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ON THE POSTAGE STAMP PROBLEM

WITH THREE STAMP DENOMINATIONS, III

ERNST S. SELMER

The present paper is an immediate continuation of Selmer [7]

and Selmer - Rodne [8]. All references to theorems and formulas

from sections 1-13 are automatically to [7] or [8],

Let A£ - U (O) . The set (1.2) of h-representable numbers

(at most h addends) may then in standard terminology be denoted by

hA£ . Our aim in the present section is to determine the sets h Q

and (hø - .

We shall rely heavily on the results in Rodseth [6], and use his

notation, with one exception: He operates with an integer

r, 0 r < • To avoid confusion with our use of r, we shall

replace his r by Z .

Rodseth's Lemma 4 states that

Z -l = Va 3 -1) + Va 3 - a 2 } > °V V£ Xv UYv

We consider the numbers (all = l (mod a^)):

t“ xv ” “ 9 s * nce the coefficient sum J= h Q -t< h^
It remains to show that the set

14. The sets of and - 1)-representable numbers.

04.1) (h 0 - t)a3 - t* t = Ch Q -t- xy - yv )a 3 + y va 2 +xy >0 ,

and claim that these belong to h Q for t > 0 . This is trivial
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S n = {£, £ + a_, £+ 2a_, ..., ya0 + x - a_} c hnA’£ ’ 3’ 3’ ’ ' v 2 v 3 03

And this is proved by Rodseth, since is just the sequence

(4.1) of [6].

On the other hand, the numbers (14.1) do not belong to

i£ t = -t' < 0 . Assume to the contrary that

As in section 3, we conclude that

has a representation by Å 7 = - , - 1, , c£. (2.15).

(Rodseth uses A* = U {0} .) But this is a contradiction, since

is defined as the smallest integer in its residue dass (mod a„)

with a representation by •

Letting (x^ 5 Yy ) run through all lattice points o£ U ,

we get all residue classes £ (mod a^), and have the following

THEOREM 14.1.

I£ is pleasant, it suffices to use regular representations ,

and clearly

(h0 + t’)a3 - t* £ = x3a3 + x 2 a 2 +xy Xx.-h* S h Q

t* - t’a7 = (hA - h’)a7 + x.(a7 - 1) + x~(a_ - a A )-X, o(J Z> I o Z o Z

h0A3 = U t(hQ -t- xy - yv)a3 + yya 2 +xyS0,t = 0, 1. ...}

t xv>V eXv UYv

For use in the next section, we shall also determine (h Q -

Clearly

(h0 - 1)c - ={n - |nE hQ *
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(h Q h o A 3 a 3 ) (1 ]N q

(where ]Nq = (0, 1, 2, ... }) . For non-pleasant , however, we

get problems with the number of (11.13):

We shall show that is usually the only exception:

we have

(14.3)

To prove this, we replace h Q by h Q - 1 in the arguments

leading to Theorem 14.1. The only critical point is whether now

S £ C (h 0 - 1)A3 •

To show that c høA 3 , Rodseth used his Lemma 5, which states

that for 1 i v , we have

(14.4)

We note that Rodseth’s division algorithm for a 3 /a 2 is the

same as the one leading to our Theorem 6.1. In particular, we have

(14.2) n Q =a3 -r-1 = (f - 1)a2 +a2 - 1 = nh Q-i +1 $ (hQ " A3 ’

where = 2 + r - 1 £ > since 1 r - f - 1 by

(4.3). (For pleasant , it follows from (2.8) that

n 0 + a 3 = n h0 (V + 1 <t h 0 A 3

THEOREM 14.2. For non-pleasant, with r + 1 and s + q ,

(h Q - 1) = (h Q - fl 1N Q \ - r - 1}

x i-i + y i-i + Qi - 1 s h o i£ p i s s i

04.5) x. + y + R - 1 < h n if P. > s.111 0 il

If these relations hold with strict inequalities, it follows that

S £ c (h 0 - 1)A 3 •
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1 ,

a 3 = a 2 "S 1 ’ ence q-| =q, s -| =s , and v> 0 for a non

pleasant , when s q by (2.10).

