidimensional version of Itô’s lemma 2.2

that can be found in most textbooks on the subject (e.g. Øksendal (2003)), we obtain

Yt =

d∑
i=1

∂f

∂xi
dX

(i)
t +

1

2

d∑
i=1

∂2f

∂xi∂xj
dX

(i)
t dX

(i)
t

=
d∑
i=1

dX
(i)
t

(
−1

2
κX

(i)
t dt+

1

2
σdW

(i)
t

)
+

d∑
i=1

1

4
σ2dW

(i)
t dW

(i)
t

= −κYtdt+ σ
d∑
i=1

X
(i)
t dW

(i)
t +

dσ2

4
dt

=

(
dσ2

4
− κYt

)
dt+ σ

√
Yt

d∑
i=1

X
(i)
t√
f(t)

dW
(i)
t . (2.3.17)

Defining

Wt =
d∑
i=1

∫ t

0

X
(i)
s√
f(s)

dW (i)
s , (2.3.18)

and by noticing that

1. Wt is a martingale,

2. dWt =
∑d

i=1
X

(i)
t√
f(t)

dW
(i)
t ,

3. dWtdWt = dt,

then Wt is a Brownian motion due to the fact that a martingale is a Brownian motion if

and only if its quadratic variation is equal to the length of the time interval. We can now

write

dYt =

(
dσ2

4
− κYt

)
dt+ σ

√
YtdWt, (2.3.19)

which is a CIR process (2.3.13) with α = dσ2

4κ . Thus, in the special case when d is an integer,

we have the representation Yt = f(t) =
∑d

i=1X
2
i (t). It is often required that d ≥ 2, since

this makes it impossible for the CIR process to take on the value zero (Cox et al., 1985).

Chapter 2. Itô Calculus and Applications 15

Let us now derive the distribution of the CIR process in the special case of an integer valued

d. Given starting values t ≥ 0, f(0) ≥ 0,

X
(1)
0 = X

(2)
0 = · · ·X(d−1)

0 = 0, X
(d)
0 =

√
Y0.

From the solution of the SDE governing the OU process (2.3.9), we have

X
(i)
t ∼ N

(
0,
σ2

4κ

(
1− e−κt

))
(2.3.20)

and

X
(d)
t ∼ N

(
e−

1
2
κt
√
Yt,

σ2

4κ

(
1− e−κt

))
, (2.3.21)

and write ρ(t, t) for the variances. Then we have by definition

Yt
ρ(t, t)

=

d−1∑
i=1

(
X

(i)
t√
ρ(t, t)

)2

+

(
X

(d)
t√
ρ(t, t)

)2

. (2.3.22)

The first term is chi-square distributed with d − 1 degrees of freedom, and the second

term is independently noncentral chi-square distributed with one degree of freedom and

noncentrality parameter λ = e−κt
√
Y0

ρ(t,t) . Finally, we now have the representation

Yt|Y0 = g(χ) =
χt
2c
, (2.3.23)

where χt is distributed according to the noncentral chi-squared distribution as mentioned

above, and c = 2κ/(σ2(1− e−κt)). This representation holds even when d is not an integer

(Cox et al., 1985). Using this, and the density of a noncentral chi-squared random variable

(3.4.2), we find the distribution of the future values of the CIR process:

fYt(yt) = fYt
(
g−1(yt)

) ∣∣∣∣ ∂∂yt g−1(yt)
∣∣∣∣

= ce−
2cyt+2cy0e

−κt
2

(
2cyt

2cy0e−κt

)κα
σ2
− 1

2

I 2κα
σ2
−1

(√
2cy0e−κt2cyt

)
= ce−u−v

(v
u

) q
2
Iq
(
2
√
uv
)
, (2.3.24)

Chapter 2. Itô Calculus and Applications 16

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

Time

x0=2

x0=1.2

x0=0.5

Figure 2.2: Three sample paths of different CIR-processes with κ = 1, α = 1.2, and
σ = 0.2, but with different initial values. Simulation was done in R, using the relationship

with the non-central chi-squared distribution.

where q = 2κα/σ2 − 1, u = cY0e
−κt, and v = cYt.

2.3.4 Merton Jump-Diffusion

Merton jump-diffusion (MJD) is a jump-diffusion process (2.2.1) for stock prices, and the

straight forward extension of the GBM diffusion to a jump-diffusion. It was presented in

the paper Merton (1976) as an alternative to the GBM model for stock prices, as a way

of incorporating larger price jumps (in the context of observed prices) than the lognormal

distribution allows. The MJD is governed by the SDE

dSt
St−

= (r − λk)dt+ σdWt + (Yt − 1)dNt, (2.3.25)

where r is the instantaneous expected return on the asset, σ the instantaneous volatility if

a jump does not occur, and k the expected relative jump size. The assumptions on Wt and

Nt are as in 2.2.1. Yt is the ”absolute price jump size”, meaning that, if a jump occurs, then

Chapter 2. Itô Calculus and Applications 17

St− jumps to YtSt. It is assumed to be lognormally distributed with log(Yt) ∼ N(µ, ν2).

Yt − 1 then becomes the relative price jump size, since YtSt−St
St

= Yt − 1 (Matsuda, 2004).

To solve this SDE, we investigate the stochastic process Zt defined as Zt = log(St), using

Itô’s lemma for jump-diffusions (2.3). We have

dZt =

(
(r − λk)St

St
− σ2S2

t

2

1

S2
t

)
dt+

σSt
St

dWt + [log YtSt − logSt] dNt

=

(
r − λk − σ2

2

)
dt+ σdWt + log YtdNt, (2.3.26)

which means that log returns have the representation

Zt = Z0 +

(
r − λk − σ2

2

)
t+ σWt +

Nt∑
i=1

log Yt. (2.3.27)

Using the law of total probability, we find that the probability density function for the log

returns are a Poisson-weighted mixture of normal distributions:

P (Zt − Z0 = z) =
∞∑
i=0

P (Nt = i)P (Zt − Z0 = z|Nt = i) (2.3.28)

(Matsuda, 2004).

For our purpose of calculating the inverse Fourier transform and carrying out saddlepoint

approximations via the MGF, we shall now derive the MGF for the compounded Poisson

process. Let X =
∑Nt

i=0 ξi, where all ξi ∼ N(µ, ν2) are independent of one another. Then

from the definition of the MGF we have:

MX(s) = E

[
exp

{
s

Nt∑
i=0

ξi

}]

= E [E [exp {sntξi}|Nt = n]]

=

∞∑
k=0

e−λt(λt)k

k!

(
E
[
e{sξi}

])k
=

∞∑
k=0

e−λt(λt)k

k!

(
esµ+

1
2
ν2s2

)k
= exp

{
λt
(
esµ+

1
2
ν2s2 − 1

)}
. (2.3.29)

Chapter 2. Itô Calculus and Applications 18

Due to the independence between the diffusion and the jump part of the SDE, we can easily

find the MGF for the logarithmic stock price:

MZt = MZt−
MX , (2.3.30)

where MZt−
is the MGF for a normal random variable with mean Z0 +

(
r − λk − σ2

2

)
t and

variance σ2t.

For the purpose of identifiability : that distinct parameters correspond to distinct distribu-

tions, we state the following result.

Lemma 2.4. Consider a compounded Poisson process, X, with normally distributed jumps

with parameters µ and ν2 which are o
(
1
λ

)
functions of λ. Further, define

µ∗ = lim
λ→∞

λµ(λ) <∞ (2.3.31)

and

ν2∗ = lim
λ→∞

λν2(λ) <∞. (2.3.32)

Then

lim
λ→∞

X ∼ N
(
tµ∗, tν2∗

)
. (2.3.33)

Proof. If µ and ν2 are o
(
1
λ

)
functions of λ, then the characteristic function converges to

the characteristic function of a normal distribution. The characteristic function of X is the

complex valued function

φX = MX(is) = exp
(
λt
(
eisµ−

1
2
s2ν2 − 1

))
. (2.3.34)

Let Xn be a sequence of compound Poisson processes with parameters λn, µn, and ν2n.

The first central moments of X are E[X] = λtµ and Var[X] = λt(µ2 + ν2). Consider the

Chapter 2. Itô Calculus and Applications 19

standardized random variable Zn = (Xn − λtµ)/
√
λt(µ2 + ν2). We then have:

φZn(s) = e
−isµn

√
λnt

µ2n+ν2n φXn

(
s√

λnt(µ2n + ν2n)

)

= e
−isµn

√
λnt

µ2n+ν2n e
λnt

(
iµns√

λnt(µ
2
n+ν2n)

− ν2ns
2

2λnt(µ
2
n+ν2n)

− µ2ns
2

2λnt(µ
2
n+ν2n)

+o

(
1

λ
3/2
n

))

= e
− 1

2
s2+o

(
1√
λn

)
, (2.3.35)

from which we see that Zn is standard normally distributed if λn →∞. We therefore have

the representation

lim
λn→∞

Xn = lim
λn→∞

√
λnt (µ2n + ν2n)Z + λntµn, (2.3.36)

where Z is standard normal. Now, demanding that the expectation and variance is bounded,

we have the conditions

1. limλn→∞ λn
(
µ2n + ν2n

)
<∞,

2. limλn→∞ λnµn <∞.

The second condition implies that µn tends to zero at least as fast as o
(

1
λn

)
. This must

also hold for ν2n, considering the first condition. Defining µ∗ and ν2∗, we then have directly

from 2.3.36:

lim
λn→∞

Xn =
√
ν2∗n tZ + tµ∗ ∼ N(tµ∗, tν2∗), (2.3.37)

in distribution, which is our desired result.

Theorem 2.5. Let µ∗ and ν2∗ be as in lemma 2.4, and assume the Merton model for stock

prices. Then we have for logarithmic returns:

lim
λ→∞

log

(
St
S0

)
∼ N

((
r − 1

2
σ2 − 1

2
ν2∗
)
t,
(
σ2 + ν2∗

)
t

)
. (2.3.38)

The Merton model is therefore non-identifiable (when the number of jumps grows large).

Chapter 2. Itô Calculus and Applications 20

Proof. The variance follows directly from the fact that the jumps, the number of jumps,

and the Brownian motion are independent. The expectation follows when considering the

λk, where k = eµ+
1
2
ν2 − 1 in the drift term of the MJD model for logarithmic stock prices:

lim
λ→∞

λk = lim
λ→∞

λeµ+
1
2
ν2 − 1

= lim
λ→∞

λ

(
1 + µ+

1

2
ν2 +

(
µ+ 1

2ν
2
)2

2
+ . . .− 1

)
= µ∗ +

1

2
ν2∗. (2.3.39)

Now, since the compounded Poisson process in lemma 2.4 has drift tµ∗, this cancels with

the part in the drift component and we easily obtain the desired result.

Although non-identifiability is a problem, it certainly is interesting that defining log-returns

as a pure compounded Poisson process (which might be natural for tick-by-tick data) in this

way will lead to the same (normal) distribution as the GBM model on a larger time scale.

2.4 Itô-Taylor Expansions

We now consider a somewhat different application of Itô’s lemma (2.2). It can be used

in a recursive manner to obtain expansions, similar to the familiar Taylor expansions, for

diffusion processes governed by a SDE. These expansions are called Itô-Taylor expansions

and are very valuable in simulation and approximation of solutions of SDEs. We will limit

ourselves to sketch how the expansions can be obtained in the case of an one-dimensional

SDE. We do however note that expansions exist for multidimensional diffusion processes,

and also for SDEs with jumps, see Platen and Bruti-Liberati (2010). For an in-depth study

of the Itô-Taylor expansions and their use, we refer to Kloeden and Platen (1992), from

which the material in the following section is taken.

Consider the one-dimensional SDE

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (2.4.1)

Chapter 2. Itô Calculus and Applications 21

Applying Itô’s lemma (2.2) with a function f , we obtain:

dYt =

(
∂f

dt
+ µ

∂f

dxi
+

1

2
σ2

∂2f

dxixi

)
dt+ σ

∂f

dxi
dWt, (2.4.2)

and choose f(t, x) = x so that

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2.4.3)

which in integral form reads

Xt = Xt0 +

∫ t

t0

µ(t,Xt)ds+

∫ t

t0

σ(t,Xt)dWs. (2.4.4)

Before obtaining the Itô-Taylor series expansions, we define the following operators, to be

used throughout the section:

L0 =
∂

∂t
+ µ

∂

∂x
+

1

2
σ2

∂2

dx2
, (2.4.5)

L1 = σ
∂

∂x
. (2.4.6)

Applying these operators in theorem 2.2, we get Itô’s lemma in operator form:

Yt = Yt0 +

∫ t

t0

L0fds+

∫ t

t0

L1fdWs. (2.4.7)

Applying this twice to the right-hand side of equation (2.4.4), first with f(t, x) as µ(t, x)

and then with f(t, x) = σ(t, x), we have

Xt = Xt0 +

∫ t

t0

[
µ(t0, Xt0) +

∫ s

t0

L0µ(τ,Xτ)dτ

+

∫ s

t0

L1µ(τ,Xτ)dWτ

]
ds+

∫ t

t0

[
σ(t0, Xt0)

+

∫ s

t0

L0σ(τ,Xτ)dτ +

∫ s

t0

Ljσ(τ,Xτ)dZjτ

]
dWs. (2.4.8)

Chapter 2. Itô Calculus and Applications 22

Let Ii1,i2,...,ik represent the multiple Itô integral, defined as

Iα =


1 if k = 0,∫ t
t0
Iα−ds if k ≥ 1 and αk = 0,∫ t

t0
Iα−dWs if k ≥ 1 and αk = 1,

where α = (α1, α2, ..., αk)
T is a k-dimensional vector of zeros and ones, and α− denotes the

multi-index that can be obtained by deleting the last component of α. For example,

I0,1,0 =

∫ t

0
I0,1ds1 =

∫ t

0

∫ s1

0
I0ds2ds1 =

∫ t

0

∫ s1

0

∫ s2

0
ds3dWs2ds1. (2.4.9)

Applying this notation, we have

Xt = Xt0 + µ(t0, Xt0)I0 + σ(t0, Xt0)I1

+

∫ t

t0

[∫ s

t0

L0µ(τ,Xτ)dτ +

∫ s

t0

L1µ(τ,Xτ)dEτ

]
ds

+

∫ t

t0

[∫ s

t0

L0σ(τ,Xτ)dτ +

∫ s

t0

L1σ(τ,Xτ)dWτ

]
dZs. (2.4.10)

We continue with the application of Itô’s lemma in operator form (2.4.7), now applied to the

functions L0µ, L1µ, L0σ , and L1σ, and again to the newly obtained functions L0L0µ, L1L0µ,

L0L1µ, L1L1µ, L0L0σ, L1L0σ, L0L1σ, and L1L1σ, to acquire the Itô-Taylor expansion

Xt = Xt0 + µ(t0, Xt0)I0 + σ(t0, Xt0)I1

+ L0µ(t0, Xt0)I0,0 + L1µ(t0, Xt0)I1,0

+ L0σ(t0, Xt0)I0,1 + L1σ(t0, Xt0)I1,1

+ L0L0µ(t0, Xt0)I0,0,0 + L1L0µ(t0, Xt0)I1,0,0

+ L0L1µ(t0, Xt0)I0,1,0 + L1L1µ(t0, Xt0)I1,1,0

+ L0L0σ(t0, Xt0)I0,0,1 + L1L0σ(t0, Xt0)I1,0,1

+ L0L1σ(t0, Xt0)I0,1,1 + L1L1σ(t0, Xt0)I1,1,1 +R, (2.4.11)

where R denotes the remainder term.

Chapter 3

Approximating the Inverse Fourier

Transform

Consider the case where one has time series data generated by a stochastic process. For

likelihood-based inference, one needs the transition density to build the likelihood function.

