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A ROBUST NONCONFORMING fU-ELEMENT

TRYGVE K. NILSSEN, XUE-CHENG TAI, AND RAGNAR WINTHER

Abstract. Finite element methods for some elliptic fourth order
singular perturbation problems are discussed. We show that if such
problems are discretized by the nonconforming Morley method, in
a regime dose to second order elliptic equations, then the error
deteriorates. In fact, a counter example is given to show that the
Morley method diverges for the reduced second order equation. As
an alternative to the Morley element we propose to use a noncon
forming iL 2 -element which is .fG-conforming. We show that the
new element converges in the energy norm uniformly in the per
turbation parameter under suitable regularity assumptions on the
solution.

1. Introduction

Let f] C I 2 be a bounded polygonal domain and let dfl denote
the boundary. The purpose of this paper is to discuss finite element
methods for elliptic singular perturbation problems of the form

f e 2A 2 u -Au = f in f)
| u 0, on dCI.

(i.i)

Here, £ denotes the normal derivative on <9fl and e is a real parameter
such that 0 < e < 1. In particular, we are interested in the regime when
e is ciose to zero. We observe that if e tends to zero the differential
equation in (1.1) formally degenerates to Poisson’s equation. Hence,
we are studying a plate model which may degenerate towards an elastic
membrane problem.

When fourth order problems like (1.1) are discretized by a finite
element method the standard variational formulation will require func
tion spaces which are subspaces of the Sobolev space R2 (fl). Hence, we
need piecewise smooth functions which are globally Cl . However, it is
well known that in order to construct (fT-functions which are piecewise
polynomials with respect to a given triangulation of fl we are forced
to use polynomials of degree five or higher, cf. e.g. [3]. Alternatively,
we can use a macroelement technique like in the Hsieh-Clough-Tocher
method [3]. In order to avoid high order polynomials or macroelements
a common approach is to use nonconforming finite elements for such
problems, i.e. the (W-continuity requirement is violated. The simplest
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nonconforming element for fourth order problems is the Morley ele
ment. The Morley space consists of piecewise quadratic functions with
respect to a given triangulation of Q. The elements of this function
space are not even continuous functions, but still this space leads to a
convergent nonconforming finite element method. For discussions on
properties of the Morley method we refer for example to [l], [s], [7],
and [9].

However, if the Morley method is applied to a nearly second order
problem of the form (1.1) with £ dose to zero, then the convergence rate
of the method will deteriorate. In fact, if the Morley element is applied
to a second order equation like Poisson’s equation then the method will
diverge. The main reason for this degeneracy of the Morley method is
the fact that the finite element space is not a subspace of H 1 (fl), or
more precisely, the Morley space is not a proper nonconforming finite
element space for second order elliptic equations. This is of course in
contrast to the conforming case, since any subspace of H2 {Q) is also a
subspace of Ff 1 (Q).

We will discuss the degeneracy described above for the Morley method
in §2. Then, in §3, we will propose an alternative nonconforming fi
nite element method which is robust with respect to the parameter
e. The new function space consists of continuous functions which lo
cally belongs to a nine dimensional subspace of quadratic polynomials,
constructed by the use of the “cubic bubble function.” The space of
C°-quadratic functions is a subspace of the new finite element space.
The global dimension of the new space, corresponding to a fixed tri
angulation and the boundary conditions given in (1.1), is the sum of
the number of interior vertices and twice the number of interior edges.
As a comparison, the dimension of the Morley space is the the sum of
interior vertices and edges.

2. Preliminaries

The inner product on L 2 = L2 (Q) will be denoted by (=,•). For
?7i >0 we shall use Hm Hm {Q) to denote the usual Sobolev space
of functions with partial derivatives of order less than or equal m in
L 2, and the corresponding norm by || • || m . Furthermore, the notation
|| • || m,K is used to indicate that the norm is defined with respect to a
domain K , different from Q. The seminorm derived from the partial
derivatives of order equal mis denoted by |-| m , i.e. =|| -I|^
The space H™ is the closure in Hm of Alternatively, we have

where the restrictions to dQ is taken in the sense of traces.
We let Du be the gradient of u and D2 u = {d2 u/dxtdxj)hj the

2 x 2-tensor of second order partials. In order to define weak Solutions

riv
Hl ={ve H 1:«lati =o} and H20={v s nHl:— = 0 onon
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of (1.1) we introduce the bilinear forms

3

(2.1)

where the colon denotes the scalar product of tensors, and

(2.2)

A function u € Hl is defined to be a weak solution of (1.1) if

( 2 -3) s 2 a{u , v) + b{u , v) = (/, v), \/v e H02 .

