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SPACE DECOMPOSITION METHODS
FOR NONSYMMETRIC PARABOLIC PROBLEMS

ØYSTEIN ROGNES AND XUE-CHENG TAI

Abstract. A convergence proof for general space decomposition techniques

applied to an abstract non-symmetric parabolic equation is given. One of the
main concerns is to give a unified convergence analysis for domain decomposi

tion and multigrid methods for parabolic problems. The analysis is also valid
for non-symmetric problems. For second order parabolic problems, the con
vection can dominate the diffusion. The algorithms can be applied to domain

decomposition methods with or without the coarse mesh. For applications
to multigrid methods, the coarsest mesh does not need to be very coarse. A
relation between the coarse mesh size and the time step is needed to get a

convergence rate independent of the mesh. The number of iterations at each
time step for the algorithms is also estimated. Some numerical experiments
are presented for domain decomposition methods with minimum overlap which
support the theoretical predictions. The algorithms are able to capture the
sharp traveling shocks for convection dominated problems.

1. INTRODUCTION

In this paper we will use a space decomposition method for an abstract parabolic
problem:

(1)

Above, TY is a Hilbert space, a(w, v) is a bounded, bilinear, symmetrical form on a
Hilbert space V, b{u,v) is generally a non-symmetric and bounded, bilinear form
on the same Hilbert space V, and e is a positive constant, possibly small. A space
decomposition method refers to techniques that decompose the Hilbert space V into
a sum of subspaces, i.e

The above decomposition means that Vu G V, 3G Vi (may not be unique) such
that v Yl'iLi vi- Domain decomposition and multilevel methods have been inten
sively studied as iterative methods for elliptic problems. Both methods are powerful
for symmetric and certain non-symmetric stationary problems. Developments by
Xu [32] establish a unified theory for iterative preconditioners in an elegant frame
work of space decomposition, see also [2l, 22, 25, 24, 27, 26]. This framework
includes domain decomposition and multigrid/multilevel methods. In this work,

This work was supported by the Research Council of Norway (NFR), under grant 115837/431,
and also partially by ELF Petroleum Norway AS.

\W ,V) + eaK v) + b{u,v) = {f, v), Mv €H,

[ u{o) =uqG H.

V = V 1 + V 2 + ... + Vm , ViC (2)
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we shall use this general frame to analyze iterative solvers for time dependent prob
lems.

In Tai and Espedal [25, 24] a space decomposition iterative procedure was pro
posed for a class of nonlinear elliptic problems with focus on the analysis of subdo
main solvers, rather than viewing it as a preconditioning method. To use these de
composition techniques for parabolic problems, there are basically two approach.es.
First, one could use a time-stepping scheme to discretize the time variable. Then
at each time level an elliptic perturbed problem needs to be solved by using the
space decomposition techniques. This approach was used for domain decompo
sition in the pioneering work of Lions [l6] and recent advances have been made
by Cai [3, 4], Dryja [l2], Cai and Sarkis [6], Ewing, Lazarov, Pasciak and Vas
silevski [l4], Mathew, Polyakov, Russo, and Wang [l7] and Tai [23], etc. Second,
one could integrate the space decomposition with the time-stepping. This would
give a ”blockwise implicit” time-stepping scheme. For overlapping domain decom
position this approach have been used by Blum, Lisky and Rannacher [2] and
Rannacher [lB]. For non-overlapping domain decomposition, it has been used by
Dawson, Du and Dupont [lo] and Dawson and Dupont [ll]. In this paper we will
use the first approach.

The main concern of this work is to give a unified convergence analysis for both
domain decomposition and multigrid methods for parabolic problems. One of the
difficulties with the analysis is that the problems may be non-symmetric. This
difficulty has been studied for elliptic problems in [3, 5, 7, 8, 29, 28, 31]. For time
dependent problems, very few works have been done in this direction. The tool used
in our analysis is the space decomposition and subspace correction approach which
is different from the earlier approaches for the elliptic problems. It is known that a
coarse mesh may not be necessary for domain decomposition method for parabolic
problems when the time step or the diffusion coefficient is small. Our analysis gives
an indication about when the coarse mesh may be needed and how the coarse mesh
can help to improve the convergence rate. For applications to multigrid methods
for parabolic problems, the analysis shows that the coarsest mesh in the multigrid
methods does not need to be of the size 0(1), which is often required for elliptic
problems. In fact, the coarsest mesh size only needs to be of order in order
to get a convergence rate that is independent of the mesh sizes and the time step
for second order parabolic problems. Another concern of the analysis is the number
of iterations that is necessary at each time step. It is shown that only 0(| log(r)[)
steps of iterations are needed for domain decomposition and multigrid methods.

The error analysis is valid even for the case when the parameter s is very small. In
case that e = 0, we will produce the same algorithm as in [3o] for purely hyperbolic
problems in applications to domain decomposition methods.

The analysis and the algorithms are given for a general abstract parabolic equa
tion, hoping that they can be applied to different kind of problems. The analysis
and the algorithms are applicable to some fourth order problems. However, the
decomposition of the finite element spaces and the estimations for the constants
CI,Cv,Ch,C\,C2 and C 3 ( c.f. (3) and (4)) will become more involved.

