
Paper VII: Vulnerabilities in

E-Governments

Vulnerabilities in E-Governments

Vebjørn Moen, André N. Klingsheim,

Kent Inge Fagerland Simonsen, and Kjell Jørgen Hole

Abstract

This paper shows that more than 80% of the e-governments in the
world are vulnerable to common Web-application attacks such as Cross
Site Scripting and SQL injection. Industrialized countries were found
to be more vulnerable than under-developed countries (90% vs. 50%).
The paper also describes some malicious data mining possibilities on the
Norwegian e-government, and how information can be combined and used
to create other practical attacks.

1 Introduction

E-government is one of the buzzwords of the Internet age, referring to any gov-
ernment function or process that is conducted in a digital form over the Internet.
Basically, one or several Web portals supply individuals and businesses with pub-
lic information, government forms for download, and contact with government
representatives. According to most e-government plans, providing services over
the Internet will yield higher e�ciency and quality, easier access, the possibility
of o�ering individual services, and increased transparency, ultimately leading to
a more e�cient public sector [1].

An EU press release claims: �A new survey of e-government services prepared
for the European Commission has found that EU citizens are saving 7 million
hours a year on the time it takes to do their income tax returns, and EU �rms are
saving about e10 per transaction on their VAT returns by doing them online.
Moreover, there is still huge scope for further savings� [2].

However, since e-government projects are provided over an insecure channel,
namely the Internet, other important issues surface. In most countries there
are no governmental infrastructure that supports authentication, con�dentiality,
and integrity. The Public Key Infrastructure (PKI) used in E-Commerce is not
applicable to e-government without a thorough analysis of what the new trust
model should be. The trust calculation for commerce is based on monetary
issues, while government solutions involve important infrastructure, society, and
privacy issues.

There are also other problems, related to Web solutions, that can give un-
foreseen consequences when e-government solutions are put forth. We have
examined e-governments in the whole world for known Web application issues,
and found that a vast majority of them have common vulnerabilities. As a
special case study, we have also examined parts of the Norwegian e�ort to cre-
ate an e-government and located possibilities for malicious data mining and
denial-of-service attacks in the services o�ered.

111

Section 2 gives a short introduction to some common Web application vul-
nerabilities, Section 3 presents the results from the inquiry into the security
of e-governments, Section 4 describes why the Social Security Number (SSN)
should not be used for identi�cation or authentication, and Section 5 concludes
the paper.

2 Web application vulnerabilities

In this section we give a brief overview of the Web application vulnerabilities
we have chosen, Cross Site Scripting (XSS) and Structured Query Language
(SQL) Injection. These vulnerabilities were chosen because they have been
well-known for years. XSS and SQL injection attacks are simple, yet powerful
attacks against Web applications that can be carried out with nothing more
than a Web browser. The implications of these attacks will be discussed in the
following sections.

2.1 Cross Site Scripting

XSS [3, 4] is perhaps the most common Web application vulnerability, where
the Web application re�ects unvalidated user input on a dynamically generated
Web page. This makes it possible to supply Javascripts and HTML code in the
user input, which will then be part of the dynamically generated page. E.g., by
using Javascript it is possible to steal cookies, and Cascading Style Sheets and
the HTML tag iframe can be utilized to completely control both the content and
the layout of the resulting page. Common attack vectors are search applications
which re�ect the search string, and parameters supplied in the URL.

Here is an example of an XSS attack string which generates a page with
arbitrary content on an XSS vulnerable site:
http://VulnerableSite.com/search?q=<iframe style=height:100%;

width:100%;border:none;transparent:none;position:absolute;top:0;

left:0;z-index:100; src=http://AttackerSite.com/ />

The attack string can be URL encoded [5] so that the content is unreadable
for the average Internet user. An attack is successful if a victim visits an URL
containing the XSS attack. This can be achieved by e.g. spoo�ng an e-mail from
a sender in which the user has trust.