In fact, in this weak formulation we may simplify the bilinear form a
and use

instead of the one given by (2.1), since

for all u,v e Hl. However, since we will consider nonconforming finite
element methods this identity may not hold on the proper finite element
spaces, and therefore we use the form given by (2.1).

We recall from the regularity theory for elliptic problems in non
smooth domains, cf. [4] or [6], that if / G L 2 and fi is convex then
u e H 3, i.e. there is a constant c, independent of /, such that the
corresponding weak solution u of (1.1) satisfies

IMIs < c\\f\\ o .

However, the constant c will in general depend on £ and will blow up
as e tends to zero.

3. The Morley method

Assume [Th] is a quasi-uniform and shape regular family of triam
gulations of Q, where the discretization parameter h is a characteristic
diameter. We let Xh be the set of vertices and Eh the set of edges
corresponding to Th . The corresponding Morley finite element space,
Mh , consists of all piecewise quadratics which are continuous at each
vertex of 7\ and such that the normal component of the gradient is
continuous at the midpoint of each edge. Furthermore, in order to ap
proximate the boundary conditions in (1.1) the functions in Mh are zero
at boundary vertices and have zero normal derivatives at the midpoints
of all boundary edges. A function w € Mh is uniquely determined by
the value of w at each interior vertex and by the value of the normal
component of Dw at the midpoint of each interior edge, cf. Figure 1.

a{u, v) = D 2 u : D 2 vdx ,
Jn

b(u,v) = / Du-Dvdx.
Jn

a{u,v) = / AuAv dx
Jn

(2.4) / AuAvdx = f (traceD2 tz)(traceZ^2 v) dx = [ D2 u : D2 v dx ,
Jn Jn Jq
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FIGURE 1. The six degrees of freedom of the Morley element

The finite element approximation Uh 6 Mh of u is now determined
by the linear system

Here the bilinear forms ah and bh are obtained from a and bby summing
over all triangles in Th, i.e.

and

Du • Dv dx

Associated with the bilinear form e 2 dh +bh we define a seminorm ||| • ||| e h
by

Observe that this seminorm is a norm on + Mh, and, as z tends to
zero, this energy norm approaches a piecewise Hq-hoiid..

If u G Hi is the corresponding weak solution of (1.1) then the error
u Uh can be estimated in the energy norm using the second Strang
lemma, cf. [3], which states that

(3.2)

where the consistency error E is given by

Assume that f E L 2 and u G H 3 n Hq. From the basic estimate
(3.2) and by following the approach of [9] to estimate Eit is

(3.1) e 2ah {u, v) + bh {u,v) = {f, v), W G Mh .

dh{u,v) = / D2u:D2 vdx ,
rerh JT

h{u,v) = /
TeTh

IWIIiU = z 2 ah{w, w) + bh (w, w).

,i .
mf |li-I>| e,fc+ SUp —r—j ,

v£Mh w£Mh

Ee ,h{u, w) = e 2ah (u , w) + w) - (/, w).
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straightforward to obtain an error estimate of the form

Note that if e 1 this estimate predicts linear convergence with respect
to the mesh parameter h. However, if h is fixed and £ approaches zero
then the estimate for the error behaves like o{l/s). The following
numerical example indicates that this degeneracy is in fact real.

Example 3.1. We consider the problem (1.1) with D taken as the unit
square and f = e 2A 2 u - Au, where u(x) = (sin(7ra;i) sin(7rx 2 )) 2 . The
domain is triangulated by first dividing it into h x h squares. Then,
each square is divided into two triangles by the diagonal with a negative
slope. In the table below we have computed the relative error in the
energy norm, - for different values of e and h. Here
u{ denote the interpolant of u on Mh defined from the values of u at
each vertex and from the value of the normal component of Du on the
midpoint of each edge. For a comparison we also consider the case
e = 0, i.e. the Poisson problem with Dirichlet boundary conditions,
and the biharmonic problem A2 u =/.

