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SUPPORTED ON
DETERMINANTAL LOC

Piotr Pragacz1 & Jan Ratajski

INTRODUCTION

The aim of this paper, which should be considered as a supplement to
[P], is to extend the main theorem of [P] to other homology theories. Let
H( ) be a homology theory with properties specified in Section 1. Fix

integers m>0, n>0 and rz0. Assume that

)

is a sequence of m+n variables with deg c = degc’ =i
1 1

We say, following [P], that P € Z[c.,c.’] 1is universally suppor-
ted on r-th degeneracy locus if for every scheme X, every morphism
¢: ¥ — & of vector bundles on X, rank € = n, rank F = m and every
a € H(X)
P(cl(g),...,cn(8);cl(9),...,cm(?)) na € Imi,

Here, for

Dr(w) :={ x e X | rank ¢(x) sr },

the map i: D (¢) — X 1is the inclusion, and i, H(D (¢)) — H(X)
r r

is the induced morphism on homology.

1
Research carried out during the author’s stay at the University of Ber-

gen (Norway). This stay was supported by the N.A.V.F.. Thanks are due to
Stein Arild Stromme for creating this opportunity and to Department of
Mathematics in Bergen - for hospitality.



Define ? to be the set of all polynomials universally supported
1
on r-th degeneracy locus . It follows from the projection formula for i

that ?r c Zlc.,c.’] is an ideal.

In [P] the author gave a description of ? in the case of the Chow
r
groups. In this work we show that the same result holds true for other

homology theories.

The homology we consider here are endowed with a "cl-map"
Ak( ) — sz( ), where Ak are Chow homology, or, they are singular
homology. The proof in [P] does not go through (at least verbatim) for
these homology. An obstruction is provided by the fact that even for such
a nice homology theory as the Borel-Moore homology, the schemes wused
in the proof in [P] have nontrivial odd homology (see Remark 2.3).
Similar arguments show that complex affine determinantal varieties Dr
can have nontrivial odd Borel-Moore homology. Therefore, the problem of
computation of HSM(DF) is more difficult than computation of A(D )

(see [P]) and IH*(DF) (see [2])

In order to overcome this obstruction we modify the construction
from [P] by using a certain compactification of it. This allows us to
proceed with schemes for which the cl-map is an isomorphism (in par-
ticular odd-homology vanish) and preserving the needed genericity pro-
perties at the same time. Then, it is possible to follow the lines of
the proof given in [P]. This gives us a proof which is valid both for

Chow homology and other homology theory simultaneously.

We treat also the case of morphisms with symmetries. This case is
somehow more difficult to tackle than the "generic" one. In order to
overcome additional difficulties we prove a certain fact about surjecti-
vity of morphisms of Chow groups of stratified schemes ( see Proposi-
tion 3.5 ). This fact appears to be quite useful, and thus it seems to be

of independent interest.

The setup of the present paper is borrowed from an useful work
[R-X]. In addition to the homology theory treated there we prove the
theorem in the singular homology case. Note that this last version of
the theorem simplifies significantly calculations from Section 1 in

[P-P].
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We thank A.Biatynicki-Birula, W.Fulton and W.Zelazko for alerting us
to think about this problem. Thanks are due to L.Kaup and Z.Marciniak for
useful informations about different homology theories (especially concern-
ing Poincaré duality) transmitted to us during the Algebraic Geometry
School-Rajgrod 1890. We are also grateful to A.Parusinski for pointing
out some corections and simplifications in response to a preliminary

draft of this paper.

Notation
1. Homology groups.

Let X be a scheme.
Ak(X) denotes the Chow group of k-dimensional cycles modulo rational
equivalence; A(X):= © Ak(X) (also for singular X).
If the ground field is C, Hk(X,Z) denotes the k-th singular homology
group (in the notation of [B] this corresponds to H;(X,Z) ); and H*(X,Z)
denotes the k-th singular cohomology group (in the notation of [B] -
Kk

}tld(X,Z)). Moreover, HiH(X) denotes the k-th Borel-Moore homology (with

closed supports) or "homology with locally finite supports" (in the
cld

notation of [B] - Hk (X,Z) or Hk(X,Z) ).
2. Partitions
By a partition we mean a sequence of integers I = (il,...,ik)
where iz iz ... z1=20.
1 2 Kk .

Instead of (i,...,1) (k-times) we will write (i)
For partitions I = (11,...,ik), J = (J1""’Jk)’ I+J will denote
the sequence (i +j ,...,i+j) , and I < J will mean that i = j

1 1 k “k h h

for every h .

1. HOMOLOGY THEORIES USED IN THIS ARTICLE

Let k be an algebraically closed field. By a ‘"scheme" we shall
understand an algebraic k-scheme of finite type which can be embedded
as a closed subscheme of a smooth k-scheme of finite type. The restri-
ction on k comes from the fact that in our arguments we use an homology
theory satisfying properties (a)-(e) below. In the characteristic O
case it is the homology with locally finite supports, or the Borel-Moore

homology ([B-M], [B,Ch.5], [F,Ch.19],[I,Ch.9]), and if k has positive



characteristic p, then the homology theory is defined as some suitable

l-adic cohomology, ¢-a prime number different from p ([L,Sect.6]).
Recall, for instance, that Borel-Moore homology of a complex varie-

ty X, denoted H?H(X) , are defined as the singular homology of X if X

is proper, and as the relative singular homology of X modulo X\X if

X is not proper and X is a compactification of X. In [B-M], [B,Ch.5]

a sheaf-theoretic construction of H?M(X) is given ( in the notation

of [B] this is H?(X,?) where ¥=Z and ¢=cld ).