But this transition density is not always readily available from the model. This chapter

considers the instances where the characteristic function, the moment generating function

(MGF), or the cumulative generating function (CGF) of the one step transition is available,

but not the transition density. By definition, the transition density is the inverse Fourier

transform (IFT) of the characteristic function. This transformation can be approximated by

the discrete Fourier transform (DFT). Another possible solution is to estimate the transition

density with a saddlepoint approximation (SPA), which is derived from the MGF or the

CGF. In this chapter we discuss these two approximations of the IFT, to obtain the transition

density.

3.1 The Fourier Transform

The Fourier transform has applications to a large variety of research such as signal analysis,

quantum physics, and probability theory. It relates to probability theory since the charac-

teristic function and the probability density function of a random variable form a Fourier

23

Chapter 3. Approximating the Inverse Fourier Transform 24

pair. The definition of a Fourier pair is as follows (Kleppe, 2006):

Definition 3.1. Consider the function f on [−∞,∞]. The Fourier transform of f is the

function f̂ such that

f̂(s) =

∫ ∞
−∞

f(x)eisxdx. (3.1.1)

Conversely, we say that f is the inverse Fourier transform of f̂ and satisfy

f(x) =
1

2π

∫ ∞
−∞

f̂(s)e−isxds. (3.1.2)

We say that the functions f and f̂ form a Fourier pair.

From definition 3.1 we see that the probability density function and the characteristic func-

tion of a random variable X form a Fourier pair if we let f(x) = 0 when x is outside the

probability space of X. We formulate this as a theorem:

Theorem 3.2. For a random variable X, the probability density function fX(x) and the

characteristic function φX(s) of X form a Fourier pair.

Proof.

φX(s) = E
[
eisX

]
=

∫ ∞
−∞

eisxfX(x)dx = f̂X . (3.1.3)

In this thesis, we work with random variables for which the probability density is unknown

in closed form, but where the characteristic function (or at least an approximation) is. The

inverse Fourier transform then has to be approximated numerically. For such instances, the

following lemma comes in handy.

Lemma 3.3. The characteristic function is conjugate symmetric (Kleppe, 2006):

φX(s) = φX(−s). (3.1.4)

Chapter 3. Approximating the Inverse Fourier Transform 25

Proof. From the definition of the characteristic function, we have:

φX(s) =

∫ ∞
−∞

fX(x)eixsdx

=

∫ ∞
−∞

fX(x)cos(ixs)dx+ i

∫ ∞
−∞

fX(x)sin(ixs)dx

=

∫ ∞
−∞

fX(x)cos(−ixs)dx− i
∫ ∞
−∞

fX(x)sin(−ixs)dx

=

∫ ∞
−∞

fX(x)e−ixsdx

= φX(−s). (3.1.5)

The usefulness of lemma 3.3 is due to the fact that, the probability density being a real

valued function, the integral can be simplified:

Theorem 3.4. The inverse Fourier transform of the characteristic function can be simplified

as follows:

fX(x) =
1

π

∫ ∞
0
<
(
φX(s)e−isx

)
ds. (3.1.6)

Proof. Since the probability density function is real, it holds that

fX(x) =
1

2π

∫ ∞
−∞
<
(
φX(s)e−isx

)
ds. (3.1.7)

Now, by investigating the integrand, we have by lemma 3.3:

<
{
φX(s)e−isx

}
= <

{
φX(s)e−isx

}
= <

{
φX(s)e−isx

}
= <

{
φX(−s)eisx

}
, (3.1.8)

which means that the real part of the original integrand is symmetric, implying

fX(x) =
1

π

∫ ∞
0
<
(
φX(s)e−isx

)
ds. (3.1.9)

Chapter 3. Approximating the Inverse Fourier Transform 26

As noted earlier, the Fourier transform often has to be approximated. This can be done by

the efficient fast forward Fourier transform (FFT) algorithm, which utilizes properties such

as the one discussed above. For the instances where we do not have the probability density

function readily available, we estimate it using the FFT algorithm already implemented in

R, and use this as our benchmark instead of the exact. In chapter 6 we shall use our own

algorithm that approximates the IFT directly with Gauss-Laguerre quadrature, also making

use of theorem 3.4.

3.2 Derivation of the Saddlepoint Approximation

Instead of approximating the IFT directly, there exist approximations that can lead to

closed form expressions. In this thesis we consider the saddlepoint approximation (SPA) to

the density fX(x). The SPA is often stated in terms of the mean of i.i.d. random variables,

where the SPA is the leading term of an asymptotic expansion (similar to the Laplace

approximation) (Butler, 2007). We shall, however, limit ourselves to the case of n = 1, or,

in other words, of only one continuous random variable.

Theorem 3.5. For a continuous random variable X with CGF KX and unknown density

fX , the saddlepoint density approximation to fX(x) is given by

spa (fX ;x) =
1√

2πK ′′X(ŝ)
exp {KX(ŝ)− ŝx} , (3.2.1)

where ŝ = ŝ(x) is the saddlepoint, that is the unique solution to the equation

K ′X(ŝ) = x, (3.2.2)

referred to as the saddlepoint equation or the inner problem (Butler, 2007).

Proof. For a random variable X, the moment generating function (MGF) MX(s) is defined

as

MX(s) =

∫ ∞
−∞

esxfX(x)dx, (3.2.3)

Chapter 3. Approximating the Inverse Fourier Transform 27

where fX(x) is the probability density function of X. By using the Fourier inversion formula,

we can obtain the density f from the MGF:

fX(x) =
1

2π

∫ ∞
−∞

MX(is) exp{−isx}dt

=
1

2π

∫ ∞
−∞

exp {KX(is)− isx} ds, (3.2.4)

(Goutis and Casella, 1999).

First, we apply a change of variable, u = it to the integral 3.2.4:

fX(x) =
1

2πi

∫ i∞

−i∞
eK(u)−uxdu, (3.2.5)

and note that the value of the integral is unchanged if we integrate through a line parallel

to the imaginary axis:

fX(x) =
1

2πi

∫ τ+i∞

τ−i∞
eKX(u)−uxdu

=
1

2π

∫ ∞
−∞

eKX(τ+iv)−(τ+iv)xdv. (3.2.6)

Further, we expand the inner part of the exponential about the point τ , and obtain:

KX(τ + iv)− (τ + iv)x =KX(τ)− τx+
(
K ′X(τ)− x

)
iv +

∑
j≥2

K
(j)
X (τ)(iv)j

j!
, (3.2.7)

and by choosing τ to be the saddlepoint, ŝ, the second term in the expansion disappears.

Then, from using the transformation y =
√
K ′′X(ŝ)v, we have for the right hand side

exp {KX(ŝ)− ŝx}
2π
√
K ′′X(ŝ)

∫ ∞
−∞

e−
1
2
y2+O(y3)dy. (3.2.8)

Neglecting the O(y3) term, and from noting that the integrand then is the integrand of the

standard normal density which we evaluate, we obtain our desired result (3.5).

The SPA is a powerful tool to compute accurate approximations to the densities of random

variables, but it comes to the cost of computing ŝ(x), KX(ŝ(x), x), and ∂2

∂s2
KX(s, x)

∣∣∣
ŝ(x)

for

Chapter 3. Approximating the Inverse Fourier Transform 28

each new value of x. In the next section we will look at some of the properties and the

drawbacks of the SPA.

3.3 Renormalization of the Saddlepoint Approximation

The perhaps most serious problem with the SPA is, that for models deviating from the

Gaussian, it does not integrate to 1 (w.r.t. x). Indeed, it is the case that the SPA is only

exact up to a multiplicative constant for the normal, gamma, and inverse Gaussian densities

(Kolassa, 2006). In applications of the SPA, such as maximum likelihood estimation (MLE),

where the model deviates substantially from a Gaussian model, the likelihood estimates with

the current SPA will not be accurate enough (Kleppe and Skaug, 2008).

One way to deal with this problem is, then, to develop an alternative SPA with non-Gaussian

leading terms (Kleppe and Skaug, 2008; Aı̈t-Sahalia et al., 2006). However, in small dimen-

sions it is feasible to do a renormalization of the SPA. This basically means to multiply the

SPA with a constant c−1 so that c is the integral of the SPA (w.r.t. x) over the whole area.

The renormalized SPA is the function

rnspa (fX ;x) =
spa (fX ;x)∫
spa (fX ;x) dx

. (3.3.1)

The integral in the denominator usually has to be evaluated numerically. We note that the

increase in accuracy comes to the cost of numerically evaluating this integral, bearing in

mind the original cost of evaluating the SPA.

3.4 Example: Noncentral Chi-Squared

An interesting application of the SPA, proposed in Goutis and Casella (1999), is the non-

central chi-squared distribution, related to the CIR process (2.3.3). The probability density

function is:

fX(x; k, λ) =

∞∑
i=0

xk/2+i−1e−x/2

Γ(k/2 + i)2k/2+i

(
λ
2

)i
e−(λ2)

i!
, (3.4.1)

Chapter 3. Approximating the Inverse Fourier Transform 29

0 10 20 30 40

0.00

0.02

0.04

0.06

x

D
e

n
si

ty

Exact

SPA

reSPA

FFT

Figure 3.1: Exact and estimated probability density function for the non-central chi-
square distribution for parameters k = 2 and λ = 8.

an infinite sum of central chi-squared densities weighted with Poisson probabilities. Another

way to write this density, which we will exploit later, is:

fX(x; k, λ) =
1

2
e−

x+λ
2

(x
λ

) k
4
− 1

2
I k

2
−1

(√
λx
)
, (3.4.2)

where Iν(x) is the modified Bessel function of the first kind. If one does not want to deal

with infinite sums, one could exploit that the MGF if quite simple:

MX(t) =
e

λt
1−2t

(1− 2t)
k
2

. (3.4.3)

We solve the saddlepoint equation to obtain

τ̂ =
−k + 2x−

√
k2 + 4λx

4x
, (3.4.4)

Chapter 3. Approximating the Inverse Fourier Transform 30

which we insert into our expression for the SPA (3.5). The exact density1 , the SPA, the

renormalized SPA, and the density using the FFT of the characteristic function are plotted

in figure 3.1. We here see that the SPA lies closely to that of the exact density, and this

is even more so the case for the renormalized version. It is very hard to distinguish the

renormalized SPA, the density obtained via the FFT, and the exact density using R from

one another by just using the naked eye.

3.5 Example: Compounded Poisson Process

−15 −10 −5 0 5 10 15

0.00

0.02

0.04

0.06

0.08

0.10

0.12

λ=10

x

P
ro

ba
bi

lit
y

SPA

reSPA

FFT

−10 −5 0 5 10

0.0

0.1

0.2

0.3

λ=5

x

P
ro

ba
bi

lit
y

SPA

reSPA

FFT

Figure 3.2: Exact (FFT) and approximated (SPA and reSPA) transition probabilities for
the compounded Poisson process with different values of λ: λ = 10 and λ = 5. The jumps

were standard normal and the time interval was set to t = 1.

For the previous example, the SPA provides a reasonable approximation of the density, but

for different processes this might not be the case. One such instance is the compounded

1 The density plot labelled as the exact density is obtained via the dchisq(x, k, λ) function in R. The
R function calculates the density as a Poisson mixture of central chi-squares (approximation of equation
(3.4.1)), and hence it is not exact (R Core Team, 2015). However, for our purpose with a small non-centrality
parameter, this gives an accurate result which we use as our benchmark and label as exact.

Chapter 3. Approximating the Inverse Fourier Transform 31

Poisson process, defined by equation (2.2.2). The CGF can be derived from the MGF

(2.3.29) and reads

KX(s) = λt (MY (s)− 1) , (3.5.1)

where Y is the distribution of the iid jumps. Taking these to be normally distributed with

expectation µ and variance ν2, we arrive at:

KX(s) = λt
(
esµ+

1
2
ν2s2 − 1

)
. (3.5.2)

The inner problem can then be solved using a Newton-type algorithm. The SPA and the

renormalized SPA are plotted in figure 3.2, together with the estimated density using the

FFT algorithm with the characteristic function. We assume that the latter is reasonably

exact.

In figure 3.2 we find that for λ = 10, both the SPA and the renormalized SPA are quite

accurate, similar to that of the example with the non-central chi-square distribution. As λ

decreases, they both become more inaccurate at the centre of the density. An interesting ob-

servation concerns the high accuracy of the SPA in the tails. In risk management, different

risk measures such as value at risk and expected shortfall (see e.g. McNeil et al. (2005, chap-

ter 2.2)) concern themselves with the behaviour in the tail. Since the compounded Poisson

process is a popular model especially in insurance for the cumulative amount of claims, but

also for other applications such as credit risk (Gerhold et al., 2010), it is conceivable that

the SPA might have important applications in this respect.

Chapter 4

Approximation Methods for

small-time Jump-Diffusion

Transition Densities

In this chapter we follow Preston and Wood (2012) closely. The first section considers

discretization schemes that are retained terms from the Itô-Taylor expansions. We present

three such schemes, the Euler scheme, the Milstein scheme, and a third scheme that under

suitable conditions may attain strong order of convergence 1.5. The second section considers

approximation methods for small-time jump-diffusion processes. Here, three methods are

proposed.

4.1 Discretization Schemes

We will now construct numerical integration schemes based upon the Itô-Taylor approxima-

tions developed in section 2.4. The first obstacle is the calculation of the first Itô integrals

(2.4). We here state the results. The proof of the ones involving Brownian motions can be

32

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 33

found in appendix A. For the first integrals, with α having two or fewer indices, we have

I0 =

∫ t

0
ds = t,

I1 =

∫ t

0
dWs = Wt = J1,

I0,0 =

∫ t

0

∫ s1

0
ds2ds1 =

1

2
t2,

I1,0 =

∫ t

0

∫ s1

0
dWs2ds1 =

∫ t

0
Ws1ds1 = J2,

I0,1 =

∫ t

0

∫ s1

0
ds2dWs1 =

∫ t

0
s1dWs1 = tJ1 − J2,

I1,1 =

∫ t

0

∫ s1

0
dWs2dWs1 =

1

2

(
J2
1 − t

)
, (4.1.1)

where the Ji’s are defined as J1 = Wt and J2 =
∫ t
0 Wsds. We note that the vector (J1, J2)

T

has mean and covariance matrix

E

J1
J2

 =

0

0

 , Var

J1
J2

 =

 t 1
2 t

2

1
2 t

2 1
3 t

3,

 (4.1.2)

respectively. In addition, J1 and J2 are Gaussian (Preston and Wood, 2012).

Now, while discussing and comparing schemes, we need some sort of measure to discuss

their accuracy. In the deterministic case we usually compare the obtained approximation

with the exact solution. In the SDE case, there are two ways of measuring accuracy, strong

order and weak order convergence. We note that both the convergence criteria reduce to the

normal convergence criterion in the deterministic case, if the diffusion coefficient is zero. In

this thesis we shall use the strong order convergence to measure accuracy for our Itô-Taylor

schemes.

Definition 4.1.1 (strong order convergence). We say that a time discrete approximation Xδ

converges strongly with order γ > 0 at time t if there exists a positive constant C, not

depending on δ, and a finite δ0 > 0 so that

ε(δ) = E
(∣∣∣Xt −Xδ(t)

∣∣∣) ≤ Cδγ . (4.1.3)

(Kloeden and Platen, 1992)

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 34

There exist conditions under which an Itô-Taylor expansion attains a given order of strong

convergence. These can be found in Kloeden and Platen (1992, chapter 5). For the multiple

Itô integrals 2.4 Iα, let l(α) denote the number of components in α and let n(α) denote the

number of zero components. In the case of an one-dimensional SDE, all non-zero components

are one. Then a scheme attains strong convergence of order γ if it includes all terms with α

satisfying l(α) + n(α) ≤ 2γ (Preston and Wood, 2012).

We will present three different schemes, the Euler-Maruyama scheme of strong order 0.5,

the Milstein scheme of strong order 1.0, and a third scheme that can attain strong order

1.5. These schemes are presented in Preston and Wood (2012). In addition to these three

schemes, there is a fourth one of strong order 2.0 presented here. But this scheme involves

a transformation to obtain unit diffusion. This is problematic for the intended extension to

a more general jump-diffusion process and is therefore not considered here.

