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A description of daphnicle dynamics based on kinetic theory:
Attempts at analogue-modelling of swarming and behaviour of

Daphnia

by

AlfH. Øien

Abstract;

Attempts are presented of an analogue modelling of Daphnia responses to various influences and
stimuli, as distribution of food and of predators. The aim with the study is to examine to what extent a
statistical-mechanical approach of swarms may be useful as a tool in modelling of Daphnia behaviour.
In the modelling we follow a line close to test particle studies in physical Sciences. A generalised
kinetic equation of what we shall call daphnicles is derived. The modelling incorporates individual
characteristics of daphnicles, as position, velocity and degree of food saturation and responses
daphnicles have to say food- concentration and to threat. The daphnicles we model respond to some
stimuli in ordered ways and to others in stochastic ways, and the degree or strength of reactions

generally depends on the density and distribution of food available, the saturation level of daphnicles
and the threat level in the environment, or background, the daphnicles are living on. Some fluid
equations of daphnicle swarms are subsequently derived from the basic equation, and Solutions are

gi\en of the model-equations in some particular cases and show peculiarities in reactions of daphnicles
to food and to threat, when these are acting alone, and in combination. The results may have some
relevance to certain laboratory expenments of Daphnia behaviour.
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1 Introduction

The behaviour of Daphnia pulex, a zooplankton (size approximately 1-2 mm) has been

extensively studied in recent year both under laboratory conditions and in the field.

These studies have been focused on the response of individuals, as well as groups, to

various external influences, as available food, food gradients and predator threat [l]-

[4]. These studies among others have revealed and shown in particular mechanisms

connected to swarming of groups of Daphnia. The density of Daphnia groups

observed may to some extent seem to reflect the density of food available, but in such

a way that individuals may take in food most efficiently. Thus individuals may seem

to avoid high-density Daphnia/high density food locations to move to lower density

locations for more effective food intake. Various working hypotheses of these

mechanisms, that also question the ability of Daphnia to respond "reasonably", have

been tested. Also the swarming due to predator threat, where a safety in number

mechanism seems to play a role, has been investigated in laboratory and field
experiments.

The author of the present work was inspired by these studies to use kinetic theory for

making analogue modelling of what may resemble Daphnia dynamics and evolution,

in particular swarming, related to food and to threat from predators. In the analogue

modelling we shall replace "Daphnia" by what we shall call "daphnicles", to reflect

the (physical) "particle" reasoning that the modelling uses. The author wants in this

way to express the difference between the "real world" and the theory in the "model

world that is developed. At best the model may mimic trends in behaviour that really
takes place, and hopefully give some new insight and ideas. In particular the

daphnicles do not have the locomotion ability that Daphnia have, but move due to

influences and "forces" they "feel". This movement in the modelling shall have both

an ordered, or directed, component, and a stochastic component, and is meant to

mimic among others the swarming of Daphnia, which seem to show both erratic

behaviour and more directed behaviour, depending on for instance distribution of food

patches or densities. Thus we shall incorporate several "forces", as attraction along
food density gradients, and also a repulsion of individuals from daphnicle

accumulation regions to mimic the property the Daphnia seem to have to go for new

food search other places where intake after all may be more efficient. However, in the

modelling the repulsion may be turned off when high enough threat surrounds the

daphnicles, say by "smell" of predators in natural environments. Gradients in light
intensity and in threat are also incorporated as forces. The daphnicles are also
embedded with a food-saturation" property, and a food-saturation-decline force is

incorporated, a force that is steadily on and leads for instance to particular behaviour

when no food is available. The ordered behaviour of daphnicles will be coupled to
stochastic behaviour, which in the present modelling is limited to a combination of
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"microscopic" friction and erratic motion, or "temperature", and to stochastic intake of

food. The degree of saturation of individuals in general varies, and we consider in

particular that the strengths of the forces are dependent on this.

We start the description from a kinetic-theory point of view,[s], and a dynamical

equation for a probability distribution fimction dependent on daphnicle position and

velocity, as well as the degree of saturation, and time, is set up. The modelling is close

to "test particle"- modelling in kinetic theory,[6], including an internal State variable,

i.e. food saturation, where each particle responds to background influences. From this

rather general point of view, equations that are more related to experiments in the

laboratory and the field are successively derived, and some solved.

The paper is outlined as follows. Section 2 starts with the various forces giving rise to

the ordered part of daphnicle motion. The one-daphnicle equations of ordered motion

are set up. These equations are necessary when deriving the equation of ordered

motion of the probability function. It is shown that in a 7 dimensional phase space,

spanned by position, velocity and saturation of a single daphnicle, the probability

function is conserved following the extended motion in this space. Then the erratic
behaviour in movement and the stochastic intake of food are added as corrections to

the equation of ordered motion. The resulting equation is our basic equation. In

addition a dynamical equation for food density is necessary, and is set up. This

equation is coupled to the basic equation. Ideally, we would prefer to solve these

equations to obtain the best information and results of the model. However, this may

not be possible at all, and from a practical point of view maybe not necessary.

Therefore we look for approximations that may be sufficient for many purposes.
Generally these approximations will contain some information from the detailed

description. Thus in section 3 more coarse-grained equations are derived from the

basic equation. These are obtained taking various moments of the basic equation, both

velocity moments, [s], and saturation moments, and the two types of moments in

combination. These equations include both an ordinary kinetic equation and a kinetic

equation for food intake. However, these moment equations even in the simplest cases

are coupled and therefore difficult to solve, and truncations are necessary for Solutions

to be found. Some examples of this are given. In section 4 fluid equations are derived

from the truncated equations. An assumption of weak gradients is necessary to reduce

the number of equations to 3, i.e., one equation for daphnicle density, one for mean

saturation of daphnicles and one for the density of food. These are coupled, and
generally non-linear. In section 5 some special states and Solutions are studied. In

particular the basic (kinetic) equation is solved when daphnicles are uniformly
distributed and there is no food available, i.e. daphnicles are in a State of hunger. The

solution shows how the distribution function of daphnicles depends on movement,

saturation and threat as time goes on. Also a set of linearized equations for daphnicle
and food- densities is developed. These equations are valid around a static and
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uniform State characterised by a steady input of food and a balance between food

saturation and saturation decline. The equations are specialised for one space

direction: In spite of being rather simple they may nevertheless have some relevance

to a laboratory set up of Daphnia experiments,[l], namely Daphnia enclosed in a

cylindrical shell region. In this case the region may be modelled as one-dimensional

and periodic in space. These equations are solved for a number of cases in section 6

where the interplay between daphnicle and food density perturbations are found when

perturbed initial states, food input and threat gradients, both static and moving, are

varied, and we consider reactions to various levels of uniform threat (stress) the

daphnicles may feel from the surroundings. The Solutions show that higher densities

of food attract daphnicles and distribute them among humps of food in some sort of

balance. When daphnicles are stressed by higher uniform threat they accumulate more

strongly. Daphnicles also fly away from threat gradients and even more so when more

stressed. Section 7 gives a short summary and conclusion. The paper ends with a
figure section of 18 figures.

Modelling like this may serve as tools and give ideas of new laboratory experiments
to be done.

