
Vulnerabilities in Distributed Computer SystemsVebjørn MoenThe degree philosophiae doctor (PhD)University of Bergen, Norway2006

Universitet i Bergen



Contents

Abstract 4

Acknowledgements 5

Practical Security 7

Paper I: Vulnerabilities in Online Banks 21

Paper II: Case Study: Online Banking Security 35

Paper III: Lessons from the Norwegian ATM system 51

Paper IV: Weaknesses in the Temporal Key Hash of WPA 67

Paper V: Attack on Sun's MIDP Reference Implementation of

SSL 83

Paper VI: Secure Networked J2ME Applications: Problems and

Challenges 95

Paper VII: Vulnerabilities in E-Governments 109

3



Abstract

The society relies more and more on interconnected computers systems and

distributed applications. This dissertation considers security in such systems,

focusing on how to break the security. Online banking, wireless systems with

thin clients, and e-government are covered by the seven papers included in the

thesis.

4



Acknowledgments

I �nished my master thesis in 2002, and wanted to continue as a PhD student.

Thanks to Professor Tor Helleseth this was possible. Both Professor Lars Knud-

sen and Professor Helleseth encouraged me to work with computer security. In

addition to Professor Helleseth, I have been supervised by Professor Kjell Jør-

gen Hole. Professor Hole has been my mentor, and made these last years both

fun and interesting. I have looked forward to go to work every day, even when

I have had to reiterate the �fth or sixth time on one of the articles.

Thanks to all the members of the NoWires Research Group for both work

related collaboration and after working hour activities, and a special thanks to

my co-authors: Kjell Jørgen Hole, André N. Klingsheim, Håvard Raddum, Kent

Inge Fagerland Simonsen, and Thomas Tjøstheim.

I also have to thank Professor Dieter Gollmann for letting me visit his group

at Technische Universität Hamburg-Harburg, and thanks to Jens Ove Lauf, Jan

Meier, and all the master students for the good discussions and for helping me

�nd my way through the German system.

Last, but not least, thanks to my family, my wife and children for all the

love and support.

5



Practical Security



Practical Security

Vebjørn Moen

1 Introduction

Distributed computer systems play an important role in our daily lives. Online
banking, e-commerce, and e-governments are examples of distributed systems
that o�er more and more services and, thus, grow larger and more complex
every day.

We bene�t from all these new services, but they can also a�ect us in negative
ways. Privacy concerns with making large databases available on the Internet
and increased risk as e-commerce and online banking replace shops and bank
branches have to be addressed by building security in. By nature, computer
security is a very broad �eld. It is used to defend a lot of di�erent data on
many di�erent platforms. Human interaction adds to the complexity and for
most applications both national and international laws and regulations play an
important role.

We can make some general observations about security: Since it is easier to
attack a system than to defend it, the attacker has an advantage. To properly
defend an asset, one has to defend it against all possible attacks. However, to
break a system it is enough to �nd one exploitable vulnerability, and it does
not help if a system is unbreakable at one level, if it is insecure at another level.
Often one vulnerability also makes it easier to break the rest of the security of
a product. These observations lead to the axiom that security is not stronger
than the weakest link.

To make sure that we do not create systems that provide a false sense of
security, security experts invest a lot of e�ort into �nding vulnerabilities [1, 2],
which is also the main focus of the papers in this thesis.

The next sections are organized as follows: Section 2 gives an introduction
to what security is and how to understand the security of a system, Section
3 discusses how security should be managed�including a discussion of what
creates vulnerabilities, Section 4 gives an overview of the papers included in this
dissertation, and Section 5 concludes the �rst part of the thesis. The second
and main part of the dissertation consists of a collection of papers.

2 What is security?

The main information security elements are con�dentiality, integrity and avail-
ability [3, p. 5]. Con�dentiality ensures that an attacker cannot read the pro-
tected information. In a system with integrity, any unauthorized modi�cations
of the content will be detected. The availability goal is to keep services up and
running and to make sure that all users can access the services.