Following Preston and Wood (2012), we will consider time-homogeneous processes so that

the drift and diffusion coefficients will only depend upon the state Xt of the process at time

t. We use µ and σ to denote the drift and diffusion processes evaluated at the left point of

the time interval, and primes to indicate derivatives. As an example:

µ = µ (Xt)|Xt0 , and σ′′ =
∂2

∂x2
σ (Xt)

∣∣∣∣
Xt0

. (4.1.4)

4.1.1 Scheme 1: The Euler-Maruyama Scheme

The Euler-Maruyama Scheme is the easiest and most used discretization based on the Itô-

Taylor expansions (2.4). It attains strong order of convergence 0.5 in general, but if the

diffusion coefficient is constant, it attains strong order 1.0 (Kloeden and Platen, 1992). It

provides good numerical results in the cases of simple processes with nearly constant drift

and diffusion coefficients. However, for processes with nonlinear coefficients, higher order

schemes might be preferred. In the one-dimensional case, it is of the form

Xt = Xt0 + µI0 + σI1, (4.1.5)

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 35

which is Gaussian due to the I1-term. It has expectation Xt0 + µt, variance σ2t, and MGF

MXt = exp

{
s (Xt0 + µt) +

s2σ2t

2

}
. (4.1.6)

0 1 2 3 4

−2

0

2

4

6

Timestep

Pr
oc

es
s

Exact

Euler−Maruyama

Milstein

Scheme 3

Figure 4.1: Exact and approximate prediction bands (E[rt|r0] ± SD[rt|r0]) for the CIR
process with starting value r0 = 2 and parameters κ = 1, α = 2, and σ = 1.

4.1.2 Scheme 2: The Milstein Scheme

The Milstein Scheme is slightly more complicated than the Euler-Maruyama scheme and

might be regarded as the next step, since it contains one more term from the Itô-Taylor

expansions. It attains strong order of convergence 1.0 in all cases, not depending on the

drift or diffusion coefficients as the Euler-Maruyama scheme. It reads

Xt = Xt0 + µI0 + σI1 + σσ′I1,1. (4.1.7)

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 36

We see that when the diffusion coefficient is constant, the Milstein scheme reduces to the

Euler-Maruyama scheme (4.1.5).

Theorem 4.1.2. The MGF of the Milstein scheme (4.1.7) is given by the following equation

MXt(s) =
exp

{
c21s

2t
2−4sc2t

}
√

1− 2tc2s
exp {s (Xt0 + c3)} , (4.1.8)

where

c1 = σ, c2 =
1

2
σσ′, c3 =

(
µ− 1

2
σσ′
)
t. (4.1.9)

Proof. To find the MGF, we rearrange the scheme to

Xt −Xt0 − c3 = c1J1 + c2J
2
1 , (4.1.10)

where the constants c1, c2, and c3 are as in (4.1.9). We now seek the MGF of the right side

of equation (4.1.10). Let Z ∼ N(0, t), then the MGF of c1Z + c2Z
2 is defined as

Mc1Z+c2Z2(s) = E
[
e(c1Z+c2Z

2)s
]

=

∫ ∞
−∞

e(c1z+c2z
2)s 1√

2πt
e−

z2

2t dz

=
1√
2πt

∫ ∞
−∞

exp

{
−
(

1

2t
− c2s

)
z2 + c1sz

}
dz

=
1√
2πt

∫ ∞
−∞

exp

{
−
(

1

2t
− c2s

)
(z − q)2 +

c21s
2t

2(1− 2sc2t)

}
dz

= exp

{
c21s

2t

2− 4sc2t

}
1√
2πt

∫ ∞
−∞

exp

{
− (z − q)2

2t(1− 2tc2s)−1

}
dz

=
exp

{
c21s

2t
2−4sc2t

}
√

1− 2tc2s

1√
2πt

1

(1− 2tc2s)
− 1

2

∫ ∞
−∞

exp

{
− (z − q)2

2t(1− 2tc2s)−1

}
dz

=
exp

{
c21s

2t
2−4sc2t

}
√

1− 2tc2s
, (4.1.11)

where q = c1st/(1 − 2sc2t). The desired MGF is then found by multiplying the MGF for

the right hand side and the MGF of Xt0 + c3.

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 37

4.1.3 Scheme 3: The Itô-Taylor Scheme of Strong Order 1.5

A scheme that can attain strong order 1.5, found in Preston and Wood (2012) reads

Xt = Xt0 + µI0 + σI1 + σσ′I1,1

+

(
µµ′ +

1

2
σ2µ′′

)
I0,0 +

(
µσ′ +

1

2
σ2σ′′

)
I0,1 + σµ′I1,0, (4.1.12)

or, in a different form:

Xt −Xt0 − c4 = c1J1 + c2J
2
1 + c3J2, (4.1.13)

where

c1 = σ +

(
µσ′ +

1

2
σ2σ′′

)
t,

c2 =
1

2
σσ′,

c3 = σµ′ − µσ′ − 1

2
σ2σ′′,

c4 =

(
µ− 1

2
σσ′
)
t+

(
µµ′ +

1

2
σ2µ′′

)
1

2
t2. (4.1.14)

(Preston and Wood, 2012)

Preston and Wood (2012) then finds the MGF to be

MXt(s) =

exp

{
(6c21+6c1c3t+2c23t

2−c23t3sc2)ts2
12−24sc2t

}
√

1− 2tc2s
exp {s (Xt0 + c4)} . (4.1.15)

We note that when the diffusion coefficient σ(t,Xt) is constant, this scheme is Gaussian,

having mean µt +
(
µµ′ + 1

2σ
2µ′′
)

1
2 t

2 and variance
(
σ2 + σ2µ′t+ 1

3(σµ′t)2
)
t. It will then

have strong order of convergence 1.5, but in the case of a nonconstant diffusion term, it has

strong order of convergence 1.0.

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 38

4.2 Approximation Methods for small-time Jump-Diffusion

Transition Densities

The MGFs of the discretization schemes in the previous section were used in Preston and

Wood (2012) to estimate the transition densities for time-homogeneous diffusion processes

by calculating the SPA of the estimation to the diffusion process. In the following theorem

we extend this method to a time-homogeneous jump-diffusion process. A note on notation:

we will refer to the transition density of Xt, which is the probability density function of the

random variable Xt|Xt0 . We will however omit the conditioning in further notation.

Theorem 4.1. Let Xt be a jump-diffusion process, where the diffusion part and the jumps

are independent of one another. Further, let X̃t− denote the approximate solution to the

pure diffusion, based on a discretization scheme in section (4.1). Then an approximation to

the jump-diffusion is:

Xt ≈ X̃t = X̃t− +

Nt∑
i=1

Zi. (4.2.1)

An approximation to the transition density of Xt then follows from the saddlepoint approxi-

mation (3.5) to the transition density of the approximation in 4.2.1, which we shall call the

Itô-Taylor saddlepoint approximation (ITSPA):

fXt(x) ≈ spa
(
f
X̃t

;x
)
, (4.2.2)

where

K
X̃t

(ŝ) = K
X̃t−

(ŝ) +KYt(ŝ) = K
X̃t−

(ŝ) + λt (MZ − 1) , (4.2.3)

and MZ is the MGF of the iid jump magnitudes.

Proof. Follows from the independence between the diffusion part and the jump part of the

SDE.

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 39

In chapter 3 we calculated the SPA for a compounded Poisson process. While this works

well by high jump intensity, it performs poorly by estimating the probability of states that

are possible without jumps and by low intensity. For small-time transition densities it is

natural to assume a fairly small jump intensity, and for these reasons the following method

is preferable.

Theorem 4.2. Let Xt, X̃t, X̃t− and Yt be as in theorem 4.1. The Itô-Taylor saddlepoint

approximation mixture (mITSPA) to the transition density of Xt is as follows:

mspa
(
f
X̃t

;x
)

= spa
(
f
X̃t−

;x
)
e−λt + spa

(
f
X̃∗t

;x
)(

1− e−λt
)
, (4.2.4)

where

X̃∗t = X̃t− +

N∗t∑
i=1

Zi, (4.2.5)

and N∗t has a zero-truncated Poisson distribution with intensity λt and defined by N∗t =

Nt|Nt > 0. The related CGF of the compounded zero-truncated Poisson process Y ∗ is given

by:

KY ∗(s) = λt (MZ(s)− 1) + log
(

1− e−λtMZ(s)
)
− log

(
1− e−λt

)
. (4.2.6)

Proof.

fXt(x) =
∞∑
i=0

fXt|Nt=i(x)P (Nt = i)

= fXt|Nt=0(x)P (Nt = 0) + fXt|Nt>0(x)P (Nt > 0)

≈ spa
(
f
X̃t−

;x
)
e−λt + spa

(
f
X̃∗t

;x
)(

1− e−λt
)
. (4.2.7)

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 40

Now, the only thing left is the derivation of the CGF of Y ∗t . From the definition of the MGF

we have:

MY ∗t
= E

[
esY

∗
t

]
= E

exp

s
N∗t∑
i=1

Zi


 = E

[
E
[
esnZ |N∗t = n > 0

]]
=
∞∑
k=1

(λt)ke−λt

k! (1− eλt)
E
[
esZ
]k

=
∞∑
k=0

(λt)ke−λt

k! (1− eλt)
MZ(s)k − e−λt

1− e−λt

=
eλt(MZ(s)−1) − e−λt

1− e−λt
. (4.2.8)

The CGF then follows as the logarithm of the MGF, and by using the identity log(a− b) =

log(a) + log(1− b/a).

In the case of a pure diffusion process, the mITSPA reduces to the ITSPA.

Our third and final method stems from Zhang and Schmidt (2016). It is simply the approx-

imated IFT of the characteristic function corresponding to one of the discretization schemes

using the Gauss-Laguerre method.

The Gauss-Laguerre method of order n approximates exponentially weighted integrals in

the following way (Press et al., 1992):

∫ ∞
0

e−xf(x)dx ≈
n∑
i=1

wif(xi), (4.2.9)

where xi is the i’th root of the Laguerre polynomial of order n defined recursively by

(i+ 1)Li+1 = (1− x+ 2i)Li − iLi−1, L0 = 1, L1 = 1− x, (4.2.10)

and wi are the weights given by

wi =
xi

(n+ 1)2 [Ln+1(xi)]
2 . (4.2.11)

Chapter 4. Approximation Methods for small-time Jump-Diffusion Transition Densities 41

Theorem 4.3. Let Xt, X̃t, X̃t−, and Yt be as in theorem 4.1. The Fourier-Gauss-Laguerre

(FGL) approximation to the transition density of Xt is given by:

fgl
(
f
X̃t

;x
)

=
1

π

n∑
j=1

wj<
(
φ
X̃t

(sj)e
sj−isjx

)
, (4.2.12)

where wj and sj are the weights and the abscissa respectively in the Gauss-Laguerre method

of order n. The characteristic function is found by multiplying the characteristic function

for one of the discretizations X̃−t of the diffusion part and the characteristic function for the

compounded Poisson process Yt:

φ
X̃t

(s) = φ
X̃t−

(s)φYt(s). (4.2.13)

Proof. From theorem 3.4, we have

fXt(x) =
1

π

∫ ∞
0
<
(
φXt(s)e

−isx) ds =
1

π

∫ ∞
0

e−s<
(
φXt(s)e

s−isx) ds
≈ 1

π

∫ ∞
0

e−s<
(
φ
X̃t

(s)es−isx
)
ds ≈ 1

π

n∑
i=j

wj<
(
φ
X̃t

(sj)e
sj−isjx

)
. (4.2.14)

The original method of Zhang and Schmidt (2016) suggests approximating the original

IFT (3.1) of φ
X̃t

by using the trapezoid method and the FFT algorithm for efficiently

obtaining the transition density. While this might be efficient for estimating the transition

density, it was shown to be computationally costly and to not produce accurate results

when doing likelihood-based inference for the real data in chapter 7. When constructing the

likelihood, the quantities of interest are the transition probabilities, not the whole densities.

We therefore suggest the FGL over directly approximating the IFT with a DFT using the

FFT, which proved to be computationally costly to a lesser degree and which provided us

with accurate results. The implementation of these methods with automatic differentiation

is discussed in chapter 5 and numerical results in chapter 6.

Chapter 5

TMB and Automatic

Differentiation

In this section we wish to explain automatic differentiation (AD), also called algorithmic

differentiation, and to motivate its use through packages such as Template Model Builder

(TMB). We start with outlining in what situations it might be applicable and how it diverges

from standard tools such as divided differences and symbolic differentiation. We then look

into the theory of AD and its implementation in software, considering dual numbers, forward

mode, and reverse mode. We then proceed to discuss the TMB package in R, utilizing

CppAD, which is an AD package for C++.

5.1 Motivation for Automatic Differentiation

In the natural sciences many problems revert to the problem of calculating derivatives.

Popular and easily implemented methods such as the Euler and Newton methods require

first order derivatives, while optimization problems typically require the Hessian matrix

in addition to the gradient. For higher order approximation, higher-order derivatives are

preferable.

42

Chapter 5. TMB and Automatic Differentiation 43

In the context of our problem of parameter estimation, the second alternative, namely

optimization problems usually requiring both the gradient and the Hessian matrix of the

objective function, is relevant. The usual solutions to these problems are of three kinds:

1. Numerical differentiation

Divided differences is very easy to implement, using the already implemented objective

function f . However, the method has the disadvantage of O(n) evaluations of f ∈ Rn.

It also has the problem of truncation error versus round-off error, and of becoming

increasingly inaccurate for higher-order derivatives.

2. Symbolic differentiation

Symbolic differentiation is indeed completely mechanical in the sense that it takes

advantage of repeated use of the chain rule. A disadvantage is that it requires relatively

large amounts of memory. It also requires implementation of the obtained expression.

3. Differentiation by hand

This method has the benefit of producing efficient derivative code, but for many ap-

plications where there is a need for computing derivatives of order n when n is large,

or when the objective function is tedious, it is not feasible (Radul, 2013).

In recent years an intriguing alternative has gained increasing popularity: automatic differ-

entiation (AD). Given a computer algorithm defining a function, AD is a set of techniques

used to evaluate numerically the derivatives of that function (Kristensen et al., 2015). In

fact, derivatives of any order of the function can be calculated exactly.

5.2 A Brief Introduction to Automatic Differentiation

AD theory is based on the property of programming languages such as C++ of decomposing

expressions into elementary operations. Elementary differentiation rules can then be applied

to the elementary operations and evaluated, and the derivatives are bound together using

the chain rule. This is a strategy similar to that of symbolic differentiation, but it differs

in the sense that AD generates evaluations and not formulas. As soon as an intermediate

expression can be evaluated, it is evaluated (Tucker, 2010). We illustrate AD by an example:

Chapter 5. TMB and Automatic Differentiation 44

Step Operation Value Derivatives

1 t1 = sx sx ∂t1
∂s = x

2 t2 = s2σ2

2 − t1
s2σ2

2 − sx
∂t2
∂s = σ2s− ∂t1

∂s

3 t3 = sµ+ t2 sµ+ s2σ2

2 − sx
∂t3
∂s = µ+ ∂t2

∂s

4 g = t3 sµ+ s2σ2

2 − sx
∂g
∂t3

= 1

Table 5.1: Algorithm broken down into elementary operations

Consider the inner problem (3.2.2)

arg min
s
{KX(s)− sx} . (5.2.1)

Taking X to be normal X ∼ N(µ, σ2), we have the solution ŝ = x−µ
σ2 from solving the

equation K ′X(s) − x = 0. However, the inner problem often has to be solved numerically

when the CGF is more complicated, and for such instances AD comes in handy. We can

implement the objective function g = KX(s)−sx as a computer algorithm, and, utilizing AD

theory, we can construct a robust optimization algorithm minimizing the objective function

with respect to s. An illustration of how the implemented objective function might be

broken down is to be found in table 5.1. The derivatives can then be combined:

g′(s) =
∂g

∂t3

∂t3
∂s

= µ+
∂t2
∂s

= µ+ σ2s− ∂t1
∂s

= µ+ σ2s− x. (5.2.2)

Another illustrative example, considering linear regression, is given in Fournier et al. (2012).