2.2 SQL injection

SQL injection [3, 6] is considered to have more severe consequences than XSS,
due to the fact that a successful SQL injection can compromise the integrity
of a database. A Web application is vulnerable to SQL injection if unvalidated
user input is used to generate SQL queries. The following example is a typical
SQL query used to generate dynamic Web pages:
SELECT * FROM articles WHERE id='<user input>';

An attacker can control the user input, and, e.g., enter: '; DROP 'articles';

This adds a second command to the SQL query, which then becomes: SELECT
* FROM articles WHERE id=�; DROP 'articles';';

These SQL commands will select some data, delete the table �articles� in
the database, and then generate an SQL error due to the single quotation mark.

112 Paper VII: Vulnerabilities in E-Governments

Continent Only XSS Only SQL XSS and SQL XSS or SQL None

Africa (61) 14.75 (9) 0.00 (0) 34.43 (21) 49.18 (30) 50.82 (31)

Asia (55) 9.09 (5) 0.00 (0) 76.36 (42) 85.45 (47) 14.55 (8)

Europe (53) 7.55 (4) 0.00 (0) 83.02 (44) 90.57 (48) 9.43 (5)

North America (34) 20.59 (7) 2.94 (1) 52.94 (18) 76.47 (26) 23.53 (8)

Oceania (25) 24.00 (6) 0.00 (0) 28.00 (7) 52.00 (13) 48.00 (12)

South America (17) 17.65 (3) 0.00 (0) 52.94 (9) 70.59 (12) 29.41 (5)

Table 1: Percentages of vulnerabilities in e-governments for each continent.
Number of countries enclosed in parenthesis. Note that some countries are
counted for more than one continent, e.g. Russia belongs to both Europe and
Asia.

In general, SQL injection gives an attacker the opportunity to manipulate the
database and in special cases execute arbitrary code on the database server. It
is therefore an e�ective attack on Web applications. Typical attack vectors are
logins, search forms, and the URL of dynamically generated pages (e.g. http:

//VulnerableSite.com/article?id=42 could result in a SQL query similar
to the one in the example). SQL injection can be avoided through user input
validation, ensuring appropriate handling of characters with a special meaning
in SQL.

2.3 Combining information and data mining

Internet was created for information sharing, and e-governments will hopefully
give more e�cient services to the public. However, the Web is completely dif-
ferent from the more traditional information channels, such as radio, TV, and
postal services. The fact that we have an up-channel gives rise to new attack
scenarios which must be taken into account before the e-government concept
can replace old government systems. In addition to the previously described
attacks on e-government portals, other risks exist. Malicious data mining can
be possible when huge databases containing governmental information about
the public are made accessible through e-government Web applications.

3 Vulnerabilities in e-government Web portals

In order to investigate the security levels of e-government Web applications we
have probed government Web sites for XSS and SQL injection vulnerabilities.
An e-government Web application is considered to be all Web pages under a
gov.<country code> sub domain, and/or pages from the government, ministries,
and parliament.

In addition to searches on Google, the Google directory of countries [7] and
Gunnar Anzinger's list of Governments on the WWW [8] were used to locate
the e-government Web applications. The investigation was carried out during
February and March, 2005.

2.3 Combining information and data mining 113

3.1 Scope of vulnerabilities

In this paper, a Web application is considered vulnerable to XSS if we are able
to insert script or HTML code on a dynamic Web page. Furthermore, a Web
application is vulnerable to SQL injection if we are able to change the structure
of an SQL query run by a dynamic Web page, causing an SQL statement error.
Vulnerabilities are not examined further, since both ethical and legal issues
then arise. In order to evaluate the severity of a vulnerability we would have to
exploit it in the worst possible manner. Disruption of service, loss of data, or
bringing the Web application to a complete halt could be the e�ect of such an
investigation. Our mission was not to cause havoc on e-government Web sites,
but rather to check the status of their Web application security. Hence, we were
forced to use a simple de�nition of what a vulnerable Web application is.