The paper is organized as follows. The conditions that are needed for the abstract
equation (1) and the decornposed subspaces are stated in section 2. In section 3,
the algorithms are formulated for a general space decomposition for the abstract
parabolic equation (1). The convergence rate estimates for the iterative solvers
at each time level are given for the algorithms in section 4. In addition, we also
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estimate the number of iterations that is needed at each time step. In section
5, we apply the algorithms and the error analysis to domain decomposition and
multigrid methods for second order parabolic problems where the convection can
be dominating. The constants needed for the error analysis are analyzed for domain
decomposition and multigrid methods. In section 6, some numerical experiments
are presented for domain decomposition methods which support the theoretical
predictions. Minimum overlap is used. The algorithms are able to capture the
sharp traveling shocks for convection dominated problems.

2. Preliminaries

We consider the abstract parabolic problem (1). Above, and also later, (•,•)
denotes the inner product (•, • )t-c of the Hilbert space H, into which the Hilbert space
V can be embedded. The bilinear form a(-, •) is symmetric, bounded and positive
definite in the Hilbert space V. Correspondingly, we define the inner product and
norm for V as:

and

The bilinear form b{-, •) is in general non-symmetric, and has the following prop
erty: 3a > 0 such that

\b(u,v)\<a\\u\\ v \\v\\ n Vu,vEV.

, we assume that there exist constants Cx, (7#, CV

(3)

For general space decomposition, one can always find such constants, see Lions [l6,
p.7]. In practical applications, the space should be decomposed such that the
constants CL ,CH and Cv are suitable for the proposed iterative schemes, see section
6.

{u, i>)y = a(u, v), V-u, v€ V,

Hiv \A(W > u), \/u e V.

For the space decomposition (2)
0 with the following properties:

m
\/v GV : 3V{ eVj such that v = Vi , and

i=i
m

ll v*llw Cl IHIh >
i=im

+ tVWIJ.I=l
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In addition we assume that there exist constants C\,C2, C 3 such that for all
Ui G Vi and Vj G Vj we have

(4)

Later in §5, it will be shown that the well-known domain decomposition and multi
grid methods can be regarded as space decomposition techniques and the assump
tions (3) and (4) are satisfied.

3. The Algorithms

After doing the decomposition of the space, we can search for a solution in each
subspace Vi iteratively, and in the limit the sum of the Solutions in the subspaces
will converge to the solution of the original problem. The following algorithm is a
combination of this space decomposition with the Euler time-discretization.

Algorithm 1. (Additive Euler space decomposition)

Step 1. Set u° = uq, and choose ai such that 0 < a < a{ < 1 and ai =
n+

Step 2. At time level n, for k = 1,2, ••• , s, do: for each k, compute u{ 3 in parallel

and set

u^

Step 3. Go to the next time level.

In the above algorithm, ris the time step, fn+l = /((n + l)r) G Ti, subscript i
refers to the number for the subspace Vi, n indicates the time level, s is the number
of space decomposition iteration that is performed at each time step and k is the
counter for the space decomposition iteration. If s = 1, then it is a one-step space
decomposition algorithm.

In algorithm 1, we are using the damped Jacobi method for the space decompo
sition. If we use the Gauss-Seidel method, the following algorithm is obtained:

Algorithm 2. (Multiplicative-Euler-Space-decomposition)

Step 1. Set = uq.

mm fm\V2 / \
ED(*.«i)i<ci Em» Dm« -
i=l j= 1 \i=l / \J = 1 /

mm / m \ 1 /2 / m \

l a( U*> «j)| < ( y"l ll n*lly | IXy H l’-7 11V j ’
t=l j= l \t=l / \j=l J
mm / m \ */ 2 / m \

fj)| < C*3 ( |lWt|| v ) I y"! I
t=i j=i \t=i / \i=i /

for i = 1,2, ••• , m such that w"+ 3 un+ « EVi and

—"——,v^+ea(u”+a ,vi 'j+b(u™+B ,vi 'j = {fn+l ,vi), W* € V{ . (5)

m

E n + 7<*i Ui

i= l
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| k . k— 1
Step 2. At time level n, for k = 1,2, ••• , s, do: for each k, set u 0 3= um 3 and

compute u™+ 3 sequentially for i = 1,2, ••• ,rn such that u™+ ~ €Vi
and

—— + ea(u™+s +b(u"+e ,vi 'j = {fn+l ,Vi) , e V*. (6)

Step 3. «Set un+l = Wm+S | fc_ s and go to the next time level.

For this algorithm, the subproblems need to be computed sequentially. However,
by decomposing the space properly, see section 6, each of the subproblems can be
computed by parallel processors.

4. Error Analysis

4.1. Global stability. Now, we start to estimate the error between the space de
composition solution and the true solution. In particular, we shall analyze how
large s should be in order to retain the same accuracy as the global Euler scheme.
In order to simplify the error analysis, we shall compare the space decomposition
solution with the standard Euler scheme solution Vn+l of:

For the sake of analysis we define a r-dependent norm:

In order to guarantee that the Euler scheme is stable, we need the bilinear form
ea{u, u) +6(u, u) to be positive. This can be guaranteed if e is relatively larger than
<7. But we want to consider cases where e is small, independent of the size of a. To
ensure the positiveness it is therefore necessary, as in works by Johnson, Nåvert and
Pitkåranta [ls], Rannacher and Zhou [l9], Barrett and Morton [l], etc., to assume
that

b{u,u) >O, Vu €V. (8)

Throughout the rest of this section, we shall assume that (8) is valid. With this
condition, the global Euler Scheme has the following convergence estimate:

Theorem 3. . Let the solution u{t) of (1) be in W2 ’ oo ([0, T], V), and
/gWI ’°°([o,T],n). Then

(9)

where C does not depend on e, r and n.