To discuss implementation of AD, we first consider the case of first order AD for functions

f : R→ R. We extend all real numbers with a second component: f(x0)→ (f(x0), f
′(x0)).

The idea is, then, that the first component holds the value of the function, and the second

component holds the derivative at x0. This idea of dual numbers can be implemented with

an AD data type. Arithmetic for this data type ~u = (u, u′) might look like:

• ~u+ ~v = (u+ v, u′ + v′),

• ~u− ~v = (u− v, u′ − v′),

• ~u× ~v = (uv, uv′ + u′v),

Chapter 5. TMB and Automatic Differentiation 45

g′ = w8

w8 = w1 + w7

w1 = x w7 = w2 + w6

w2 = µ w6 = w3 ∗ w4

w5 = w2
3

w3 = σ

w4 = s

Figure 5.1: Computational graph of the derivative of the inner problem g′(s) for a normal
random variable.

• ~u
~v =

(
u
v ,

u′v−uv′
v2

)
.

One then only has to define how the data type should treat constants and the independent

variable x:

x̂ = (x, 1) and ĉ = (c, 0),

Using the usual rules of differentiation, one can then extend the data type to functions using

the chain rule:

f̂(û)→ f̂(u, u′) = (f(u), u′f ′(u)).

If the user declares a variable of this specific type and then proceeds to initialize it with

a rather lengthy expression, we have already seen how a programming language breaks up

the expression into elementary operations (table 5.1). Having the AD arithmetic defined in

the language will then ensure that we end up with the correct values for the user-defined

variable and its derivative.

Chapter 5. TMB and Automatic Differentiation 46

This idea might of course be extended to a data type which, in addition to the type already

discussed, has a third component holding the value of the second derivative f ′′(x0). However,

a more effective approach to higher-order AD can be obtained through the calculus of Taylor

series (Griewank and Walther, 2008). The arithmetic of the AD data type can be integrated

using operator overloading. While this is not possible in all programming languages, it is

possible in C++, and is used by the AD package CppAD (Bell, 2005).

Our final note on the principles of AD considers how to recurse through the chain rule. In

our example with the inner problem, we have shown how the derivatives might be combined

in order to find the derivative of the inner problem. The way we recursed through the deriva-

tives is known as forward mode. But this is just one way to combine derivatives. In practice,

forward mode is combined with reverse mode for calculation of higher-order derivatives. Let

g′ denote ∂g
∂s , and consider the computational graph of g′ in figure 5.1. Reverse mode will

then pass through the computational graph, starting at the node representing g′, until it

reaches the node representing s in the following way:

∂g′

∂s
=
∂w8

∂s

(
∂g′

∂w8

)
=
∂w7

∂s

(
∂w8

∂w7

∂g′

∂w8

)
=
∂w6

∂s

(
∂w7

∂w6

∂w8

∂w7

∂g′

∂w8

)
=
∂w4

∂s

(
∂w6

∂w4

∂w7

∂w6

∂w8

∂w7

∂g′

∂w8

)
= 1

(
σ2 × 1× 1× 1

)
= σ2. (5.2.3)

For a thorough introduction of the techniques and principles of AD, we refer to Griewank

and Walther (2008).

5.3 TMB and CppAD

When implementing and using the ITSPA (6), we have utilized the R package Template

Model Builder (TMB) recently released on CRAN. TMB enables easy and efficient access to

parallel computations with R and C++. The user will define an objective function in C++,

for example the joint likelihood, and then everything else is done in R (data management,

Laplace approximation and optimization). The Laplace approximation is performed by the

use of CHOLMOD, available in R through the Matrix package. It also lets the user take

Chapter 5. TMB and Automatic Differentiation 47

Code Description AD-mode Starting point result

1 T1: Code for f(u, θ) θ f
2 T2: AD of Code 1 Forward θ ∇θf
3 T3: AD of Code 2 Reverse ∇θf H

Table 5.2: CppAD steps to calculate tapes T1-T3 (Kristensen et al., 2015; Skaug and
Fournier, 2006).

advantage of the general purpose AD package CppAD (Bell, 2005) in C++, to calculate

first, second, and possibly third order derivatives of the objective function (Kristensen et al.,

2015).

The objective function is a function f(u, θ) : Rm+n → R, which is implemented by the user

in C++. During the initial phase of the execution of the program, CppAD creates three

tapes, T1-T3. A ”tape” refers to a representation of some implemented function. Such

a tape can be illustrated by a computational graph, similar to table 5.1 or figure 5.1. In

TMB, the tape T1 refers to the representation of the user-implemented objective function,

T2 refers to the gradient of the objective function, and T3 to the Hessian matrix. T2 is

generated by a forward pass through T1, and T3 is generated through a reverse pass through

T2 (Kristensen et al., 2015). This is illustrated in table 5.2, taken from Skaug and Fournier

(2006). The computational graph of g′(s) (figure 5.1) can be viewed as the tape T2 after a

forward pass through the computational graph of g(s).

5.3.1 Example: Cox-Ingersoll-Ross Maximum Likelihood Estimation

We will now show how TMB can be used for MLE 1. From section 2.3.3, we know that

future values of the CIR process, Xt, given a previous time point X0, have the density

fXt(x) = ce−u−v
(v
u

) q
2
Iq
(
2
√
uv
)
,

where c = 2κ/(σ2(1−e−κt)), q = 2κα/σ2−1, u = cX0e
−κt, and v = cXt. Consider observa-

tions of the CIR process at discrete time points t0, t1, . . . tn, and that we wish to estimate the

1 The following example is modelled after the tutorial example on the TMB home page: https://github.
com/kaskr/adcomp/wiki/Tutorial.

https://github.com/kaskr/adcomp/wiki/Tutorial
https://github.com/kaskr/adcomp/wiki/Tutorial

Chapter 5. TMB and Automatic Differentiation 48

parameters of the process. We can then implement the joint negative log-likelihood (neg-

ative of equation (1.0.2)) as the objective function in C++. Using the TMB package, we

pass the observed data points and some initial parameters from R to the objective function

in C++. The tapes T1-T3 are created, and the function value lθ, the gradient ∇lθ, and the

Hessian matrix Hlθ are returned from C++ and made available in R.

The C++ part of the TMB code is as follows:

We first link the TMB library and then declare the objective function in the standard way

of TMB:� �
#inc lude <TMB. hpp> // Links in the TMB l i b r a r i e s

template<class Type>

Type ob j e c t i v e f un c t i o n<Type > : : operator () ()� �
where the data type Type is the AD special type in TMB, used for all variables except for

int for integers. The data and parameters needed for the JNLL:� �
DATAVECTOR(x) ; // Sample path transmitted from R

DATA SCALAR(dt) ; // Equidistant timestep from R

PARAMETERVECTOR(param) ; // Parameters , initial guess from R� �
are read from R when the function is called. Note that the usual data types such as float

and double are not used in TMB code.

Variables used in the JNLL of the CIR process are declared and initialized:� �
Type kappa=param [0] , alpha=param [1] , sigma=param [2] ;

Type c = 2∗kappa /(sigma∗ sigma∗(1−exp(−kappa∗dt))) ;

Type q = 2∗kappa∗ alpha /pow(sigma , 2) − 1 ;

Type JNLL = 0 ; // Declare and initialize the JNLL� �
including the JNLL itself. We then proceed to evaluate the JNLL, defined as the negative

of the JLL (1.0.2), looping through the sample path:� �
for (int i = 0 ; i<(x . s i z e ()−1) ; i++){

Type u=c∗x [i]∗ exp(−kappa∗dt) ;

Type v=c∗x [i +1] ;

Type pCIR = c ∗ exp(−u−v) ∗ pow((v/u) , (q/2)) ∗

Chapter 5. TMB and Automatic Differentiation 49

b e s s e l I (Type (2∗ s q r t (u∗v)) , q) ;

JNLL −= log (pCIR) ;

}� �
Finally we return the JNLL:� �
return JNLL ;� �

The objective function is called in the R part of the code. We first generate data:� �
x<- c i rP r o c e s s (50 , 1000 , 2 , 1 , . 5 , 1 , 2)� �
The function cirProcess(t, n, κ, α, σ, xt0,seed) simulates a CIR process exactly using the

noncentral chi square random number generator in R. We then proceed to compile the C++

part of the code, stored in cirJNLLexact.cpp, and dynamically link it into R:� �
library (TMB)

compile ("cirJNLLexact.cpp")

dyn . load (dyn l ib ("cirJNLLexact"))� �
We construct an R object, obj, using the linked code:� �
obj <-MakeADFun(data=list (x=x , dt=50/1000) , parameters=list (param=c (5 , 2 , 1)))� �
This object holds the initial parameters used when calling the code, the function value of

the JNLL, the gradient, and the Hessian matrix:� �
obj $par

param param param

5 2 1

obj $ fn (c (3 , 2 , 1))

[1] −338.4826

obj $gr (c (3 , 2 , 1))

[, 1] [, 2] [, 3]

[1 ,] 104 .0886 360.1807 307.2538

obj $he (c (3 , 2 , 1))

[, 1] [, 2] [, 3]

Chapter 5. TMB and Automatic Differentiation 50

[1 ,] 52 .23106 266.0956 −310.4137

[2 ,] 266.09557 443.2943 −874.4130

[3 ,] −310.41251 −874.4114 1181.7715� �
We then find the maximum of the JLL by minimizing the JNLL, using the nlminb() function

in R:� �
opt <-nlminb (obj $par , obj $ fn , obj $gr , obj $he)

outer mgc : 1069.415
...

outer mgc : 0 .00540083� �
Finally, we can evaluate the standard error of the parameters:� �
rep<- sd repor t (obj)

outer mgc : 0 .00540083
...

outer mgc : 7 .647844

rep

sd repor t (.) r e s u l t

Estimate Std . Error

param 1.917462 0.29077243

param 1.089665 0.03958950

param 0.513891 0.01205538

Maximum grad i en t component : 0 .00540083� �
One of the benefits of parallel computation with R and C++ is that R is based on C++, and

functions in R are written in C++ located in the RMath library. Since R is running in the

background, TMB can access the RMath library and extract functions from within. This is

done with functions such as ppois(n, λ). However, these functions only hold the function

values, and therefore the first order derivatives have to be specified in terms of functions

known to TMB. The besselI(x, ν) is not implemented in TMB. But it is needed for the

density of the non-central chi-square and the CIR process. The code that makes the modified

Bessel function of the first kind available to the TMB user can be found in appendix B.

Chapter 5. TMB and Automatic Differentiation 51

5.4 Implementation of Approximation Methods

The implementation of approximated JNLLs and the exact ones is carried out in TMB.

This approach to implementation benefits us with the speed of C++, the R-like syntax,

easy access to probability density functions, and the possibility of creating very robust

optimization code in R, having access to the exact values of the function, the gradient, and

the Hessian matrix for all the JNLLs.

In the case of the pure diffusion processes, the implementation of the JNLL using the exact

transition densities is similar to the example used to discuss MLE in TMB (5.3.1). We note

that the R-like syntax and the implemented functions in TMB, such as dnorm(x, µ, σ, log)

and the log-normal density, here come into their own.

The ITSPA (4.1) is implemented in a similar manner as the exact likelihood (see section

5.3.1). The (non trivial) difference is inside the for-loop when building the JNLL, we use

the ITSPA to the transition density. A nice feature of TMB, which we have made use

of here, is the possibility to utilize AD inside the C++ part of the program through the

functions autodiff::gradient and autodiff::hessian. We utilize this when calculating

derivatives used in an iterative solver that finds the saddlepoint numerically. To illustrate

this, we here provide the code:� �
template<class Type , class Functor>

Type SP(Functor f , vector<Type> s , int n i t e r) {

// Minimize the function , f, with respect to s

for (int i = 0 ; i<n i t e r ; i++){

vector<Type> g = au t o d i f f : : g rad i en t (f , s) ;

matrix<Type> H = au t od i f f : : h e s s i an (f , s) ;

s −= atomic : : matinv (H) ∗ g ;

}

return s [0] ;

}� �
Figure 5.2 illustrates how the ITSPA is obtained in C++. Data and parameters are passed

from R to the objective function in C++. It creates the CGF object which has the CGF

functional value KXt as an operator with respect to s embedded in the structure. The inner

Chapter 5. TMB and Automatic Differentiation 52

ITSPA

CGF

IP

SP

SPA

KXt(s), ŝ, Xt

f = KXt
(s)− sx, s

X0, Xt, s, θ

X0, s, θ

KXt
(s)

SPA

arg mins {KXt
(s)− sx}

f = KXt
(s)− sx

X0, θ

KXt(s)

Figure 5.2: Illustration of the Itô-Taylor saddlepoint approximation implemented in C++.
The CGF and inner problem (IP) are constructed, and the saddlepoint (SP) and the SPA

are calculated on this basis.

problem object is created, which contains KXt(s)− sx as an operator. The inner problem is

then passed to the saddlepoint function which optimizes the inner problem with respect to

s, and returns arg mins {KXt(s)− sx}, using an algorithm utilizing AD. Having the CGF

and the saddlepoint, we then pass these objects to the SPA function, which calculates the

SPA, using AD to calculate the Hessian matrix of the CGF. The ITSPA is then returned

from the objective function to R. The mITSPA (4.2) also utilizes this structure in obtaining

the ITSPA.

In chapter 6 we shall find that a renormalization is necessary when working with the jump-

diffusion models. In general, the ITSPA will not be easy to integrate exactly, but exact

quadrature rules can in some cases be applied, as is the case for the CIR process. We have,

Chapter 5. TMB and Automatic Differentiation 53

however, estimated the integral via the composite Simpson’s rule:

∫ b

a
f̂(x)dx ≈ ∆xt

3

f̂(X0) + 2

n
2
−1∑
j=1

f̂(x2j) + 4

n
2∑
j=1

f̂(x2j−1) + f̂(xn)

 ,
where xj = a+ jh for j = 0, . . . , n and ∆x is the equidistant step length.

The nice feature of TMB of allowing AD inside the C++ code comes in handy when we

find suitable starting and endpoints, (a, b), of the integral. We wish to integrate over the

area where there is the most probability mass, which can be found through the possibility

of calculating the moments via the derivatives of the CGF or the MGF. A natural estimate

of an interval containing (most of) the probability mass could be E[X] ± kSD[X], where k

is some constant.

The FGL (4.3) method requires the values of the characteristic function which is a complex

valued function. As mentioned, TMB supports the AD data type Type and int, together

with vectors and matrices based on these, which are all real valued. We therefore implement

a third templated complex data type, cType based upon Type. Operators in C++ are

overloaded to handle complex arithmetic, compound assignments, and unary operations.

In addition, standard functions such as abs and arg, together with exponential functions,

power functions, trigonometric functions, and hyperbolic functions were implemented. The

full overview can be found in table 5.3. The abscissas and weights (4.2.11) for Gauss-

Laguerre quadrature was calculated directly in C++, using the algorithm in Press et al.

(1992, chapter 4, p. 152).

Chapter 5. TMB and Automatic Differentiation 54

cType<Type>

Type Name Arguments Return value Explanation

Member functions
cType (constructor) x, y x+ iy Constructs a complex number
cType operator += w z + w Compound assignments
cType operator -= w z − w
cType operator *= w z ∗ w
cType operator /= w z/w

Non-member functions
cType operator + z z Unary operators
cType operator - z −z
cType operator + z, w z + w Complex arithmetic
cType operator - z, w z − w
cType operator * z, w z ∗ w
cType operator / z, w z/w
bool operator == z, w true or false Comparison operators
bool operator != z, w true or false
Type abs z |z| Absolute value of z
Type arg z θ Phase angle of z in (−π, π]
cType conj z z Complex conjugate
Type real z <(z) Real part of z
Type imag z =(z) Imaginary part of z
cType exp z ez Complex exponential
cType log z log z Complex logarithm
cType pow z, w zw Power of a complex number
cType sqrt z

√
z Square root of a complex number

cType sin z sin(z) Trigonometric functions
cType cos z cos(z)
cType tan z tan(z)
cType asin z arcsin(z)
cType acos z arccos(z)
cType atan z arctan(z)
cType sinh z sinh(z) Hyperbolic functions
cType cosh z cosh(z)
cType tanh z tanh(z)

Table 5.3: Complex AD data type: cType<Type>. Here x and y denote real numbers of
type Type, while z, w, and i denote complex numbers of type cType and the imaginary

unit, respectively.