We suggest de�ning a country as vulnerable if there exists one vulnerability
in an e-government Web application. This simpli�cation is done since there are
millions of governmental Web pages on the Internet, so an exhaustive review
of all available pages would be impossible without automated tools. Di�erent
countries of course have di�erent numbers of vulnerabilities, and the vulnera-
bilities vary in their severity. In addition, many of the Web pages are subject
to constant change, so vulnerabilities may come and go. Hence, an exhaustive
review would never give exact results. We therefore argue that our approach
is useful, con�rming that there are problems in governmental Web applications
and that harm may be done when armed with nothing more than a Web browser.

3.2 Methods for �nding XSS and SQL vulnerabilities

There exist algorithms and programs that can check Web applications for com-
mon vulnerabilities, one example is [9], but we chose to check all the e-governments
manually in order to completely control which pages and input vectors that were
used.

The basic idea in �nding XSS and SQL vulnerabilities is to look for input
vectors that are used by some server side script. To test for XSS, an input such
as <script>alert('XSS')</script> can be used. If this string is included in a
dynamically generated page, a Javascript enabled browser will show a Javascript
pop-up window containing the text XSS. To test for SQL injection vulnerabilities,
a single quote (') can be used as input. The single quote is a special character
in SQL, and if it is included in the SQL query it will most likely generate an
SQL statement error.

To further ease the work of �nding vulnerabilities, we used Google to search
for �le extensions we know are more likely to be vulnerable than others. Consider
e.g. the Australian government, which have the gov.au domain. If we search for:
site:gov.au inurl:php in Google, we will �nd pages under the gov.au domain
generated using PHP. A common practice was to search for ASP or PHP pages,
and then other dynamic pages if no vulnerable ASP or PHP pages were found.

3.3 Results

There are 244 entries on the ISO 3166 list [10], but some of these entries are
for countries/territories governed by another country. In total, we were able
to locate e-government sites for 212 countries, and 173 of these countries were

114 Paper VII: Vulnerabilities in E-Governments

AFRICA ASIA

EUROPE NORTH AMERICA

SOUTH AMERICA OCEANIA

Clean

XSS only

SQL and XSS

Clean

XSS only

SQL and XSS

Clean

XSS only

SQL and XSS

Clean

SQL only

XSS only

SQL and XSS

Clean

XSS only

SQL and XSS
Clean

XSS only

SQL and XSS

Figure 1: Pie charts showing vulnerabilities for each continent.

3.3 Results 115

Country category Only XSS Only SQL XSS and SQL XSS or SQL None

1st World (32) 6.25 (2) 0.00 (0) 90.63 (29) 96.88 (31) 3.12 (1)

2nd World (31) 9.68 (3) 0.00 (0) 80.64 (25) 90.32 (28) 9.68 (3)

3rd World (50) 18.00 (9) 0.00 (0) 32.00 (16) 50.00 (25) 50.00 (25)

G8 (8) 0.00 (0) 0.00 (0) 100.00 (8) 100.00 (8) 0.00 (0)

Table 2: Percentages of vulnerabilities in e-governments for di�erent country
categories. Number of countries enclosed in parenthesis. Note that not all of
the 244 countries are included in the statistic for 1st, 2nd, and 3rd World, we
used the countries listed on [11].

vulnerable to either XSS or SQL injection. That is; 81.6% of the countries with
a Web portal were vulnerable to these simple attacks.

Table 1 gives the percentages of vulnerable countries for each continent.
Europe have the highest ratio of countries vulnerable to either XSS or SQL
injection, closely followed by Asia. More than 90% of European e-governments
have a vulnerability, while slightly less than 50% of African e-governments are
vulnerable. Figure 1 illustrates the numbers with pie charts.

The same tendency can be seen in Table 2, showing the percentages of vul-
nerable 1st, 2nd, and 3rd World countries, as well as the G8 countries. More
than 90% of 1st and 2nd World countries are vulnerable, along with all of the
G8 countries. However, we found SQL injection or XSS for �only� 50% of the
3rd World countries. These results are also shown as pie charts in Figure 2.