Table 1. The relative error measured by the energy norm

When 6 is large the convergence appears to be linear with respect to
h, while the convergence deteriorates as 6 approaches zero.  

3.1. The reduced problem. When 6 tends to zero the problem (1.1)
formally approaches a Poisson equation with Dirichlet boundary condi
tions. Below we shall give an analytical argument which shows that for
such problems the Morley space will in fact lead to a divergent numer
ical method. Hence, this suggest once more that the Morley method
is not suitable for problems of the form (1.1) when the parameter 6 is
sufhciently small.

In order to simplify some calculations below we shall modify the
reduced problem slightly. Instead of the pure Dirichlet problem we

(3.3) 11» - «;.1U < C jll/Ho + -|H|3)  

s\h 2~4 2~ 5 2 -b
2° 0.3898 0.2008 0.1012 0.0507

2~ 2 0.4016 0.2085 0.1053 0.0528
2~ 4 0.5674 0.3262 0.1699 0.0858
2 -e 0.8937 0.7499 0.4981 0.2790
2 -s 0.9730 0.9934 0.9275 0.7487
2~ 10 0.9791 1.0214 1.0265 1.0059

Poisson 0.9795 1.0234 1.0347 1.0376
Biharmonic 0.3891 0.2004 0.1009 0.0506
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consider mixed boundary conditions. We assume that d£2 = Fd UFjv,
where F D and FN are disjoint subsets of dQ and consider the problem

(3.4)

This problem can be considered to be the formal limit of the fourth
order problems

As above let be a triangulation of and let Mh be the Morley space
corresponding to the boundary conditions of (3.4), i.e. we assume that
the functions in Mh are zero on Xh n TD .

The approximation uh G Mh of the solution uof problem (3.4) is
determined by the linear system

where s denotes the are length along dfl. Furthermore, the exaet so
lution u of (3.4) satisfies

Let I • \lh = I • |||o,/i be the energy norm for the reduced problem. From
(3.6) and (3.7) we obtain the second Strang lemma

is also valid, cf. [B]. This can be seen by introducing the auxiliary
funetion uh G Mh determined by

Then

bh {uh - uh , w) = Eh {u , w) for all w G Mh ,

{—Au =/, in r2,

u = 0 on Fø,

'I; =9 on IV

r £ 2 A2u —Au =/, in r2,
I u = 0 on FD ,

-{u-£2 Au) =g onFyv
Au =0 on d£l.\

(3.6) bh {uh ,w) = (/, w) + (p, w) for all wG Mh

Here

{g,yj) = / gwds,
JrN

(3.7) bh (u,w) = (/, w) + (g,w) + Eh {u, w) for all w € Mh ,
where

Eh{u , w) = w) - (/, w) - {g, w).

(3.8) l\u-uh \l h < inf sup
v^Mh weMh

However, the lower bound

( oqx i,, i,, . \Eh {u,w)\( 3 - 9 ) \lu~uh l\ h > sup
weMh NU

bh {uh , w) = (/, w) + {g, w) + Eh (u, w) for all w € Mh .
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which implies that

(3.10)

Furthermore,

bh [u Uh, w) = 0 for all w E Mh .

Therefore, the decomposition

is 6/,-orthogonal and as a consequence

1I h U-h fl h  

Hence, (3.9) follows from (3.10). This basic lower bound can be used
to prove the divergence of the method if we can establish that the right
hand side of (3.9) does not tend to zero with h. We will do this below
for a suitable choice of the solution u.