2 Basic equation of daphnicle evolution

By "daphnicles" we shall mean small physical bodies, ideally particles, embedded

with certain internal properties and being able to respond to external influences. The

main internal property taken up here is their degree of fullfedness, or food saturation,

connected to food intake, or, to lack of food intake. We shall denote this property by

the variable 'm' and meassure it on a scale from -«> to + co, say. Positive m shall

represent more and more fullfedness, while negative m represents more and more

"hunger". m=o may represent a degree of saturation the daphnicles may 'feel well' in,

but still too low for not going for more food. m may be compared to an internal State

variable, say for atoms or molecules. The motion of daphnicles shall be given as for

physical particles by position and velocity, neglecting then for instance rotation, i.e. 6

variables in 3 dimensional space, denoted by r (position) and v (velocity). As for
particles these variables describe the external State. Thus we shall consider the State of

daphnicles at time t to be given by 7 variables, {r,v,ni). The daphnicles are responding

to external influences. These influences are due to other daphnicles, available food,

light intensity and threat and threat gradients from predators. Threat feeling might be

included among State variables, but will not be done so here, so all daphnicles will

feel the same threat in the following. We shall refer to influences due to food, light

and predators as background influences analogous to influences on ordinary particles
evolving on physical backgrounds. Thus our description to a large extent will follow a
test-particle approach, often used in physical research, [6].
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A probability distribution function of the 7 variables, (r,v,m), of the extended phase

space, plus time, F{r,v,m,t), will be used to express the State of the daphnicles. If

drdvdm denotes an infinitesimal volume element of the 7 dimensional space, then

F(r,v,m,t)drd\dm (1)

denotes the probable number of daphnicles in the volume element drdvdm at time t.

The evolution of F will be determined by the influences. We shall distinguish between

two types of influences of the dynamics of the daphnicles; Ordered ones and

stochastic ones. In general the dynamics is a combination of the two. The ordered

ones will be modelled by the following equations of motion, and will give rise to what

we may refer to as ordered motion in the extended phase space:

(2)

The first equation gives the connection between position and velocity of a daphnicle.
The second is an equation of motion, and on the right hand side are "forces". In the

first term n(r,t) is the density of food available, and the term represents a force the

daphnicle feels towards higher food density. E(m,p,N) is a positive coefficient that

may depend on m, the degree of fullfedness, the probable density N of daphnicles

(that may be in whatever degree of saturation and have any velocity at position r and
time t),

and the level of a threat field p(r.t). The coefficient will be further specified below.

The second term represents a force a daphnicle will feel away from high-density
regions of other daphnicles, when the coefficient K is positive, which will be assumed

in the following. However, we shall consider the coefficient to depend on the strength

of the threat field so that the repulsion will die away when the threat is high enough,
and we discuss this further below, together with the m-dependency. The third term

represent a force the daphnicles will feel toward places of higher light intensity l(r,t),
also depending on the degree of saturation through the positive coefficient L(m). We

note that many coefficients will also have some dependence on light intensity /, but

we have suppressed this here since behaviour due to light is not taken up particularly

in this report. The fourth term represents repulsion away from predators, being

proportional to the gradient of the threat field. However, hungry daphnicles (negative

m) may neglect the threat more than well-fed daphnicles, and the coefficient V(m,p)
shall reflect this dependency together with the property to increase when the threat

level p increases. The third equation is a hunger equation: a is a positive constant,
and the equation expresses that at any time there is a "drag" towards saturation
decrease.

dr
= v

dt

-j- = + L{m)—-V{m,p)~dt dr dr dr dr
dm

dt

JV(r,t) = J>(r,v,m,t)d\dm , (3)
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In addition to these ordered influences, the daphnicle State changes due to food intake

when food is available. This intake will be modelled as a stochastic process. Also
erratic motion of the daphnicles, different from ordered motion due to the forces

discussed above, will be incorporated. However, we first discuss the coefficients

E(m,p,N), K(m,p), L(m) and V(m,p).

2.1 Form of force-coefficients for ordered motion

The forms of the coefficients that follow have some backing from what is observed of

Daphnia behaviour. Simple forms have been used for convenience and because even

such forms may express trends in the evolution. However, changes and other

assumption can be used instead or added, for instance, as mentioned above, that

coefficients may depend on light intensity.

We shall let E(m,p,N) be decreasing with higher m because higher m may in less

degree direct daphnicles toward higher food concentrations. A simple form that may
take care of this effect, and also threat and density effects, is

E{m,p,N) = E 0e a° p (Nm - N){mo -m) (4)

Here E 0 is a positive coefficient and m 0 is another positive constant. m 0 represents a
high degree of saturation that is very unprobable to reach because of other influences.

The exponential contains the threat field p(r,t) which may take values on a scale from

0 (no threat) to large values, say, and a positive constant Hence we consider the

movement of daphnicles towards higher food density regions to increase when threat

is increasing. However, there is a limit for the accumulation of daphnicles, and a

factor (Nm-N), where Nm is an upper limit of density, may take care of such an effect.
E(m,p,N) turns negative only in exceptional cases.

K(m,p), positive, shall be decreasing with increasing m to reflect a tendency of
daphnicles to repulse each other less when they become more saturated. Hence we

might set when no predator threat is present,

where K 0 and a are positive constants. When there is predator threat field p(r,t) (which

takes values on a scale from 0 and upward), we may for instance set

where a, and a 2 are positive constants. Hence a threat will always have the effect of

diminishing the repulsive effect of other daphnicles, and being high enough, will tum
off the effect.

L(m) may be modelled as

(7)

K(m) = (5)

K(m,p) = Koe~°lPe~“' m (6)

Um) = V'””
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where 7 and L 0 are positive constants to reflect a tendency to respond less to a light

intensity gradient by increasing degree of saturation.

For V(m,p) we take into account both an effect of hungry daphnicles to be more
careless with respect to a threat gradient from predators than saturated ones, and also
an effect of awareness and consequent response to a threat gradient when the threat
level increases, using for instance

(8)

where Vq,tx and r 2 are positive constants.

When Eq.(2) determines the ordered dynamics of individual daphnicles on the
influencing background, a Liouville theorem [6] is valid, such that the swarm of

daphnicles behaves as an incompressible fluid in the 7 dimensional phase space. Two
observations will lead to this conclusion:

1) Consider an infinitesimal volume element in the 7 dimensional phase space at time
t, denoted by dV = drdydm. At time t + At this volume element, following the
motion of points according to the system of equations (2), transforms into

dV = dr' dV dm . The evolution of phase space points from time t to time t + At may
be considered as a co-ordinate transformation, and we have the relation

3(r', v', m' )
dV = ——-—L~— dV, where the 1.l term denotes the Jacobian of the transformation.

d(r,v,m)
3(T' v' m' )

Using the equations of motion ,Eq.(2), one derives that —-—-- = 1 + 0((At) 2 ),
3(r,v,m)

where O is the order symbol.

2) The set of equations (2) has unique Solutions. Hence the number of states within
the volume element at time t and within the transformed volume element at time

t +At, is the same. Therefore F(T ,v' ,m' ,t + At)dV = F(r, \,m,t)dV.