In the literature, the convergence of the Euler scheme is often proved in the 7i
norm, i.e. \\u{tn+ i) - Fn+l || w < Ct. However, according to Lemma 4 and Lemma
7, we need the error estimate in the [[• || aT ~norm. Due to the use of this norm, and
also due to the reason that e can be small, the damping property enjoyed by the
Euler scheme will not be heavily used for the error estimates.

| \ +m (yn+\„)+b(Vn+l ,v) = {r+I ,v), V.) €V. (?)
\ V° = nO .

IHlar = \W\\ 2n + re\\u\\ 2v = {u,u) + Tea{u,u).

|| M (tn+l )-T/"+I |l or <Ct,
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Proof of theorem 3. By (1) and a Taylor expansion we get

(10)

Above, fl(r) satisfies ut = + Ct9{t ) and ||o(r)||w <C. Subtracting
(10) from (7), we get

Rearranging, observing that ||en < ||en [| aT Vn, assuming 2r <l, and putting
(3 = , lead by induction to

Now, assuming 2r < - and (n +2) < 2n, using that ln(l +x) < x for a: > 0 and
noting that nr = T, we get

In case that the embedding V C H is compact and the diffusion parameter e is big,
the exponential dependence on T can be removed.  

( u{tn+ l]T u(tn \v"j +ea{_u{tn+l ),v]+b(u(tn+l ),v)

= (r+i ,«) - - u(WIlT'“( ‘,) ,.)

= ifn+l ,v) +Ct (Ø(r),v).

/£+*_e” \ + ea (en+l' Vj + b{en+i <v) =Ct (ff(r),v) ,

where en =Vn - u{tn ), Vn >l. Putting v = en+l gives us

(en+l - e",en+l ) + rca(cn+l ,e"+l ) + ri.(en+l ,e"+1 ) = Cr2 (0,e"+1 ),

and so, using the fact b{u,u ) >O, Vn € V, it follows that

|en+l = (en+l ,en+l ) + rea(en+l , en+l )

< (en+l ,en+l ) + rea(en+l ,en+l ) + r6(en+l , en+l )

= Ct2 {6, en+l ) + (en , en+l )

<Cr3 + T||e"+I ||J< +i||e"||?( + i|]e"+I |^

= Ct3 +(-+ r) ||en+l |[ H + - l|en || w .

e"+I \\l r <C-/5T3 + /J|le"||" r

< C/3t3 + (3{C(3t3 +(5 || en—1 1|^
< ..

< CØt3 (1 + 0+ /32 + ... + /T) +/T |ieo |]" T

CT3/3{/3n+l -1) Cr3 pn+2
~l " 0-1

= i —CT*pn+2 < -T2(3n+2 .2r “ 2

n+lt| 2 < r2 e(n+2) In = £r2g(n+2) ln(l
- 2 2

< |rVn+ 2) < |r2 eBT .
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4.2. The additive scheme. Before proving the first of the two main theorems, we
first give a lemma which estimates the rate of convergence, i.e. the error reduction,
when the space decomposition iteration method is applied to the singular perturbed
elliptic equation at each time level.

Lemma 4. Given Gk GV, let the function Gk+l satisfy: Gk+l —Gk G Vi, and

If we set

(12)

a zs the lower bound for the relaxation parameter Oi in step 1 of algorithrn 1, a
is the upper bound for the bilinear form b[u,v), e is the diffusion parameter, and
Cl,Cv and Ch are defined in (3).

Proof. By assumption (3), there exists (f)^+l GVi such that

(15)

(16)

(17)

t I (G^+l , Vi) + ea((j,^+1 , Vi) + —o, Vvi € Vi, « 1,...,m. (11)

m
ck+i = Y. a'Gi +1 'i= 1

and assume t < Tq, then

G‘+I t2uSrllG‘t
Above

„ max(3C'L ,3C'/f re2 + + 3CL cr2 r/e) , IoNO a 5a
f e ae CL +CV/3 (CL + Cv /S)t\ n ,,

r° mm 1 2(72 ’ 288(t2 (3C'l + Cv) ’ ’ CLa2 J ’ ’

m
Gh+l = E^+1 ’

I=l
m 2

i= 1
m

Eh‘+I || v^CiI ||G*+I ||i + £V||G*+I ||*.I=l
Thus

(r'k+ 1 f<k+l\

{— 1 + €CL(Gk+l ,Gk+l )
T

< —L^_—- + ea{Gk+l ,Gk+l ) + b{Gk+l ,Gk+l ) (By the positiveness ofb{u,u))r

™ [(gfc+1 , 0i fc +1 ) +€a(Gfc+i i ø.fc+i) + b(Gfc+i | ø.fc+i ) ] tø,z—' ri=l L

y [(Gt+1 -G"+I.^1 .^. t+l.) + m{Gk+l _ Gf+1 ,^ t+l
i=l L

+ b{Gk+l - Gf+1 , øi fc+l ) (By using (11))
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(18)

By applying the inequality ab < a 2 + 1 62 , with p> 0 being chosen properly, on
each term and using the fact that 0 < a < a* < 1, one gets that