By H we will denote a "cl-homology" theory that is, a functor
1
from schemes to abelian groups that is covariant for proper maps and
contravariant for open embeddings. Moreover we assume that the follow-

ing conditions are satisfied

(a) Let X be a scheme, Y a closed subscheme and U = X \ Y . Then

there exists a long exact sequence

— H (V) — H(Y) — H(X) — H(U) — ...

(b) For any finite disjoint union of schemes U XJ and for all 1

H(UuX)=eH(X)
1 j J j 1 J

(c) For all schemes and all integers i there exists a map

cl : A (X) — H_ (X)
X i 2i

that commutes with pushforward by proper morphism and with restri-
ction to open sets. Ai(X) is here and in the sequel the Chow group
of i-dimensional cycles modulo rational equivalence (see [F] for a

precise definition and properties).

n

In characteristic O we shall say that clx is an isomorphism"

if clx is an isomorphism and Hznd(X) =0 for all i.

In characteristic p > 0 we shall say that

clX is an isomor-

phism" if for prime ¢ # p

clx ® 1Z£ : Ai(X) ® Z2 — Hzi(X)

is an isomorphism for all i, and Hznq(X) =0 for all i.

(d) If X is a scheme such that clx is an isomorphism then for every




vector bundle & on X the map clp(g) is an isomorphism, where P(&)

is the Projective bundle associated with €.
(e) (Chern classes) Given a vector bundle & on a scheme X there
exist uniquely defined Chern classes 01(8) n - operators on H(X).
They satisfy the conditions specified e.g. in Theorem 3.2 in

[F]. Note that [F,Theorem 3.2 (d) - the pullback property] requires
& H(X) — H(X’) associated with a flat morphism f. In the case of
the Borel-Moore homology, such a £* exists by [V, Sect.3.2].

In the case of cl-homology in char p, f* exists for flat f
by [L, Sect.5]. For a definition of Chern classes operators in this
case see [L,Sect.7].

Note also that for every polynomial P in the Chern classes of

a vector bundle € and every cycle «o on X,
clx( P(c.(&)) na ) = P(c.(&)) n clx(a)

Pushforward formulas for Grassmannian bundles, like [P,Proposi-
tion 2.2], are valid for these homology theories and singular homology

H(-,Z), when appriopriately formulated.

Finally, recall that for the Grassmannian bundle mn: G (&) — X,
l¢

parametrizing rank r-(sub)bundles of &, the map

n,: A (G (8) — A (X)

is surjective for every i. This follows, for instance, from [P,Proposi-
tion 2.2]; or can be obtained by Noetherian induction on X (cf.the second

step in the proof of [P, Lemma 3.7]).

2. GENERIC MORPHISMS

Assume that a sequence of m+n variables

is given. Define s inductively as follows
i

4]
s =s ¢c -s ¢ + ...+ (-1) "¢
i =gl 3l i) & i

Then define s (c.,c.’) by the formula
1




i-k ,
s ¢ .
Kk i-k

Finally, for a given partition I = (il,...,ik) we put

s (c.,c.’) = Det [ s (@ ,@, ") ]
I i -p+q
p 1 = p,qg =k

Let O denote the partition (m-r)"". Let us denote by ¢ the
s I

ideal in Zlc.,c.’] generated by sI(c.,c.’) where I > o . It is
Ie

known [P, Proposition 6.1] that 3r is generated by a finite set
{s_ (c.,c.’) | Ic(m)™ 2.

O +I
r

The ideal P of all polynomials universally supported on r-th
r

degeneracy locus (see Introduction) admits the following description.

Theorem 2.1 For any homology theory specified in Section 1, we have
P =9
r r
The proof of the inclusion ¢ < ? is verbatim after [P, Ch.3].3
yel 1§
The essential problem is to prove an opposite inclusion. Let us introduce

first some notation.

Let W,V be vector spaces over k of dimension w = dim W, v = dim V.

Let G

™ = G™(W) be a Grassmannian parametrizing m-quotients of W and let

Gn = Gn(V) be a Grassmannian parametrizing n-subspaces of V. Denote by Q
the tautological rank m-quotient bundle on G" and by R the tautological
rank n (sub)bundle on Gn . Moreover let F1™" = F1™"(W) be the flag
variety parametrizing the flags of quotients of W of dimension m and r,
and Flr = Fl1 n(V) be the flag variety parametrizing the flags of

yn r,

subspaces of V of dimension r,n . Let ?(r) C ?(n) be the tautological

flag on Fl1
i¢

N

i is an open problem, whether this set gives a minimal set of genera-
tors of the ideal for mZn. We thank S.A.Stromme for helping wus to check
with "MACAULAY'" that this holds true for a large number of cases.