Using the results 1) above one obtains, letting Ar -> 0, that

i.e. the total time derivative following the motion of daphnicles is zero, and the
daphnicles behaves as an incompressible fluid in the 7 dimensional phase space.
Written out in more detail, using the set of equations (2), one has for the ordered
dynamics,

(10)

We make a remark conceming the 3N /3r -force term: The term may be considered
from a general point of view, namely as a non-correlated interaction term between

V(rn,p) = V 0e T' m+t2P

2.2 Dvnamical equation of ordered evolution of F

dF rx
F = 0 (9)

"a7 +v '^ + [E(m’ p’ N^Y~ K(m,p^^+L(m^~ y(m,p^\ir~aT~ = 0d‘ dr V ar dr dr 3r ) d\ dm
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daphnicles, in contrast to correlated interaction terms, described later. It may be
derived from the form

(H)

i.e. from a generalised "Vlasov term", see [6] for Vlasov's equation. M is the

daphnicle mass, K = (r, - r2 )F(I (r, - r 2) I) represents an interaction force between

daphnicle no.l and daphnicle no 2, assumed directed along their relative position.
Because of the product between the distribution functions, the term is named the un

correlated part of interaction. When the integration is performed over the 7

dimensional phase space of daphnicle no. 2, the integral gives a force on daphnicle

no. 1 due to all other daphnicles. For the special case of weak gradients we may
approximate

On the far right here I is an identity tensor. Using this result we have

-- |K(lr, -r2 \)F{2,t)F{l,t)drld\2dm1 = (14)
M dVj dv, dfj

which is the form in Eq.(10). However, when the assumption of weak gradients is not
met one should consider using Eq.(l 1) instead.

2.3 Food intake and erratic motion

Both food intake and erratic motion will be modelled as stochastic processes.

Generally, the origin of stochasticity is connected to correlated parts of interactions,

Two terms representing these effects in sum will replace the zero on the right hand
side ofEq.(lO). We shall assume that food intake, if allowed to go on alone,
eventually forces the distribution function towards a narrow normal distribution form

in the degree of saturation around the value m=m0 , and likewise, motion will turn

erratic if no influences are present, and force the distribution in velocity toward a

Maxwellian distribution. The form of the terms shall be the following:

Intake of food is related to daphnicle-food-density interaction, and a stochastic

modelling may be adequate. Therefore we assume a simple Fokker-Planck- term of
the form

——  f K(l r, -r2 1)f(2,/)F(l ,t)dr2 dv 2dm2= —fK(l r, -r2
M dVj J M 3v, J

F(2,f)sf(r,,v2 ,m;,o = f(r|,v2 ,m2 ,f) + (r,-r,)- df(r|,v2 ,m2 ,o
3r,

and hence may write

jKd r, -r2 \)F(2,t)dr2d\ 2 dm2

=ftø - r2 )K{\ (r, - r 2) I) F(r,,v2 ,m2 ,0 + (r 2 - r,) • 2^^]dr2d\2dm2
V dr, )

= j*o (r, - r 2) l)(r, - r2 )(r, - r 2) • drdv dm = (l 3)
drj 3r,

2.3.1 Food intake:
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fdF'l „ d f/ _ qdF 'I=B— (m - m() )F +
V & )food dm{ pdm)

(15)

Here p is a "collision frequency for food intake" between daphnicles and the

background-food, and we model it simply as

where p 0 is a constant and n is the food density. The first term on the right hand side

of Eq.(ls) therefore represents a "drag" of daphnicle saturation towards m 0 as they

take in food. The second term, the q/p -term, balances this drag and gives rise to

saturation spread when food is taken in. The coefficient may be modelled as

where k 0 is a positive constant and h0(t), also positive, may increase steadily in time.

This will result in a saturation spread that is smaller for high food concentrations than

for low, but eventually the spread will go to zero. For the case that h 0 is constant we
observe that the food intake term will vanish when

i.e. for

(18)

when also the food concentration n is constant, both in space and time.

2.3.2 Erratic motion

A corresponding term as the one above may be used for the erratic motion of the

daphnicles, even though a simple relaxation term would do for many purposes.
Corresponding to Eq.(ls) we shall have

(19)

B is a collision frequency reflecting a 'friction' between the daphnicles and the
background, and we may assume it has a form

(20)

where B 0 and cr are positive constants. Hence we allow the friction to increase with

increasing food density. We may assume the "temperature"-coefficient Q has a form

(21)

where Q 0 p,, and p 2 are positive constants such that the spread in velocity due to

erratic motion will increase with hunger, i.e. with negative values of m, and decrease

with increasing threat. However, a steady strong rise in Q and hence in velocity

spread for daphnicles with lower and lower m is not to be expected due to weakening,
so a decrease of Q for low m-values is probable. Hence a form like

P = Pon (16)

q/ P = koe~ho(t)n (17)

r»

(m - m„)F + —— = 0
0 p d

P(m—mo ) 2

F = Fl (r,\)e 2q

3 f QdF}=B—  \F + ——~
V ot Jerratlc dv V 5 dv j

B = B 0e m

Q= Qoe-p ‘ m~ 1’11’

Q= Qo COshp'”'' e'™ (22)
cosh Pj(m mx )
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where m x is some negative critical value of saturation where weakening sets in, may

be used instead. However, for m-values around 0 the form Eq.(2l) of Q will be used.
We note that the erratic motion term will vanish when

i.e. when

(23)

for the case that food density (in B) is constant and threat p is constant (in Q).

However, the spread in velocity will vary with m and the constant levels of n and p.

2.4 Equation for distribution function including both ordered and stochastic

evolutions. and equation for food densitv

Collecting results from the two foregoing paragraphs we have

which takes into account both the ordered dynamics and the stochastic dynamics. The

inclusion of stochastic terms in the equation has the general effect that the phase space

density of daphnicles does not behave as an incompressible fluid any longer.

Coefficients have been discussed above. One may assume that the light intensity

function /(r, t) is known. To simplify we shall also assume that p(r,t) is known.

However, the food density n in general has to be determined simultaneously as the
above equation is solved. The equation for n(r,t) will be taken to be of the form

where u 0 is a drift of food in water, D is a diffusion coefficient, which may be

assumed constant, X(m) is a consummation rate that depends upon the degree of

saturation of daphnicles, and S is a source rate of food input. We shall assume the
consummation rate increases with decreasing m, say as

for m<m0 , which are the most probable values of m. Note that the consummation term

is proportional to the product of the two densities. We also note that some link exists

between this consummation term and the food intake term, Eq.(ls), however, we shall
not here elaborate any further on this connection in detail.

Eqs. (24) and (25) are a coupled set of equations for F and n and represent a rather

detailed model description of daphnicles. We may refer to this description, in

vF+^= o
B d\

Bv 2

F = F2 (r,m)e 2Q

5F dF f Mdn dN d/ dp^dF dF- +v- —+ E(m,p,N)—--K(m,p)- + L(m)—-V(m,p)— •- a
dt dr v or dr dr dr ) d\ dm

= Py~f(m-mO )F +|-—1 +5 + ——l (24)dm pdm J d\ v Bd\ j

dn dn n d 2 n r „
+ uO -- = ?i{m)Fdmd\ + S(r,t) (25)

Hm) = V“ (26)

where X, and £ are constants, or more simply as.

Mm) = —e{m -m0 )
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particular Eq.(24), as a high level, or detailed, description. It is clear that some

information resulting from this description may be difficult to observe directly in

practise. One may therefore ask if a more coarse-grained description from the start

could be adequate enough for practical purposes. However, derivations of more

coarse grained or lower order level descriptions from the detailed description will

contain some important high level effects. Such effects may be difficult to incorporate

otherwise. In the next section we derive some lower level descriptions from the high
level description developed till now.

3 Separate kinetic equations for saturation and velocity dependent densities.
Warm and cold models

3.1 Equation of evolution for saturation dependent densitv

From Eq.(24) we here derive some lower level equations. These equations will arise

when moments of velocity and saturation are taken. These new equations will be

coupled, generally in infinite chains, and a Central problem concerns how to truncate

these chains to a few equations that may be solved.