From the above inequality, it follows that

m r-i

<J2 -|| Gk+l ~ G^+l W n \\[ (t)i k+l + e\\Gk+l -G,fc+l || v ||øi fc+l | vi= l  -

+ a||Gfc+ 1 -G‘+I llv|k<‘+1 || H
(By using Cauchy Schwarz inequality)

<- (E ll G‘+1 - G‘+1 llw) , (v/cT ||cfc+l l|„)

+e( E \\Gk+l - Gf+ 1 liv ) 2 {'M; l|Gt+l ij„ + I|C?fc+l ii v )

(m \ \£||Gt+1 -G*+I ||* ] (s/c-l \\G^\\ h )- (By using (15)-(n))i= 1 '

7l|Gfe+l |i« + H|Gt+iv

<^Y.-\\GM - G"+l fn + h\\I=l

+ e ll G‘+1 -G‘+I Hv + é l! Gt+l |iwi= l„ m
+ if lGk+l ~ G.fc+l Wl + l !! G' fc+l tlli=l

+ il Gt+ ‘ “ GMv + - ll G*+1 |l«
i= l

I=l v 7

+ 3ChT£ + Cv/+3Cl<t2tA f; a 4 ||Gt+l - G‘+I \\l)2a i=l \r )

+ -||Gt+l ||« + |l|Gfc+l llv

<Yf> (7 ll Gfc+l - G‘+I ll« + E 1I G,!+1 - G‘+1 IIv)

+ -l!Gt+1 l!« + fll G‘+I llv-

7l|Gt+l !!^l|Gt+l Hv

<Cajrai (i ||Gfc+l - G‘+1 |£ + c ||Gt+l - Gk+ l j| 2v ) . (19)t=l ' '
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By using Gk+l - Gk+l = Gk+l -Gk+ Gk - Gk+l , relation (12), and (a +bf <
2 (a2 + b 2), we get that

(20)

Combining (19) and (20) to get

(21)

we get that

(22)

This shows that

f> (- H G‘+1 - Gi +1 ll« + e ll G‘+1 - G?+I liv)I=l ' '

< 2 ||Gfc+l -Gk \\ 2n + e ||Gfc+l -Gk ||*

+|> (7 l|G*+1 -G*|£ + c ||G*+1 - )

=2( \ f>(G*+1 -Gk ) + e f O| (G‘+1 -G‘) )
\ *=i n I=l V/

+2EO. (- ||G‘+1 - + £ jjGf+1 -G* ||’)I=l ' '

<4Éai (-||G.fc+l -Gt ||;+ £ j|Gf+1 -Gfc |iJ,).i= 1 ' '

-||G*+I |£ + e ||G‘+I |lv

< jr ai (i ||G.t+l -GkfH + 6 ||G*+1 -Gk ||“ )i= 1 ' '

Taking Vi = Gk+l -Gk in (11), and using the equality

(w, u-v) = -( \\u\\ 2 - ||f (| 2 4- ||w - v\\ 2

t+l ||^-|!Gt llJi + IIG‘+1 -G‘||J( )

+ - (^||Gi fc+l - ||G fc + || Gk+l -Gk + b{Gk+l ,Gk+l - Gk ) = 0

-||Grl + €||Gf+1 -Gt j|;

<-(||Gt ||^-||Gi fc+l ||^+e(||Gt ||^-||Gjt+l |j^+2|KG':+1 ,Gri -Gfc )|

< - (||G*ll« - |g.*+1 + * (l|Gfc Ht - ||o. i+lp

+ 2T<T2 |Gi ‘+1 |j 2v + i: ||G‘+l -Gk |^,
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This means that

which certainly holds if r < tq. Thus 1 16Carcr2 /e < 1/2, and we finally get

Theorem 5. At each time level, for any 0 < p < 1, assume that the number s of
the space decomposition iteration satisfies

S >2|l„(pr)|/jl„ I^I j. (25)

Then the following error estimate holds for algorithm 1:

which leads to

il|Gf+1 + e||Gf+1 -G‘||J,

<2 [- (llGii - ||g>+1 Q + (l|Gkfv -(l- —) ||G. t+l lQ] • (23)
Using r < and combining (21) with (23), we obtain

7llG‘+1 ll«-HI G*+, ll av

< 8Co f> [i (||G*||’ - K+t) + * [\\Gk \\l i G' t+fv)

< 8 Ca[i \\G% + * ||G*H’] - SCa[i +*(l - —) i|Gfc+l ||’] ,

which clearly implies

BC. [- l!Gfc+l |i« + « HGi+l |lv] + - l|G‘+1 +«(1 - l|Gt+l Hv

<8Ca + f ||G'fv

Now we require

16Ca cr 2 r 1
1 —>2'

e ae

7 < 32O2 = 32cr 2 max(3CL ,3C//re2 +Cv + 3CL a2 r/e)
ae

< 32<j2 (3Cl + 3C//re2 +Cv + ‘iCL (J 2T/e)'

From this we get the inequality

96(J2 T ( 2 Cv „ 2 / A 1CI 4- Cfl-re2 + - + CLa 2 T/e < 1,
ae \ d /

(- l|Gfc+l + f i|Gt+l g + 8C„) < (i ||Gfc + e ||Gfc |ly) . (24)
This proves the lemma.  

hn -yn L <Ct.II II tt T
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Proof. At each time level n, let Un+l GVbe an auxiliary function that satisfies

Comparing (5) with (26), and using the fact that Vi C V, we see that:

We note that (?^+1 satisfies (11) and Gf+1 Gk G Vi. Clearly, Gf+1 and Gk also
depends on n, for notational simplicity the index nin Gk+l and Gk is omitted.
According to lemma 4 there holds:

(28)

which means

(29)

As

(30)

and

so, if s satisfies (25), it follows from (29)-(31) that

(32)

/ Tjn+ l _ un \
( -,v\+m(Un+\v)+b{Un+l ,v) = (/”+', v), v« eV. (26)

hr--u^\ +ea^+i _ un+Kvt)

+ h («”+ - - Un+l , «i) =O, V«i € Vi, (27)

and u™ + s un+h s 1 € Vj. Now, let us set

Gf+1 =«"+ - - tfn+l , Gk = u - Un+l

un+l _ £/n+l||2 _II n+f _ f/n+llj 2 = ||£S+l|| 2> \ dy •' II CL 7* II I I a T

< _L6Co_ 2
- 1 6Ca +1 11 ~

Un+l -Un+l\\ < ( IGCa .-V || m"-[7»+i|| .
Ila- “ \WCa +IJ 11 lla-

|| un+ 1 _ vrn+l || < l|wn+l Un+l II -f \\Un+l yn+l ||' I cl -f II 1 - d T II I I d 7-

|l n_ [/n+l|| <|Un_yn|| ,11 f/n+l _ yn+ll| + || T/n_ yn+ l|| (3i )II 11 a T 11 "Ot II llar II llar 1 v '

l'/n+l -«n+l L

< (i^rr) ! ( 11““ - v"Lr + \\ un+1 - V"+1 !L

4- \\yn vn+l II ] + \\Un+l - yn+l ||I i cl t I

< PT{ll«" - yn LT + \\Un+' - V"+I \\a T

illy* _ l/n+l |l + \\Un+l - Vn+l \\ .II 11 a T J H lla T
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Next we estimate ||Fn+l - Un+l || ar and ||Fn - n+l || ar - Subtracting (7) from
(26), it follows:

Wv € V.

(33)

(35)

Remark 6. When the parameter e zs very small, the damping property of the Euler
scheme is very weak. According to the above error estimate, in order to do long time
integration, we must choose p small, p < CT~l . So, correspondingly, at each time
step we must do more space decomposition iterations. In case that the embedding
V C Ti is compact and the diffusion parameter e is big, then we can use inequality
(33) in a more efficient way to remove the exponential dependence on T and get an
estimate that is independent ofT, see Rem,ark 3.1 of [23, p.34].

~ +ea {yn+l _ un+l ,y)

+ b{Vn+l -Un+= ~ V

Letting v = Vn+l - Un+l , it gives

Ijyn+l _CT + +T£ HI/-+ 1 - lT+%

< ||v"+i _ [/n+i + tt ||Kn+l - c/"+I ||v +rb ( - ir+1,r+1 - un+l )
<||l/"- ll"||«||V'n+l -C/"+I ||„

<i||^n -«”ll« + 5il v"+1 - y"+I llH'
and thus

yn+i _ Un+l \\ 2a <\\Vn -un \\ 2n .

Now, by using (9), we obtain

llyH+i _ T/n 11
11 llaT (34)

< |y-+I - «(tn+l)|| or + HWI) - + ll«(t») - V"II.T = Ct 

From (30), (32), (33) and (34) we clearly see that

vn+l -un+l \\11 a r

< pr(2 ||V" - U"|| + Cr) + \\V" -

= (l+2pr) ||V" «"||t + Cpr2 .

By induction, one obtains:

11V" 71 un l| a^

<(1 + 2pr) n \\V° - u°\\ aT + Cpr2 (1 +(1 + 2pr) +(1 + 2pr) 2 + ••• +(! + 2pr) n )

< (1 + 2pr)n+l = £Te(n+l)\n{l+2Pr) < £Te2p(n+l)r < £Tg4PT
2pr 2 22
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4.3. The multiplicative scheme. For Algorithm 2, the following lemma esti
mates the error reduction for the space decomposition iterations.

Lemma 7. Given Go £V, let the function Gi satisfy: Gi Gi- 1 £ Vi, and

(37)

Above

Proof. By assumption (3), there exists £ Vi, such that for 1< r < rn,
m

Gr / (pi

Similar as getting (18), one can deduce

r 1 {Gi,Vi)ea[Gi,Vi)b[Gi,Vi) —O, \/i>i G Vi, i =1,2, (36)

If we assume r < tq, then
Åf

l|G“"-^4cufr"Go11-

Cm = max(3CL Ci 2 , 3CH C22 Te + CVC2 2 + 3CLC3 2r/e)

1 . f c Cl + Cv/3 (Cl + CV/3)e)
To= m mm 1144^(3^+ Cv)’ r.-T(38)

1=1
m
£ll*l&< 0^0,1»,.
i= l

m
£lløillv<C„ i|Gr ||« + CV||GX.i= 1

{Gr , Gr ) +ea(G,r

< (Gr ' Gr \ + ea{Gr ,Gr ) + b{Gr ,Gr )T

= y + ea(Gr ,<t>i)+b(Gr,</>,)z—/ Ti= 1 L J

=T\—~ —' + cg(Gr - Gi, &) + i»(Gr - Gi, &)z—' ri=l L

= E É [(G,- Gj-i.Øi) +{q(g , _ Gj_lt <i>i ) + b(Gj - Gj-i.Øi)]I=l j=i+ l L

r ( m \ 1/2 ( m \ 1/2

(ÉllGi-Gi-il&j (Éltøllwj
/ m \ 2 / m \ */ 2

+ C2 e ( E H Gi j (By using (4))