9



Computer security can be de�ned as the protection of computer systems
against actions which violate the desired security elements. To be able to pro-
vide computer security, we would like to specify and implement a security policy,
de�ning actions as legal or illegal. Protection against attacks is then reduced
to access control, of actions such as read, write, and delete. The access con-
trol requires an entity authentication or identi�cation, i.e. corroboration of the
identity of a person, a computer terminal, or a credit card [4]. Since some ac-
tions can be considered hostile in one computer system, and legal and normal
in another, we need to know the details of the application/system before we
create the security policy. Therefore, one de�nition or policy cannot �t every
application, and we have no absolute de�nition of what security is.

Cryptographic algorithms lay the foundation for most of the technologies
used to solve computer security problems. A good understanding of cryptology
is needed to correctly design and implement security technologies. From the
end of the 1970s and up till approximately year 2000 the common view re�ected
in many books such as [5] and [6], was that when we got the cryptography right
every computer security problem would be solved.

2.1 Security problems

Attacks on computer systems are exploits of an imperfect speci�cation or im-
plementation of a security policy. We call security vulnerabilities in the design
for �aws, and vulnerabilities in the implementation for bugs [7].

Practical experience during the last few years has showed that the problems
with computer security are much broader than the underlying algorithms. Ex-
amples include: bu�er over�ow, Structured Query Language (SQL) injection,
phishing, side channel attacks, virus, trojans, and so on. All these security
problems that cost the society large amounts of money each year [8], cannot
be solved by cryptography alone. The insecurities are caused by �aws within
the design and bugs in the implementation, and broken abstractions when ideas
and designs travel between di�erent realms. Software applications are made to
simplify laborious tasks, and solutions have to solve problems in di�erent �elds.
The design and implementation have to consider the economic bottom line, the
legal aspects, and the viewpoint of the end user. Developing an application that
can perform the intended task can be di�cult enough, but it gets even more
di�cult when the whole system has to be able to handle any kind of malicious
input.

The engineering of building bridges has a lot in common with computer se-
curity. A secure bridge has to be able to handle the wear and tear of normal use,
and external in�uence such as wind and rain. If the bridge is badly engineered
it can lead to a bridge failure, e.g. caused by resonance [9]. Therefore, the engi-
neering principles are similar�such as investigate, design and implement good
defenses against the threats. However, the threats against a computer system
are of a di�erent nature. The main di�erence can be found in the characteristic
of the assets, a bridge is a physical object and is only vulnerable to physical
attacks, but a computer system consists of both physical and nonphysical assets.
Nonphysical assets, such as information, up-time, or the number representing
the balance on an account, are vulnerable to a whole new range of attacks.
Systems connected to the Internet are especially vulnerable as they can be at-
tacked from any computer connected to the Internet. Very few people try to

10 Practical Security



bring down a bridge for fun, but online resources have to sustain daily attacks
from malicious hackers who are trying to break the security for fun or pro�t.

2.2 Improving security

In cryptology, attacks are considered to be a reasonable way of evolving the
security. Full-scale computer security solutions are easier to attack than cryp-
tographic primitives, since they are bigger, more complex, and can be attacked
on any of the many layers of abstractions.

The common perception in cryptology is that anyone who are designing their
own cryptosystem, should consider all known attacks against such a system, but
also try to �nd new attacks. We argue that the methodology is suitable also for
computer security systems.

We study real systems, and the evaluation of such systems often starts with
�nding vulnerabilities. If you only come up with theoretical results, it is usually
di�cult to convince the owner of the system that there is a problem, but one
simple attack quickly and clearly illustrates the problem in the design or imple-
mentation. Looking for attacks is a good starting point both when designing a
new system and analyzing an existing system.