Studying Rodseth’s proof of his Lemma 5, we observe the

following facts:

1) For i = 1 , when , we have equality in (14.

if and only if (Xq, Yq) is the upper right corner of :

(14.6)

2) For i > 1 , hence > 1 , a necessary condition for

equality in (14.4) or (14.5) is = - 1 or - 1 ,

respectively. But then such a relation must hold from the start:

(cf. the recurrence relation s. . = q. .s. - s. q. . If
3+1 4 3+1 3 3“ 1 3+T

r+ 1 , we thus have strict inequalities in (14.4-5) for all i > 1

We have noted that the case i = 1 needs a special treatment.

Since = s, = 1 , we must consider the numbers + + xq>

0< z < [Xq/s] . Using the "a^-transfer" = qa 2 - s of section 1

this may be written as

(14.7)

with positive constant term, and a coefficient sum

4

Cx0 , y0 ) = (s 0 -1, P 1 -PQ -1) = Ca 2 -1, £- 1)

Then + x o j ust the number of (14.2).

s = s = s q - 1 = - 1 , hence r = 1

In R6dseth's proof o£ C , he divides into "sub

sequences" between + x f 1 an d

r x -, -
y.a0 +x. = y. .a 0 +x. . + Q. ----- a_; i 2 i 7 1-1 2 i-l s. 3L 1 J

Za3 + yO a2 +X0 = (y0 + zq)a 2 +xo "zs >

I= x0 +y0 - z (s -q)£ x0 +y0



-



>

]

I£ x q + < ’ t^ien a l so I< hg for all z . If

corresponding to the corner (14.6) , then £ < for z > 0 if

s > q , but £ = hg for all z when s = q .

If s = q , then v = 1 by Theorem 7.1, and the "subsequence"

just completed covers the whole of . If v > 1 , we have seen

that the remaining subsequences yield no problems if r + 1 .

This completes the proof of (14.3), and also shows that if

s = q , then

0 < z < [Xq/sJ = [(a 2 - D/s] . Note that we may use also z = [x^/s

in (14.7), but the resulting number is then contained in but

not in - •

We finally treat the case r = 1 . A modification of Rodseth’s

method then seems to become rather complicated. However, we can

settle the case directly by a more elementary application of a^ -

transfers. With r = 1 , the only such transfers which may reduce

the coefficient sum are of the form

As in section 11, we start with the regular representations

(14.10)

5

3- — "j

(14.8) (hg = - n JN Q \ ~r-1t = 1, 2, j|

Here - r - 1 = + (t - = n Q + , with

(14.9) = (ef + - (a 2 - e) , e = 1, 2, ... .

n = e 3a3 + <a2 -1, e 2 £- 1

For r = 1 , it is unnecessary to consider e 2 = £ , since already

fa 2 + 1 gives a new .
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For the n of (14.10), we shall decide i£ n £ ’

Y = Te. h n » we ar e finished. I£ Y >h n ,we must try a transferi 0 L e 0 }

(14.9) with e . The transfer is possible only i£ it yields a

non-negative constant term, that is, if - e .

If an a^-transfer

(14.9) is necessary and possible in (14.10), and yields a new £< h Q ,

then the same transfer gives V' <h Q - 1 in (14.11), provided it is

possible, that is, if e - 1 . It is easily seen that this

combination of conditions fails only in the case

2 , and the "subtrahends" { }

Similarly, we shall decide i£ n 1 € (h Q - , where

(14.11) n’ = n - = - + + > 0) ,

with 11 - l - 1 , hence no problem if £ h nø ø ø U

(14.12) n = + (f - 1)a2 + a? - e,, £ = hQ + 1

Thus n’ =n - $ ChQ  - if n' = - 1

For the n o£ (14.12), we must use e = in (14.9), and get

n = + 1)fa2 , hence

rcU ~ 2-j
n € <=> + 1)f = a 9 + f - —5—

We have thus shown that i£ r = 1 , then

(14.13) (hQ - = (h0 - a3 ) nJN0 - |t(a3 -1) - 1 t=1, 2, ..., p^—]}

For t=1 , we get t(a 3 -1) -1 = -2= n Q .

No problems arise i£ we have s = q and r = 1 simultaneously

Then s*q = a 2 -1,f = q-1 =a 2

in (14.8) and (14.13) both consist o£ only.
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The results (14.3), (14.8) and (14.13) imply that, but for the

specified exceptions with t > 1 for r = 1 or s = q , the integers

with a representation in at most h Q addends from A„ have

such a representation containing •

In particular, [0, nh (A3 ) ] eh Q . It then follows from (14.3)
that

(14.14)

This was first observed numerically for a large number of bases ,

and gave the impetus for the investigations in this section.