/ m \ 2 / m \ 1//2

+( E ~ )|E UiWnj
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By applying the inequality ab < 2 + §62 on each term with p> 0 properly
chosen, we get that

Putting V{ =Gi Gi- 1 in (36), we get, by the same procedure as the one leading
to (22),

< ~ \\Gj ~ (^VCLWGrWn)

fm \ 1/2

+ C2 e W Gi ~ G-iHvj (\Æh ||Gr ll w + V^ll^llv)

+Ca ||Gi Gi_i|| [\/Cl •

+ e||Grllv

I=l

+ 3£^ri^f || Gj _ Gj_ i| | 2v+^||Gri|?(2=l

+V2 2 6 “ G'- 1 Hv + 2 H^m Hvi— 1

+ *-£i—l 'tt\\Gi-Gi- I \\l + ±\\GrfnI=l

I=l

3C//C,2 2 re 4- CVC3 2 4- ll/0 M 24-- r— "
i=l

+ 2r + 2

<— Yl ~ Gi-i Wn + 6 II Gi - Gi- 1 1|

+2r + 2 Nv •
Then there follows

m

l|Gr|£r <Cm £l|G4 -Gi- 1 |£r . (39)
I=l

||Gi - e |jGi Gi_ij|y

<2 [- - + 6 (|IGi_ I ||= - HGdlv) + 2™2 H G<llv  
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Using that 1 Ara > i ; which is equivalent to r < 8g2(5, m , we get by the
argument preceding (24)

(40)

and

Now we are ready to formulate the second of the two main theorems.

Theorem 8. At each time level, for any 0 < p < 1, assume that the number s of
the space decomposition iteration satisfies

S >2|ln(pr)| An—

Then the following error estimate holds for algorithm 2:

Proof. The proof is very similar to the proof of Theorem 5. At each time level n,
let Un+l GVbe an auxiliary function that satisfies

+ ea (Un+l ,v) +b(Un+= {fn+\v) ,

Comparing (6) with (41) and using the fact that Vi C V, we see that

Wv GV. (41)

Thus, by (39) we get

lIGi - Gi-t \\l< 2 (||Gi_ 1 - \\G4l)+ ||G,||’ r

< 2 - ||Gi|(ar ) + £|| G ._^.
j= 1

Summing over i from 1 to m, we obtain

E n G< - G<-i nl 2 (iiGoiil - HGm iit) + 4Tg2fm"'£ n Gj _ Gi_,n^,i=l i=l
This leads to

/ _ £ ||Gj _ Gj_ i < 2 (| |Go _ || Gm' ' i=l

m
E H Gi - G-> 111 S 4 (IIGoIII - ||Gm .I=l

Finally, using (40) in (39) and setting r = m, it follows

\\Gm \\lr < 4Cm - ||Gm ||* r )

l|Gmll“' - d~h ,GoII “'

K-niar <cr.

(m"+ - - C/" +I,t>i)+61 ,t>i )+6 - C/"+1 ,«i) = O,V«f e Vi,
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We note that Gk+l satisfies (36) and Gk+l G G V*. Clearly, Gk+l and G also
depend on n, for notational simplicity, the Index nin Gk+l and G is omitted.
According to lemma 7 it is true that

The rest of the proof is identical to the proof of Theorem 5.

5. Decomposition of Finite Element Spaces

In this section, we try to use a finite element method to solve the equation

The variational formulation for the solution of (42) is

Correspondingly, by choosing

and assuming the functions have sorne smoothness properties, it can be seen that
equation (42) is a special case of (1). We shall show how the finite element spaces
can be decomposed. Estimations for the constants 01, CV, O#, Oi, C*2 and O 3 will
be given.

For equation (42), the embedding 7i C V is compact. When £ is big (i.e. e =
0(1)), the exponential dependence of the errors on the time T can be removed by
using the damping property resulted from the compact embedding, see Remark 3.1
of [23, p.34].

and u™+s %^t"1s € Vi- Now, let us set

G^+l = - Un+l , = u”*j- - t/n+l .

un+l - Un+l \\ 2 =||«n+} -yn+1 ll! = C+f -C/"+ ' 2 =|lG^+I ||"11 °t 11 "° T a T T

= f 4Crn \\un -Un+l \\ 2 =( 4C \\un -Un+l \\ 2
[ACm +IJ 11 m UCrn +l) 11

which means

n+i_ n+ i|, < / 4cvn_y n n _ Lrn+ i|,
lla--\4cm +iy 11 llaT

ut —V • (a(a;,t)Vw) + h{x,t)  Vw + c{x,t)u = in Q, t> 0, (42)
u{x , 0) = wo(x), u=o on <9O.

{ut ,v) L2 (n) + (aVw, Vu) L 2 (n) + (6 • Vu,

+ [cu , v)l 2 {v.) = U, v)L 2 {n), Vv G Hq{Q).

We shall require that a{x, t) > 0 and that 3e > 0 such that

(aVt;, V^) L 2 (n) + (6 • V^,v) L 2 (n) -f- {cv,v) L2 (n) > e{aVv,\/v) L2 (n) .