From Sun-Tzu's Art of War : �If you know the enemy and know yourself, you
need not fear the result of a hundred battles. If you know yourself but not the
enemy, for every victory gained you will also su�er a defeat. If you know neither
the enemy nor yourself, you will succumb in every battle.� When building a
secure computer system Sun-Tzu's wisdom tells us that without knowing our
enemy and the attacks our enemy can launch against us, the attacker will succeed
with his attacks on our systems. We need to know and understand what we
are defending against. We need to understand the mindset and the toolbox of
the attacker, and when we analyze security systems we need to think as the
attacker. When we have the knowledge of our attackers, we are more capable
to decide which defenses we have to spend more resources on.

2.3 Computer security�academic discipline or business
secret?

Many companies consider secrecy about their system to be an important part
of the security. We have seen how the banking industry in Norway keep even
their most basic descriptions of security systems con�dential, and disclosures of
vulnerabilities are regarded as very harmful. Not because of the vulnerabilities,
but because of bad press and loss of reputation. Security by obscurity can be
regarded in di�erent ways. Either the systems are more secure because the
owners keep everything secret, or the systems are more insecure. A system
where no details are public, can have bugs that nobody knows about. It can
therefore run for several years without these bugs being a problem, and therefore
the company can save money on not �xing the bugs and �aws. It can also be
in production several years with a bug that only a few people know about and
are able to misuse. Basing security on secrecy is a �aw in the design, since
information will leak about the system over the years. Disgruntled employees
can also become malicious attackers.

In addition, there are also other problems when companies refuse to share
information about their systems. It creates a closed developer community where

2.2 Improving security 11



there will be fewer new ideas and solutions, since there can be few ideas traded
to and from a closed group. This creates a mode of thought known as `group-
think'. Quality assurance will also be less e�cient in a closed group, especially
if testing and evaluation are done by the same people who created the system.
The solution is probably not to tell the world the details of security routines
and implementation details, but having an open discussion about development
methods and design with external experts to improve security.

Industry's security by obscurity prevents the academic world from learning
about good research problems. Not only does the policy harm research, but
also the education of students. When students learn nothing about the common
industry problems at the university, the industry is left to educate their own
employees. As a result, they tend to maintain a limited and static view of
vulnerabilities and security techniques.

We have also seen how problems arise when companies that keep their system
secret are allowed to stand in court and claim that their systems are secure.
When the court believes such a claim, it is easy to argue that any incident must
be caused by wrong behavior by the users.

3 Measure and manage security

In 1883, Lord Kelvin stated �I often say that when you can measure what you
are speaking about, and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely in your thoughts advanced to the state of Sci-
ence, whatever the matter may be.� [10]

In cryptology there are some cryptosystems with a proof of security, e.g. Ra-
bin public-key encryption [4, p. 292], but as Lars Knudsen has said �If it is
provably secure, it is probably not.� The Rabin public-key cryptosystem is prov-
ably secure against one type of attack, but is easily broken if an attacker is
allowed to choose ciphertexts and get them decrypted. Proving that cryp-
tographic primitives are secure against every attack is di�cult, and provable
secure cryptosystems get broken by nullifying the assumptions. When we con-
sider an application, then proving anything about the security is very di�cult,
and perhaps impossible. Too many assumptions need to be made, and these
assumptions are the attack points.

Provable security is probably impossible, but how about rating the security
of a product on a scale from 1 to 10? The challenge is to be able to say more
about the security of an application other than that the security is broken
(proved by a practical attack), the security is untested, or no attacks are found
after an analysis. Any measured security of an application will be meaningless
if an exploitable �aw or bug is found.