As in Rodseth [6], let A(n) denote the number of addends in a

minimal representation of n by a given basis . We clearly have

since otherwise addition of (x +1) or xak would yield a

contradiction. This raises the question whether there are integers

x > 0 such that for the interval of length a^:

We have just seen that this holds with x = 1 if k=3, h = hQ , A3

non-pleasant, r + i, s + q . Already for x = 2 , however, it is easy

to find counterexamples:

We have made the interesting observation that for Frobenius-

r + 1, s *q =* [0,nh - \ - r - 1} <z (hQ - .

A (W  (x + 1)ak +1 ) -h- x > A (nh (V ' x\) ih- x ,

(14.15) [nh CAk) -(x + l)ak +1, - xaj C(h - x)A£ .

A3 = {1, 7, 11}, hQ = 6, n6 (A3 ) = 48 ; A(17) = 5 .

dependent Aj with r > 1 , (14.15) holds also with larger x



,
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PROPOSITION 14.1. Let be Frobenius-dependent, with r > 1

A proof will be published elsewhere.

In (3.3), we raised the question of basis extensions which do

not increase the h-range . We shall solve this question comnleteWe shall solve this question completely

in the case

(15.1)

Even if enters the formulation, the results depend entirely on

the properties of .

We see from (3.4) that the regular h-range always increases

by a basis extension (assuming admissible bases). The same argument

shows that if is pleasant, then

15. The cases with = n^(A^)

n nh *“* nh^3^ J a 4 > a 3

W a gh (V > g h (A3 } ’ W ’

so that we may assume non-pleasant in (15.1).

If > + 1 , then is not admissible for h =

(where h 0 =a 2 +£ - 2 refers to . If then h = >h Q is

the smallest h for which A 4 is admissible, we trivially have
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nh (A4 ) = nh (A 3 3 for h < h 0

(2.14) that

On the other hand, it follows from

Similarly, it follows from from (2.13-14) that

We may therefore restrict the problem (15.1) to the case

Note that a similar simplification does not apply to larger

bases, since the analogue of (2.14) does not necessarily hold for

k> 3 .

We already know one case of (15.2), resulting from the basis

Ah+2 sec ti°n 3:

To solve the general problem, we note that

(15.4) «nh (Aj) + 1 - «a 4 $ (h Q - 6=1,2, ..., h Q

In most cases, it suffices to consider 6=1. Since

N = "h/V +1- a 4 € [°, nh 0 CA 3 D ' a 3 ] c (h 0 A 3 - a 3 3 n ’

(15.4) fails already for 6=1 if N does not belong to the

exceptions in (14.3), (14.8) or (14,13). These cases have the

nh^" a4 + a4 + ' a3 > nh^ (A3}

nh ,(A4 ) nh ,(A3), h’ 4> nh (A4) > r^CA^), h >h 1

(15 - 2) nhQ (A4 3 = nh0 (A3 3 ’ a3 < a4 S nh0 (A3 3 + 1

(15.3) +1, =hø+ 2, = + a^ ? 1 a - 1

nh 0 (V “ nh„ CA 3 } ~ nh 0 (A 3 } + 1 * h 0 A4





a

3^

common exception of (14.2), and N= n Q does in fact lead to

general solution o£ (15.2);

(15.5) a4 a4 a3 +r+ 2 - n^(A3 ) nh^_ 1 (Aj) => n^(A4 ) n^(A;

This is clear since we cannot use 6 > 2 in (15.4):

which always holds by (2.8).

pleasant.

I£ a 4 + å 4 , a necessary condition for (15.2) is that N

equals one o£ the exceptions in (14.8) or (14.13), with t > 1

(since t = 1 corresponds to n^).

by (2.28), and we find that we must choose

(15.6)

(while t = IC&2 ~ corresponds to . We shall see that

this is also sufficient for (15.2) to hold.

We consider a representation

(15.7)
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> + 1 ** > - 2r - 3 ,

Note that = if is

We start with (14.13), hence r = 1 . Then n, (A ) is given
n 0 5

r a 7  2 i

a 4 =a 3 + x(a j - 1), t=1, 2, j— ? j- 1

"h/V + 1 = x 4 a 4 + x 3 a 3 + +x ,

and must show that £> hg . This is trivial i£ = 0 , so we

can assume > 0 , and observe that

n h CA 3 ) +1=0 , a 4 = = 1 (mod - 1 =fa 2 )

With =Kf + x'2 , 0 x'2 <f , (15.7) then gives



.



from

is also

+ 1 >

x 4 +x 3 +x 1 =(£ - xpa 2 , hence x 4 + (£ -x 2 )a 2

x 4 + x 3 + x 2 +x, sx4 + x 3 +x' +Xl 2(f -x^)a 2 + >a 2 + f-1 =h Q

as required. - In particular, we get the known case (15.3)

(15.5-6) with £= 1 .