H = L2 {Q), V = ifø(o), a{u,v) = e{aVu, Vi>)L2 (f2) and

h{u, v) = ((a -e)Vw, Vv) L 2 (n ) +(b  Vit, v) L + (cu, u)L 2 (n) >
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5.1. Domain Decomposition. The domain decomposition method is used here
to decompose a finite element space. To construct a finite element approximation
space, we first divide fl into coarse mesh elements {fl*}™ : which are shape-regular,
see Ciarlet [9], and have diameters of order H. For each fl*, we further divide it into
smaller simplices with diameter of order h. We call this the fine mesh or the h-level
subdivision of fl with mesh parameter h. We denote = IJ{T € as the fine
mesh subdivision. Let Sq C Hq{Cl) be the continuous, piecewise linear function
space, with zero trace on dflh, over the h-level subdivision of fl. For each fli, we
consider an enlarged subdomain flf = (J{T £ Th,distance{T,Qi ) < s}. The union
of Of covers fl/i with overlaps of size 6. Let us denote the piecewise linear finite
element space with zero traces on the boundaries c?flf, as Sq{ flf). Then it is true
that

so= (43)

For the overlapping subdomains, assume that there are m colors such that each
subdomain flf can be marked with one color, and the subdomains with the same
color will not intersect each other. For suitable overlaps, one can always choose m
to be a fixed number. Let fl' be the union of the subdomains with the fth color,
and

Let be a partition of unity with respect to G Cq°{Q' fl fl),
0 < < 1 and YliiLi —1- H can be chosen such that |Wi| < C/8. Let be
the interpolation operator which uses the function values at the fi-level nodes. For
any vG V, let = Ih{&iv) 6 V*. They will satisfy v = YllLi and

m

IIL 2 (n f ) C IHL ’ (46)

The proof of (46) and (47) can be found in different papers, see Cai [3, 4]. In the
literature, the overlapping size <5 is often taken to be very large, i.e. 8 = cqH,
see [4, 33, 13]. In order to reduce communication and computational work, we shall
keep the overlapping size 8 small, let us take 8 ~ h. Estimates (46) and (47) show
that for overlapping domain decomposition, the constants in (3) are:

(48)

The constant Ca defined in (13) will then be;

(49)

So, when e 2r < C82 , r < Ce, the constant Ca does not depend on r and the mesh
parameters, which means that the rate of convergence of the space decomposition
does not depend on r and the finite element meshes.

V = sf, Vi = {ve sa |«W= 0, (44)

The decomposition (43) means
m

V-£v,. (45)
I=l

I=lm
EM*‘(n<) + ( 47 >I=l

CL =C, Cv =c,

max(C, Cre2 /62 +C + Ca2r/e)
Cy a *a
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For the multiplicative space decomposition, we have

Cm = max(3C,LC'i 2 ,3C'hC'2 2 t£ 4- CyC^2 + 3CICs2 t/e)

Using the Holder inequality, it is easy to show that C\ = m, C 2 = m and C 3 = m
(See Tai and Xu [27]), where m. is the number of colors for the subdomains. Thus,

Under the same conditions as for the additive scheme, we have a convergence rate
independent of r, the mesh size and the number of subdomains.

When the diffusion parameter is large, i.e. e = 0(1), we may need to add a
coarse mesh to accelerate the convergence. In such a case,

Then we just need to choose r, H and 6 to satisfy

to get a convergence rate not depending r, the mesh size and the number of sub
domains.

5.2. Multigrid Method. For the multigrid method, we assume the finite element
partition Clh is constructed by a successive refinement process. More precisely,
0h =Tj for some J > 1, and Tj for j < J is a nested sequence of quasi-uniform
finite element partitions, i.e. Tj consist of hnite elements Tj = {rj} of size hj such

that = LkTj for which the quasi-uniformity constants are independent of j (cf.
[9]) and rj_ 1 is a union of elements of {tJ}. We further assume that there is a
constant 7 < 1, independent of j , such that hj is proportional to q 2 .

In applications for elliptic equations, it is always required that the coarsest mesh
size is proportional to 72 . However, the coarsest mesh does not need to be very
coarse for applications to parabolic problems. In the following, we shall assume
that the coarsest mesh size is proportional to 72j0 , i.e. we only use the multilevel
meshes between level jo and level J.

Corresponding to each finite element partition Tj, a finite element space AAj can
be defined by

Each finite element space Mj is associated with a nodal basis, denoted by {</>*•
satisfying

where is the set of all interior nodes of the elements of Tj. Associated with
each such an interior nodal basis function, we define a one dimensional subspace as
follows:

On each level, the nodes can be colored so that the neighboring nodes are always
of different colors. The number of colors needed for a regular mesh is always a
bounded constant; call it mc . Let Vj', k = 1,2,- • • m.c be the sum of the subspaces

Cm = max(C, Cte 2 /62 +C + Cr/e). (50)

rh 2
CL =C, CV =C, C„ =—, (51)

tH2 < C62 , r < 0(1)

Mj ={v e Wl ' : v\ T ePi (r), Vr € Tj}.

4(4) = «i*.

Mj span (<pj).
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Ad* associated with nodes of the kth color on level j. Letting V = Mj, we have
the following trivial space decomposition:

Each subspace V?fc contains some orthogonal one dimensional subspaces Ad* , and
so the equations (5) and (6) for each V* can be done in parallel over the one
dimensional subspaces Ad*.