The problem of making provable secure systems are linked to the lack of a
good de�nition of security. For one application we need to decide what we want
to be secure against, and defenses against one attack might make the application
vulnerable to other attacks. One example is the protection against brute-force
attacks on online banks described in [11], where the attacked customer accounts
are closed down after a small number of unsuccessful login attempts. A protec-
tion against brute-force attacks ends up as a vulnerability to a Denial-of-Service

12 Practical Security



(DoS) attack.
Since we cannot measure or prove what a secure application is, we try to say

what it is not. Karl Popper discussed the concept of falsi�cation [12], where an
expression such as �All swans are white� cannot be proved, because it implies
observing every swan in the present, past, and future. However, it is easy to
falsify; that only requires �nding one swan that is e.g. black. The same idea can
be applied to security. Claiming that a program is secure requires analyzing it
for every possible security bug and �aw, both known and unknown. However,
we only need to �nd one vulnerability to say that a program or system is not
secure. Following the argument, a security evaluation of a product cannot look
for reasons to conclude that the product is secure. A security analysis must
consider possible attacks, both old and new, and how to protect against these
attacks.

3.1 What creates vulnerabilities?

According to [7] there is a trinity of trouble in computer software security:
complexity, connectivity, and extensibility. The more complex a system is, the
more di�cult it is to analyze it, and therefore it is more likely that bugs and
�aws exist but are missed in a security analysis.

Distributed and connected software are challenging to design and implement
properly. The system designer must consider completely new attacks that were
not a problem when developing applications for stand-alone computers. The
connectivity therefore adds extra complexity to the application.

To incrementally evolve the system functionality, modern applications are of-
ten extensible with plug-ins, scripting, and updates. System designers and users
like extensible systems since they are dynamic and �exible and can be adapted
to do new tasks. Attackers like extensible systems for the same reasons. Exten-
sibility is closely related to connectivity, and the extensibility feature certainly
adds to the complexity of the software.

In [13], we show that many e-government projects are vulnerable to sim-
ple, well-known Web application attacks, and that industrialized countries have
more vulnerable Web pages than under-developed countries. We further show
that industrialized countries have more pages created with more types of tech-
nologies. The results support the idea of the trinity of trouble in computer
software security.

If we buy the argument that complexity, connectivity, and extensibility are
the cause of vulnerabilities, what can we do about it? Create less complex,
not connected software with no possibility to extend the application? In some
cases simpler solutions make sense, but for most applications these features are
exactly what are needed to perform the intended tasks.

3.2 Who is the attacker?

As previously mentioned, there exist cryptosystems that are provable secure.
Despite the proof of security there exist practical attacks against some of these
systems. The question in a threat analysis is not whether the system is secure
or not, it is what and who the system is secure against.

Consider a banking system. It is quite clear what such a system has to
protect, it is the account holders' assets. In early banking systems it was also

3.1 What creates vulnerabilities 13



clear who the customers had to trust, namely the local bank that held and
protected their money. There were two kinds of attackers, the bank robbers
and the rogue employee, and they were bound by physical limitations. To steal
money, the perpetrator had to be in the same location as the money, and if
money was missing from the bank vault, and there were no signs of a break-in,
then an employee had to be responsible.

There are still two kinds of attackers in modern banking, but now the bank
robbers or rogue employees do not have to be in the same place as the money.
A break-in to a computer system does not necessarily leave any sign, and it can
be facilitated by vulnerabilities in the software.

To defend against insider attacks encryption and authentication keys are
created and kept in crypto-modules, and strong cryptography is used to protect
transactions. However, [14] shows that the banking industry has a history of
phantom withdrawals, break-ins, and documented [15] vulnerabilities in the
APIs of the crypto-modules. Thomas Whiteside [16] writes about a supposedly
real attack where an embezzler transferred small amounts from many accounts
into his own account. There is also a legend of an automated variation of the
same attack, where the attacker collected the roundo� of pennies in calculation
of e.g. interests, and transferred the money into an account under his control.
The history of documented vulnerabilities shows that banks and any owner of a
distributed computer system need to have a good understanding of which risks
that are worth taking, and which risks that need to be mitigated.