While testing the e-government portals we noticed that almost all of the
industrialized countries had dynamic pages, based on technologies such as PHP,
ASP, or JSP. We also noted that many of the dynamic pages retrieved parts of
their content from databases. To our �disappointment� we only located static
HTML pages for many African and 3rd World countries. Figure 3 shows the
distribution of Web server software based on vulnerability type. Figure 4 shows
which technologies were used to generate the vulnerable pages. However, the
results are a�ected by the methods we used to �nd vulnerable pages, and they
give a better picture of which technologies were most frequently used than of
the security of any of the technologies.

3.4 �Invulnerable� sites

Some sites did not seem to have any vulnerabilities so we had to look at the
characteristics of these sites. According to [12] there is a trinity of trouble which
makes software di�cult to control: complexity, extensibility, and connectivity.
Therefore; our assumption is that sites with no discovered vulnerabilities must
be smaller and less complex, and also use fewer technologies.

The 39 �invulnerable� countries had on average 8,126 pages indexed by
Google, and 2.75 di�erent technologies had been used to create the pages. In
comparison; the G8 countries had an average of more than 12 million pages,
and had pages created by 14�15 di�erent technologies.

Our conclusion from these observations is that the �invulnerable� sites are not
vulnerable because their complexity is low. The big industrial countries on the
other hand use many di�erent technologies to build enormous Web sites, hence
increasing the possibility of introducing vulnerabilities in their Web applications.

116 Paper VII: Vulnerabilities in E-Governments

FIRST WORLD SECOND WORLD

THIRD WORLD G8

Clean
XSS only

SQL and XSS

Clean

XSS only

SQL and XSS

Clean

XSS only

SQL and XSS

SQL and XSS

Figure 2: Pie charts showing vulnerabilities for the 1st, 2nd, and 3rd World
countries, and also for the G8 countries.

Apache

Unreported
Microsoft-IIS

Other

Apache

Unreported

Microsoft-IIS

Other

XSSSQL injection

Figure 3: Pie charts for SQL injection and XSS, with regard to which Web server
was serving the vulnerable portal. We used the 'Server' HTTP-header �eld in
the HTTP reply to identify the servers, and consider the whole Apache family as
Apache, and we do not distinguish between di�erent versions of Microsoft-IIS.
The 'Other' category includes Netscape-Enterprise, Oracle, Lotus-Domino, and
Sun-ONE-Web-Server.

3.4 "Invulnerable" sites 117

PL

ASP

JSP

PHP

Other

CFM JSP

PHP

PL
ASP

CGI

Other

CFM

XSSSQL injection

Figure 4: Pie charts showing which technologies generated the vulnerable pages,
based on �le-endings. We see that ASP and PHP dominates the statistics. The
'Other' category contains the pages we were unable to classify.

3.5 Defenses

Defending a site against these attacks requires input validation. Input can be
validated on two di�erent levels: either by the Web application or the Web
server. The Web application can implement a function that parses all user
input, handling dangerous characters/commands or rejecting the input. At the
Web server level a solution such as the ModSecurity [13] module for the Apache
server can be installed. This module can be used to validate all input before it
is handed over to the Web application.

Successfully defending a site against SQL injection and XSS requires a con-
stant focus on these problems. Whenever a new feature is added to an applica-
tion there is a risk of introducing vulnerabilities. Even skilled and experienced
programmers, who know about these attacks, make vulnerable applications. For
a more detailed description of how to create more secure Web applications, [3]
is highly recommended.

4 Collecting Social Security Numbers

SSNs are used around the world for purposes they were not initially intended to
be used for. This has major implications. Problems arise when SSNs are used
for any degree of authentication [14]. In order to investigate these issues further
we decided to check how SSNs are used in Norway, and how much information
we could obtain from governmental Web applications using our knowledge of
the Norwegian SSN structure.

The structure of Norwegian SSNs is shown in Table 3 and described in [15].
Knowledge of the SSN structure makes it possible to generate all valid SSNs for
any given day/month/year for both men and women. SSNs are not secret, but
access to SSNs connected with personal information is restricted in Norway.