We correct an inaccuracy in quotation in the ment ioned proof:
[P] p.42710 - replace [F, Proposition 1.7] by [F, Theorem 6.2(a)].



A forthcoming Remark 2.3 will show that the proof of ?rc N from
T
[P] does not work for the Borel-Moore homology. We begin with the fol-

lowing useful fact.

Lemma 2.2 Let X be a complex space and YcX be a closed subset. Assume
that X \Y is a 2dimX - homology manifold. Then there is an exact sequ-
ence

2dimX-i (

L B — B — H X\Y,Z) — B (Y) — .., ()

where Hi(—,Z) denotes the singular cohomology.

Proof. The assertion follows from the long exact sequence (a) for the

Borel-Moore homology and the isomorphism

H?M(X) " H2dimX—i(X’Z)’
1

valid for 2dimX - homology manifold X. The latter isomorphism follows
from [B-M, Theorem 7.9 with ¢=cld and $=Z] (see also [B, Ch.9]). For a
particularly transparent treatment of such a Poincaré-type duality -
see [K]. The isomorphism in question follows from [K, Theorem 2.1 with
A=2, ¥=Z and ¢=cld] and [K, Theorem 4.2 with $=Z and ¢=cld] in the
notation from loc.cit.. =
Remark 2.3 (A raison d’étre of this article)

BM(

We prove that for D1 from construction (13) in [P] we have H3 Dl) z 0.

This construction will be recalled in Step 1 of the proof of Theorem 2.1,
where a morphism ¢’ is defined. Here, we take k=C, m,n=2 and write Di
for Dl(w’). Note that obviously D\ D , is a 2dimDi—homology mani-
1 L=

fold, so we can apply Lemma 2.2.

We have a locally trivial fibration

D \D ——> FI™! x F1_ = FF
1 0 1,n

with the fiber Gl1(1) . We use the spectral sequence of fibration
E’? = H(FF, H(G1(1),2)) = H(D\ D ,2).

Invoking H°(G1(1),Z) = H'(G1(1),Z) = Z , H'(GI(1),Z) =0 for i = 2,

we get E?q =0 for gz 2 and all p . Moreover, denoting d = dim D1




we get in Eé"

2d-4,1_

: 124 (Fr, 1Y (G1(1),2))

d
=H2dlmFF-2(FF,Z)=Z4 \

g

p24-3,0 _ pEE

» 2

=H2dimFF-1(FF,Z)=O =H2dimFF(FF,Z):Z
(2d-4) (2d-3) (2d-2)

Thus rk H&F3(D1\DO,Z)Z3. The following segment of the exact sequence (#)

D) — 130\ Dp,7) — D),
3 1 1 (0] 2 [0}

where HBH(D ) = H(G"xG ,Zz) = z° , shows HBM(D ) = 0.
2 0 2 n 3 1

In particular, if we take a standard desingularization

(1)
G"xF1
1

n: Z = Hom , R

[ W ] _ D1
G"xF1 )

» N ’

we see that 7m : H?M(Z) —_— HEM(DI) is not surjective because the even
Borel- Moore homology groups of Z are zero. This obstructs to extend
the first proof of ?r € 3r from [P, Ch.3] to the Borel-Moore homology
case. The second proof (see [P,Ch.7]), not using a desingularization,
does not go through as well because the remark shows that the restriction

map Hsg(D ) —— Hsg(D N\ D ) 1is not surjective.
2i r 2i r r=1

Remark 2.4 Similar arguments show that for affine determinantal variety
D1 (over k=C) we have HBM(Dl) # 0 ( here, we use the notation of [P,

3
Ch.4], and assume m,n = 2 ). We have a locally trivial fibration
DR DS R
1 0 1
with fiber GI1(1) , which gives the spectral sequence

EV% = W( 6h6, HU(G1(1),7) ) = W'D\ D7)



We have E?q =0 for g=z2 and all p. Moreover, in Eé’ , for
d=dimD ,
1
p2d-4,1 _ 42 g
e \2
£2d-3,0 0 p2d-2,0_
2 2
(2d-4) (2d-3) (2d-2)
Thus shows rk H&ye(Dl\DO,Z) > 1. Again the exact sequence (#)
y |
D) — 1 %(.D ;7) — H'(D )
3 1 10 2 0 |

where H2M(D ) = H (pt,Z) = O , shows H (D) # O .
2 0 2 2 1

This remark shows that the problem of computation of HBM(D )

- r
( and probably also a similar question about singular homology ) is more

subtle than computation of A(D ) (see [P]) and IH‘(Dr) (see [(Z2])
r

We give now a proof of the inclusion ? < ¢ , which is valid for
I r

homology theories from Section 1.

Notation Given two vector bundles € and ¥ , the polynomial SI(C.,C.’)
specialized with c¢ = c (&) and cj’ = cj(?) will be denoted
1 1

s (6-%)
I

Step 1 (A construction from [P])

Def'ine

On X' there exists a tautological morphism ¢ :¥ — & . Note two

features of this construction:

1) The Chern classes of &, ¥ are algebraically independent (over Z)
if w,v — o .