Chapter 6

Numerical Results

In this chapter we present numerical results for the methods described in chapter 4. We test

the accuracy of the methods by calculating and plotting transition densities, in addition to

likelihood-based inference for processes with known solutions and which can be simulated

exactly. The error in the estimated transition densities are measured using the absolute

error of the log density. The processes that are considered are the GBM (2.3.1), the OU

process (2.3.2), the CIR process (2.3.3), and the MJD model for log returns (2.3.4). The first

section considers the transition densities, the second considers likelihood-based analysis.

6.1 Approximation of Transition Densities

In the following, we present some numerical results from estimating transition densities

with the ITSPA (4.1), the mITSPA (4.2), and the FGL (4.3) methods. We consider the

CIR process (2.3.3), also considered in Preston and Wood (2012), and the MJD model

(2.3.4) for log-returns as our test processes for a pure diffusion and a jump-diffusion process

respectively. For the CIR process, we already have the exact transition density, for the MJD

model we obtain the transition density via the FGL method, which we take as our benchmark

because the characteristic function is known in closed form. The error is measured using

55

Chapter 6. Numerical Results 56

0.06 0.08 0.10 0.12 0.14

0

5

10

15

20

25

30

x

de
ns

ity

Exact
Spa 1
Spa 2
reSpa 2
FGL 2
SPA 3
reSPA 3
FGL 3

x

AE
LD

0.06 0.08 0.10 0.12 0.14

10−4

10−2

10−0

Figure 6.1: (Top) Exact and estimated transition densities for the CIR process with
starting value x0 = 0.1, parameters κ = 0.5, α = 0.06, and σ = 0.15, and with timestep

t = 1/12.
(Bottom) AELD plotted for the same values of the estimated transition densities.

the absolute error of the log density (AELD), defined as

AELD(xt|x0, θ) =
∣∣∣log f̂Xt(xt|x0, θ)− fXt(xt|x0, θ)

∣∣∣ . (6.1.1)

From figure 6.1 we see that all approximations are close to the exact transition density.

For this particular example, it is evident that scheme 3 (4.1.3) outperforms the Euler-

Maruyama scheme (4.1.5) and the Milstein scheme (4.1.7). In view of the AELD, the

renormalized version of scheme 3 seems to provide the best approximation for most points.

There are, however, points where the Milstein scheme and even the Euler-Maruyama scheme

outperform the others. This stems from the fact that at some point f̂ − f will change sign

and make the error practically zero. For both figure 6.1 and figure 6.2, the FGL is practically

Chapter 6. Numerical Results 57

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.5

1.0

1.5

2.0

x

de
ns

ity

Exact
Spa 1
Spa 2
reSpa 2
FGL 2
SPA 3
reSPA 3
FGL 3

x

AE
LD

0.4 0.6 0.8 1.0 1.2 1.4 1.6

10−3

10−2

10−1

100

Figure 6.2: (Top) Exact and estimated transition densities for the CIR process with
starting value x0 = 1, parameters κ = 1, α = 1, and σ = 0.3, and with timestep t = 1.

(Bottom) AELD plotted for the same values of the estimated transition densities.

the same as the renormalized SPA. This suggests that the error stems from the Itô-Taylor

approximation, and not from the saddlepoint approximation, when considering processes

without jumps. This seems to hold for both the Milstein scheme and scheme 3.

For a different (and perhaps rather artificial) set of parameters, we see that the AELD

in figure 6.2 is much larger than for the previous example. The shape of the estimated

transition densities for both scheme 1 and scheme 2 seems to deviate from the exact density.

The shape provided by the estimation via scheme 3 seems to be more in accordance with the

exact density. For the left tail, the AELD measurements are very similar, while for the right

tail scheme 3 provides a better estimate. Scheme 3 outperforms the others clearly where

the density has the most mass. Thus, in general, scheme 3 provides the better estimate, but

Chapter 6. Numerical Results 58

−0.10 −0.05 0.00 0.05 0.10

0

5

10

15

20

x

De
ns

ity

FGL
Spamix
reSpamix
Spa
reSpa

x

AE
LD

−0.10 −0.05 0.00 0.05 0.10

10−5

10−4

10−3

10−2

10−1

100

Figure 6.3: (Top) Exact and estimated transition densities for the MJD model (for log-
returns) with timestep t = 1/250 and parameters r = 0.55, σ = 0.2, λ = 18, µ = −0.01,

and ν = 0.04.
(Bottom) AELD plotted for the same values of the estimated transition densities.

there exist points (close to where f̂ −f changes sign) where scheme 1 and scheme 2 perform

better.

In figure 6.3 we see the exact and estimated transition densities for the MJD model for

log-returns. For this particular example, the drift and diffusion coefficients are constants,

and all schemes will therefore provide exact estimates for this instance. As noted earlier

in this section, we here take the FGL approximation as our benchmark. It is evident from

both the transition density plot and the AELD that the ITSPA and also its renormalized

version perform poorly compared to the other methods. The ITSPA and the renormalized

version seem to have fatter tails and sharper peaks compared with the others. The peak

of the renormalized version is also very close to the peak of the exact density, as can be

Chapter 6. Numerical Results 59

−0.6 −0.4 −0.2 0.0 0.2 0.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

De
ns

ity
FGL
Spamix
reSpamix
Spa
reSpa

x

AE
LD

−0.6 −0.4 −0.2 0.0 0.2 0.4

10−5

10−4

10−3

10−2

10−1

100

Figure 6.4: Example of bimodal transition density for the MJD model (for log-returns)
with timestep t = 1/4 and parameters r = 0.03, σ = 0.2, λ = 1, µ = −0.5, and ν = 0.1.

seen from the AELD changing sign at this point. The reason why the mITSPA is preferable

to the ITSPA is evident from both the plot of the transition density and the AELD. The

renormalized version of the mITSPA is the following approximation:

remspa
(
f
X̃t

;x
)

= spa
(
f
X̃t−

;x
)
e−λt +

spa
(
f
X̃∗t

;x
)

∫
spa

(
f
X̃∗t

;x
)
dx

(
1− e−λt

)
, (6.1.2)

so the SPA for X̃∗t is renormalized, but not the pure diffusion part. The reason why we

do not renormalize the whole expression is evident from figure 6.4. For some parameters,

the MJD model will be bimodal, which is a shape the ITSPA is not able to replicate. Both

the mITSPA and its renormalized version perform very well for the right part (to the right

of -0.1), but the mITSPA underestimates the impact of jumps. The renormalized version

handles this problem well. With these results in mind, we continue with the mITSPA and

the DFT as approximation methods in the next section and in chapter 7.

Chapter 6. Numerical Results 60

Method Parameters

µ σ l(θ̂; x)

Exact Estimate 0.04551693 0.20474323 2040.185

Standard error 0.118292400 0.005289691

ITSPA

Scheme 1 Estimate 0.04552182 0.20480000 2040.051

Standard error 0.118320241 0.005291158

Scheme 2 Estimate 0.04553684 0.20479341 2040.232

Standard error 0.118321415 0.005292543

Scheme 3 Estimate 0.04551767 0.20475610 2040.232

Standard error 0.118299834 0.005289801

reITSPA

Scheme 2 Estimate 0.04552938 0.20478127 2040.235

Standard error 0.118314384 0.005291601

Scheme 3 Estimate 0.04552016 0.20474397 2040.235

Standard error 0.118292829 0.005288862

FGL

Scheme 2 Estimate 0.04552548 0.20478043 2040.185

Standard error 0.118313815 0.005291554

Scheme 3 Estimate 0.04552666 0.20474278 2040.185

Standard error 0.118292071 0.005288793

Table 6.1: Parameter estimates for the GBM, with ∆t = 1/250 and n = 750. True
parameters are µ = 0.1 and σ = 0.2.

6.2 Approximation methods applied to likelihood-based anal-

ysis

In the following we present likelihood-based estimation of parameters using the methods

previously discussed. This is compared to estimation based on using the exact transition

densities, or the FGL in the case of the Merton model. The estimation results for the GBM,

the OU process, the CIR process, and the Merton model are found in tables 6.1, 6.2, 6.3,

and 6.4, respectively. The data used for the estimation were generated using the solutions of

the SDEs in chapter 2.3. The data generated were generated with timesteps ∆t = 1/250 for

Chapter 6. Numerical Results 61

Method Parameters

κ α σ l(θ̂; x)

Exact Estimate 0.6371062 0.4767801 0.2056826 1030.498

Standard error 0.149601549 0.041683387 0.005564301

ITSPA

Scheme 1 Estimate 0.6204889 0.476780 0.2003414 1030.498

Standard error 0.141866267 0.041683387 0.005279164

Scheme 2 Estimate 0.6204889 0.4767801 0.2003414 1030.498

Standard error 0.141866267 0.041683387 0.005279164

Scheme 3 Estimate 0.6374181 0.4767801 0.2057819 1030.498

Standard error 0.14982442 0.04168339 0.00557789

FGL

Scheme 2 Estimate 0.6205907 0.4755344 0.1999412 1030.6

Standard error 0.141603579 0.041653429 0.005401377

Scheme 3 Estimate 0.6375256 0.4755344 0.2053718 1030.6

Standard error 0.149548434 0.041653428 0.005697267

Table 6.2: Parameter estimates for the OU process with ∆t = 1/12 and n = 720. True
parameters are κ = 0.5, α = 0.5, and σ = 0.2.

the GBM, ∆t = 1/52 for the CIR process, ∆t = 1/12 for the OU process, and ∆ = 1/250

for the Merton model, mimicking daily, weekly, and monthly observations for financial data.

Considering the point estimates of the parameters and the uncertainty of these estimates,

all the methods and schemes produce good results compared to the estimates based on using

the exact transition densities. In addition, the evaluations of the log-likelihood functions in

their respective optima are practically the same. This tells us that the renormalization of the

ITSPA does not have a large and beneficial effect when one is working with pure diffusions.

Likelihood-based inference with the ITSPA without renormalization is therefore possible and

quite accurate for pure diffusions. This is also reasonable in view of the estimated transition

densities (figures 6.1 and 6.2) in section 6.1: when the timestep is small, even the Euler-

Maruyama scheme (4.1.5), which is normal, provides a reasonable approximation. The SPA

is exact for a normal random variable, and it is therefore reasonable to assume that transition

densities from higher-order schemes will be approximated accurately with the SPA, since the

true (and estimated) transition densities will be close to normal. Renormalization does not

Chapter 6. Numerical Results 62

Method Parameters

κ α σ l(θ̂; x)

Exact Estimate 2.6364617 1.0590417 0.5287758 434.2396

Standard error 0.55194190 0.04644282 0.01766123

ITSPA

Scheme 1 Estimate 2.5979632 1.0586450 0.5018126 434.2881

Standard error 0.49744663 0.04470062 0.01586857

Scheme 2 Estimate 2.4631499 1.0590665 0.5033727 434.2972

Standard error 0.49845482 0.04734476 0.01598954

Scheme 3 Estimate 2.6323468 1.0591018 0.5305189 434.7113

Standard error 0.55584460 0.04667515 0.01792541

reITSPA

Scheme 2 Estimate 2.4630148 1.0589346 0.5029161 433.8832

Standard error 0.49801072 0.04729622 0.01594586

Scheme 3 Estimate 2.6198579 1.0593195 0.5297991 434.2021

Standard error 0.55459115 0.04684416 0.01784453

FGL

Scheme 2 Estimate 2.4625853 1.0845777 0.5032077 433.8103

Standard error 0.49791928 0.04912341 0.01597505

Scheme 3 Estimate 2.6189290 1.0592701 0.5297533 434.1375

Standard error 0.55448542 0.04685458 0.01783991

Table 6.3: Parameter estimates for the CIR process with ∆t = 1/52 and n = 624. True
parameters are κ = 2, α = 1, and σ = 0.5.

seem to be crucial here. In table 6.4, we estimated parameters for T = 1, T = 3, and T = 5.

As mentioned, renormalization of the mITSPA seems to be necessary both for parameter

estimates and especially the value of the likelihood.

In table 6.5 we compare the speed (in milliseconds) of the different methods relative to each

other. The methods involving saddlepoint approximations without renormalization (ITSPA

and mITSPA) are faster than saddlepoint approximations with renormalization and also

faster than the FGL method, which is second in speed. These results are valid for both

the CIR process and the MJD model. It is also interesting to note how much more time

the calculation of the gradient and the Hessian matrix is consuming than the log-likelihood

Chapter 6. Numerical Results 63

Method Parameters

r σ λ µ ν l(θ̂; x)

T = 1

mitspa est 0.72074 0.30700 12.86635 0.00132 0.06056 596.015

se 0.37759 0.01912 8.82091 0.02037 0.01959

remitspa est 0.72172 0.30249 16.55132 0.00040 0.05570 596.398

se 0.38265 0.02103 12.93950 0.01719 0.01938

FGL est 0.72003 0.30272 16.43486 0.00045 0.05430 596.336

se 0.37553 0.02060 12.27560 0.01644 0.01830

T = 3

mitspa est 0.38524 0.30172 24.74671 -0.01911 0.06328 1717.037

se 0.25461 0.01067 5.65762 0.00889 0.00779

remitspa est 0.36125 0.29691 29.68622 -0.01735 0.05953 1720.067

se 0.26023 0.01110 7.26270 0.00816 0.00734

FGL est 0.38405 0.29776 28.79432 -0.01692 0.05882 1719.595

se 0.25321 0.01102 6.92008 0.00790 0.00729

T = 5

mitspa est 0.59237 0.30154 30.57034 0.00051 0.04735 2897.868

se 0.17890 0.00959 6.83584 0.00484 0.00515

remitspa est 0.59498 0.28530 52.00543 0.00060 0.03925 2904.966

se 0.18215 0.01220 15.40468 0.00339 0.00509

FGL est 0.59175 0.28959 45.15461 0.00054 0.04058 2903.782

se 0.17819 0.01099 11.49991 0.00360 0.00457

Table 6.4: Parameter estimates (est) with standard deviations (se) for the MJD model for
log-returns with T = 1, T = 3, and T = 5, and ∆t = 1/250. True parameters are r = 0.4,

σ = 0.3, λ = 30, µ = −0.01, and ν = 0.05.

Chapter 6. Numerical Results 64

Method lθ ∇θl Hθ

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

CIR

ITSPA

scheme 1 1.874 1.888 1.952 7.063 7.196 7.496 51.071 51.400 52.249

scheme 2 3.169 3.182 3.220 11.270 11.483 11.606 72.521 73.114 73.738

scheme 3 4.559 4.689 4.841 15.091 15.445 15.799 94.724 95.580 97.269

reITSPA

scheme 2 134.809 137.473 141.612 457.098 509.000 584.649 6292.039 6298.884 6301.882

scheme 3 173.784 174.192 175.156 591.581 607.021 619.613 4275.437 4563.417 5471.84

FGL

scheme 2 7.417 7.489 7.536 16.14098 16.445 16.777 78.665 78.742 79.279

scheme 3 24.527 24.666 25.682 56.484 57.116 58.173 273.357 273.790 274.896

MJD

mSPA 9.376 9.488 9.711 35.335 35.574 35.986 389.262 396.939 410.138

remSPA 150.614 151.196 152.677 539.840 541.689 543.621 8255.338 12120.45 12138

FGL 15.985 16.336 16.666 35.778 36.031 36.344 217.680 219.360 220.330

Table 6.5: Microbenchmarking approximation methods for the CIR process and the MJD
model for log returns. The time (in milliseconds) it takes to evaluate the log likelihood,
the gradient, and the Hessian matrix for the approximation methods. Evaluation of each
expression was replicated 100 times, and the quartiles for each method and expression
are shown in the table. The data used were simulated exactly, for the CIR process: 500
equidistant data points with T = 20, for the MJD model: 750 equidistant data points with
T = 3. Parameters for both processes were set to the same values as the ones used for
testing accuracy in tables 6.3 and 6.4. The ITSPA used 3 Newton iterations to find the
saddlepoint, the renormalization used 45 points with k = 4 (see section 5.4). The mITSPA
used 4 Newton iterations to find the saddlepoint, the renormalization used 25 points with
k = 2.8. The FGL for the CIR process was used with n = 60, and for the MJD model:

n = 70.