However, first we will discuss a decomposition of the Morley space
Mh . The function space Mh can naturally be written as a sum of two
spaces

associated the vertex values and the edge values. More precisely,

and

Ml ~{wEMh : w(x) = 0 for all x E Xh }-

For a given w, Let wvh be the corresponding interpolant of w on MJ.
Since this interpolation process preserves constants locally, we have

(3.11) \\w ~~ wl\\ Loo < ch || Dw ll^oo,

where the constant c is independent of h.
Observe that since ~ is linear on each side of an edge we must have

that — equal zero at the midpoint of each edge if w E M%. Similarly,
if w E Ml then w restricted to a side of an edge is a quadratic function
which is zero at the two endpoints. We can therefore conclude that the
tangential derivative is zero at the midpoint. Also, for any w E Mh
the function Aw is a constant on each triangle. In fact, if w E Ml then
Aw = 0. This follows since

Furthermore, the decomposition of Mh is in fact orthogonal with re
speet to the bilinear form bh: i.e.

iii \Eh (u,w)\uh -uh \\ h = sup ——
w£Mh

u-uh = {u- uh ) 4- (uh - uh )

Mh = Ml +MI

/dvo
—— ds = 0 for all e E Eh }

f f dw
/ Awdx = / —— <is =O.
Jt JdT on

(3.12) Mh = Mvh ®Meh .
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To see this note that if w G and ø G then, since w is harmonic
on each T,

However, on each edge the function is a cubic function which is zero
at the endpoints and the midpoint. Hence, all the boundary integrals
are zero, which implies

In fact, the decomposition is orthogonal locally on each triangle T G Th .

Example 3.2. To construct the counter example, we let Q be the unit
square. The triangulations % are constructed by dividing Q into n 2
squares of size h x h, where h = 1 /n, and then dividing each square
into two triangles using the negative sloped diagonals. We assume that
F D consists of the intersection of d£l with the coordinate axis, while we
assume Neumann boundary conditions on x\ = 1 and t 2 = 1. Hence,
the space Mh is assume to consists of the Morley functions which are
zero at the vertices on the coordinate axis.

We assume that the solution is given by u{x) = X\X2 . Hence, g= x\
on X 2 = 1 and g = t 2 on x\ = 1. Furthermore u is harmonic (i.e.
/ = 0). Therefore,

Note also that u G Mh- Let uvh be the interpolant of u onto Hence,

f dxL^
uvh {x) = u{x) for all xG Xh and / ds ~ 0 for all e G Sh .

Je on

We shall show that \imh^o \Eh{u,uvh )\/\luvh \lh is strictly positive. Due
to the lower bound (3.9) this implies that the method diverges.

Let u eh =u uvh . Then ueh GMJ and ueh is exactly the interpolant of
u onto Furthermore, from (3.12) we have

Since \Duvh \ 2 is a piecewise quadratic it follows that for any TG Th

\Dul\ 2 dx = T
T O

meM(T)

where \T\ is the area of T and Ai{T) denote the set of the three edge
midpoints, cf. [3]. However, the tangential derivative - at each edge
midpoint is zero, thus duvh /ds are exactly equal to the corresponding
values for u. Observe that the normal component of Duvh at each edge
midpoint is zero, we obtain

f f dw
/ Dw-D(pdx= / ——(f)ds
Jt Jot &71

bh(w, (j>) = 0.

(3.13) Eh {u, w) = bh {u , w) - {g, w)

(3- 14 ) bh {u, u ) = bh {uvh , ul) + bh (ueh , ueh ).

m<x) =Je E i£(™)i 2 -TGTh meM(T)
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Um-Y Y A(m)| 2
/i—o 6 ds v 7

TeTfc meM(T)

It is also straightforward to check that

and hence (3.14) implies

(3.16)

From (3.13) we obtain

By using (3.15) this implies that

The divergence of the method is therefore a consequence of the basic
lower bound (3.9).  

4. Modifications of the Morley element

As we have seen in the discussion above the Morley method is not
well suited for solving problems of the form (1.1) when the positive
parameter £ is small. The purpose of this section is to propose an
alternative nonconforming finite element space which will lead to a
numerical method which is robust with respect to the parameter e.
For a review of other conforming and nonconforming finite element
methods for fourth order problems we refer to [3].

Let T C K 2 be a triangle and consider the polynomial space on T
given by

However, since u{x) X\X2, we can verify that

= i™{y É ~ +j J 2 ll^ih) 2 + W 2)}-1 j= l i— 1 j= l

From this expression we obtain that

(3.15) lim6A K,<) = l/4.a—* 0

bh {u,u) = / | Vu\ 2 dx = 2/3,
Jn

lim bh (neh ,ueh ) = 5/12n— U

Eh{u, <) = hh {u, <) - (g, <) = bh (uvh , <) - {g, uvh )

= b{u,u) - (p,<) - bh (ueh ,ueh )

(3.17) = {g,u- ul) ~ bh {ueh , <).