2) The matrix of ¢’ is given locally by mxn matrix of indeterminates.



Step 2 (A compactification of X’)

The following construction is inspired by [K-L, p.161]. Let

X:=G(Q eo®R ) —GG.
m GG GG

X is a relative Grassmannian over GG and is endowed with the tauto-
logical rank m (sub)bundle ¢ c (Q ® ﬂ)x. We define a morphism (of
fibrations over GG) from X’ to X. Fix a point (M,N) € GG. We assign

to f € Hom(M,N) (in X;M . ) the point given by

(The graph of f) —— Ma& N (in X(MN)

This assignment defines an open immersion X' —— X. We have y&,: 2

and the value of the restriction of ¥ —— (Q @ R)X to X’, in the
point (M,N,f:M — N) € X', 1is given by

M — MeN such that m —— (m,f(m)) , meM .

Therefore, if we define %:= ¥, &:= ?x and ¢ as the composit:

pr
9=5";—>(Q@7i)x————8—>8=7€x,

we have w|x, = ¢’ . Finally, we put D := Dk(w).

Lemma 2.5 (1) The map D < X — GG 1is a locally trivial fibra-
e i
tion; its fiber over a point (M,N) € GG 1is the r-th determinantal

Schubert variety in G=Gm(M®N) given by the inequality

r
pN

rk ( YG —s (M@N)G ————E—a NG ) <r .

(2) If w,v — o , the Chern classes of & and ¥ become algebraical-

ly independent (over Z) in A(X).

Proof. (1) The required trivialization is given by {UBan} where {Ua}

is the standard covering of G trivializing the bundle R and {UB} is
n

the standard covering of G" trivializing the bundle Q.

10



(2) We have 8|x’ =& , ?|X, = ¥ . Then an eventual relation

) « s () s (§) =0 in AX) (« €Z)
gives rise to the relation
Ya s (&) s (¥) =0 in A(X"),
itodl 3

which is not possible. .

Step 3 (A standard desingularization of Dr)
Consider the diagram of schemes

2 .
G J
Z = Zeros ( ?G & Q ] 55 G =G (8&)

where Q is the tautological quotient bundle on G. ‘

Lemma 2.6 The inclusion j: 2 — G can be identified with the fol-

lowing inclusion of Grassmannian bundles on GF = G" x Fl

GF

Proof. A point of G 1is represented by (M,N,K,L) where W —— M
and dimM=m; NcV anddimN=n; KcM&N and dim K =m ;
and finally L ¢ N and dim L = r.

A point of G ( Q@ e R0
m GF

- ) is represented by (M, LcN,K)

where W ——> M and dimM=m; NcV and dim N=n, dimL =r ;

finally KcM@®N and dim K =m .




(n)

. ). A point

This allows us to identify G and G ( QGF @ R
m
(M,N,K,L) belongs to Z iff the composit

pr
K —5>MeN N N 5N /L

is zero. This means that K c M @ L and thus Z2 is identified with
(§)
Gm( QGF = RGF ) m]

Corollary 2.7 j*: A(G) — A(Z) 1is surjective.

Proof. Let ¥ be the tautological rank m (sub)bundle on G (Q e R
— m

GF GF

Then the tautological rank m (sub)bundle on G (QGF® Ré;)
m

) is Y[Z .
The assertion now follows from a well-known description of

(n) (r) .
A[Gm(QGF@ ?GF )J and A[Gm(QGFca ?QGF )] as free A(GF)-modules with
bases given respectively by Schur polynomials sl(f), Ic(n)" and

sI(Y|z), Ic(r)™ (see e.g. [F, Chap.14]), and, from the equality

3 (s (9)) = 5 (9])

Define 2Z* = n_l(Dk) . k=0,1,....,r.

Lemma 2.8 Under the above identification 2k is given in

_ (r) : .
z Gm(QGF® ?GF ) by the inequality

rk(# — Qe xR — g7 ), = k.

In other words Zk is the k-th determinantal Schubert subvariety in
(r)

G(Q @R ') — GF.
m GF GF

Proof. Let x e Dk . Then x can be represented by (M,N,K) where
W—>> Mand dimM=m, N >V and dim N=n, KcMe®N and
dim K = m. Moreover rk( K — M e N — N )

IA

k . The point 71 '(x)

is then represented by (M,N,K,L) where dim L r, LcN and

KcMe®L . Since then

rk (K “——MeL —L)=rk (K ~“~—MeN—N) =k,

4
A similar analysis was done earlier in [Kl-La].

12



the assertion follows.

Step 4 (A theorem of Rossello - Xambo)

We say, following [F, Ex.1.9.1] , that a scheme X has a cellular

decomposition if there exists a filtration
X=X >X D oo D XD W _ S [E
0 -1

such that X  are closed, and each X \ X11 is a disjoint union of
1 1

m..
locally closed subschemes C. .~ 1isomorphic to affine spaces A H
i]

The C, . will be referred to as cells of cellular decomposition. It
ij

is well known (see e.g. [R-X, Corollary]) that if X admits a cellu-
lar decomposition then A (X) 1is a finitely generated free abelian

)y
group for which the classes of closures of the i-dimensional cells

form a basis.
We record the following result [R-X, Theorem 2].