3.3 Mitigating risk

The management of a company is responsible for the bottom line, maximizing in-
come and minimizing expenses. Security is for most companies only a necessary
expense, and management will therefore in�uence how discovered vulnerabili-
ties and risks will be handled. It is bad business to �x a vulnerability if it is
cheaper to take the risk of leaving it un�xed, and there are also other methods
of mitigating risk than to �x the vulnerabilities. Transferring the risk to dif-
ferent entities through outsourcing, contracts, and terms of use can be e�ective
business �solutions� to di�cult computer security problems.

We have seen how online banking systems, even though they save the banks
a lot of money on handling accounts, have transferred more risk to the customer.
Ross Anderson [17] describes why letting the banks transfer risk to the customer
is a bad idea, and in [14] he claims that making the banks responsible for the risk
associated new technologies helps promoting security technologies. Risk is an
inherent part of every system, and especially distributed software applications.
Changes to the system, and introduction of new technology changes the risk.
It can also change who have to take the risk. Anderson et al. [18] have also
shown how the introduction of chip and pin to replace a system of magnetic
stripe cards and signatures can be used to transfer more of the risk that banks
traditionally have carried over to the customers.

4 Summary of the Thesis

All the papers in this thesis consider security in client-server systems�from
cryptologic attacks to design processes and how to develop secure software.

14 Practical Security



Three of the papers discuss banking systems, three papers explore wireless sys-
tems with resource-constrained devices, and one paper consider e-government
systems. Five of the papers [11, 19, 20, 21, 13] have been published in refereed
journals and conferences, while the last two papers [22, 23] have been submitted
for publication.

The main focus of the thesis is analysis of security in distributed computer
systems, and mainly on how to attack such systems. However, the papers also
suggests how one could �x such vulnerabilities.

4.1 Vulnerabilities in online banks [11]

Online banks have become very popular. The banks save money by letting the
customers manage their own transactions, and the customer has the bene�t of
easy access to updated information about their accounts.

The Norwegian banks tend to claim that Internet banking is absolutely se-
cure if used correctly by the customers. We show that login schemes based
on identi�ers with a structure and Personal Identi�cation Numbers (PINs) are
insecure against a simple brute-force attack. The idea behind the brute-force
attack is not to guess the PIN of one customer, but to guess the PIN belonging
to a random customer. One example of the attack is to try a few PINs for each
customer in a given bank. To have a high probability of success, the attack re-
quires that the bank has more customers than possible PIN values, and that the
identi�ers are possible to generate. Social Security Numbers (SSNs) and bank
account numbers are good examples of such generable values. The attack works
even if the online banks use one-time PIN values from lists or PIN calculators
if the length of the PINs is small enough.

4.2 Case study: online banking security [19]

We wanted to �nd out if other solutions were a�ected by the brute-force at-
tack described in [11]. Several banks use PIN calculators to calculate one-time
PINs. In general, PIN calculators are used to create a two-factor authentication
scheme, something you have and something you know. A two-factor scheme
should be more secure than the static 4 digit PIN solution we analyzed in [11].
However, we found out that because of di�culty in clock synchronizing between
the calculator and the server, the server accepts more than one PIN. One of the
banks accepted any PIN in a window of 19 consecutive PINs, which drastically
increases the e�ciency of the brute-force attack compared to a system with a
static PIN of same length.

By entering a wrong PIN for an account more than, say, 3 or 4 times, the
account will be locked. An attacker can thus combine DoS and brute-force
attacks to maximize damage, and increase the likelihood of getting away with
the money in the confusion.

Despite claims from Norwegian banks that online banking is completely se-
cure, we found simple and practical brute-force and DoS attacks on several
banks. It is likely that the systems had the weaknesses because the banks based
their solution on the experience they gained from ATM systems, where these at-
tacks are not practical. We believe that these problems could have been avoided
with a proper design phase including evaluation by independent experts.

