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PARALLEL FUNCTION DECOMPOSITION METHODS
AND NUMERICAL APPLICATIONS

Xue-Cheng Tai

Abstract

We consider a convex minimization problem. If the minimization function can be
decomposed into a sum of convex functions, several parallel minimization algorithms
can be derived. These algorithms are used to get parallel ADI and domain decomposi
tion algorithms for nonlinear partial differential equations. Numerical experiments are
presented.
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1 Introduction

We consider the minimization problem

min FM
veK v '

KG B . (1)

Above, the function F is convex and it is defined in a reflexive Banach space B. The set K
is convex and K fl B is closed in B. The following partial differential equations:

can be written as a minimization problem of form (1).
The essential idea we are going to discuss is that if the function F{-) can be decomposed

into the sum of suitable convex functions, then we can have some parallel algorithms for

(1). These algorithms not only reduce a large and complicated problem into smaller and
simpler sub-problems, and also enable us to use different ways to decompose a complicated
constraint into simpler constraints and use parallel processor to solve the decomposed sub
problems. This idea was first discussed in report [B], and was later published in papers [9]
[10].

2 Conditions for function decomposition

We assume that
(3)

An rights of reproduction in any form reserved.
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u= 0 and <p <0 on dfi ,

F{v) =Fi (v) + F2 {v) +•• • + Fm(v).
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In the above, each Fi is a convex functional defined on a Banach space Bi. Moreover, wc
assume that there are convex subsets Xi such that

(4)

Under these conditions, the minimization problem (1) can be regarded as minimizing a
separable function under constraint Vi e Xi, i = 1,2,- •• ,m and v\ =v 2=•• • = vm . Wc
define

(5)

Evidently, W is a convex subset in the diagonal subspace of X, and (1) is equivalent to

m

Fi{vi) . (6)

3 A projection method

Wc first use projection methods to deal with the constraint v\ =v 2=•• • = vm . Wc define
the functional Fs : flSli Bi *-> R as

(7)

Let I\y behe indicator function of the set W. Then the minimization problem (6) can be
written as

In case that each Fi is differentiable in Bi, (8) can be solved by

(9)

Here dlw is the subgradient of the function I\v, for the definition see Ekeland and Temam
[2, p.2o]. If each Fi is convex, then Fs ' is maximal monotone. Under very weak extra
conditions on Fs', Lions and Mercier [4] proved that

(10)

The relation between this splitting method and the projection method is due to the
following fact, see Gabay [3, p.328]

(11)

where Pw is the projection operator from X to W. Therefore (10) has the form

(12)

As shown in Lions and Mercier [4], this method can be used not only for solving elliptic
problems, but also for hyperbolic problems.

K = nf=lXi, B = r\?=l ßi.

X ={{yr,v2 ,---,vm ) v{ e Bi, i = 1,2,- --,171} = 11^1 Pi
W = {{v,v,---,v) veKi, i = 1,2,---,m}

= {{vi,V2,'",vm) I v{ eKi, v{ =v, i = 1,2,- •• ,m} .

min y2
(vi,V2,---,Vm)€W i=l

m
Fs{vi,v2 ,--,vm ) = '*rFi{vi) .

i=l

mm{F,{v) + Iw(v)). (8)v€A

OeFs'(u) + dlw{u) .

„»+i =(/ + pFs')-\l - pdlwW + pdlw)- l {l ~ pFs)un

converges to the minimizer of (1) for any p > 0.

2PW -I= {I - pdlw)(l + pdlwY 1 ,

(/ + pFs ')un+l = (2PW - /)(/ - PFs')un .
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4 The penalization methods

We use penalization methods to deal with the constraint v\ =v 2=•• • = vm . In order to
be able to use parallel methods, we introduce one extra variable v and put the constraints
Vi =v, i = 1, 2, -• • , ra into the penalization terms, i.e. we use the penalization functional

where the penalization is done in weaker Hilbert spaces Vi, i = 1,2, •• • ,m. We define
V = ngl^. We expect that when r -^ 00, the minimizer of Fr over V x n2=i(#t n Bi) or
over {K C\V) x flSi Pi wn^ converge to the minimizer of (1). One algorithm to search for
the minimizer for Fr over V x n^iC^t f) Bi) is:

Algorithm 4.1 Choose an initial approximation u° eV and a parameter r large enough.

Step 1. For n>l,if un is known, find uf GiQflßi in parallel for i = 1, 2, •• • , m such that

(14)

(15)

If we minimize Fr over {K nV) x n£i -Si 5 then the constraints Ki from (14) is moved
to the projection step (15), we will get a different algorithm:

Algorithm 4.2 . Choose an initial approximation u° e V and a parameter r large enough.