Chapter 6. Numerical Results 65

function. Having compared both speed and accuracy, it seems natural to suggest the ITSPA

method over the others when working with pure diffusion processes. In addition to being

efficient and accurate, it seems to be even more stable than the FGL method, when working

with the real data and diffusion models in chapter 7. However, for jump-diffusion processes,

the FGL method is preferable compared to the other methods. It is not as fast as the

mITSPA, but it provides better accuracy. Compared to the renormalized mITSPA, it is

faster, more accurate and also allows for higher jump intensities without crashing.

Chapter 7

Case Studies: Analysis of Stock

Prices as Nonlinear Processes

In this section we analyse financial data, using the approximation methods presented in

chapter 4. The first section concerns a brief presentation of some background theory and

stylized facts for financial data, such as non-constant volatility and heavy-tailed return series.

The standard GBM model has been extended with certain features, such as jumps (the MJD

model 2.3.4) and stochastic volatility (the Heston or Bates models), to incorporate some of

these traits of financial data. But to our knowledge nonlinearity in the price process has not

been thoroughly investigated. An exception from this is the constant elasticity of variance

model (CEV) Cox (1975), which allows for nonlinearity in the diffusion component of the

SDE. The aim of this chapter is to investigate whether such nonlinearity is appropriate or

not. The first section considers background theory. The likelihood-based analysis for stock

prices modelled with nonlinear SDEs with and without jumps is carried out in section 2. In

section 3 we briefly compare some models for stochastic volatility.

66

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 67

7.1 Background Theory

Most financial models have their basis in the efficient market hypothesis (EMH). This hy-

pothesis states that markets are informatively efficient, in the sense that all available in-

formation is incorporated into asset prices. Therefore it is in this context impossible to

consistently achieve returns in excess of average market returns on a risk-adjusted basis

(Brealey et al., 2012, Chapter 13, p. 317). EMH depends upon several assumptions made

about the market and its participants. One of the most important (and frequently dis-

cussed) of those is the rationality assumption made about agents in the markets. It can be

formalized in terms of Bayesian statistics:

1. Agents hold a prior probability belief over states of the world.

2. Agents obtain new information about individual stocks or about macroeconomic events.

3. Agents update their prior probability belief to form a posterior probability belief using

Bayes’ law.

Stock price models such as the GBM (2.3.1) and the Merton model (2.3.4) are compatible

with EMH.

To discuss the appropriateness of EMH, some stylized facts for financial data are needed,

based upon inferences drawn from empirical observations concerning log-returns for equities,

indices, exchange rates, and commodity prices (McNeil et al., 2005):

1. Return series are not iid, although they show little serial correlation.

2. Series of absolute or squared returns show profound serial correlation.

3. Conditional expected returns are close to zero.

4. Volatility appears to vary over time.

5. Return series are heavy-tailed.

6. Extreme returns appear in clusters.

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 68

In the framework of the EMH, large price jumps and rare events are often incorporated

using the ”Black Swan” concept developed by Nassim Taleb (Taleb, 2010). This can be

incorporated in the GBM model by extending the SDE with a jump component, leading

to e.g. the Merton model if jumps are lognormally distributed. Stochastic volatility has

been incorporated via choosing the instantaneous variance in the GBM model to follow a

CIR process (2.3.3), this is known as the Heston model (Heston, 1993). The combination of

the Heston model and the Merton model is known as the Bates stochastic volatility jump-

diffusion model (Bates, 1996). However, some of the other facts are difficult to deal with in

the framework of EMH. If log-returns are not iid, then the random walk hypothesis breaks

down, and if log-returns are iid and heavy-tailed, the GBM model is not a suitable model.

We do however note that for longer time intervals such as months and years, return series

seem to behave more as iid random variables (McNeil et al., 2005).

A somewhat different approach to financial modelling is proposed in Johansen et al. (2000);

Sornette and Andersen (2002); Lin et al. (2009). They view financial markets as complex

systems where investors interact with each other. The perhaps most interesting part is

the notion of nonlinear behaviour of stock prices due to positive reinforcement or herding

behaviour (violating the rationality assumption) leading to crashes as critical points. Ac-

cording to Johansen et al. (2000), the easiest way to describe a mimicking process, St, is in

accordance with the equation

dSt = rSα, (7.1.1)

where α > 1 (Johansen et al., 2000). It is then possible to use this description to extend

standard stock price models. The ”natural” extension of the geometric Brownian motion,

dSt = rSαt dt+ σSαt dWt, (7.1.2)

is proposed in Sornette and Andersen (2002), but is there not further investigated. Instead

they propose a similar model containing parts ”as a convenient device to simplify the Itô

calculation of these stochastic differential equations” (Sornette and Andersen, 2002). Such

additions with no economic interpretation might be considered unaesthetic and makes the

model less attractive. But with the methods discussed in chapter 4, we can extend and

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 69

Model name Drift component Diffusion component Jump component

GBM rSt σSt None

CEV rSt σSαt None

nlModel 1 rSαt σSαt None

nlModel 2 rSαt σSβt None

MJD (r − λk̂)St σSt Log-normal

CEVJD (r − λk̂)St σSαt Log-normal

Table 7.1: Stock price models considered in the preceding section. The first nonlinear
model (nlModel 1) is the model described by equation (7.1.2), the second nonlinear model
(nlModel 2) is a refinement where the exponent is allowed to be different for the drift and
diffusion coefficients. The constant elasticity of volatility jump-diffusion (CEVJD) model

is the CEV model extended with a log-normal jump component.

analyse the standard stock-price models to nonlinear models in a natural way. A model

similar to (7.1.2) is the CEV model, where only the diffusion part is allowed to be nonlinear.

Table 7.1 gives an overview over the models to be investigated.

7.2 Analysis of Stock Prices as Nonlinear Processes

It is interesting to investigate whether stock prices emit nonlinear behaviour (α 6= 1). Using

stock price data of daily returns (∆t = 1/250) on the Shanghai Securities Exchange (SSE)

from 03.01.2005 until 16.10.2007, the Dow Jones Industrial Average (DJIA) from 29.04.1925

until 03.09.1929, and data from every other day (∆t = 1/125) on the Standard & Poors

500 (S&P500) from 11.10.1990 until 24.03.2000, we estimate parameters for the models in

table 7.1 for different time periods and bubbles. In addition, we evaluate the hypothesis

H0 : α = 1 against the alternative hypothesis H1 : α 6= 1 by calculating twice the log of the

likelihoods’ ratio (denoted by D), i.e.:

D = 2
(
l(θ̂1; x)− l(θ̂0; x)

)
, (7.2.1)

where the subscripts denote the respective hypothesis, exploiting that the GBM and the

MJD are special cases (α = 1) of their nonlinear counterparts.

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 70

Model Parameters Statistics

r σ α β λ µ ν l(θ̂; x) D p-value

SSE bubble of 07
GBM est 0.6268 0.2629 1796.7 0.0013

se 0.1604 0.0071
CEV est 0.4718 0.0118 1.4072 1826.2 59 0.0011

se 0.1478 0.0021 0.0244
nlModel 1 est 0.0249 0.0112 1.4132 1827.6 61.8 0.0030

se 0.0082 0.0019 0.0235
nlModel 2 est 0.0001 0.0120 2.0744 1.4046 1828.9 64.4 0.0020

se 0.0005 0.0022 0.3920 0.0247
MJD est 0.6261 0.1694 92.1 -0.0039 0.0202 1840.9 88.4 0.7645

se 0.1584 0.0272 64.9 0.0027 0.0051
CEVJD est 0.4356 0.0128 1.3769 13.6 -0.0094 0.0345 1851.8 110.2 0.0179

se 0.1525 0.0033 0.0345 8.2 0.0086 0.0085

S&P500 Dot-com bubble
GBM est 0.1817 0.1399 3536.6 0.0021

se 0.0460 0.0020
CEV est 0.1798 0.0095 1.4093 3587.4 101.6 0.0087

se 0.0420 0.0010 0.0175
nlModel 1 est 0.0133 0.0097 1.4072 3587.2 101.2 0.0098

se 0.0034 0.0010 0.0177
nlModel 2 est 0.1855 0.0095 0.9950 1.4094 3587.4 101.6 0.0088

se 0.7987 0.0010 0.6829 0.0175
MJD est 0.1797 0.0731 118.0 0.0002 0.0108 3580.8 88.4 0.9661

se 0.0452 0.0110 38.1 0.0005 0.0012
CEVJD est 0.1801 0.0019 1.6170 31.1 0.0020 0.0140 3625.0 176.8 0.5466

se 0.0783 0.0006 0.0185 66.3 0.0042 0.0103

DJIA 1929 bubble
GBM est 0.2328 0.1476 4224.8 0.000009

se 0.0647 0.0028
CEV est 0.2205 0.0101 1.5056 4255.1 60.6 0.000015

se 0.0620 0.0011 0.0227
nlModel 1 est 0.0160 0.0101 1.5051 4255.3 61.0 0.000027

se 0.0048 0.0011 0.0228
nlModel 2 est 0.0024 0.0072 1.7331 1.5038 4255.3 61.0 0.000025

se 0.0134 0.0006 1.0447 0.01688
MJD est 0.2223 0.0961 104.9 -0.0033 0.0104 4295.8 142 0.9153

se 0.0647 0.0057 25.1 0.0008 0.0008
CEVJD est 0.2234 0.0061 1.5490 49.4 -0.0047 0.0130 4315.3 181 0.3694

se 0.0618 0.0011 0.0394 8.9003 0.0002 0.0006

Table 7.2: Parameter estimates (est) with standard deviations (se) for the (log) stock
price models, in addition to the likelihood values, the D statistic (7.2.1) where the GBM is
the model under the null hypothesis, and the p-values from the Kolmogorov-Smirnov test

for uniformity after the transformation (7.2.2).

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 71

GBM

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

CEV

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

nl Model 1

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

nl Model 2

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

MJD

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CEVJD

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 7.1: Goodness-of-fit diagnostic for different models. Histograms of the quantity
(7.2.2) should be compared to a uniform distribution.

As a diagnostic (goodness of fit) to test whether the models are at all reasonable models for

logarithmic stock prices, we transform the data in the following way: given a model m for

the logarithmic stock prices x1, . . . , xn, the data are transformed according to

yi = FmXt(xi) (7.2.2)

for i = 2, . . . , n, where FmXt is the distribution function of Xti |Xti−1 , given the model m.

Under the assumption that the data indeed follow the model m, we can test the transformed

data for uniformity on the interval [0, 1] using the Kolmogorov-Smirnov test. This test will

however not be perfectly accurate, as it requires observations of iid random variables. Our

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 72

3 4 5 6 7 8 9 10

1790

1800

1810

1820

1830

1840

log(λ)

l θ̂

Figure 7.2: Profile likelihood versus logarithmic jump intensities together with the value
of the optimized GBM log-likelihood (dashed line).

original observations form a time series, and are not iid.

All the data were transformed to logarithmic indices. The models must then be transformed

using Itô’s lemma 2.3. Using the ITSPA (4.1) with scheme 3 for the pure diffusion models,

and the FGL method (4.3) also with scheme 3 for the jump-diffusions, we then estimate

parameters and evaluate the log-likelihoods at the optima. The results can be found in

table 7.2, showing significant support in favour of the nonlinear models. Comparing the D

statistic with the chi-square distribution, we see that both the addition of nonlinearity and

of jumps are significant improvements. The likelihood of the CEV model compared to the

nonlinear models (nlModel 1 and nlModel 2) are very close to one another. From this we

can not suggest that agents in the markets have so-called bounded rationality or herding

behaviour as described in Sornette and Andersen (2002), since the nonlinearity parameter

in the drift part of the SDE is not a significant addition to the model. We therefore have

chosen the simplest model (CEV) and have extended it with a jump component, leading to

what we call the constant elasticity of variance jump-diffusion model (CEVJD). This was

done in order to see if the data continued to emit nonlinear behaviour, even when allowing

for jumps. And for all three datasets this was indeed the case.

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 73

The MJD model aims at modelling relatively rare events leading to abnormal changes in

the stock price. According to this model, the jump intensity λ should be fairly low, since by

definition rare events do not happen very often. For all three datasets, the λ̂ml estimates for

the MJD model are around 100, but for the CEVJD, the estimated jump intensities are 13.6,

31.1, and 49.4. A possible interpretation is the following: the behaviour that is captured as

nonlinearity in the CEVJD model is so significant for the value of the log-likelihood of the

MJD model, that instead of modelling rare events, the behaviour is captured in the jump

component as several small jumps. The estimated jump sizes µ and variances ν2 are also

greater in absolute value for the CEVJD model than for the MJD model, which supports

our interpretation.

The ITSPA for diffusions and the FGL method for jump-diffusions (both with scheme 3)

were chosen on the basis of their speed, their stability and their accuracy. As mentioned in

chapter 6, the SPA methods (without renormalization) are faster than the FGL methods (see

table 6.5), and for diffusion processes without jumps they also seem to be more stable than

the FGL methods (and also SPA with renormalization). However, when working with jump-

diffusion processes, the FGL method is more accurate than the SPA method (renormalization

is needed, see chapter 6), reasonably fast (faster than SPA with renormalization), and it

seems to be quite stable (more stable than SPA with renormalization).

As a side note, we have plotted the profile likelihood (MJD log-likelihood) versus the fixed

values of the logarithmic lambda in figure 7.2. It seems that the value of the profile likelihood

tends towards the value of the GBM optimized likelihood, when the jump intensity grows

large. This is in accordance with theorem 2.5.

From the p-values from the Kolmogorov-Smirnov test in table 7.2 and the histograms in fig-

ure 7.1 (bearing in mind the inaccuracy described earlier), we see that the data transformed

with models that include the possibility of jumps are closer to a uniform distribution on [0, 1].

On the 95% confidence level, the CEVJD model is rejected for the SSE data, while the MJD

is not. Indeed, the p-values for transformed data under the MJD model are greater than

those for the CEVJD. This is interesting, because the MJD is a special case of the CEVJD

model, and this must imply that optimizing the value of the likelihood is not equivalent to

optimizing for uniformity for the transformed data.

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 74

7.3 Stochastic Volatility Models

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Sc
al

ed
 V

IX

0
20

40
60

80
VI

X

0
50

0
10

00
15

00
20

00
S&

P5
00

1990 1995 2000 2005 2010 2015

Scaled VIX
VIX
S&P500

Figure 7.3: The scaled VIX for daily variance plotted together with the original VIX and
the underlying S&P500 indices.

.