By (2.29), we now have two possibilities for n, (A,)
n 0 3

These two cases must be considered separately.

If s \ (a 2 -1) , we find that we must choose

(15.8)

(while t=[(a 2 -1)/s] corresponds to a 4 ) . Again, this

sufficient for (15.2) to hold:

11

We next consider (14.8) , hence . s = q , = q(a ? - 1)

/r a 2" 1 1 \ r 2 , if s \ Ca 7 -1)
VV  — +2>3- r ' I .f 2 „0 L J 7 13, i£ s | (a ? -1)

r a 7 - 1 -i
a 4 =(t + l)a 3 , t=—— -1

We consider a representation (15.7). Since | , we get

x 2 a 2 +X 1 =nh + = ~ r ~ "I = " a 2 + (mod = ,

from which we draw two conclusions:

1) x 2 a ? > -r - 1

2) x 2 a 2 +X 1 Ex 2 +x i =f " 1 (mod a 2 "1 )

Assuming J <h Q in (15.7), hence >0, we get x 2 + <h Q

(f-1)+(a 2 -1) , so x 2 +x 1 =f-1 , and





(£ —1) a 2 = a 3~ r “ a 2 *

contradicting the first conclusion.

If s | > hence m = ia. 2 ~ 1)/ s an integer, we find that

we must choose

I£ t [2(m + 1)3 , this expression is negative, and an examination

o£ (15.4) for is unnecessary, so (15.2) holds. I£

t < [i (m + 1)] , however, the right hand side belongs to - ,

and (15.4) fails for 6=2 . Thus (15.2) is satisfied only if

Summing up, we have the following

THEOREM 15.1. For non-pleasant , the equality (15.2)

holds if and only if we have one of the cases:

Based on computations by Mossige, this result was conjectured

long before a proof was found. The cases r= 1 or s= q are

also proved in Kratzig-Berle [4, Kap.4], the "if" part along the

lines above, the "only if" part by explicit representations for

1 2

a2 ~ 1
a 4 = (t +1) a 3 - 1 , t = 1,2,... , — 1 =m - 1

Now (15.4) holds for 6=1 , and we examine 6=2

n, (AJ + 1 - 2a, = (m-2T)a T -r = (m-2T-1)a 7 +£a 9
XIq o 4 o o L

a ? -1
(15.9) a 4 = (x+1)a3 -1 ,t = [J(m + 1)],... ,m -1 ; m= ——

(15.5) for arbitrary ,

(15.6) for r= 1 ,

(15.8-9) for s= q

nh (A3) from in the remaining cases.





In analogy with (3.3), it is quite natural to ask for cases when

assuming admissible bases

We need a particular result for the similar problem regarding

regular h-ranges:

The proof is simple; It follows from Hofmeister [1, Satz 1] that

the constant term of the regular representation for g h (A K )

equals a 0 - 2 for all admissible A . We conclude that then 2 k

constant term a 2 - 1 of + a re gu^ar re P re sentation

in at most a 2 - 2 addends 1 and a a 2 - 1 .

In particular, > 9 3-^ s0 n >nh^2^

The first possibility for (16.1) thus occurs when k=4 :

(16.3) ah (A*) = nh (A3 U {a}) =nh (A3 ) , 1 <a<a 3 , a +a 2 .

As in the preceding section, a study of this equality depends

entirely on the properties of A 3

If h=h* is the smallest h for which A* is admissible,

we clearly have h* h Q (where again h Q =a 2 +f - 2 refers to

To be "fair" to A 3 , we restrict the examination of (16.3) to

h aho
Before doing this, we just mention the analogous problem for

regular h-ranges. By (16.2) , we must then assume a 2 <a< a 3 , and

it is not difficult to prove that for h >h Q :
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16. The cases with U {a}) =, a < •

(16.1) n h (A;) =n h (A k-1 U {a}) =n h (A k . 1 ) , 1<a<a .a $ A k _-, .