Theorem 2.9 Let X be a scheme which admits a cellular decomposition

and let f: X’ — X be a morphism such that for all cells C _ of
ij
the decomposition f-l(C.,) =C  xF where F is a fixed scheme. Then
ij ij
(1) For all 1 there exists an epimorphism
@ A(X) ® A(F) — Ai(X’) (##)
r+s=i ! s

(ii1) If ch is an isomorphism and Ai(F) is free for all i, then

(##) is an isomorphism for all i, and Clx’ is an isomorphism.

We apply this result to Dk , z~.

Let, for a sequence 1I: 1511< oo <1 o=w ﬁ(l) denote the (open)
Schubert cell in G"(W) (taken with respect to a fixed flag in W) with
generic point given by a matrix : ("*" means a place occupied by a free

parameter, empty places are occupied by zeros).

13



The Pliicker coordinate p(I) given by the minor taken on columns
il,...,im is not zero. Thus 6(1) c G™(W) \ Zeros(p(I)) which is a set
over which the tautological bundles are trivial. If we repeat the same
consideration with Schubert cells Q(J) in Gn(V) ( here J:
15j1< - <jn5v ), then we see that the fibrations Dk — GG and
Z* _ 5 GF —> GG are trivial over (1) x QJ) . Moreover, the fiber
of Dk —— GG 1is a Schubert variety, and, the fiber of Zk — GG is
a product of a Schubert variety and a Grassmannian. Thus these fibers

have cellular decompositions, and we infer from Theorem 2.9 the follow-

ing result.

Corollary 2.10 For any "cl-homology" theory from Section 1, ch and

cll ., are isomorphisms. In particular, we have }{d (Dk) = H (2)=0
z o

Step 5 (Final calculations)

From Step 4 , we get for every 1 a commutative diagram with

exact rows

() i (@ = (N ) —— @
21 2i 2i
j J 1
H ) —— H (D) ——> H (D\D ) —— O
21 k-1 ik 21k k-1
Siince ch ; Clzk are isomorphisms we have for U = Dk AN Dk_l and

u=2\Z" | H (U = A (U) if char k = 0, and, H, (U) =

24!

14




A (U) ® Z, if char k = p. Therefore, since z-\ 2ttt D, \ D

2 1

is a Grassmannian bundle, the induced map

H (Z\NZY) — 1 (0D \p )
2i 2i k k-1

is surjective (see Section 1). Thus by induction on k and a diagram

chase in (###) we get

Proposition 2.11 =, :HZi(Z) —_— HZi(Dr) is surjective for every 1i.

The Proposition implies Im i, = n (Im j,) . To compute the latter
group we can use the Chow groups because of Corollary 2.10. Now, we

will mimick the arguments from [P, p.431]5 and prove

Imi = ( Sy +I(8-9) | I c (r)™ " ) (H###4)

*
r

At first, Im j, 1is a principal ideal in A(G) generated by [Z] =

ctop(gé @ Q) = s (Q-¥.) . Indeed, by Corollary 2.7 for z € A(Z)

there exists g € A(G) such that =z = j*(g) . Then, by the projection

formula,
JJz) = §,(i'8) = (2] g .

Secondly, we know that every element g € A(G) has a presentation

)n—r

g =7 aIsI(Q) where o« e A(X) and I c (r (see e.g. [F] Ch.14).

Thus
n ([2]- =n S -7 : as
L([2]-g) . [ _r(Q G) ) . I(Q) ]
(m) I
=mn o -¥
= [Z I S n-r (Q G) ]
I (m) +1
S
We correct  misprints NS 1P 4311— read: s (E-F) 6008
n-r
(m-r) +1
431 -~ read: ... Lemma 3.6 ..
5,10

1S



= § « Sy +1(8—9)

e

by using succesively the factorization formula [P, Lemma 1.1] and the

push forward formula [P, Proposition 2.2].

This proves Theorem 2.1 for "cl-homology" theory, because if
W,v — o the Chern classes of € and ¥ are algebraically independent,

so (####) is sufficient to get the assertion.

The same proof works for singular homology because D, G and 2
r
are proper and thus their singular homology coincide with the Borel-

Moore homology.

Remark 2.12 The ‘“singular homology" version of Theorem 2.1 allows
us to perform the key calculations in [P-P, Proposition 1.6] without

any use of the Chow groups; this gives a significant simplification.

3.MORPHISMS WITH SYMMETRIES

In this Section we will deal with symmetric and antisymmetric vec-
tor bundle morphisms. We assume here char k # 2. We will treat first
the symmetric case; necessary modifications needed for the antisymmetric

case Will be specified in Remark 3.10.

Assume that a sequence (c.) = (Cx""’cn) of variables is given
(deg ci=i). We say, following [P], that P e Z[c.] 1is wuniversally
supported on r-th symmetric degeneracy locus if for every scheme X,
every symmetric morphism ¢: gv ——> & of vector bundles on X, ranké = n,
and every a € H(X)

P(Cl(g),...,c (&)) na € Imi

*

where i _: H(D (¢)) — H(X) 1is the induced homology-morphism associated
Lo
to the inclusion 1i: D (¢) — X. Define ? to be the ideal of all
= r

polynomials universally supported on r-th symmetric degeneracy locus .