The volatility for log-returns has for some time been known not to be constant, indeed

this is one of the stylized facts 7.1 and what we tried to incorporate in the CEV and

the CEVJD models. Several stochastic volatility models already exist to incorporate this

feature. We have studied some of the more popular ones, where the variance follows a CIR

process (Heston, 1993), the continuous time GARCH model (Brockwell et al., 2006), the

3/2 model, and the OU process. The model specifications can be found in table 7.3. Using

the ITSPA with the Euler scheme, we estimate parameters and evaluate the log-likelihood

at the respective optima. We also consider a more general model which has the model SDE

specification

dVt = κ(α− Vt)dt+ σV δ
t dWt, (7.3.1)

for which we see that the OU, CIR, and continuous time GARCH(1,1) are special cases

(δ = 0, δ = 0.5, and δ = 1 respectively). We refer to this process as the general mean

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 75

Model Estimates Statistic

Name Drift Diffusion κ α σ δ l(θ̂,x)

OU κ(α− Vt) σ est 7.46228 0.04550 0.18001 20308

se 0.76305 0.00469 0.00158

CIR κ(α− Vt) σ
√
Vt est 3.34275 0.04543 0.49902 24585

se 0.73762 0.00617 0.00433

GARCH(1,1) κ(α− Vt) σVt est 2.22330 0.05407 2.13335 26096

se 0.81318 0.01295 0.01855

3/2 model Vt(α− κVt) σV
3
2
t est 86.37495 5.96746 12.26975 25646

se 18.13629 0.65073 0.10669

GMR κ(α− Vt) σV δ
t est 2.19812 0.05449 2.99164 1.10223 26133

se 0.84034 0.01386 0.12376 0.01202

Table 7.3: Stochastic volatility models and their respective parameter estimates using the
scaled VIX data.

reverting process (GMR).

To perform likelihood-based inference, we use the 6613 daily observations (∆t = 1/250) of

the VIX-index for the S&P500 from January 1990 to March 2016 as our observations of

implied volatility. The VIX is an approximation of expected yearly volatility in percentage.

We therefore transform it to an approximation of expected yearly variance, using the func-

tion f(x) =
(
x
100

)2
. Seeing that in the calculation of the VIX, the approximated monthly

expected variance is calculated first, this transformation is just a transformation back to

the original approximated variance and therefore reasonable to apply. The VIX, the scaled

VIX and the underlying S&P500 index quotes are plotted in figure 7.3. For calculation of

the VIX and its relation with variance swaps we refer to Carr and Madan (1998), Carr and

Wu (2005), and Exchange (2009).

The aim of this section is to find the MLE of δ in the GMR model. This was found to be

1.102 with standard error 0.012. Of all the special cases, the continuous time GARCHA(1,1)

is the one closest to this result. However, the value of the log-likelihood function for the

GMR model has a significant increase over that of the GARCH(1,1) (and also for all the

Chapter 7. Case Studies: Analysis of Stock Prices as Nonlinear Processes 76

other models). The GMR therefore seems to be the preferable model for the stochastic

variance in stochastic volatility models for stock prices.

Chapter 8

Conclusion and Comments

In this thesis we have considered the problem of likelihood-based analysis for a somewhat

general time-homogeneous jump-diffusion process. In chapters 2 and 3 we have presented

brief introductions to the preliminary mathematical theory needed for the approximation

methods in chapter 4, as well as to the benchmark processes such as the GBM, the OU

process, the CIR process, and the MJD model. We have also given limiting theorems for

the compound Poisson process and the MJD model in lemma 2.4 and theorem 2.5.

The essential outcome of chapter 4 is the three approximation methods to the transition den-

sity of a jump-diffusion. The methods are tested for the benchmark processes in chapter 6,

where we first plotted transition densities for the CIR and MJD processes with different sets

of parameters. The ITSPA to the transition density of a jump-diffusion performed poorly,

and we therefore rejected the method. We then performed likelihood-based analysis with

simulated data for all of the benchmark processes, comparing them with likelihood-based

analysis using the exact transition densities. All the discretization schemes performed well,

and the SPA was shown to produce very similar results to that of a DFT when considering

pure diffusions. For the jump-diffusions, we found that a renormalization of the SPA in

the jump component of the mITSPA is necessary, both for parameter estimates and for the

value of the log-likelihood. We have also tested the speed of the methods, and have found

that the ITSPA and mITSPA are the fastest for diffusions and jump-diffusions, respectively.

77

Chapter 8. Conclusion and Comments 78

Chapter 5 deals with the theory of AD, and the newly released programming package TMB.

We have here presented examples relating to the computational problems in this thesis, to

illustrate the benefits of AD and TMB. Small extensions such as the inclusion of the modified

Bessel function of the first kind and the log-normal density were implemented in TMB. A

larger extension was that of the templated complex data type cType, which allowed us to

implement the FGL method in TMB.

In chapter 7 we have considered two case studies. In the first of these, the ITSPA and FGL

methods were used in order to investigate whether nonlinearity and jumps are significant

additions to standard stock price models such as the GBM. The ITSPA was chosen for

diffusion processes and the FGL for jump-diffusions (both with scheme 3), on the basis of

speed, stability and accuracy (see table 6.5 and the discussion in chapter 7). To this end

we proposed three models, two nonlinear pure diffusion models (nlModel 1 and nlModel 2)

and the CEVJD model, which we compared with existing models. The statistical evidence

(values of the D statistics and p-values from the Kolmogorov-Smirnov test on the trans-

formed data) seems to point to the answer ”yes” regarding both the question of addition of

nonlinearity in the diffusion part and the question of inclusion of jumps. – In the second case

study, we have considered mean reverting processes as models for instantaneous variance in

stochastic volatility models. We here propose a more general model, the GMR model. The

results from the likelihood analysis point to the GMR model as being a statistical significant

extension compared to the standard models, with the continuous time GARCH(1,1) model

as the closest one of the standard models.

To finish off, we shall here mention some possibilities for further work:

1. An extension of the mITSPA and the FGL methods to several dimensions. This should

be possible, considering that the Itô-Taylor expansions are available for multidimen-

sional Itô-processes (Kloeden and Platen, 1992), which also holds true for the SPA

(Kleppe and Skaug, 2008). The multidimensional Milstein scheme and its character-

istic function are already calculated in Zhang and Schmidt (2016), upon which the

FGL is based. A nontrivial question is: which numerical integration routine should be

used for the renormalization? Quadrature rules might be a natural answer both with

respect to accuracy and with respect to speed.

Chapter 8. Conclusion and Comments 79

2. An extension of the methods to a more general jump-diffusion process, where the jump

part of the SDE may be allowed to take a more general form.

3. A comparative study of the methods presented in this thesis, the closely related method

in Zhang and Schmidt (2016), the method in Varughese (2013), and other approxima-

tion methods.

4. A more extensive study of nonlinearity in financial markets. Can the behaviour that

is captured as nonlinearity in the CEV and CEVJD models be explained solely by

stochastic volatility and jumps (e.g. the Bates model (Bates, 1996))? What implica-

tions does nonlinearity in the price process have for the pricing of derivatives?

5. The study of a more general mean reverting jump-diffusion process as a model for

stochastic volatility, an extension of the basic affine jump-diffusion process. E.g:

dVt = κ(α− Vt)dt+ σV δ
t dWt + dJt, (8.0.1)

where Jt is a compounded Poisson process with gamma distributed jumps.

Appendix A

Multiple Itô Integrals

The evaluations of the integrals (4.1.1) involved in the development of the discretization

schemes in section 4.1 were presented without proofs. For the non-trivial ones, we here

show how they can be calculated.

The first integral of concern is the integral I1,0. The calculation involves using the Fubini

theorem for stochastic integrals (see e.g. Bjork (2009, p. 477)) for switching the order of

integration:

I1,0 =

∫ t

0

∫ s1

0
dWs2ds1 =

∫ t

0
Ws1ds1

=

∫ t

0

∫ t

0
1[0,s1](s2)dWs2ds1 =

∫ t

0

∫ t

0
1[0,s1](s2)ds1dWs2

=

∫ t

0
t− s2dWs2 ∼ N

(
0,

∫ t

0
(t− s2)2ds2

)
∼ N

(
0,

1

3
t3
)
. (A.0.1)

The second integral of interest is the integral I0,1. We here wish to show that the equation

I0,1 = tJ1−J2, where J1 and J2 are as defined in section 4.1, is valid. Define Y by Yt = tWt.

Then we have Yt = f (t,Xt), where f(t, x) = tx, Xt = Wt, and Y0 = 0. The partial

derivatives are ∂f
∂t = x, ∂f

∂x = t, and ∂2f
∂2x

= 0. We also trivially have dX = dW . Itô’s lemma

80

Appendix B. Itô Integrals 81

then gives

dY = Wtdt+ tdWt, (A.0.2)

which in integral form yields

tWt = Yt =

∫ t

0
Wsds+

∫ t

0
sdWs = Wt +

∫ t

0
sdWs. (A.0.3)

From this we see that the equation holds.

The third and final integral, I1,1, is commonly used as an example to illustrate the Itô

integral and can be found in most textbooks on the subject. It can of course be computed

directly from the definition, but also via an application of Itô’s lemma, similar to that of I0,1.

We first calculate the inner integral, and then we follow Bjork (2009) and the application of

Itô’s lemma found there:

I1,1 =

∫ t

0

∫ s1

0
dWs2dWs1 =

∫ t

0
Ws1dWs1 . (A.0.4)

Define Yt = W 2
t , then Y0 = 0 and Y can be written as Yt = f(t,Xt), where Xt = Wt and f

is a function such that f(t, x) = x2. The partial derivatives of f are ∂f
∂t = 0, ∂f

∂x = 2x, and

∂2f
∂2x

= 2. From Itô’s lemma we then have

dYt = 2XdX +
1

2
2(dX)2 = dt+ 2WtdWt, (A.0.5)

since dX = dW . In integral form this reads

W 2
t = Yt = t+ 2

∫ t

0
WsdWs, (A.0.6)

which trivially implies that I1,1 = 1
2

(
J2
1 − t

)
.

Our final consideration is the covariance between J1 and J2,

Cov(J1, J2) = Cov

(
Wt,

∫ t

0
Wsds

)
= Cov

(∫ t

0
dWs,

∫ t

0

∫ s1

0
dWs2ds1

)
. (A.0.7)

Appendix B. Itô Integrals 82

Applying the Fubini theorem as for I1,0 (A.0.1), and by the properties of the Itô integral

(2.1), we obtain

Cov(J1, J2) = Cov

(∫ t

0
dWs,

∫ t

0
(t− s)dWs

)
=

∫ t

0
1 ∗ (t− s)ds =

1

2
t2. (A.0.8)

Appendix B

Code Snippets

B.1 Additions to the TMB Package

For practical purposes (cf. section 5.3.1), the modified Bessel function of the first kind and

the log-normal density were made available to the TMB user. Since R is running in the

background and R is based on C++, the function values can be drawn from R since both

functions are already implemented in R. The partial derivatives of the function must then

be implemented manually. For these purposes, the first code snippet (B.1) was placed inside

the file ”atomic math.hpp” in the ”include” folder of the TMB package. In addition, to ease

user implementation, the second code (B.2) was placed inside the file ”convenience.hpp” of

the same folder. We note that for the modified Bessel function of the first kind, a finite

difference approximation of the derivative with respect to ν was used, due to the complicated

expression of this term. This goes against the exactness of AD, but was tested and found

to work well in practice.

� �
TMBATOMIC VECTOR FUNCTION(

// ATOMIC_NAME

b e s s e l I

,

// OUTPUT_DIM

1

83

Appendix C. Code Snippets 84

,

// ATOMIC_DOUBLE

ty [0] = Rmath : : R f b e s s e l i (tx [0] , tx [1] , 1 . 0 /* Not scaled */) ;

,

// ATOMIC REVERSE

Type value = ty [0] ;

Type x = tx [0] ;

Type nu = tx [1] ;

CppAD : : vector<Type> arg (2) ;

arg [0] = x ;

arg [1] = nu + Type (1) ;

px [0] = (b e s s e l I (arg) [0] + value ∗ (nu / x)) ∗ py [0] ;

arg [1] = nu + Type (0 . 000001) ;

px [1] = ((b e s s e l I (arg) [0] − b e s s e l I (tx) [0]) / Type (0 . 0001)) ∗ py [0] ;

)

TMBATOMIC VECTOR FUNCTION(

// ATOMIC_NAME

dlnorm

,

// OUTPUT_DIM

1

,

// ATOMIC_DOUBLE

ty [0] = Rmath : : Rf dlnorm (tx [0] , tx [1] , tx [2] , 0 /* log=FALSE */) ;

,

// ATOMIC_REVERSE

px [0] = −ty [0] / tx [0] ∗ (1−(l og (tx [0])−tx [1]) / (tx [2] ∗ tx [2])) ∗ py [0] ;

px [1] = ty [0] ∗ (l og (tx [0])−tx [1]) / (tx [2] ∗ tx [2]) ∗ py [0] ;

px [2] = −ty [0] / tx [2] ∗ (1 − ((l og (tx [0])−tx [1]) ∗

(l og (tx [0])−tx [1]) / (tx [2] ∗ tx [2]))) ∗ py [0] ;

)

� �
Listing B.1: Addition to atomic math.hpp

� �
template<class Type>

Appendix C. Code Snippets 85

Type b e s s e l I (Type x , Type nu) {

CppAD : : vector<Type> tx (2) ;

tx [0] = x ;

tx [1] = nu ;

return atomic : : b e s s e l I (tx) [0] ;

}

template<class Type>

Type dlnorm (Type x , Type mu, Type sigma) {

CppAD : : vector<Type> tx (3) ;

tx [0] = x ;

tx [1] = mu;

tx [2] = sigma ;

return atomic : : dlnorm (tx) [0] ;

}

� �
Listing B.2: Addition to convenience.hpp

� �
/**

* Makes the following available for the TMB user:

* The "cType <Type >" complex AD data type.

* The arithmetic follows standard arithmetic for complex variables.

* It is defined to work together with the standard TMB data type "Type".

* Constructor: cType <Type > z; defaults to 0+0*i.

* cType <Type > z((Type)Re,(Type)Im) = Re + i*Im.

* Compound assignements (+=, -=, *=, /=).

* Relational and comparison operators (==, !=).

* Standard functions for complex variables (abs, arg, conj).

* Exponential functions (exp, log).

* Power functions (pow, sqrt).

* Trigonometric functions (sin, cos, tan, asin , acos , atan , sinh , cosh , tanh).