We have located several Web applications that allow us to �lter valid SSN
numbers belonging to real persons. E.g. all governmental employees are mem-
bers of a pension fund. On the pension fund's Web site it is possible for members

118 Paper VII: Vulnerabilities in E-Governments

The Norwegian SSNs consist of 11 digits: x1x2x3x4x5x6i1i2i3c1c2

x1x2x3x4x5x6 Birth date (ddmmyy)
i1i2i3 Individual number. Highest available number for that day is

used for each person. For persons born in 1855�1899 the
possible numbers are 500�749, anyone born between 1900
and 1999 are given a individual number between 000 and
499, and �nally for those who are born in 2000�2054 the
numbers 500�999 are used. Girls have an even i3 while boys
have an odd i3 value.

c1c2 Control digits. Used to detect every incorrect SSN with one
number wrong or any mixing of two numbers
c1 = 11− (3x1 + 7x2 + 6x3 + x4 + 8x5 + 9x6 + 4i1 + 5i2 + 2i3) mod 11

c2 = 11−(5x1 + 4x2 + 3x + 2x4 + 7x5 + 6x6 + 5i1 + 4i2 + 3i3 + 2c1) mod 11

if c1 or c2 is 10 mod 11, then the SSN is rejected and the next
possible SSN is chosen.

Table 3: Structure of Norwegian SSNs.

to apply for loans, a process that uses SSNs for identi�cation. By supplying an
SSN belonging to a member, access is granted to a page displaying the member's
full name, home address, and name and address of the member's workplace.

To test the malicious data mining possibilities in such a portal, we wrote a
simple Python script with less than 30 lines of code, which collected SSNs and
the corresponding names and addresses from the Web application. We started
o� with the birth dates of all the members of the Norwegian cabinet and used our
script to �nd their SSNs. The script accomplished this by generating all possible
SSNs for given dates, posting them to the portal and logging the answers. Note
that such a script also makes it possible to build a database containing all
the SSNs and names of all the members of the pension fund (approximately
1,000,000). We have noti�ed the pension fund about these issues on several
occasions.

It is possible to combine such an attack with information gathered on other
portals. For example, the portal for the tax department allows users to enter
their SSNs to get a new tax card, but it gives an error message if the entered SSN
does not belong to anyone. This fact makes it possible to do a binary search
to determine the range of SSNs that belongs to real persons for any given day
since SSNs are assigned in chronological order. Consider all persons born in
Norway on 01.01.2001. The �rst girl to be registered that day would be given
SSN number 01010199952 (boy: 01010199871), the second girl would be given
01010199790 (boy: 01010199448�birth date 01.01.01 with individual number
996 does not exist since c2 = 10 mod 11 and so on. By executing the previously
mentioned binary search we can �nd the last number assigned for that day.
Hence, we then know the whole range of SSNs assigned for that particular day.

4.1 Using SSNs to do mischief

Many portals use SSNs to identify visitors. However, since there is no estab-
lished infrastructure supporting authentication, many services only �authenti-
cate� users based on knowledge of a valid SSN and perhaps a name. There are

4.1 Using SSNs to do mischief 119

several examples of this practice in Norwegian Web portals, e.g. you can order
a new bank account, apply for loans, order a new tax card, and order a health
card by entering a name and an SSN.

This allows several attacks; we can order/apply for a new tax card/health
card for all Norwegians by using a simple script that logs on with every possible
SSN number or any set of valid SSN numbers. Hence, we can a�ect service
access for other users and create a lot of disturbance and manual work for
governmental entities.

In 2003�2004 exact lists of assigned SSNs could be used to brute-force online
bank accounts since several Norwegian Internet banks used SSNs for identi�ca-
tion purposes. A description of such attacks can be found in [16].