The first of these low-level equations we discuss tum out when we integrate equation
over velocity. We then have,

where

(28)

is the saturation dependent density and

(29)

gives the saturation dependent mean flow U of daphnicles. The equation hence is

coupled to an equation for U. We derive an equation for U multiplying Eq.(24) by v
and integrate over v. Then the equation,

turns out, where we have set

l + fußCr,.,» + (27,

/ = = F(r,\,m,t)d\

yU(r,m,f) = | F(r,v

3(fU(r,m,t)) 3 „,9n ,9W , 3/ 3d3
+ Fvv), “/ E(m,p,N)~-K(m

or V or dr dr dr )

(30)

-a—(/U(r,m,f) = j3—f(m-m0 )/U(r.m.0 + - a( -/U(r ''”’ O) ]-g/U(r,m.r)
dm dm{ [3 dm j
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{F\\)y = \\Fd\ (31)

Thus the equation for/Z7 introduces both a new unknown function (Fw)v in addition

to the ordinary density W which already appeared in Eq.(24). (Fvv) expresses

'excitement', or the degree of erratic motion, of the daphnicles and is comparable to

thermal motions of ordinary particles. (F\\)y may be found taking the next higher

velocity moment of Eq.(24). Instead of setting up such an equation for {Fv\) y , which

will contain even higher order velocity moments, we derive below an approximate

expression for (F\\)y that will truncate the set of coupled equations in this moment

'direction'. The equation for N will also be derived below.

3.2 Equations for evolution of velocity dependent density

First we consider moments in another direction from Eq.(24): Integrating equation
over m we obtain

(32)

(33)

is the velocity distribution function. Eq.(32) corresponds to an ordinary kinetic
equation. We have in general set,

(34)

for a function ø of m. Note that

(35)

The other form of Q(m,p), Eq.(22), may equally well be used in Eq.(32). One

observes in Eq.(32) the coupling to the various (.) m -moments. In general this coupling

may rise a substantial problem. However, a study later will be done only for special

cases where we only need the first order m-moment: Multiplying Eq.(24) by m and
integrating we obtain

dg + y _d_ f d{FE(m,p,N))m dn _ d{FK{m,p))m dN + d{FL(m))m dl
dt dr d\ dr d\ dr d\ dr

d(FV{m,p)) dp\d a 2 , ,
--—-JLLiI.Æ. =B{n) (vg) + Qe-*p /e-*»F\

dv dr J dv dy ' /m

where

g{r,\,t) = {F)m = j F{r,\,m,t)dm

{p(f)(m))m = |>(r,

N=\gd\

dG +y . dg | f d{FE{m)m) m dn d{FK(m,p,N)m}m dN d{FL(m)m)m dl
dt 3r d\ dr dv dr d\ dr
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_ M+ag = _pG+mog + . (vG) +
dy dr ) d\ dv N /m

(36)
where

(37)

is connected to a mean saturation.

3.3 Eauation for densitv N(r. t) of daphnicles - warm and cold models

In all the equations derived the density N appears. The equation for N is obtained

integrating Eq.(24) over both velocity and saturation. Since integration over velocity

gave Eq. (27) we need only integrate that equation over m. Thus we obtain

where more precisely

(39)

is the probable observed number density of daphnicles and

(40)

gives the probable observed mean flow UO . An equation for U 0 we obtain integrating
Eq.(3o) over m,

In order to truncate the v-moment equations we assume that the daphnicle distribution

function to lowest order in the velocity variables may be approximated by a
Maxwellian, i.e.

Then

(43)

where I is the identity tensor. Using this approximation, Eq.(3o) tums into
d(/U(r,m,o) , Qo d . 0 dn N dW ~ . dl

TT + P2P ) + --fUU~f E{m,p,N)-- K{m,p)— + L{m)
dt B 0 dr dr dr dr dr

—V{m,p)— = a—-(J\](r,m,t) + fd— (m -m0 )/U(r,m,O +——'-BJU(r,m
dr J dm dm{ (3 dm J

(44)

G(r,v,f) = {Fm) m = F(r,v

+ • (MJO (r,O) = 0 (38)at dr

N(r,t) = J F(r,v, m, t)d\dm = | fdm

MJ0 (r,0 = jF(r,v,m,t)\d\dm = J f[](r,m,t)dm

3(MJ°(r,O) + 3 .(^vV) -f(/E(m,p,N)) fK{m,p)) + (/L(m))
a? ar v>m i^ x /m ar x /m ar x /w ar

-{fVim,p))m —] = -B(.n)NUO iT,t) (41)drj

3.3.1 Approximation of (Fw)v warm and cold models

B(v-U) 2 )
F(r,\,m,t) = / (2k)312 {8 / Q)312 e 2Q (42)

(Fw)v = f—l+yuu= /^e-”-ft + /uuB B 0





14

and the Eq.(4l) for NU0 into

We shall refer to models including the <2O-term as 'warm' models, while 'cold' models

means Qo=o. In Eqs.(43), (44) and (45) we used Q from Eq.(2l). We could of course

equally well use Q from Eq.(22) instead.

4 Fluid equations of daphnicles

Eqs.(3B) and (45) for N and UQ , combined with Eq.(25) for n, comprise a set of fluid

equations that could be used, when the force-coefficients are evaluated. This could

most simply be done using/from Eq.(52) below. However, a simpler fluid model will
be demonstrated and studied here.

4.1 Balance of forces-approximation. and approximations of m-moments

We assume NU0 from Eq.(45) quite rapidly relaxes towards a quasi-stationary State,

i.e. a State where the time-derivative term in Eq.(45) may be neglected. In this State

we may solve the remaining equation with respect to NU0, and obtain

—^-~(e-me-pip [
BB0 dr J

(46)

Here we also have neglected the • (/UU) ra -term, assumed relatively small, seear

below. Using this expression in Eq.(3B) we have a continuity equation for daphnicle
density N that take into account effects of various saturation moments,

~d7 + dr n j‘L{m)fdm ~ jv(m,p)fdm^-

We write the saturation moments more explicitly . We have

J E(m, p, N)fdm = E 0e a°p {Nm - (mo - m)fdm = E 0e a°p (Nm - N){moN -P) 48)

where we have written for the l'st m-moment of m:

WÆf» + 9±jL(e-<*e-w f fe»'"'dm) +—  (/UU)dt B 0 dr J dr

j E(m, p, N)fdm - j K(m, p)fdm—+ j L{m)fdm - J V(m, p)fdm = -BN\J0 (r, t )

(45)

MJ0 (r,0 =-H \ E(m,p,N)fdm—- \K(m, + [ L{m)fdm- f V(m,p)fdm—
dr J dr J dr J dr J

- — — (47)
BB03r 1 J
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mfdm = P(r, t) (49)

Observe that

(50)

where G has been introduced above. The other m-moments in Eq.(47), however,

generally introduce many new unknowns, beside P above, and rise a problem in the

truncation process. If/were known one can of course calculate all these. But also a

quite rough approximation of/may be useful: In particular, in cases where the

\- -term in Eq.(27) for/is small, and may be neglected to lowest order, thedr

may be solved. If also condition for a quite fast relaxation of/towards a quasi-steady

State, i.e. if relative much food is available, and the function/shows little spread in

saturation, i.e. q/p is small, then/may be approximated by

where 5 is the delta function. The t- and r- variations here are relatively weak. Note

that = pQn(r,t). Using this approximation we may evaluate jfemdm where 77
is some constant,

where we also have written an approximation of the exact expression valid

ifl7](m0 - alp) l< 1. In the last approximation in Eq.(53) the first term is the o'th

order m-moment, the second the Tst order m-moment, using the particular form of/,

Eq.(52). We now assume that an approximation of integrals like [ femdm may be

obtained by these two m-moments, the o.’th and the l.’th, also for slightly more

general functions/than the <5-function form above. However the inequality

1 77(m0 -a! P) kl (54)

must be fulfilled: Either 77 is very small. Then m 0 may be quite different from a/p. Or

77 may be relatively large, but then m 0 and a/p must be very close.