*

*/

template<class Type>

struct cType{

Appendix C. Code Snippets 86

// MEMBER FUNCTIONS

Type r , i ;

// Constructor

cType (void) { r=0; i =0;}

cType (Type r , Type i) : r (r) , i (i) {}

// Compound assignements

cType& operator =(const cType& c) {

r = c . r ;

i = c . i ;

return ∗this ;

}

cType& operator +=(const Type& t) {

r = r + t ;

return ∗this ;

}

cType& operator +=(const cType& c) {

r = r + c . r ;

i = i + c . i ;

return ∗this ;

}

cType& operator −=(const Type& t) {

r = r − t ;

return ∗this ;

}

cType& operator −=(const cType& c) {

r = r − c . r ;

i = i − c . i ;

return ∗this ;

}

cType& operator ∗=(const Type t) {

r = r ∗ t ;

i = i ∗ t ;

return ∗this ;

}

cType& operator ∗=(const cType c) {

Type tmp r , tmp i ;

Appendix C. Code Snippets 87

tmp r = r ∗c . r − i ∗c . i ;

tmp i = r ∗c . i + i ∗c . r ;

r = tmp r , i=tmp i ;

return ∗this ;

}

cType& operator /=(const Type t) {

r = r / t ;

i = i / t ;

return ∗this ;

}

cType& operator /=(const cType c) {

Type div = c . r ∗c . r + c . i ∗c . i , tmp r , tmp i ;

tmp r = (r ∗c . r + i ∗c . i) / div ;

tmp i = (i ∗c . r − r ∗c . i) / div ;

r = tmp r , i = tmp i ;

return ∗this ;

}

} ;

// NON-MEMBER FUNCTIONS

// Arithmetic

template<class Type>

cType<Type> operator +(const cType<Type>& c , const Type& t) {

cType<Type> r e s = c ;

return r e s+=t ;

}

template<class Type>

cType<Type> operator +(const Type& t , const cType<Type>& c) {

cType<Type> r e s = c ;

return r e s+=t ;

}

template<class Type>

cType<Type> operator +(const cType<Type>& c 1 , const cType<Type>& c 2) {

cType<Type> r e s = c 1 ;

return r e s += c 2 ;

}

template<class Type>

cType<Type> operator −(const cType<Type>& c , const Type& t) {

Appendix C. Code Snippets 88

cType<Type> r e s = c ;

return res−=t ;

}

template<class Type>

cType<Type> operator −(const Type& t , const cType<Type>& c) {

cType<Type> r e s (t , 0) ;

return r e s −= c ;

}

template<class Type>

cType<Type> operator −(const cType<Type>& c 1 , const cType<Type>& c 2) {

cType<Type> r e s = c 1 ;

return r e s −= c 2 ;

}

template<class Type>

cType<Type> operator ∗(const cType<Type>& c , const Type& t) {

cType<Type> r e s = c ;

return r e s ∗= t ;

}

template<class Type>

cType<Type> operator ∗(const Type& t , const cType<Type>& c) {

cType<Type> r e s (t , 0) ;

return r e s ∗= c ;

}

template<class Type>

cType<Type> operator ∗(const cType<Type>& c 1 , const cType<Type>& c 2) {

cType<Type> c1 = c 1 , c2=c 2 ;

return c1 ∗= c2 ;

}

template<class Type>

cType<Type> operator /(const cType<Type>& c , const Type& t) {

cType<Type> r e s = c ;

return r e s /= t ;

}

template<class Type>

cType<Type> operator /(const Type& t , const cType<Type>& c) {

cType<Type> r e s (t , 0) ;

return r e s /= c ;

}

template<class Type>

Appendix C. Code Snippets 89

cType<Type> operator /(const cType<Type>& c 1 , const cType<Type>& c 2) {

cType<Type> r e s = c 1 ;

return r e s /= c 2 ;

}

// Relational and comparison operators

template<class Type>

bool operator ==(const cType<Type>& lhs , const cType<Type>& rhs) {

cType<Type> c 1=lhs , c 2 = rhs ;

if (c 1 . r == c 2 . r && c 1 . i == c 2 . i) {return true ;}

else{return false ;}

}

template<class Type>

bool operator ==(const cType<Type>& lhs , const Type& rhs) {

cType<Type> c 1=lhs , c 2 (rhs , 0) ;

if (c 1 . r == c 2 . r && c 1 . i == c 2 . i) {return true ;}

else{return false ;}

}

template<class Type>

bool operator ==(const Type& lhs , const cType<Type>& rhs) {

cType<Type> c 1 (lhs , 0) , c 2=rhs ;

if (c 1 . r == c 2 . r && c 1 . i == c 2 . i) {return true ;}

else{return false ;}

}

template<class Type>

bool operator !=(const cType<Type>& lhs , const cType<Type>& rhs) {

cType<Type> c 1=lhs , c 2 = rhs ;

return ! (c 1==c 2) ;

}

template<class Type>

bool operator !=(const cType<Type>& lhs , const Type& rhs) {

cType<Type> c 1=lhs , c 2 (rhs , 0) ;

return ! (c 1==c 2) ;

}

template<class Type>

bool operator !=(const Type& lhs , const cType<Type>& rhs) {

cType<Type> c 1 (lhs , 0) , c 2=rhs ;

return ! (c 1==c 2) ;

}

Appendix C. Code Snippets 90

// Standard functions

template<class Type>

Type abs (const cType<Type>& z) {

cType<Type> c = z ;

Type abs = sq r t (c . r ∗c . r + c . i ∗c . i) ;

return abs ;

}

template<class Type>

Type arg (const cType<Type>& z) { // Returns Arg(z)

cType<Type> c = z ;

return atan2 (c . i , c . r) ;

}

template<class Type>

cType<Type> conj (const cType<Type>& z) {

cType<Type> c = z ;

c . i = − c . i ;

return c ;

}

// Exponential functions

template<class Type>

cType<Type> exp (const cType<Type>& z) {

cType<Type> c = z ;

Type temp = exp (c . r) ∗ cos (c . i) ;

c . i = exp (c . r) ∗ s i n (c . i) ;

c . r = temp ;

return c ;

}

template<class Type>

cType<Type> l og (const cType<Type>& z) {

cType<Type> c = z ;

Type r = abs (z) , theta = arg (z) ;

c . r = log (r) ;

c . i = theta ;

return c ;

}

// Power functions

Appendix C. Code Snippets 91

template<class Type>

cType<Type> pow(const cType<Type>& z1 , const cType<Type>& z2) {

cType<Type> c1=z1 , c2=z2 , c3 ;

Type a=c1 . r , b=c1 . i , c=c2 . r , d=c2 . i ;

c3 . r = pow((a∗a+b∗b) , (c /2)) ∗exp(−d∗ arg (c1)) ∗

(cos (c∗ arg (c1)+0.5∗d∗ l og (a∗a+b∗b))) ;

c3 . i = pow((a∗a+b∗b) , (c /2)) ∗exp(−d∗ arg (c1)) ∗

(s i n (c∗ arg (c1)+0.5∗d∗ l og (a∗a+b∗b))) ;

return c3 ;

}

template<class Type>

cType<Type> pow(const cType<Type>& z , const Type& t) {

cType<Type> c1=z , c2 (t , 0) ;

c1 = pow(c1 , c2) ;

return c1 ;

}

template<class Type>

cType<Type> pow(const Type& t , const cType<Type>& z) {

cType<Type> c1=z , c2 (t , 0) ;

c1 = pow(c2 , c1) ;

return c1 ;

}

template<class Type>

cType<Type> s q r t (const cType<Type>& z) {

cType<Type> c1=z , c2 (0 . 5 , 0) ;

c1 = pow(c1 , c2) ;

return c1 ;

}

// Trigonometric functions

template<class Type>

cType<Type> s i n (const cType<Type>& z) {

cType<Type> c = z , i (0 , 1) ;

c = (exp (i ∗c) − exp ((−(Type) 1) ∗ i ∗c)) / ((Type) 2 ∗ i) ;

return c ;

}

template<class Type>

cType<Type> cos (const cType<Type>& z) {

cType<Type> c = z , i (0 , 1) ;

Appendix C. Code Snippets 92

c = (exp (i ∗c) + exp (c/ i)) / ((Type) 2) ;

return c ;

}

template<class Type>

cType<Type> tan (const cType<Type>& z) {

cType<Type> c = z ;

c = s i n (c) / cos (c) ;

return c ;

}

template<class Type>

cType<Type> a s in (const cType<Type>& z) {

cType<Type> c = z , i (0 , 1) ;

c = (−(Type) 1) ∗ i ∗ l og (i ∗c + sq r t ((Type) 1 − (c∗c))) ;

return c ;

}

template<class Type>

cType<Type> acos (const cType<Type>& z) {

cType<Type> c = z ;

c = as in ((−(Type) 1) ∗ c) + (Type) (M PI/2) ;

return c ;

}

template<class Type>

cType<Type> atan (const cType<Type>& z) {

cType<Type> c = z , i (0 , 1) ;

c = (−(Type) (0 . 5)) ∗ i ∗(l og ((Type) 1 − (i ∗c)) − l og ((Type) 1 + (i ∗c))) ;

return c ;

}

template<class Type>

cType<Type> s inh (const cType<Type>& z) {

cType<Type> c = z , i (0 , 1) ;

c = s i n ((−(Type) 1) ∗ i ∗c) ∗ i ;

return c ;

}

template<class Type>

cType<Type> cosh (const cType<Type>& z) {

cType<Type> c = z , i (0 , 1) ;

c = cos (c/ i) ;

return c ;

}

Appendix C. Code Snippets 93

template<class Type>

cType<Type> tanh (const cType<Type>& z) {

cType<Type> c = z ;

c = s inh (c) / cosh (c) ;

return c ;

}

� �
Listing B.3: Creation of the complex cType data type in TMB

Bibliography

Aı̈t-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions.

The Journal of Finance, 54(4):1361–1395.

Aı̈t-Sahalia, Y., Yu, J., et al. (2006). Saddlepoint approximations for continuous-time

Markov processes. Journal of Econometrics, 134(2):507–551.

Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in

Deutsche mark options. Review of Financial Studies, 9(1):69–107.

Bell, B. (2005). Cppad: A package for c++ algorithmic differentiation. https://www.

coin-or.org/CppAD.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006). Exact and

computationally efficient likelihood-based estimation for discretely observed diffusion pro-

cesses (with discussion). Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68(3):333–382.

Bjork, T. (2009). Arbitrage Theory in Continuous Time. Oxford University Press.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. The

Journal of Political Economy, pages 637–654.

Brealey, R. A., Myers, S. C., Allen, F., and Mohanty, P. (2012). Principles of corporate

finance. Tata McGraw-Hill Education.

Brockwell, P., Chadraa, E., Lindner, A., et al. (2006). Continuous-time GARCH processes.

The Annals of Applied Probability, 16(2):790–826.

94

https://www.coin-or.org/CppAD
https://www.coin-or.org/CppAD

Bibliography 95

Butler, R. W. (2007). Saddlepoint approximations with applications, volume 22. Cambridge

University Press.

Carr, P. and Madan, D. (1998). Towards a theory of volatility trading. Volatility: New

estimation techniques for pricing derivatives, (29):417–427.

Carr, P. and Wu, L. (2005). A tale of two indices. Available at SSRN 871729.

Cox, J. (1975). Notes on option pricing 1: Constant elasticity of variance diffusions. Un-

published note, Stanford University, Graduate School of Business.

Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest

rates. Econometrica, 53(2):385–407.

Durham, G. B. and Gallant, A. R. (2002). Numerical techniques for maximum likelihood

estimation of continuous-time diffusion processes. Journal of Business & Economic Statis-

tics, 20(3):297–338.

Exchange, C. B. O. (2009). The cboe volatility index-vix. White Paper, pages 1–23.

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N.,

Nielsen, A., and Sibert, J. (2012). Ad model builder: using automatic differentiation

for statistical inference of highly parameterized complex nonlinear models. Optimization

Methods and Software, 27(2):233–249.

Gerhold, S., Schmock, U., and Warnung, R. (2010). A generalization of Panjer’s recursion

and numerically stable risk aggregation. Finance and Stochastics, 14(1):81–128.

Goutis, C. and Casella, G. (1999). Explaining the saddlepoint approximation. The American

Statistician, 53(3):216–224.

Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and techniques of

algorithmic differentiation. Siam.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with

applications to bond and currency options. Review of Financial Studies, 6(2):327–343.

Johansen, A., Ledoit, O., and Sornette, D. (2000). Crashes as critical points. International

Journal of Theoretical and Applied Finance, 3(02):219–255.

Bibliography 96

Kleppe, T. S. (2006). Numerical path integration for Lévy driven stochastic differential

equations.

Kleppe, T. S. and Skaug, H. J. (2008). Building and Fitting Non-Gaussian Latent Vari-

able Models via the Moment-Generating Function. Scandinavian Journal of Statistics,

35(4):664–676.

Kloeden, P. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations.

Applications of mathematics: stochastic modelling and applied probability. Springer.

Kolassa, J. E. (2006). Series approximation methods in statistics, volume 88. Springer

Science & Business Media.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. (2015). Tmb: Automatic

Differentiation and Laplace Approximation. arXiv preprint arXiv:1509.00660.

Lin, L., Ren, R., and Sornette, D. (2009). A consistent model of ’explosive’ financial bubbles

with mean-reversing residuals. Swiss Finance Institute Research Paper, (09-14).

Lindström, E. (2007). Estimating parameters in diffusion processes using an approximate

maximum likelihood approach. Annals of Operations Research, 151(1):269–288.

Matsuda, K. (2004). Introduction to Merton jump diffusion model. Department of Eco-

nomics. The Graduate Center, The City University of New York.

McNeil, A., Frey, R., and Embrechts, P. (2005). Quantitative risk management: Concepts,

techniques, and tools.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.

Journal of Financial Economics, 3(1):125–144.

Øksendal, B. (2003). Stochastic differential equations. Springer.

Platen, E. and Bruti-Liberati, N. (2010). Numerical solution of stochastic differential equa-

tions with jumps in finance. Springer Science & Business Media.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical

recipes in c. Cambridge: Cambridge University.

Bibliography 97

Preston, S. and Wood, A. T. (2012). Approximation of transition densities of stochastic

differential equations by saddlepoint methods applied to small-time Ito–Taylor sample-

path expansions. Statistics and Computing, 22(1):205–217.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Radul, A. (2013). Introduction to automatic differentiation. http://alexey.radul.name/

ideas/2013/introduction-to-automatic-differentiation/. [Online; accessed Au-

gust 15, 2013].

Rampertshammer, S. (2007). An Ornstein-Uhlenbeck framework for pairs trading. Preprint.

Available at http://www. ms. unimelb. edu. au/publications/RampertshammerStefan. pdf.

Shoji, I. and Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by

a local linearization method 1. Stochastic Analysis and Applications, 16(4):733–752.

Skaug, H. J. and Fournier, D. A. (2006). Automatic approximation of the marginal like-

lihood in non-Gaussian hierarchical models. Computational Statistics & Data Analysis,

51(2):699–709.

Sornette, D. and Andersen, J. V. (2002). A nonlinear super-exponential rational model of

speculative financial bubbles. International Journal of Modern Physics C, 13(02):171–187.

Taleb, N. N. (2010). The black swan:: The impact of the highly improbable fragility, volume 2.

Random House.

Tankov, P. (2003). Financial modelling with jump processes, volume 2. CRC Press.

Tucker, W. (2010). Automatic differentiation - lecture no 1. https://www.sintef.no/

globalassets/project/evitameeting/2010/ad2010.pdf.

Varughese, M. M. (2013). Parameter estimation for multivariate diffusion systems. Compu-

tational Statistics & Data Analysis, 57(1):417–428.

Zhang, L. and Schmidt, W. M. (2016). An approximation of small-time probability density

functions in a general jump diffusion model. Applied Mathematics and Computation,

273:741–758.

http://alexey.radul.name/ideas/2013/introduction-to-automatic-differentiation/
http://alexey.radul.name/ideas/2013/introduction-to-automatic-differentiation/
https://www.sintef.no/globalassets/project/evitameeting/2010/ad2010.pdf
https://www.sintef.no/globalassets/project/evitameeting/2010/ad2010.pdf

	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Itô Calculus and Applications
	2.1 A Brief Introduction to Itô Calculus
	2.2 A Brief Introduction to Jump-Diffusions
	2.3 Benchmark Processes
	2.3.1 Geometric Brownian Motion
	2.3.2 Ornstein-Uhlenbeck Process
	2.3.3 Cox-Ingersoll-Ross Process
	2.3.4 Merton Jump-Diffusion

	2.4 Itô-Taylor Expansions

	3 Approximating the Inverse Fourier Transform
	3.1 The Fourier Transform
	3.2 Derivation of the Saddlepoint Approximation
	3.3 Renormalization of the Saddlepoint Approximation
	3.4 Example: Noncentral Chi-Squared
	3.5 Example: Compounded Poisson Process

	4 Approximation Methods for small-time Jump-Diffusion Transition Densities
	4.1 Discretization Schemes
	4.1.1 Scheme 1: The Euler-Maruyama Scheme
	4.1.2 Scheme 2: The Milstein Scheme
	4.1.3 Scheme 3: The Itô-Taylor Scheme of Strong Order 1.5

	4.2 Approximation Methods for small-time Jump-Diffusion Transition Densities

	5 TMB and Automatic Differentiation
	5.1 Motivation for Automatic Differentiation
	5.2 A Brief Introduction to Automatic Differentiation
	5.3 TMB and CppAD
	5.3.1 Example: Cox-Ingersoll-Ross Maximum Likelihood Estimation

	5.4 Implementation of Approximation Methods

	6 Numerical Results
	6.1 Approximation of Transition Densities
	6.2 Approximation methods applied to likelihood-based analysis

	7 Case Studies: Analysis of Stock Prices as Nonlinear Processes
	7.1 Background Theory
	7.2 Analysis of Stock Prices as Nonlinear Processes
	7.3 Stochastic Volatility Models

	8 Conclusion and Comments
	A Multiple Itô Integrals
	B Code Snippets
	B.1 Additions to the TMB Package

	Bibliography