Hence, we derive from (3.11) and (3.17) that

lim Eh (u, uvh ) = - lim bh {ueh , ueh ) = -5/12.h—* 0 h—*-0

lim = lim -M&Jfg- = 5/6.IKlk 7

W(T) = (t»eFt : w\e6 P 2 Ve S
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Here Fk denote the set of polynomials of degree k and £{T) denote the
set of the edges of T. It is a consequence of Lemma 4.1 below that the
space W{T) can alternatively be dehned as all functions

(4.1)

where q G P 2, pG Pj and bis the cubic bubble function. We recall that
the cubic bubble function b is dehned by b = AiA2 A3 , where Xi{x) are
the barycentric coordinates of x with respect to the three corners X(T)
of T. Associated with an xt G X{T), the function A * G Pi is uniquely
determined by

for x G X{T),x xt .

Furthermore,

A basis for the space W{T), which is useful below, can be derived from
the following result.

Lemma 4.1. The space W(T) is a linear space of dimension rane.
Furthermore, an element w G W[T) is uniquely determined by the
following degrees of freedom:

the values of w at the corners and edge midpoints
for all e€ £(T)

Proof. Since any function of the form (4.1) is in W{T) we must have
dim W> 9. Furthermore, it is consequence of the standard La
grangian basis for F±{T), cf. for example Chapter 3 of [2], that if
w G F4 (T), with w\qt = 0, then

(4.2)

where p G Pi and b is the cubic bubble function.
Assume that w G W{T) is such that the nine degrees of freedom

specihed in Lemma 4.1 are all zero. The proof will be completed if we
can show that w= 0. Since w\ e G P 2, with three roots, we must have
Har = 0- Therefore, w is of the form (4.2).

Let e be a hxed edge of T. Hence,

where A e G Pi is the barycentric coordinate function such that Ae = 0
on e, and A+ and A_ are the two other barycentric coordinates. Note
that the “quadratic bubble”, be = A+ A_, is strictly positive in the
interior of e. Furthermore,

w = q + pb,

1) (•!  ) 0

3

Ai(x) = 1.
2—l

w = pb

w = pb = pA+A_Ae ,

(Dw)\ e = (pbe D\e )\ e .
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Note also that dX e /dn < 0, where n is the outward unit normal on e.
Therefore, the condition

implies that p must have a root in the interior of e. Hence, p G Pi has
a root in the interior of all three edges. This implies that p 0, or
equivalently, w 0.  

As before let T/, be a quasi-uniform and shape regular family of
triangulations of Lb The new finite element space, Wh , associated the
triangulation Th will consist of continuous functions which are zero at
the boundary, i.e. Wh C Co (fi). In addition;

• w\t G W{T) for all TG Th
* /eT ds is continuous for all interior edges and zero for boundary

edges

It follows from Lemma 4.1 that any function w G Wh is uniquely de
termined by the values of w at all interior vertices and edge midpoints
and the mean value of dw/dn for all interior edges, cf. Figure 2.

FIGURE 2. The nine degrees of freedom of the modified
Morley element

These degrees of freedom also defines a local interpolation operator
Ih  H 2 m Wh. Furthermore, since this operator preserves quadratics
locally, it follows from a standard scaiing argument, using the Bramble-
Hilbert lemma, that

(4.3)

where j = 0,1,2 and k = 2, 3 . Since the elements of Wh are continuous
functions which vanish on the boundary the inclusion Wh C Hq holds.
However, Wh is not a subspace of H 2. Therefore, the space Wh again
leads to a nonconforming finite element method for the fourth order

fdw f d\e
~—ds= / pbe — ds = 0Je on Je dn

J 2 lb - hv\\j,T < chk ~3 \v\ k for ve Hsn Hk ,
T€Th
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problem (1.1). If w G Wk and e G fØ is an edge we let [chn/øn] e denote
the jump of the normal derivative on e. If e is a boundary edge then
[dw/dn\ e is dehned by extending w by zero outside fl. The continuity
requirement on Wh implies that [dw/dn] e is a cubic function such that