We shall assume these conditions to be fulfilled when approximating the remaining

m-moments in Eq.(47):/ is not far away from the distribution function Eq.(52), and

each of ocu 7, T, and p 1 fulfils the same inequality Eq.(54) as q above. We then may
write:

K{m,p)fdm 0 e aiP [N-ax P) (55)

(56)

P = Gd\

remaining equation

3/ 3/ n 3 ( q df^\
- = (m-m0 )/+- (51)

ot om om fj om J

f(r,m,t) = N(r,t)S(m~(m0 -a/ P(r,t))) (52)

j femdm =N(r,t)e^m° aip) = N(r,t){\ + rj(m0 -a / fi)) (53)

| L{m)fdm ~L0 (N - yP)





16

V{m,p)fdm ~V0 (N + T] P)eTIP (57)

fe p ' m dm ~ N - px P (58)

In the equation for n, using the form A from Eq.(26), we have when also the

parameter e fulfils the inequality Eq.(54),

J X{m)Fdmd\ ~AOJ (1 - em)Fdmd\ = AO J (1 - em)fdm = \{N - eP) (59)

Using these approximations, the equations for N and n tum into

(60)

and

(61)

Thus we only need an equation for P, besides the equations for N and n, to have a
closed system for N, P and n. Generally, we obtain the equation for P from Eq.(36) of
G by integration over v,

This is again coupled to an m-moment of Eq.(3o), a mixed first order m-v-moment of

F. An equation for j fm\]{r,m,t)dm = P(r,t) is obtained from Eq.(3o) by multiplying

it by m and integrating. The equation is of the form

and generally introduces even higher order m-moments. However, in order to truncate

these equations, we use assumptions that were used above: —— terms are assumed
dr

small, i.e. the State is nearly uniform, and furthermore, the State is nearly static, i.e.

NU0 from Eq.(46) is small. Since U 0 mainly is driven by —, this last assumption is adr

consequence of the first assumption. A similar "balance" of forces that gave Eq.(46) is
expected also in Eq.(63). The effect of the resulting P on Eq.(62) for P then is verv
small. Therefore in models where a uniform, static State exists and we look for small

deviations involving weak gradients, we may truncate the coupled equations by
assuming we have for P the simplified equation

where we have written P-Ppi. Hence, when the l(r,t)~ and p(r,t)~ functions are known,

Eqs.(6o), (64) and (61) constitute a set of equations for N, P and n that may give a

—+ ~  [-[E„{Nm - N)e^(moN-P)~K^{N- a,P)—+ L,{N - yP)—dt or \B\ dr dr dr

-V0 (N + Tl P)e e-m e~ P2P {N-p.P)] = 0
dr J BB0 5r

—+ U 0 •—=D—- n\ (N - eP) + S{r, t)at ar dr

+ •(J finV(r,m, t)dm) +aN = -p{P - mO N) (62)

ap ra „
-r- + —-terms = -aNV0 -/JP + /?mOMJO (63)
ot yor J

dP
+ aN = -POn(P-m0 N) (64)ot





17

particular 'fluid' evolution of the daphnicles when the assumptions used in the
derivations are met.

5 Some special states and evolutions

= ka e h° (t)n —> Oas time increases, we have in the stationarv State that —= 0, which
P p

means all daphnicles are in a State of equal saturation.

To have a stationary State we furthermore must have a stationary and uniform source

of food input, So>o, to obtain a stationary density n 0: If food is not available starvation

gives rise to a State that is not stationary, see below.

From Eq.(6l) we have in the stationary and uniform State that the balance

n 0 ePq) + So 0 (65)

must be fulfilled, furthermore, from the approximation Eq.(64)

In practice, a State like this may never be obtained. However, small deviations from

such a State may be relevant from an observational point of view, and this is

considered later. N 0 is the stationary and uniform density of daphnicles in this State,

and Pq/Nq the mean saturation. All ordered motions vanish, i.e. the State is static, and

daphnicles show only erratic motion; From the equation for F we have

Here the <5-function expresses daphnicles of equal saturation, m = (m 0 - —), a balance
P

between food intake and the starving process: If daphnicles take in food fast, i.e. P

large, or, if starvation ais small, then they nearly obtain a saturation of mO . The
daphnicles show erratic motion expressed by the Maxwellian factor. We have

(68)

if we use the Q-f&ctor form from Eq.(2l). The excitement of the daphnicles then is

According to this the excitement will increase with increasing hunger rate and

decrease with increasing threat. Increase in food available, nO , will damp hunger
excitement, and damp excitement in general.

5.1 Stationarv and uniform State

Then = 0, = 0. Since we assumed = such that
dt dr

mo No) (66)

f B V /2 „
F(m,\) =NO —— S(m - (m 0 - —)) e 22 (67)

\2tiQ) p

n r, m -Pl( mO--)-PzPo
P = P0n(l ,B = B<) em\Q = Q>e >

0 Or. -A"»o+Pl PIPO-™0

~ = fo * fl- (69)
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5.2 Uniform State, no food available. hunger

We consider —= 0 and = /30 n0 =O. There is as in the State above no ordered
dr

movement. Starvation will dominate, and we shall in this State therefore use the form

of Q from Eq.(22). The equation for F therefore reads

Introducing a new variable p= m + at , which transforms Fto F (), we have

instead the equation

which may be solved by the techniques used in [7]. For the case that movement is

only back and forth in a z-direction, håving averaged out movements in perpendicular

directions, which is considered relevant for the experiments described in [l], the
solution

(72)

where

(73)

is the particular one that obeys F(vz ,m, f=o) = N 0yz ). We may think of this

initial State to represent a situation where all daphnicles are let into the experimental

chamber uniformly distributed and simultaneously at time r=o, with different degree

of saturation, given by/0(m), and all being immobile at that time, expressed by the <5-

function. From then on they respond to the environment. More general Solutions of

the equations may be obtained from this fundamental solution. /0(m) is a quite

arbitrary function obeying j fodm =l. Figs.l-2 shows F for some increasing values of

t, both for low threat po=o, and for some threat, po=2, when /0 (m) = e~al ml {al / 7t)1/2 ,
where al is constant.

5.3 Linearized fluid equations

Many of the equations derived in sections 2-4 are non-linear, in particular the low

level (fluid) equations. They are generally difficult to solve by analytic procedures.
However, Solutions that deviate only little from stationary and uniform Solutions like

the ones derived earlier, may be found more easily since the equations for the small
deviations are linear and hence more tractable.

In the discussion that follows we assume;

1) The daphnicles move back and forth in one dimension.

= j?o A.fvF+ a_..,coshp,m, (70)
3? dm d\ B 0 cosh px {m-mx ) 5v y

= Bo A.f vF + a ££!h/W (71)
dt d\ B 0 cosh p, ( jLL-at-m,) d\ y

= +ao^e-^

a(m,t) - 2QQe~ f’lP° f' C°Shp' m'
Jo cosh Pj (m + as - rr\ )
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This may mimic laboratory experiments where Daphnia are confined to a cylindrical

shell, [l], and we neglect the radial and vertical motions, assuming these may be

averaged out. Hence,

2) We look for periodic, weak-gradient, smooth Solutions in one dimension. For

instance, for the density N(z,t) we have N(z+L,t)=N(z,t) where L=2tzß, R being the

mean radius of the cylindrical shell, and similarly for all other quantities involving
space variation.