Similarly as in [32, Prop. 8.6, pp.6ll], [2O, pp.lBl], [3s] and [27, §4.2.1], it is not
difficult to show that assumption (3) is valid with

We shall concentrate on estimating C\,Ci and C3. The analysis for the estimates
depends heavily on the following inequalities (see [32, pp.600-601], [27, section 5.2]
and [34, Lemma 2.7], [35, Lemma 3.2]):

In proving the above inequalities, we need to use the fact that a function from Vj
is a sum of one dimensional orthogonal functions, and the fact that the support
set of a nodal basis function from Vj is a refined element of the support of a nodal
basis function from Vf for j > l > jo. Using Lemma 5.1 of [27], we get that

1/ 1/ 7TX q TTlg

which shows that the constant C 2 is independent of the parameters h, J and jo.
By the same technique, we see that C\ and C 3 are also independent of h, J and jO .

In order to get a convergence rate independent of the mesh size, the time step
size and number of levels, we just need to choose jo and r in such a way that

e2 r < Ch 2o and r < Ce,

which indicate that the coarser meshes may not be needed when the diffusion
parameter e is very small. For relative large diffusion, wc may need coarser meshes,

J mc

V = EE vi- (52)
3=l k= 1

CL = C,Ch —C.
hl

(u,v) < Wu e Vj, W € V*,

a{u,v) < C'7^ -J *l|'u||v||vl|v, Vu G Vj, V?; G Vzfc ,

b{u,v) < C^l IHIvIHIh» Vw G Vj, Vt» G Vzfc .

j=jo l=jo »=1 k= l
J J mc mc

< E EEE cV'-sl miiviKiivJ=JO /=jo t=l fc=l
J J /mc .k /Tn c \ \

< ( Eiklv)
j=jo l=jo ' i=l ' ' *=l

/ \ / Tn ° \ i / mc \ å
< mc fmax^7l:? ~ l| V ]T XKHv) ’ ( X) ll v?llv)' 3 l—jo ' j—jo t=l ' M==j'o fc= l

/ J mc \ 4 / J rn c \ 2

s EEiK-n2v • EE«) .
' \ j=l i=l ' X Z=l fc=l '
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but the coarsest mesh does not need a mesh size such that hjo = 0(1). The coarsest
mesh size only needs to be in the order of

6. Numerical Experiments

In this section, we try to solve the equation
(53)

with consistent Dirichlet boundary conditions. Let us take Cl = [o,l] x [o,l]. Equa
tion (53) describes a diffusion process plus convection in the diagonal direction.
When e is small, the convection is dominating.

In the numerical tests, Cl is first divided into N coarse mesh elements, both in
the x and y directions and each coarse element is then divided into M finite mesh
elements, again both in the x and y directions. So the coarse mesh size is H =
and the fine mesh size is h —p. The Laplace operator is approximated by the 5-
points finite-difference approximation and the convection term is approximated by
the up-wind approximation. In the tables, s is the number of iterations performed
at each time level. u{tn ) is the true solution at t= tn and u™ is the global finite
element solution without domain decomposition.

Both algorithms 1 and 2 are tested for (53) when e is large, i.e. e = 1. Minimum
overlap is used, i.e. 6 = h. Table 1 shows the errors for the different values of
s for algorithm 1. In the computations, a* = i = 1,2,3,4. Table 2 shows
the computational errors for algorithm 2. For algorithm 1, about 25 iterations
are needed to reach the same accuracy as the global finite element solution. For
algorithm 2, only 5 iterations are needed to reach the same accuracy. The error
between the domain decomposition solution and the global finite element is getting
smaller when the iteration number s is getting bigger.

Our numerical experiences show that the term containing r/e in the expressions
of Ca and Cm (c.f. (49) and (50)) is negligible compared with the other terms as
long as the algorithms are stable. The dominating quantity for Ca and Cm is from
the term containing re2 fb2 (c.f. (49) and (50)). Thus a smaller r or a bigger 6 will
give a better convergence. Adding a coarse mesh is also making the dominating
term smaller and will also lead to a better convergence. In tables 3 and 4, we try to
compute the same problem as in Tables 1 and 2, but with a smaller time step. The
discretization error seems to be dominated by the spacial variables when time step
size is small. However, the convergence for the domain decomposition iteration is
getting better. In Table 1, the error (|un u™ ||oo is reduced from 5.9708 x 10~ 2 to
1.6178 x 10“ 3 when sis increased from 2to 20. In Table 3, the error ||wn 'U™|| oo
is reduced from 3.6813 x 10“ 2 to 3.6155 x 10-4 when sis increased from 2to 20.
It is clear that the convergence for the smaller r is better. For algorithm 2, the
improvement of the convergence is even better, see Tables 2 and 4.

In Tables 5 and 6, we show some numerical results for the convection dominated
case. The value of eis taken as e = 0.01 and so the convection is dominating. Figure
1 shows the computed solution. The errors for Algorithms 1 and 2 are shown in
Tables 5 and 6 respectively. Minimum overlap is used. We can see that s = 1

hj0 = O {Vr)  

Ut eAu +ux -f uy =O, in Q, t> 0,

which has an analytical solution
1 x 2 +„ 2

u{x ' V ' t)= it{t +6l (54)
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Table

is already enough for Algorithm 2 to get an accuracy as good as the global finite
element solution. For time dependent problems, Algorithm 2 is always much faster
than Algorithm 1.
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4.

FIGURE 1. The computed solution by algorithm 2 with e
0.01; H = 1/5; h = 1/50; r = 1/400; s = 6.
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