4.1 Vulnerabilities in online banks 15



When trying to inform the banks about the weaknesses, we discovered that
they are not interested in improving the security, only in maintaining an im-
pression of secure products. We also learned that the employees of banks are
not allowed to discuss security solutions with external experts.

4.3 Lessons from the Norwegian ATM system [22]

Every year around 400 complaints about misused ATM cards are considered by
an institution in Norway called �Bankklagenemda�. Many cases are dismissed
with the argument that the ATM system is secure and that the victim must
have kept the PIN together with the card, or in some other way disclosed it.
According to �Bankklagenemda� there are no other explanations for how the
PIN was entered correctly by an attacker.

One of these cases went on to court, where the representatives from the
bank claimed that their system is secure and that disclosing details about it
will make it less secure. The most important claim was that it is impossible
to brute-force the PIN, based on the information available on the card, in the
period of time from the card was stolen to the card was misused in an ATM. We
describe an attack scenario where �nding the PIN is done in a few seconds, given
that the attackers have carried out pre-calculations to �nd the bank speci�c
cryptographic key used to calculate the PIN veri�cation value found on the
magnetic strip of the card. Today the key used to calculate the PIN veri�cation
value is a 3-DES 112-bit key, but until 2000 many banks used 56-bit single-DES
keys. The 112-bit keys are too strong, but the 56-bit keys are possible to �nd
using su�cient computational power in a brute-force attack.

The described security issues associated with the ATM system, led us to
question how to create stronger systems. We suggest that new and open de-
velopment processes will improve the security in banking systems, and make it
more clear who is responsible for which risk factors.

4.4 Weaknesses in the Temporal Key Hash of WPA [20]

The security scheme Wired Equivalent Privacy (WEP) is a part of the IEEE
802.11 standard for wireless communication. WEP has been shown to be weak
[24], and practical attacks exist on all its security features.

To address the weaknesses of WEP, Wi-Fi Protected Access (WPA) was
put forward to secure the communication in 802.11 networks. We show that
the WPA protocol also has weaknesses, one of them being that it is possible
to �nd the 128-bit master key in WPA with the work equivalent to 2105 RC4
encryptions, reducing the e�ective key size from 128 to 105 bits.

The master key is used to derive per-packet RC4 keys. Assuming we can
�nd some sequential packet keys, we can recover the master key by attacking
the key generation algorithm. In essence the attack is an exhaustive search,
but we can split the search into separate searches for parts of the master key.
Given four RC4 keys the master key can be recovered in 6-7 minutes on an Intel
Pentium 4 2.53 GHz with a workload equivalent to O

(
231

)
temporal key hash

operations. Given only two RC4 keys the workload is O
(
238

)
and master key

recovery takes approximately 15 hours.

16 Practical Security



4.5 Attack on Sun's MIDP reference implementation of
SSL [21]

It seems that every time applications are developed for new platforms, old secu-
rity problems appear again. This time it is the generation of random data used
to create symmetric keys. Just as Goldberg and Wagner [25] showed that the
early version of SSL in Netscape was seeded with time, Sun's Mobile Informa-
tion Device Pro�le (MIDP) reference implementation of SSL use time as seed
to create keys, which drastically reduce the e�ective key size.

We show how to implement a practical attack against Sun's SSL imple-
mentation, which can �nd the SSL premaster secret based on the transmitted
handshake messages. The premaster secret generated by the emulator in Sun
Java 2, Micro Edition (J2ME) Wireless Toolkit 2.1 was recovered within one
second. However, it is unclear if the attack is also a problem in implementations
of MIDP in mobile phones, because we did not recover an SSL key from any of
the mobile phones we tried the attack on. We can only speculate how mobile
phone manufacturers creates pseudo-random numbers on the devices, since very
little information is available.