Accordingly, all quantities, for instance the density, will have a general form,

N=N0+NX where N 0 is z- and r-independent and Nx (z,t) fulfils

(74)

Thus we write

(75)

The stationary, uniform parts of the Solutions ('equilibrium' solution) are the ones

discussed above, and subscript T refers to small perturbed z-oscillatory and time

dependent quantities: It is essential that these quantities are small, i.e. for instance

\NX \« ITVqI, for the linearization to work. The threat function p and light intensity

function / are assumed known here. Also the food source shall be given in the same
way,

(76)

The discussion and assumptions leading to the simplified Eq.(64) is now applicable,
and to first order we have from Eq.(64)

0
Assuming that —> 0 relatively fast in this equation, the first term may be neglected

when only slow evolution is considered. Then the remaining terms in Eq.(77) give Px
as a function of Nx and n x .

p' = (m» _ ~ {P°- moNo)~ = («>0-w. (78)
n0 p 0n0 p0 n 20

We note that the approximation of P x here also follows from using the/-

approximation from Eq.(52). However, we could without difficulty have worked with
the full Eq.(77), but follow this simpler procedure here.
The linearized food equation thus becomes

L
j Nx {z,t)dz = 0o

N = N 0 + N{
n= n 0 +nx

p=po +p,

P = Po + P\

/ Iq + I\

S SQ + iSj

dP
+ aAfi = -A«,(fo -W“ - (77)
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7)yi rjri 7) 2n
- + «,7- = D-j--nMN„ ~ ePo) ~«AW -&,) + S.U.Oo/ dz 07.

(81)

These constants are positive since we consider em0 to be smaller than 1.

Likewise, we may rewrite Eq.(6o) for the perturbation Nx . After some algebra it takes
the form:

(83)
As in Eq.(80), Eq.(B2) couples various parameter-effects in the coefficients. These

coefficients therefore take different values when the parameters change. For instance,

A and B may vary considerably when the threat level p 0 varies. Both of A and B are

considered positive, and both simplify considerably for a 'cold’ population (Q0=0) of

daphnicles. /j is negative while I 2 is considered positive, however, less positive for

warm models, Qo>o. Note that I 2 may increase considerably when p 0 increases.

6 Some special Solutions from linear fluid equations

We simplify the equation for n x somewhat neglecting the drift u 0 and the diffusion,

such that only the essential interaction between the two densities remains, håving
dn,

~Cx nx C 2Nx +s] (84)

where C, and C2 are given from Eq.(81). S x is considered known and periodic in z
For various cases we solve the equation together with Eq.(B2), i.e.

d 2n
D , n^0N0 (l —VW ~ £ ~7f )"h 51(2,0 (79)

dz p 0n0

or, for short,
3/2, 3/2, _ d 2 n, „ _
~a7 +w° "dT = D “ ~ + (8°)

where we have written
Q = A 0N0 (l-£m0 )

C 2 ~ noKiX &n0 £ n )
Pono

dNx d 2nx d 2Nx d 2 l 3 2 /?,
*1? (82)

where we have for the coefficients,

A = , N,)e^aNo + jvo(i - p,m0 +
BqPqKq B 0 Pono B 0 p 0nQ

B = M±e (i-a^-oc, —)+%«-a--ft '*(l-p1 »»b +—)A) Po"o p 0n0

7> = -—-^-^+7
Bq P() n 0

h = d + -*.J~y -%~^°No p2 (\ - p,m0 + M-)Bo Pono B 0 p 0n0
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dN d\ a 2 (V, a 2/, a 2 A
 aT +A a7" Bl^- 7| a? +/2 a7 (82)

where coefficients are given from Eq.(B3) and /, and p x also are considered known and

periodic in z. Solutions are largely illustrated by figures, and we list at the start of the

figure section at the end the parameter values used in Figs.4-18.

6.1 State of stationarv balance

When all sources S x , l x and p x are time independent, a stationary solution for TV, and n x

is found when terms are neglected in Eqs.(B2) and (84). Then we have
dt

(85)

and the steady solution

(86)

is set up by the steady sources Sx , /, and p x and hence is also oscillatory in z. These

tum out to be 'end' Solutions towards which time-dependent Solutions evolve. We
shall look at some particular situations:

We have

(87)

The system lacks source terms and is homogeneous. Solutions will reflect intrinsic

properties of the system. These properties are also important to tell how the system

responds to sources. There is no steady State solution in this case, except Nx =n x =0. We
solve the equations subject to the initial perturbation,

(88)

and we look for Solutions of the form

NM,t) - Xm=1 <3lTO (ocos(27irnz/ L) + = a2m (t)sm(2nmz /L)
v- (89)

ni (z.o = 2.b-,(0c05(27t/72z / L) + b2m {t) sin(27tmz / L)

Anx BNX /j/j + /2 /?j

Cx nx + C 2N{ =S{

yy _ ASt - + /2 P|)
ac2 + bc,

fi .. BS| + Q(Vi +
" AC2 + BC,

6.2 The case SL=O, lL=O, i.e. the situations with no perturbed extemal influences

+ A|i_Æ = 0dt dz dz 2
= -o, - c2 n,

N\ (z. °) = Xm=i Nim cos(27cmz /L) + rø=i W2m sin(2nmz /L)
nx {z, 0) = 0
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"m" is used for "azimuthal mode number", which is standard notation, (and must not

be confused with food saturation). By insertion we find for each pair of the time

dependent coefficients (alm ,blm ) and {cL2m ,blm ), say (ocm ,pm ), the equations

where ' means the time derivative. Using the initial conditions we obtain for the
coefficients

(91)

Here Nm denotes either Nlm or N2m depending on whether (ocm ,pm ) denotes (aXm ,blm )

or {a2m ,b2m ). The roots r, and r 2 are given from the equation

(93)

and are either real or complex conjugates. In the last case we may write

(94)
where

(95)

P = [4(AC2 + BQXlnm / L)2 -(C + B(2nm / L)2 ) 2 ]' 2 / 2

We write explicitly the solution for the case that

(96)

In the real root case we have

(97)

and in the complex conjugate root case

a'm - A(2nm / L)2 pm + B(2nm / L)2 am = 0m rm m

Æ, +CA + C 2am = 0

am = -^M(r2 + B(2nm / Lf)e  ' - (r, + B{2nm / L)V2 ')
r 2 ~ *i

Pm =„„ 1 <r ,2 Nm (n + B(2nm / L)2 )(r2 + B(2nm / Lf)(er" - e r")A(2nm IL) r - rx

r" + r(C, + B{7.Tim / L) 2 ) + (5Cj + AC2 )(27C7tz / L) 2 = 0 (92)

i.e.,

r = -(C, + B{2mn/ L)2 ) / 2±[(C, + B(2nm/ L)2 )2 - 4(BC, + / L)2 ]'” / 2

r = a±ip

C+B{2nm/ L)2a = —1
2

TV, (z,O) = Nlm cos(2nmz /L)

nx {z, 0) = 0

N
Ni(z,t) =—— ((r2 + B{2nm / L) 2 )e r' t - (rx + B(2nm / L) 2 )e rit)jcos(2nmz /L)r 2 rx

1 N
n\ (z,t) = —7 ——(/i + B{2nm / L)2 )(r2 + B(2nm / L) 2 )(ev - e 2 ') cos{2nmz /L)

A{2nm IL) r2 ~ rx
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ry SIR Bt
N{ {z,t) = Nlm <?“cos pt e at sin pt - B(2nm / L) 2 ea cos(2nmz /L)

\P P )

nAz,t ) = -((a + B{2nm / L)2 ) 2 + p 2]e M cos(2nmz /L)
A(2nm / L) P

(98)

We make the following distinctions;

1) AC2 + SC, > 0 and 4{BCX + AC2 )(2nm / L) 2 < (C, + £(27tm / L) 2 ) 2 .