In this Section the following polynomials QI(C.) indexed by
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strict partitions 16 will play a crucial role. First define s, inducti-

vely as follows

s =s c -s c_ + ...+ (-1)7c
i i-1 1 i-2 2
Then define
Qc.) : =) s c _
K
Q (c.) :=Q(c.)Q(c.) +27% (-1)%Q . (c.).
1P i j 1+p, J-pP
P
Finally, for a given strict partition I = (11""’ik) we put

QI(C.) = Pfaffian [ Qi . (c.) ]

P q 1 = p,qg Sk

(we can assume k even by putting ik=0 if necessary).

Let A denote the partition (n-r,n-r-1,...,2,1). Let us denote by
16
% the ideal in Z[c.] generated by QI(C.) where I > A . It is
r r

known [P, Proposition 7.17] that ¢ is generated by a finite set
r

n=r

{Qy ,(c) [ Telr) }

r
Theorem 3.1 For any homology theory specified in Section 1, we have
P =9
r r

The proof of the inclusion ¢ < ? is verbatim after [P Ch.7].

r r

In the proof of the opposite inclusion we will follow the notation

from Section 2. Moreover, given a vector bundle &€ , the polynomial

QI(C') specialized with ¢ = c (8) will be denoted by QI(€)
1 1

Step 1 (A construction from [P])

Define

X':= S°R —5 G and = R
n

On X' there exists a tautological morphism @’:S’V——a €’ . Note two

6
Recall that =] soacpit, ) is strict if s Lo
1 k 1 k

17



features of this construction:

1) The Chern classes of &’ are algebraically independent (over Z)
if v o .
2) The matrix of ¢’ is given locally by nxn symmetric matrix of inde-

terminates.
Step 2 (A compactification of X’)

Let ® be a symplectic form on R e R given by the matrix

2]

where here, and in the sequel, I denotes the nxn identity matrix.
Denote by

x:=c‘:(7zv@7z)———>c

n

the relative Grassmannian parametrizing rank n subbundles of ?V ® R
that are isotropic with respect to . X 1is endowed with the tauto-
logical rank n (sub)bundle ¥ ¢ (%" o R )x' We define a morphism (of
fibrations over Gn) from X' to X. Fix a point N € Gn. We assign

to a symmetric f e Hom(NV,N) (in X; ) the point given by

(The graph of f) —— N o N (in XN ).
We need

Lemma 3.2 If f 1is symmetric then the graph of f 1is an isotropic

subspace of Nv ® N (with respect to ¢ ).

Proof. If A 1is a matrix of f then the graph of f is spanned by the

4]

Then the assertion follows from the equality

t 0 1 I _ i A _ _ ol
[1,A7] [—I 0 } [ A ] = [I,A7] [ I ] =A-A =0,

where A is symmetric.

columns of

[©

The above assignment defines an open immersion X' —— X. Put

18



&:= YV, and define the following symmetric morphism on X,
Vv ¥ . oV \%
p: ¥ — (R o R)X — (R @ R )X——ee P,

where ¥ is given by

(@
—

’

Lemma 3.3 We have w|x, = 2¢

Proof. The assertion follows from the equality

t 0 I 1 _ t A | e _
1,81 [9 L[] - s [A]-ae st -n

where A is symmetric.

Lemma 3.4 (1) The map Dr(w) cX — G is a locally trivial fibration;
-_— n
its fiber over a point N € G is "the r-th determinantal Schubert

n

variety" in G¢ =C®(Nv® N) given by the inequality
n

v ¥ v v
rank (¥ —— (N o N)® — (N@eN ), —> ¥ ) =r

G G¢

(2) If v — o , the Chern classes of & and become algebraically inde-

pendent (over Z) in A(X).

Proof. The proof of (2) is analogous to the proof of Lemma 2.5 (2).

As for (1), we invoké here the following fact from [L-S, page 366L

It follows from loc.cit. that there exists an irreducible Schubert
subvariety in G¢ such that its restriction to open subset SZN

is the r-th determinantal variety in SZN. The above inequality defines
also an irreducible subvariety in G<I> as a calculation in local coordi-
nates shows. Moreover, by Lemma 3.3 , the restriction of this subvariety

to S°N is the r-th determinantal variety. Our assertion follows.

Step 3 (A standard desingularization of D (¢) )
—_— r

Consider the diagram of schemes (¢ is symmetric)
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¥ .
G d
Z = Zeros [ 8; 8G Q J——G-= Gr(g)

Zeros [ OG — Ken(@@Q——aAZQ)]

l n m

D (¢) S X
r

where Q is the tautological bundle on G.