Step 1. For n>l,if un is known, find u" GBi in parallel for i = 1, 2, •• • , ra such that

(16)

(17)

5 The augmented Lagrangian methods

The Augmented Lagrangian methods combine the multipliers methods with the penaliza
tion methods. Compared with the penalization methods, the accuracy of the augmented
Lagrangian method is not restricted by the penalization parameter. Define the augmented
Lagrangian functional

(18)

and we try to seek a saddle point for Lr . The saddle point (u, Ui, Aj) of Lr over {K fl V) x
n£i Bi x n£i Vi satisfies

The following algorithm can be used to search a saddle point for Lr over (KOV) x n£i Pi x
n&iVi.

771 771
Fr {v,vr,v2 ,-   ,Vm) = Y^Fi{vi) + — ]T lk - Hlv^ , (I 3)i=l i=l

Fi(un) + - un \\ 2Vi < Fi(vi) + - ul2Vi , Vt* GKin B%

Step 2. Find un+l € V such that
771 771

£ IK+1 - «?|^ < £>- u?n 2Vi> v» € v
t=l i=l

FiK) + 2^||< - u-ll^ < FUvt) + ~\\vi - unfYl , Vvt 6R,

Step 2. Find un+l eX D V such that
771 771

£ K+l - u?||2Vj <V> - «?fø, v»€Jrnv
t=l i=l

771 -i 771 771
Lr {v,Vi,Ui) = Y,Fi{vi) + — J2{fii,Vi - v)Vi -r — hi - v]] 2/.i=i m i=i zm i=i

Lr {u,Ui,fii) < Lr (u,Ui,\i) <Lr {v,Vi,Xi), Vy e KHV,Vie Bi,UieVi , (19)
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Algorithm 5.1 Choose initial values uj GBi and \® GVi , i = 1, 2, •• • , ra.

Step 1. For n > 1, find un GK DV by solving

(20)

(21)

Wc can also search a saddle point of Lr over V x IlSiC^i n #t) x Ili=i and get a similar
algorithm to Algorithm 4.2.

6 Applications to splitting methods

A parallel splitting method from the penalization method

In papers by Lv, Neittaanmaki and Tai [s], and Bensoussan, Lions and Temam [I], some
parallel splitting methods were studied. In fact, they coincide with the parallel penalization
method when applied to elliptic problems that can be regarded as minimization problems.

Wc consider an elliptic problem (linear or nonlinear) Au = 0 and wc assume that this
equation is derived from the minimization problem (1). Wc assume that A is the differential
of F in a Hilbert space H. li F can be split as (3) and each Fi has a differential Ai in
the Hilbert space H, then wc need to solve £2a u= °- Wc assume that Dom(F)
and Dom(Fi) are Hilbert spaces and Dom(F) = n7^ IDom{Fi ). If wc take K = V
Dom(F), Xi = Dom(Fi), Vi = H, and use Algorithm 4.1, wc get

Algorithm 6.1 Choose an initial value u° G H and a parameter r large enough.

Step 1. For n>l, find uf G D{Fi) from the following problem in parallel for i = 1, 2, • • • , m:

(22)

This is equivalent to finding u" G Dom(Fi) such that

(23)

(24)

By defining r = -, wc can see that this is exactly the algorithm studied in Lv, Neit
taanmaki and Tai [s]. The convergence is proved in [5] under the assumption that each Ai
is coercive.

The parallel splitting does not mean that wc can only use ra processors. In the di
mensional splitting case, each subproblem is again a series of independent one dimensional
problems, see Tai and Neittaanmaki [6], and they can be computed again by parallel pro
cessors.

771 771
r £(u" - ur\v)Vi - Y^Tl^)Vi =0 , VveKDV ,i=l i=l

Step 2. find u" GBi in parallel for i = 1, 2, •• • , ra such that

fiW) + i(\""l.«fly, + sfeM - "1*

Step 3. Set A" =A" l + r{u^ — un ) and go to the next iteration.

,MiFÅFiiVi)+^hi ' unfv^

-(u?-un ) +A< = 0

Step 2. Set un+l as in (24) and go to the next iteration.
-• 771

un+l = ±y un
I=l
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The alternating direction method and the local one dimensional method

In this section, we will show that a small change in the penalization functional of the
last section will give us the local one dimensional method. Moreover such a small change
also turns the splitting method from a parallel one to a sequential one, which means the
fractional steps are not independent, but must be solved one after another.