Both roots are real and have the same sign. Since C, + B{2nm / L) 2 >O, both are

In this case the roots are complex conjugates, and since Q + B{2nm / L) 2 > 0 the real part

of the roots is negative.

Some choices of parameters may also be investigated from Fig.3, showing two (A, B)

diagrams, for fixed values of C, and C 2 (both set to 1), for m- 1 (top) and m-2, bottom.

The curves are the parabola (Q - Bl1 ) 2 = 4AC2/ 2 , where / = 2nm /L, and the straight

lines BCX + AC2 = 0 and Cx + BI 2 =O. The regions for real and complex conjugate roots

are indicated, together with the signs of the roots, or for their real parts. Note that only the
region for B>o is relevant.

In both cases 1) and 2) the perturbed Solutions Nx and n x are damped away. As Figs.4-

6 show the damping is dependent on the ground threat level p 0 which makes A

increase and B decrease when it increases. We show Solutions for a low level, an

intermediate level and a high-level threat case. Though the response of daphnicles

changes with threat, accumulation of daphnicles does not take place. In the complex

conjugate case the Solutions decay towards zero, showing also an oscillatory

behaviour in time. The combined oscillatory behaviours in space and time may be

considered as standing attenuated waves due to waves propagating in opposite

directions, each with a phase velocity =Lp / (2nm) where P here is given from

Eq.(95).

6.3 Case of uniform light intensitv. uniform threat. steadv rate of non-uniform two

hump food input

This case may be more realistic conceming food input, since we allow the food input

to vary from point to point, which will be the case in practise, even if we try to make
the input uniform. We assume from t=o and onwards,

which corresponds to two different "humps" of steady food input, while at time t-0
we have

negative.

2) AC2 + BQ> 0 and 4(BQ + AC2 )(2nm / L)2 >{q +B(2nm / L)2 ) 2 .

Sl (z) = sl , cos(2tcz /L) + 512 cos(4tiz /L) (99)
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N,(z, 0) =Nu cos(2t:z /L)
(100)

nx {z,o) - 0 V ;

i.e. initially a one-hump perturbation of the daphnicle density. This corresponds

therefore to a situation where we have an overall positive, oscillatory supply: The

supply is split in two, S= S 0 +Sv The constant part S 0 merely gives the uniform

solution, i.e. the values nO , P 0 and N 0 from Eqs.(6s) and (66), while the response to S]
now follows.

The equations have in this case a stationary solution,

(101)

Defining new variables,

(102)

we have the problem to solve and find z-periodic Solutions of

(103)

(104)

The solution procedure follows the same lines as in the foregoing paragraph, and the

listing of cases according to parameter values is the same. Results are shown in

Figs.7-9 for three cases of threat levels. In all cases the Solutions decay towards the

steady-state solution as time goes on. Accumulation of daphnicles becomes stronger
around food sources as the ground threat level p 0 rises, and the food distribution
changes accordingly.

6.4 Case of uniform light intensitv. uniform food input and non-uniform station
threat

We now assume a small, steady gradient in the threat field,

(105)

but we assume there is no variation in food input or in light intensity, i.e. /,=o.
We take the initial State to be,

N AS,{z)
11 AC2 + BCt

n BS,(z)
" AC2 + BC,

Ni = Ni~Nlt

nx =nx -nxs

M+ a|i_ gM = 0dt dz 2 dz2
-1 = -c,«, - c2 n,

subject to initial conditions
N\(z, o) -Nu cos(2tiz /L) - Nls (z)

nx (z,o) =-nls {z)

px {z) - pXm cos(2timz /L)





25

Nx {z, 0) = 0
= 0 (105)

We have

(106)

for the stationary Solutions, and results for the full solution are shown in Figs. 10-12,

for the case m= 1. As expected, daphnicles fly away from the threat gradient and settle

in a State given by the steady State solution. However, since the parameters A, B and /2

all depend on the ground threat level, the response to the same threat gradient is very

different when the ground threat level changes.

6.5 Case of uniform light intensitv. uniform food input and one-hump moving threat

We change the foregoing example to a threat gradient that is moving with a steady

velocity vO ,
(107)

(108)

No stationary Solutions exist in this case. Eventually, as time goes on, a solution

remains driven by the moving threat only. We have the results of Figs. 13-15. Again

the ground level threat p 0 is an important factor for the daphnicle response and
evolution.

6.6 Case of uniform light intensitv. steady two-hump food input and moving one
hump threat.

and

Neither in this case there exists a stationary solution. As time goes on there remains a

typical response and accumulation due to the combined influences of threat moving

and steady food input. This is shown on Figs. 16-18 for three cases of ground level
threat.

N ... -C/iPiU)
ls ac2 + bc\

n _ C 2/2 p,(z)
ls AC2 + BC,

px (z, t) =pn cos(2tiz IL- v 01)

still håving /,=O. Again we let
N,(z, 0) = 0

nx {z, 0) = 0

In this case we have

sj(z) = Sj, cos(2tiz /L)+ sn cos(4tcz /L) (109)

pl {z,t) = pu cos(2nz/ L-v0t) (110)

W,(z,o) = 0
(111)

n{ (z,o) = 0
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7 Summary and condusion

The purpose with the present investigation was to consider whether an analogue

modelling parallel to physical modelling could qualitatively describe the behaviour of

swarms of Daphnia, in particular their response to food and threat. It was assumed

that the particle-like units, which we have called daphnicles, had only one intemal

State, which gave them some sort of individuality, namely their degree of food

saturation. Due to this they showed individual responses to external influences. We

assumed they responded uniformly to external threat, though also this property,

connected to fright, might also be treated as an intemal, individual property. A

statistical-mechanical approach was used to follow in time the evolution in a 7

dimensional State space, spanned by velocity, position and saturation, of a density

function, or distribution function, of daphnicles. A dynamic equation for the density

function, i.e. an extended kinetic equation, was developed. The reasoning was close to

test-particle reasoning in physical disciplines and gave the evolution in a statistical

sense. From the basic equation eventually more ordinary kinetic equations and then

fluid equations were developed. These had inherent properties that stemmed from the

detailed equation first developed. In particular a line of derivation that lead towards

fluid equations relying on balance of forces was followed, though there were other

alternative lines of development. In some cases it was possible to solve these

equations analytically when some conditions were met. These condition may to some
extent be met in laboratory experiments [l] that have been done for some time and

will be continued in the future. The results from the modelling may therefore be

compared to matching experiments. The modelling can to some extent easily be

modified to match new conditions, mechanisms and experimental findings. More

elaborate Solutions may be found by computer experiments, in particular when non

linearity must be included, or when the particular line we eventually followed must be
modified, or new lines of development must be followed instead.
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Figure section

Parameter values used in Figures f4)-G8).

Spatial dimension, L :

Amplitude of initial perturbation (m= 1) of daphnicles:
A, ,=0.2 or A„=o.