Now, in order to mimick the proof from Section 2 we will use the

following fact.7

I
o
U
=
U

Proposition 3.5 Lze D S Do > D_1 =2 be a sequence

of closed schemes. Put Sk = Dk\ D .let m: G — D be a morphism

and j : Z — G a regular embedding. Assume that both

n: G — S and 114 5 % — S
S Kk
k S Kk

are locally trivial fibrations; and there exists an open affine covering

{U;k)} of Sk trivializing them simultaneously. Under this trivializa-

tion the map j: Z .(k) — G, (k) 1is equal to

8] U
a a
(k) S IS (k)
U x F —s U x G 7,
a a
(k) (k) o q *
where h: F — G is a regular embedding. Assume that h
Ac™y) — AF'™™) s surjective ( k=1,...,r).

Then j’: A(G) — A(Z) 1is surjective.

Proof'. We claim that it suffices to show the surjectivity of j;

where J =j.: 2. —> G. . We have a commutative diagram
k Sk Sk Sk

Note that Proposition 3.5 and Lemma B GG iv.E an alternative proof of
Corollary 2.7 and 2.10.
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A(GD ) — A(GD ) — A(GS r — 0
k-1 K K
| | L

A(ZD ) — A(ZD ) — A(ZS ) — O
k-1 k k

with exact rows. To be more precise, the vertical maps are "refined Gysin

homomorphisms" constructed as in [F, Ch. 6.2] from fibre squares

Z —_ GD ZD —— GD ZS — GS

k-1 k-1 k k k Kk
I Lol
Z — G Z — G Z — G

We denote the Gysin morphism associated to the latter fibre square by j;
to emphasis its dependence on k. The commutativity of the left hand side

diagram follows from the fibre square

=)

D
k-1 k-1

—
&——

Z — GD
k k
Z — G

and [F, Theorem 6.2(a)]. The commutativity of the right hand side dia-
gram follows from [F, Theorem 6.2(b)]. Assuming by induction the surje-

ctivity of the left vertical map ( for k=1, it becomes j; ) and of j;

we get the final assertion by a diagram chase.

In turn, the surjectivity of j; can be proved by Noetherian indu-
ction. Take U ¢ Sk an affine open subset trivializing simultaneously

ZS and GS . We have a diagram with exact rows
k k
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anm = gl = weg = 0
| A
W o = g = dE) — € i

Again, the diagram is commutative by [F, Theorem 6.2 (a) and (b)]. Since
dim(Sk\ U) < dim Sk , we get the surjectivity of the left vertical map by

Noetherian induction. We have a commutative diagram [F, Theorem 6.2 (b)]

*
ety el

h (k)

Since U 1is open affine, the P, s are epimorphisms. Finally, h*—

surjective implies the surjectivity of A(GU) —_ A(ZU). This concludes

the proof of the proposition.
m]

We record also the following fact which combines Theorems 1 and 2

from [R-X].
Lemma 3.6 Let D=D oD D 00 D DO ) D_1 =2 be a sequence of
closed schemes. Put Sk = Dk\ Dkl and asssume that Sk has a cellular

decomposition. Let m : Z — D be a morphism such that the restriction of

m: ZS — Sk is a locally trivial fibration. Assume that its fiber pie
k
satisfies: ch(k) is an isomorphism and AF™) is free (k=1,...,r).
Then, for every Kk, ch is an isomorphism.
D

k

Proof. It follows from Theorem 2.9 and our assumptions that clz are
S
Kk

isomorphisms. To end we proceed by induction on k. In char O case, it

follows from the commutative diagram
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A (Z ) — A(Z2,) — A(Z.) — O
i D i S
k-1 k k

l l J

H2i(ZDk_1) — HZi(ZDk) — Hzi(ZSk) — 0

that A‘(ZD = Hz'(ZD ). In char p case we tensorize all Chow groups
1 1

k Kk
by ZZ and repeat the arguments. Moreover,
O=H21+1(2Dk-1) — H21+1(2Dk) — H2i+1(25k)=0

implies Hznd(ZDk)=O'

o
In the notation before Proposition 3.5 we put Dk: = Dk(w) and
| _
2: =17 (Dk) (= ZD )

k

Corollary 3.7 In the notation before Proposition 3.5 , the map

j* : A(G) — A(2) 1is surjective.

Proof. We use Proposition 3.5 and its notation. In our situation, it
is sufficient to find an open covering of X, trivializing the bundle ¥.
Take first an open covering (U} trivializing ®R. Then denoting by p

the projection X= GQ(RV® R) —> G, we have p_l(U) = U x GQ(Nve N)
n n n

where dimN=n; so if we take an open covering {U’} of GQ(NV®N) trivia-
n

lizing the tautological vector bundle on it, we obtain an open covering

{UxU’} trivializing ¥.