4.6 Secure networked J2ME applications [23]

The article [23] is based on the experiences we made during the design phase
of a commercial application [26] for smart-phones. The application should be
able to receive, store and show medical information. In addition, it should run
on as many smart-phones as possible. Due to legal considerations, the medical
information had to be encrypted during transport, preferably stored encrypted
on the phone, and it could only be stored on the server for a short time. Based
on market information, we chose J2ME as the development platform. We did
not have the desire or resources to implement our own encryption routines, so
we targeted MIDP 2.0 devices since they o�er HTTPS.

During the project we tested several smart-phones from Nokia, Motorola,
Samsung, and SonyEricsson. We were surprised to see that several of the phones
had serious bugs a�ecting how HTTPS connections and certi�cates were han-
dled, making it impossible to support all MIDP 2.0 phones with MIDP 2.0
compliant applications.

Implementations of MIDP 2.0 contain too many bugs, and do not o�er
enough security functionality to create applications with the same security as
applications for Java 2, Standard Edition. Therefore, we also discuss the forth-
coming Security And Trust Services API (SATSA), which will be shipped with
future mobile phones, that o�ers encryption and signing functions that can be
used to create even more secure applications for smart-phones.

4.7 Vulnerabilities in e-governments [13]

To get an impression of the maturity of e-governments we checked the Web
pages of governments around the world for simple Web application attacks.
The attacks we looked at were SQL injection and Cross Site Scripting (XSS).
We chose these attacks since they are well known and understood, and relatively
easy to defend against.

4.5 Attack on Sun's MIDP reference implementation of SSL 17



In [13] we show that more than 80% of the e-governments in the world are
vulnerable to these attacks, and that industrialized countries are more vulner-
able than under-developed countries.

In addition, the paper also describes some malicious data mining possibilities
in the Norwegian e-government. Several Web applications allow an attacker to
�lter SSNs. Some pages also make it possible to �nd the name of a person with
known or guessed SSN. The information gathered on the e-government pages
can be used for identity theft.

5 Conclusion

In this thesis we have explored security in real life systems, and we have dis-
covered how challenging it is for independent researchers in the security �eld to
present results in a constructive and fruitful manner. Disclosed vulnerabilities
increase the risk of attacks, and can potentially cost companies a lot of money.
Still, if no independent research is done on the security of real life systems the
knowledge of the systems' security is completely controlled by companies. Since
our work is funded by tax payers, we feel an obligation to evaluate national
systems.

Based on how vulnerabilities have been managed in Norwegian banking sys-
tems, we believe that independent research can balance the knowledge between
customers and banks, and help customers to take more educated decisions and
avoid becoming victims of the banks' security-by-obscurity policy.

In [22], we looked at a court case were a Norwegian bank was sued by a
customer because of stolen and misused credit cards. In the court, the bank
claimed that it could not disclose any details about their system, since that
would make the system more insecure. However, they were prepared to put
some of their top people on the stand to testify that their system is secure. We
claim that this security-by-obscurity attitude does not make bank systems more
secure, and that it is harmful to the customers. It is not unlikely that similar
cases to the one described in [22] will appear for online bank systems in the
future.

Perfect security does not exist, and it is important to consider the risks we
take when we develop large and complex systems for new platforms, e.g. wire-
less thin clients for banking systems. Without a proper infrastructure for iden-
ti�cation and authentication, supporting all platforms, online banking and e-
government services will continue to be vulnerable to simple attacks against the
authentication schemes. The solutions to the computer security problems are
not only technical, since security solutions are also in�uenced by laws, regula-
tions, psychology and human-computer interaction. Perhaps we will witness a
paradigm shift in computer security, where researchers have to focus on economy
and law in addition to computers and algorithms.

References

[1] E. Rescorla, �Is �nding security holes a good idea?� IEEE Security &
Privacy, vol. 3, no. 1, pp. 14�19, 2005.

18 Practical Security



[2] D. Farmer and W. Z. Venema, �Improving the security of your site by
breaking into it,� Posted to Usenet, 1993.