Instead of using penalization functional (13), we put Uj_i = v» as penalization terms
into the cost functional, i.e. we define the penalization functional as

If we use the Gauss-Seidel method to minimize this function, we get

Algorithm 6.2 Choose initial values u° G D{F).

Step 1. For n> 0, set un+l = u7^ ,Ug = un~ l and find un G Dom{Fi) sequentially for
i — 1, 2, •• • , ra by solving

(26)

If we take r = —, this is the well-known local one dimensional method, see Yanenko
in].

Augmented parallel splitting methods for variational inequalities

As one example of application, we will use Algorithm 5.1 to solve the obstacle problem
(2.a). We split fas f = £?=i fi and define F, F{ , V and V{ as

(27)

(28)

If we use Algorithm 5.1, it gives

Algorithm 6.3 Choose initial values Aj G L2 {Q), u? GVi for i = 1, 2, •• • ,d.

Step 1. For n>l, set

(29)

(30)

Above, step 1 is the projection from L2 (fi) to the constraint set K. The operator "max"
is in the distribution sense. In step 2, (30) is an independent two point boundary problem
with a homogeneous Dirichlet boundary condition in every line in the Xf-direction. Each
one dimensional problem is as simple as a Laplace equation. They can be solved by parallel
processors, see Tai [7]. In Figure 1, we show a computational result at iteration 10 for an
obstacle problem with an analytical solution. Zero initial values are used and r = 10. The
average convergence rate for this test is 0.7.

771 771
E^M + a^Eltø-i-"*. • (25)i=l i=2

+ AiU? = 0

FM =In (élv^l 2 " fy) dx . F*W =/n (ål^i^l 2 " /i") <** ,
V = fij(fi), K = {«I v, Au € L2 (fi) , v\an =0}

Let us take
K = {v\ ve L2 (fi), v > <f> a.e. in fi}, K{ =K, Vi.

u« = maxtø i f>rl + i]TA?" 1).i=l i=l
Step 2. Find u" GVi in parallel for i = 1, 2, •• • , d such that

r 1
-(uf - u )- D^i = fi- -Af

Step 3. Set Xf =A" x + r{u^ — un ) go to the next iteration.
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The obstacle

0 5 10 15
Iteration number

-2 -2 -2 -2

Figure 1: The computed solution by the augmented splitting method

7 Applications to domain decomposition methods

Wc use domain decomposition to solve the nonlinear problem (2.b). Wc divide the domain
into nonoverlapping subdomains fif, i = 1,2,- • • ,m and define

In the above, space B contains functions that are piecewise W '* and so the functions
may have jump along the interfaces between the subdomains. Set K contains functions
that have traces on the subdomain interfaces and moreover the jumps [v] should be zero.
Thus B fl K = W0I,s (fi). It is well known that problem (1) is equivalent to (2.b) with
F, B and K defined as in the above. The functional Fi are defined over Bi. Moreover,
F{v) = YliLi Fi{v). By applying Algorithm 5.1 to this decomposition, wc obtain:

Algorithm 7.1 Choose Aj eV,u°{ G £» and r > 0.

Step 1. Solve un G H^{Q) from

Sfep £. Find u" G Bj in parallel in each subdomain such that

un, n=lo err(lo)=o.o29

FM = In{^- f-) dx, Fi{v) = fQi (fSf - fy) dx ,
B = {v\ ve W^iOi), Vi, v=o on dfi} , K= [v\ Ma^nan, =0, Vi, j) ,
B{ = {v\ uGWM (fii), v = QondQ.) V{ = Hl^) fl {u| v=o on <9fi}.

771  771

t=l *=1

un = arg min (Fifa) + r||v» - un |ljfi(a) + (A?,Ui) Hi (fii) )

Step 3. Set A? = A"" 1 + r{u? -un ) and go to the next iteration.
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0 0.5 1 0 5 10 15
Iteration number

Figure 2: The computed solution by domain decomposition.

Numerical tests for some Id problems have been done. We choose f{x) = l, s = 5 and
divide the domain fi = [o, l] into 10 subdomains. Each subdomain contains 10 elements.
Linear finite element function spaces are used to approximation the solutions. Zero initial
values are being used and r = 1. The computed solution at iteration 10 by our domain
decomposition algorithm is given in Figure 2.a. The global finite element solution is shown
in Figure 2.b. In Figure 2.c, we show the convergence. The computed solution converges
to the true solution in about 7 iterations.
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