(4.4)

Furthermore, by a standard scaling argument, cf. for example Section
8.3 of [2], this implies that there is a constant c independent of h such
that

(4.5)

for all øG H 1 and w G Wh . Here we assume that eis an interior edge
and Qe denote the union of the two triangles Te+ and T~ which have e
as common edge, cf. Figure 3. The estimate can be generalized such

that it is also valid for boundary edges if w is taken to be zero outside
fl. Below we shall need this estimate when ø = Aø d2 'ip/ds2 , where
5 is a unit tangent vector on e. In this case we obtain from (4.5) that

for all øG H 3 and w G Wh . By summing this estimate over all edges
we derive

(4.6)

for all ø G H 3, w G Wh .

The finite element solution Uh G Wh is dehned as the solution of

(4.7) e 2ah {uh ,w) + b{uh ,w) = (/,m), for all w G Wh .

The following theorem shows that the new nonconforming finite ele
ment method converges uniformly with respect to e under the assump
tion that the solution u is uniformly bounded in H 3.

frdW,
2 [-Ws =°.

f dw

J edS - in.(K.r.+ + I W \2,T~)

Figure 3. Q e =T+ U T~ l .

/dvj(A'ip - d2^/ds2 )[—] e ds < ch\ip\ 3^e {\w\ 2T+ + |w| 2T-)

]T /(Ai/j - d2 ip/ds2 )[—] e ds <c—
ee£h Je an e
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Theorem 4.1. Assume that the weak solution u of (1.1) is m H^DH3
for a given f G L'2 . Furthermore, let uh 6Wh he the correspondmg
solution of (4.7). Then there is a constant c, independent of e and h,
such that

Proof. The second Strang lemma (3.2) is still valid, i.e.

Furthermore, the interpolation estimate (4.3) implies that

Hence, it remains to estimate Ee^h {u,w).
Since u e H 3 it follows from the weak formulation (2.3) and the

identity (2.4) that

In particular, this identity holds for w E Wh . The consistency error
E£ih {u,w) can therefore be expressed as

(4.10) ( D 2 u : D2 w DAu • Dw) dx
ren Jt

The tensor D 2 u can be written as

Furthermore,

and therefore

On the other hand, since each row of C2 u is divergence free, we have

and from this we obtain

1 U - Uh \\ £yh < c{eh + h 2 )\u\ 3 .

(4.8) \\\u-uh \l^h < inf \lu-v\l Efh + sup
veWh wewh i|^le,/i

where E£^h {u, w) is given by

E£ , h {u, w) = s 2a h {u 1 w) + b{u, w) - (/, w)

(4.9) inf fw - v ||| e /i < c{eh + h 2 )\u\ 3 .v£Wh

/ (s2 D{Au) + Du) •Dwdx = (/, w), Vw 6Hq .Jn

E£th {u,w) = £ 2

D2 u = (Aw)l 4- C2 u ,

where I is the identity tensor and
/ __ d2 u d2 u \

C2 n = -curlcurl a =
\dxidx2 dx\ J

{Au)I : D 2 w = {Au)Aw

(4.11) f {Au)I:D2 wdx = f Au~~- ds [ D[Au)-Dwdx.
Jt JdT &71 Jt

div(C • Dw) = C 2 u : D2 w ,

/ C2u:D2wdx= / n-C2 u-Dwds.
Jt JdT
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However, by combining this identity with (4.10) and (4.11), and by
using the fact that the tangential component of Dw is continuous on
each edge we obtain

It therefore follows from (4.6) that

and together with (4.8) and (4.9) this implies the desired estimate.  

Note that in the limit as £ tends to zero the error estimate above
gives the bound

Since Wh is a subset of H] which contains C°-quadratics it is straight
forward to derive this estimate for the reduced problem

f —Au =/, in Q
y u = 0 on dCI.

(4.12)

However, if / G L 2 and fl is convex then we can only expect that
the solution of the reduced problem (4.12) is in H 2. The following
modification of Theorem 4.1 is consistent with the proper result for
the reduced problem in this case.