Amplitude of initial perturbation of food:

0, throughout.

Food attraction and daphnicle repulsion coefficients A and B:
A=o.s, B=2, low threat level

A=l, s=l, intermediate threat level

A=s, 5=0.2, high threat level

Threat gradient coefficient /2 :
72=0.5, low threat level

/2=l, intermediate threat level

72=5, high threat level

L=2k, all figures

Food intake rates C, and C 2:
C]= C2=l.

Two-hump, perturbed food input amplitudes, m- 1, m-2:
jn=o.l, 12=0.3.

One-hump threat gradient amplitude, m= 1:
Pu=o.2

Velocity of moving threat gradient:
v0=0.5
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m=l,L=2n,Cl=C2=l

Fig.3: Regions in (A, B)~ diagrams for real and complex conjugates roots of Eq.(93),
when L=2tc, C,=C2=l, for m- 1 (top) and m-2 (bottom). Only B>o is relevant, sign of
real part indicated.





Density of daphnicles,
Low threat ievel,

Only initial perturbation of daphnicles, m=l

'co
G
4)
T 3

Density of food,
Low threat level,

Only initial perturbation of daphnicles, m-1

Fig.4: Space-time evolution of daphnicle density (top) and food density (bottom) in

case of low ground-threat level, when daphnicles are perturbed at r=o, (Eq.(96), for

m— 1). For parameter values used. see start of figure section.





Density of daphnicles,

c
<u
T 3

Density of food,
Intermediate threat level,

Only initial perturbation of daphnicles, m=l

Fig.s; Same as Fig.4, except for intermediate ground-threat level instead, see start
figure section.

Intermediate threat level,
Only initial perturbation of daphnicles, m=l





Density of daphnicles,
High threat level,

Only initial perturbation of daphnicles, m=l

Density of food,
High threat level,

Only initial perturbation of daphnicles, m=l

Fig.6; Same as Fig.4, except for high ground-threat level instead, see start of figure
section.





Density of daphnicles,
Low threat level,

Initial one-hump perturbation of daphnicles, m=l,
pins two-hump-perturbed steady food input, m=l,2.

'35
a
<u
T 3

Density of food,
Low threat level,

Initial one-hump perturbation of daphnicles, m=l,
plus two-hump-perturbed steady food input, m=l,2.

Steady perturbed food input

Fig.7: Space-time evolution of daphnicle density (top) and food density (middle) in

case of low ground-threat level. when daphnicles are perturbed at t=o as in Fig.4 and

in addition a steady food input is given, bottom. For parameter values used, see start

of figure section.





Density of daphnicles,
Intermediate threat level,

Initial one-hump perturbation of daphnicles, m=l,

plus two-hump-perturbed steady food input, m=l,2.

'53
C
T 3

Density of food,

Intermediate threat level,

Initial one-hump perturbation of daphnicles, m=l,

plus two-hump-perturbed steady food input, m=l,2.

Steady perturbed food input

Fig.B. Same as Fig.7, except for intermediate ground-threat level instead, see start of
figure section.





Density of daphnicles,
High threat level,

Initial one-hump perturbation of daphnicles, m=l,

plus two-hump-perturbed steady food input, m=l,2.

Density of food,
High threat level,

Initial one-hump perturbation of daphnicles, m=l,
plus two-hump-perturbed steady food input, m=l,2.

Steady perturbed food input

Fig.9: Same as Fig.7, except for high ground-threat level instead, see start of figure
section.





Density of daphnicles,
High threat level,

Initial one-hump perturbation of daphnicles, m=l,

pins two-hump-perturbed steady food input, m=l,2.

Density of food,

High threat level,

Initial one-hump perturbation of daphnicles, m=l,

plus two-hump-perturbed steady food input, m=l,2.

sectk>n^ ame “ ground- threat ievel see start of figure





Density of daphnicles,
Intermediate threat ievel,

No initial perturbations

Only small threat gradient

Density of food,
Intermediate threat level,

No initial perturbations
Only small threat gradient

Steady small threat gradient

Fig.il: Same as Fig. 10. except for intermediate ground-threat level instead, see start
of figure section.
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Density of daphnicles,
High threat level,

No initial perturbations

Only small threat gradient

w*

’cfl
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0)
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Density of food,
High threat level,

No initial perturbations

Only small threat gradient

Steady small threat gradient

Fig.l2 Same as Fig. 10, except for high ground-threat level instead, see start of figure
section





Density of daphnicles,
Low threat level,

No initial perturbation of daphnicles

No perturbed food input.
A one-hump-perturbed moving threat-gradient, m=l.

 w
C
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T 3

Density of food,
Low threat level,

No initial perturbation of daphnicles

No perturbed food input.
A one-hump-perturbed moving threat-gradient, m=l.

'«5
a

T 3

Moving threat density

Fig-13; Effect of moving small threat gradient (bottom) on daphnicle density (top)
and food density (middle) in case of low ground-threat level. For parameter values
used, see start of figure section.





Density of daphnicles,
Intermediate threat level,

No initial perturbation of daphnicles

No perturbed food input.
A one-hump-perturbed moving threat-gradient, m=l.

Density of food,
Intermediate threat level,

No initial perturbation of daphnicles
No perturbed food input.

A one-hump-perturbed moving threat-gradient, m=l.

w
00
C
O
T 3

Moving threat density

Fig.l4: Same as Fig. 13, except for intermediate ground-threat level
of figure section.

instead, see start





Density of daphnicles,

High threat levei,
No initial perturbation of daphnicles

No perturbed food input.
A one-hump-perturbed moving threat-gradient, m=l

Density of food,

High threat levei,

No initial perturbation of daphnicles
No perturbed food input.

A one-hump-perturbed moving threat-gradient, m=l

Fig.ls: Same as Fig. 13, except for high ground-threat levei mstead, see start of figure
section.





Density of daphnicles,
Low threat level,

No initial perturbation of daphnicles
A two-hump-perturbed steady food input, m=l,2.

A one-hump-perturbed moving threat-gradient, m=l.

Density of food,
Low threat level,

No initial perturbation of daphnicles
A two-hump-perturbed steady food input, m=l,2.

A one-hump-perturbed moving threat-gradient, m=l.

Moving threat density

Fig.l6: Effect of moving small threat gradient (bottom) on daphnicle density (top)

and food density (middle) when a steady food input is given, as on bottom of Fig.7,

when ground-threat level is low. For parameter values used, see start of figure
section.





Density of daphnicles,
Intermediate threat level,

No initial perturbation of daphnicles
A two-hump-perturbed steady food input, m=l,2.

A one-hump-perturbed moving threat-gradient, m=l.

Density of food,
Intermediate threat level,

No initial perturbation of daphnicles
A two-hump-perturbed steady food input, m=l,2.

A one-hump-perturbed moving threat-gradient, m=l.

Moving threat density

Fig.l7: Same as Fig. 16, except for intermediate ground-threat level instead. see start
of figure section.





Density of daphnicles,
High threat level,

No initial perturbation of daphnicles
A two-hump-perturbed steady food input, m=l,2.

A one-hump-perturbed moving threat-gradient, m=l.

A'
'wC<u”0

Density of food,
High threat level,

No initial perturbation of daphnicles
A two-hump-perturbed steady food input, m=l,2.

A one-hump-perturbed moving threat-gradient, m=l

'mC
T 3

Moving threat density

Fig.lB Same as Fig. 16, except for high ground-threat level instead see start of figure
section.
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