[3] D. Gollmann, Computer Security. John Wiley and Sons Ltd, 1998.

[4] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryp-
tography. CRC Press, 1996.

[5] S. Singh, The Code Book: The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. Doubleday, 1999.

[6] B. Schneier, Applied Cryptography, Second Edition. John Wiley & Sons,
1996.

[7] G. Hoglund and G. McGraw, Exploiting Software: How to Break Code.
Addison-Wesley, 2004.

[8] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson, �2005
CSI/FBI computer crime and security survey,� 2005. [Online]. Available:
http://www.gocsi.com/

[9] K. Billah and R. Scanlan, �Resonance, Tacoma Narrows bridge failure, and
undergraduate physics textbooks,� American Journal of Physics, vol. 59,
no. 2, pp. 118�124, 1991.

[10] W. Thomson, Popular Lectures and Addresses Vol. 1. MacMilllan, 1891.

[11] T. Tjøstheim and V. Moen, �Vulnerabilities in online banks,� in 10th Nordic
Workshop on Secure IT-systems (Nordsec 2005), 2005.

[12] K. Popper, The Logic of Scienti�c Discovery. Basic Books, 1959.

[13] V. Moen, A. N. Klingsheim, K. I. F. Simonsen, and K. J. Hole, �Vul-
nerabilities in e-governments,� in 2nd International Conference on Global
E-Security (ICGeS-06), 2006.

[14] R. Anderson, �Why cryptosystems fail, from communications of the ACM,
november, 1994,� in William Stallings, Practical Cryptography for Data
Internetworks. IEEE Computer Society Press, 1996. [Online]. Available:
citeseer.ist.psu.edu/anderson94why.html

[15] M. Bond and R. Anderson, �API-level attacks on embedded systems,�
Computer, vol. 34, no. 10, pp. 67�75, 2001. [Online]. Available:
citeseer.ist.psu.edu/bond01apilevel.html

[16] T. Whiteside, Computer Capers: Tales of Electronic Thievery, Embezzle-
ment, and Fraud. Ty Crowell Co, 1978.

[17] R. Anderson, �Why information security is hard - an economic perspective,�
2001. [Online]. Available: citeseer.ist.psu.edu/anderson01why.html

[18] R. Anderson, M. Bond, and S. J. Murdoch, �Chip and spin,� 2006.
[Online]. Available: www.chipandspin.co.uk/

[19] K. J. Hole, V. Moen, and T. Tjøstheim, �Case study: Online banking
security.� IEEE Security & Privacy, vol. 4, no. 2, pp. 14�20, 2006.

References 19



[20] V. Moen, H. Raddum, and K. J. Hole, �Weaknesses in the temporal key
hash of WPA,� ACM SIGMOBILE Mobile Computing and Communica-
tions Review, vol. 8, no. 2, pp. 76�83, 2004.

[21] K. I. F. Simonsen, V. Moen, and K. J. Hole, �Attack on sun's MIDP ref-
erence implementation of SSL,� in 10th Nordic Workshop on Secure IT-
systems (Nordsec 2005), 2005.

[22] K. J. Hole, V. Moen, and A. N. Klingsheim, �Lessons from the Norwegian
ATM system,� 2006, submitted to IEEE Security & Privacy.

[23] A. N. Klingsheim, V. Moen, and K. J. Hole, �Secure networked J2ME
applications,� 2006, submitted to IEEE Computer.

[24] N. Borisov, I. Goldberg, and D. Wagner, �Intercepting mobile communica-
tions: The insecurity of 802.11,� in MOBICOM 2001, 2001.

[25] I. Goldberg and D. Wagner, �Randomness and the Netscape browser,� Dr.
Dobb's Journal, pp. 66�70, January 1996.

[26] World Medical Center, last visited: June 13th, 2006. [Online]. Available:
http://www.world-medical-center.com/

20 Practical Security