(16.2) 1<a<a 2 > g h )





(16.4)

(My original proof is reproduced in Kråtzig-Berle [4, p.27j.)

Similar arguments show that (16.3) is impossible with pleasant

. With > (Ap and nh (Ap = gp(Ap , equality in

(16.3) could only occur under the conditions of (16.4). But by

(2.8-9), we then have

with a coefficient sum h except in the one case r= a 0 - 1 ,

p= 0 , hence f> 2 . But thenBut then

In what follows, we may thus assume non-pleasant in (16.3)

Since A~ and Aj have a common largest element , it

is possible to use Meures 1 result (2.16), which in combination

with (2.13) shows that for h n- 1 :0

with equality if ( n stabil izat ion n , cf. section 3). For

non-pleasant , we know that p= hg . For , we put
h1= h* . With1 “1

14

g h ( ' A P = g h ( ' A 3' ) a = fa 2 + P > 0 p< r

+1 = (h -Kq + -r - 1 = (h - + 1*a + fa 2 +r- p - 1 ,

n h ) + 1 = ” a 3 + 2a+a 2 ~2 ,

n h (A k } s ha k - g (A k } - 1 >

a 3 a 2> a 3 > a 3} >AJ - U {3.j ~ 3-J ,

we thus get, for h h Q ;

n h CÅ = ha 3 " " 1 » n h (Å 4 :) = ha 3 " ' 1



 



Since trivially , this shows that

(16.5)

We obviously have g (Ap 3 )

g(A3 ) has a representation by :

With strict inequality,

It follows that

has a representation by with coefficient sum ,

provided that . We thus have the following partial con

verse o£ (16.5):

(16.7)

We only proved this for h = above, but the general result

with h > 1lq then follows immediately from (2.13-14).

There is one trivial case of equality in (16.3):

This follows from (16.5), since A 3 and A* are "equivalent"

as Frobenius bases:

1 5

g CA* D = g(A3 ) =* nh (A*) = nh (A 3 ) for h> h Q

(16.6) h>h* : nh (A*) = nh (A 3 ) =* g(A*) = g(A3 )

g (A3) = x 1 Ca 3 -a) + x 2 (a 3 -a 2 ) + x 3 (a 3 -1) + x 4 a 3

nh Q CV +1 = h0 a3'8(Aj) " h 0 ~ Z x i) a 3 + x i a + x 2 a 2 +x 3

g(A3 ) € h Q A* => nh (A*) > nh (A 3 ) for h= h 0

(16.8) £=1 , a 2 = + , + 1 ,a = a2~tr^2

(16.9) nhCA^) = for h h Q .

= {r, a^ } , A* = {r, (t + 1)r, a^}





The second element o£ is a multiple of the first one.

We assume that is non-pleasant. If it is also non

dependent, it follows from Theorem 10.1 that

bine (16.5-6) to an equivalence for non-dependent A 3

Frobenius-dependent , Kratzig-Berle [4, p.23] shows very

simply that we always have except in the already

settled cases (16.8), hence

(16.10)

Based on extensive computations by Mossige, I conjectured

the following results:

Then

In addition to (16.8), there

is one more case of equality in (16.9):

Both theorems were proved in the Master's thesis [2] of my

student Kirfel. He used the methods of Rodseth [5] for determining

16

n h () ( ' A P “ “ ( h Q + 1 a 2 a 3

Let 1 <a<a 2 . We then get h* h Q by Theorem 3.1, and can com
hine C16.5-6') to an eauivalence for non-dependent A„ . And for

1<a < a 2 : g(A*) = g(A 3 ) *=> n h (A*) = n h (A 3 )

THEOREM 16.1. Let <a< a^

n h (A*) > n h (A 3 ) for h h Q

THEOREM 16.2. Let 1<a < a 2





the Frobenius number . A shortened version [3] is sub-

mitted for publication.

Another student o£ mine, Kratzig-Berle, gave an independent

and very elegant proof of Theorem 16.1 in her Diplomarbeit

[4, Satz 3.1]. Using the inequalities of Theorems 10.2-5, she

could determine a by of + 1 •

We note that the bases of Theorem 16.2 satisfy the con

ditions (8.1-2), and so can be determined explicitly by

(8.3). It is fairly straightforward (c£. [4, Satz 2.3]) to show

that this h-range is not increased when extending the basis with

a=tr + 1 . The hard problem is of course to show that all other

cases (except (16.8)) lead to an increase of the h-range.
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