5 Conclusions

The vast majority of dynamic e-government Web applications are vulnerable to
XSS or SQL injection. XSS enables an attacker to create URLs to government
sites that, if visited, will display arbitrary content controlled by the attacker.
Such a malicious URL can further be used in Social Engineering attacks for the
purpose of stealing passwords and cookies, or even spreading a false news story.
SQL injection can potentially give an attacker the possibility to manipulate
databases and in some cases execute arbitrary code on the database server.

These simple attacks have been known for several years, but still e-govern-
ments are vulnerable. More and more services are o�ered to the public through
the portals, and more and more government databases are connected with these
services, increasing the risk of malicious data mining, identity theft and com-
promising the integrity of the databases.

In addition to securing the Web applications, further steps are needed to
secure the online services. E-government requires at least some kind of infras-
tructure to authenticate the users of the services, other than that of a username
and password. A proper governmental PKI would make it possible to develop
governmental Web applications implementing the required level of authentica-
tion and integrity.

References

[1] The Digital Task Force, �The danish egovernment strategy 2004-
2006,� last visited: October 26, 2005. [Online]. Available: http:
//e.gov.dk/uploads/media/strategy_ pixi.pdf

[2] European Commission, �egovernment services yield real ben�ts for eu
citizens and businesses,� last visited: October 26, 2005. [Online].
Available: http://europa.eu.int/rapid/pressReleasesAction.do?reference=
IP/05/41&format=HTML&aged=0&language=EN&guiLanguage=en

[3] S. H. Huseby, Innocent Code: a security wake-up call for Web programmers.
Wiley, 2004.

[4] CERT, �Cert advisory ca-2000-02 malicious html tags embedded in client
web requests,� 2000. [Online]. Available: http://www.cert.org/advisories/
CA-2000-02.html

120 Paper VII: Vulnerabilities in E-Governments

[5] T. Berners-Lee, L. Masinter, and M. McCahill, �Uniform Resource
Locators (URL),� RFC 1738 (Proposed Standard), Dec. 1994. [Online].
Available: http://www.ietf.org/rfc/rfc1738.txt

[6] C. Anley, �Advanced sql injection in sql server applications,� A
NGSSoftware Insight Security Research (NISR) Publication, last visited:
October 26, 2005. [Online]. Available: http://www.nextgenss.com/papers/
advanced_sql_injection.pdf

[7] Google, �Directory over countries,� last visited: June 12th, 2006. [Online].
Available: http://directory.google.com/Top/Regional/Countries/

[8] G. Anzinger, �List over governments on the www,� last visited: June 12th,
2006. [Online]. Available: http://www.gksoft.com/govt/en/

[9] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo,
�Securing web application code by static analysis and runtime protection,�
in WWW '04: Proceedings of the 13th international conference on World

Wide Web. New York, NY, USA: ACM Press, 2004, pp. 40�52.

[10] ISO, �ISO 3166 country code lists,� last visited: October 26, 2005.
[Online]. Available: http://www.iso.org/iso/en/prods-services/iso3166ma/
02iso-3166-code-lists/index.html

[11] Nationsonline.org, �First, second and third world,� last visited: October
26, 2005. [Online]. Available: http://www.nationsonline.org/oneworld/
third_world_countries.htm

[12] G. Hoglund and G. McGraw, Exploiting Software: How to Break Code.
Addison-Wesley, 2004.

[13] Modsecurity, �Open source web application �rewall,� last visited: October
26, 2005. [Online]. Available: http://www.modsecurity.org/

[14] C. J. Hoofnagle and E. Mierzwinski, �U.S. PIRG answers to Chairman
Shaw's questions on social security number privacy,� 2004, last visited:
June 12th, 2006. [Online]. Available: http://www.epic.org/privacy/ssn/
ssnanswers7.2.04.html

[15] E. Selmer, �Personnummerering i Norge: Litt anvendt tallteori og
psykologi,� Nordisk matematisk tidskrift, 1964.

[16] K. J. Hole, V. Moen, and T. Tjøstheim, �Case study: Online banking
security.� IEEE Security & Privacy, vol. 4, no. 2, pp. 14�20, 2006.

References 121