Corollary 4.1. Let u and Uh be as in Theorem 4-1 above. There is a
constant c, independent of e and h, such that

Proof. In the proof above we only need to modify the estimate (4.9).
From (4.3) we can alternatively obtain

while as before

Hence, the desired estimate follows from (4.8).

f dw
Ee Au, w) =e 2 V / (Au +n • C2 u • n)[—— ] e dsL onee£h Je

ee£h Je

E£ , h {u, w) < ch£\u\ 3 l\w\\ £th

u - uh lll < ch 2 \u\ 3

Ilk - uhl\e,h < ch{\u\ 2 + e\u\i).

inf l\u-vlEfh <ch{\u\2 + £\u\3,),vewh

l E£th {u,w)\ , ,
sup < cfl£\U\ 3 .

w£W)t
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Table 2. The relative error measured by the energy norm

Example 4.1. We will redo the computations we did in Example 3.1,
the only difference being that we use the new finite element space Wh
instead of the Morley space Mh- The results for the relative error are
given in Table 2.

These results clearly demonstrates the improved behaviour of the
modified method when e is dose to zero. In particular, when £ is large
the convergence appears to be linear with respect to h, while we observe
nearly quadratic convergence when £ is small. This is in fact consistent
with Theorem 4.1, since |w| 3 is independent of e.  

Let us compare the dirnension of the space Wh with the dimension of
the Morley space Mh- Let \Xh\ be the number of interior vertices in the
triangulation Th and let \£h\ be the corresponding number of interior
edges. It follows from the discussion above that

while the dimension of the Morley space Mh is | Xh\ + \£h\- Hence,
since \Eh \ w the replacement of Mh by Wh leads to an increase
in the number of unknowns of approximately 75%. Below we shall
briefly discuss an alternative nonconforming finite element space Wh .
This space has the same robustness property as Wh with respect to
parameter e, and the dimension of the space is 3|Th| + \£h \, which
represents an increase of approximately 50% as compared to the Morley
space. On the other hand, the sparsity structure of the space Wh is
more favourable than the sparsity structure of the new space.

If T is a triangle let

It can easily be verified, using arguments as above, that W{T) can be
equivalently defined as all functions

(4.13)

= \Xh \ + 2\£h \,

W{T) ={w €P4 : w\ e P 3 Ve € £{T)}.

W = q + pb,

e\h 2~ 4 2~ b 2 -5
2 U 0.3359 0.1790 0.09108 0.0457

2~ 2 0.3016 0.1589 0.08061 0.0405
2~ 4 0.1519 0.07627 0.03819 0.0190
2 -e 0.0564 0.0229 0.0107 0.0052
2~ 8 0.0416 0.0113 0.0036 0.0014
2- 10 0.0406 0.0103 0.0026 0.0007

Poisson 0.0405 0.0101 0.0026 0.0006
Biharmonic 0.3386 0.1806 0.0919 0.0462
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where q G P3, p G Pi and b is the cubic bubble function. Hence, W{T)
is a linear space of dimension twelve. The basis given below will be
used to define a proper finite element space.

Lemma 4.2. The space W{T) is a linear space of dimension twelve.
Furthermore, an element w G W{T) is umquely determined hy the
followmg degrees of freedom:

the values of w and Dw at the corners
f— at the midpoint me of e, Ve € £(T)

Proof. Since dim W(T) = 12 it is enough to show that the twelve
degrees of freedom determine elements of W{T) uniquely. Assume
w G W{T) such that the twelve degrees of freedom are all zero. Since
w | e G P3, with a double zero at each endpoint we must have w\gT =O.
From (4.13) we obtain that w is of the form

where p G Pi and b is the cubic bubble function. Note that

for each edge e and that

( Db) • n)(me ) #O.

Therefore, the three conditions [dw/dn)(me ) = 0 implies that p(me )
0. Hence, p 0, or equivalently w = 0.  

As above the polynomial space W{T) can be used to define a finite
element space Wy consisting of functions which are locally in W(T),
with w and Dw continuous at each vertex, and with dw/dn continuous
at the midpoint of each edge. If w G Wy and e G £h then [dw/dn\ e
is a cubic function which has a root at the two endpoints and the
midpoint. Therefore, the property (4.4) holds for all functions in Wy-
Hence, by arguing almost exactly as above, we can also derive the result
of Theorem 4.1 in this case.
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