Since D = D (p) we have =G (A), dimA=n; F'¥=c (B), BA,
r =

dimB=n-k; and the embedding h: F'*’ < G'*' is given as follows. Let
A=-B® C, then L € G k(B) is sent via h into LeC € G (A). Clearly

r- T
under this embedding the tautological quotient bundle on G(k) restricts ~=
to the tautological quotient bundle on F'*’. This implies the surjecti-
vity of j* because of the well known description of the Chow ring of a

Grassmannian in terms of Schur polynomials of the tautological quotient

bundle (see e.g. [F,Ch.14]).
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Corollary 3.8 For any ‘"cl-homology" theory from Section 1, cl and

cl are isomorphisms. In particular, we have H (D) = H (2
Z¥ odd  k odd

Proof. Since the fiber of Dk —> G is a Schubert variety (in an iso-
tropic Grassmannian), the assertion for Dk follows from Theorem 2.9.
Since Dk\ Dk_1 as a difference of two Schubert varieties has a cellu-

L . k.
lar decomposition, the assertion for 2 is a consequence of Lemma 3.6.D

Step 4 (Final calculations)

From Step 3, we get as in Section 2:

i

Proposition 3.9 7, :H2.(Z) —_— H2 (D) 1is surjective for every i.
1 I 5

The Proposition implies Im i = wn (Im j ) . To compute the latter
group we can use the Chow groups because of Corollary 3.8. Now, we

will mimick the arguments from [P, Ch.7] and prove

Imi,=(Q, (8 | Ic (') ()

A +1
s
At first, Im j, 1is a principal ideal in A(G) generated by [Z] =

c  (Ken (E.0Q —>A°Q)) = ¢ (ReQ + S°Q) = ¢ (ReQ) Q. (Q), where
top G top top A

T

R is the tautological subbundle on G. Indeed, by Corollary 3.7,
for z e A(Z) there exists g e A(G) such that z = j (g) . Then
*
J(z) = 5. (jg) =1[2]) g.

Secondly, we know that every element g € A(G) has a presentation

n-r

g =1 aIsI(Q) where « € A(X) and I c (r) (see e.g. [F] Ch.14).

Thus
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S e g, (e \

by using succesively the factorization formula [P, Lemma 1.13] and the ‘
push forward formula [P, Proposition 2.8].

This proves Theorem 3.1 for ‘“cl-homology" theory, because if
v — o the Chern classes of & are algebraically independent, so (#####)

is sufficient to get the assertion.

The same proof works for singular homology because D , G and Z
r
are proper and thus their singular homology coincide with the Borel-

Moore homology.

Remark 3.10 One can prove similarly an analogous assertion for antisym-
metric morphisms. In the proof of Theorem 3.1 one makes the following
modifications: take r-even and in all stratifications use even k;

replace & by ¥ and vice versa in all definitions and calculations; rep-

lace polynomials QI(C.) and Qx(g) by P-polynomials Z—HI)QI(-) (see

[P] for details); and finally, change A to the partition A’ :=
I r

(n-r-1,n-r-2,...,2,1). The "antisymmetric version" of Theorem 3.1 is :

“ ?r = [ PA,+I(C.) | I c (r)" " ] 4

REFERENCES

[B-M] A.Borel, J.C.Moore, Homology theory for locally compact spaces,
Michigan Math. J., vol.10, (1960), 137-158.

[B] G.E.Bredon, Sheaf Theory, McGraw - Hill (1967).

[F] W.Fulton, Intersection Theory, Springer (1984).

[I] B.Iversen, Cohomology of sheaves, Universitext, Springer, 13886.

[K] L.Kaup, Poincaré Dualitit fir Raime mit Normalisierung, Ann. Sc.

Norm. Sup. di Pisa, 26 (3) (1972), 1-31.

[K-L] G.Kempf, D.Laksov, The determinantal formula of Schubert Calculus,
Acta Mathematica 132 (1974), 153-1862.

25



[Kl-La]l] S.L.Kleiman, J.Landolfi, Geometry and deformation of special

Schubert varieties, Compositio Math., Vol.23, No.4(1871), 407-434.

[L-S] V.Lakshmibai, C.S.Seshadri, Geometry of G/P II, Proc.Indian
Acad. Sci. Vol.87A, No.2 (1978), 1-54.

[L] G.Laumon, Homologie étale, Astérisque 36-37 (1976), 163-188.

/
[P-P] A.Parusinski, P.Pragacz, Euler characteristic of degeneracy loci,

Max Planck Institut fir Mathematik Preprint Series / S0-68.

[P] P.Pragacz, Enumerative geometry of degeneracy loci, Ann. Scient.

Ec. Norm. Sup., 4e serie, t.21(3) (1988), 413-454,

[R-X] F.Rosselld Llompart, S.Xambo Descamps, Computing Chow Groups, in
Algebraic Geometry - Sundance 1986, Lect. Notes in Math. 1311
(A.Holme, R.Speiser - Eds.) 220-234.

[V] J.L.Verdier, Classe d’homologie associee a un cycle, Astérisque

W=y (18978), NOL=1Sil.

[Z] A.Zelevinsky, A p-adic analogue of the Kazhdan-Lusztig conjecture,

Functional Analysis and Its Applications, 15 (1981), 8-21.

e-mail: PRAGACZEPLTUMK11.bitnet

8Mathematical Institute Mathematical Institute

of Polish Academy of Sciences, of Polish Academy of Sciences,
Chopina 12, Sniadeckich 8,

87-100 Torun, Poland 00-3850 Warszawa, Poland

Department of Mathematics,
The University of Bergen,
Allégt. 55,

5007-Bergen, Norway

and

Institute of Mathematics,
Warsaw University,
Banacha 2,

00-3913 Warszawa, Poland

address for mail

26



AR
IRt
ik

SIS
SR




Depotbiblioteket

LI

78sd 20 207







