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Abstract: There is no consensus on how statistical systems incorporating

complex statistical strategies should be evaluated. Only when a suitable

standard for evaluation has been established will it be possible to compare the

performance of an automated statistical analysis with that of a more

conventional approach. This paper describes how the evaluation may be

supported by simulation, exemplified by a particular simulation module

incorporated into our knowledge-based system Express. In an example

involving simple strategies for one-way analysis of variance of 3 samples, a

mixed bootstrap strategy, combining the ordinary F and the James statistics,

is shown to be superior to more traditional procedures.
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1. INTRODUCTION

Knowledge-based computer systems in statistics may attempt to translate a research goal into

a specific data analytic agenda, to select a general statistical approach or to carry out the

analysis given the approach (Gale et al, 1993). Systems of the third kind, for statistical data

analysis, can incorporate complex strategies for handling particular kinds of problems. A

number of statistical packages are available for standard data analysis, with a variety of

methods offered at various levels of complexity. Such packages incorporate arithmetic and

algebraic expertise but not statistical expertise in the sense of a knowledge-based system

(Hand, 1985). In addition to the execution of the actual calculations needed, a knowledge

based system must determine which statistical methods are called for, or at least be able to

make reasonable suggestions about choice of methods.

A strategy implemented in a knowledge-based system must be tested to check its properties.

In this paper we show how computer intensive methods can be applied for this purpose.

Simulation has been used extensively to explore general properties of statistical procedures,

and the approach is particularly useful in knowledge-based systems, as statistical strategies

typically consist of sequences of niles used repeatedly on the same data set. If the strategy

includes, for example, non-independent tests carried out in a certain order, it is difficult to

determine the overall performance by theoretical arguments.

Statisticians tend to respond differently in the selection of strategies for solving particular

problems (Van den Berg and Visser, 1990; Tung and Schuenemeyer, 1991). The discrepancies

are especially marked for statisticians employed in different applied areas. In such situations,

simulations comparing alternative strategies can reveal which one is the most informative. For

a knowledge-based system handling different kinds of practical problems, an integrated

simulation module will facilitate the comparisons. Our system Express (Aarseth and Heuch,

1996a) is equipped with a module of this kind. Considering an example with simple strategies

coded in Express for one-way analysis of variance, including a strategy incorporating

bootstrap tests, we show how strategies can be compared numerically.
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2. UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS

It is essential in any knowledge-based system to have a measure available of the uncertainty

in the conclusions, both for general usage and for evaluation of strategies implemented. In the

AI community, several approaches have been used (Bhatnagar and Kanal, 1986). The

representation of uncertainty should take into account the fact that conclusions usually rely

on incomplete information. Thus essential data may be missing, the information supplied may

not represent facts but merely suggestions, or different pieces of information may be

contradictory. The handling of information inside the system may add to the uncertainty.

Furthermore, it is difficult to combine uncertainty when unreliable information is pooled.

Several systems have used the probability concept to treat uncertainty, and Bayesian

approaches have become quite popular (Lindley, 1987; Shafer, 1987; Spiegelhalter et al,

1993). In contrast, we adopt the frequentist approach to statistical inference.

Statistical tests or estimation procedures do not lead to exact answers. If several methods are

used successively to produce a conclusion, the uncertainty is propagated to the final result.

However, measurement of uncertainty is straightforward for many basic methods in statistical

analysis. For example, if we want a confidence interval for the mean of a set of normally

distributed observations, the accuracy in terms of a cover probability is known. Uncertainty,

expressed in this manner by probabilities, is used extensively and is well understood.

This approach is more complicated if we wish to investigate the uncertainty associated with

a complete statistical strategy. To identify sources of uncertainty, Hodges (1987) divided

statistical activity into three parts: discovery of structure, assessment of variation conditional

on structure and execution of techniques. In systems executing selected data analytic

techniques, the two latter types of uncertainty are obviously important. Even in our simple

example with a confidence interval, however, there is uncertainty both regarding the

assumption of normality (structural uncertainty), the cover accuracy (risk given structure) and

the possibility of introducing errors or approximations in the calculations (technical

uncertainty). All components may affect the final conclusion. In addition, the entire strategy

typically consists of many techniques used on the same data set (Hand, 1987). Even if

uncertainty can be adequately assessed for each separate technique, it is difficult to combine
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the results into an overall measure.

3. UNCERTAINTY ASSESSED BY SIMULATION

Monte Carlo simulations are frequently used to estimate statistical measures of performance

such as the level and power of hypothesis tests or the cover probability of confidence

intervals. We claim that the same basic approach can be useful in evaluating knowledge-based

systems. Such systems often aim at providing simple answers to questions raised by the users.

Although the strategy itself may be quite complex, simulation results for the final conclusions

should thus be easy to interpret. Admittedly, the conclusion cannot always be formulated as

a simple categorical response. However, even in such situations simulation can provide

essential information about parts of the strategy.

Simulation as a means of dealing with uncertainty has attracted considerable attention in

contemporary AI (Paul, 1994; von Rimscha, 1994; Zlatareva and Preece, 1994). Surprisingly,

the enthusiasm has not extended to knowledge-based systems for statistical data analysis.

There may be several reasons for this. In standard data analysis, simulations typically deal

with methods involving a particular statistic. Thus, from the traditional point of view, one

works under specific assumptions which do not apply to knowledge-based systems. Also, until

recently, complex computer intensive simulations have been very time-consuming.

Other methods for evaluating statistical strategies have been proposed. In his fundamental

critique of expert systems, Streitberg (1988) suggested that a system should compete with

experts in a selected area. An alternative approach is to let statistical experts suggest

procedures for analysing a data set from the literature and then compare their

recommendations with those of the computer system. This method was used for evaluating

the exploratory data analysis system WAMASTEX (Dorda et al, 1990). To assess the

heuristic rules included in this system, simulations were also carried out. Moreover, a

simulation technique was used to evaluate a two-sample strategy implemented in an early

version of Express (Carlsen and Heuch, 1986). In neither case was the simulation tool part

of the knowledge-based system itself. In view of the technical uncertainty associated with
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implementation of knowledge, it seems preferable to incorporate the simulation unit into the

system to obtain information about the overall uncertainty.

A statistical strategy typically consists of three kinds of components, connected by heuristic

rules. Parameter estimation forms an important part, informal hypothesis testing another one.

Finally, decisions must be made concerning the organization of the data set itself. For

example, the system may be forced to decide whether a variable is nominal, ordinal or

continuous. Uncertainty associated with decisions made in estimation and testing can in

principle be assessed by simulation, provided that data can be generated from relevant

probability distributions. If the results from the simulation reveal a substandard performance

of a component in the strategy, it is usually easy to carry out the necessary fine-tuning by,

for example, modifying threshold values.

It is much harder to assess the uncertainty attached to decisions concerning the structure of

the data. The system may ask the user for assistance, but if he is unable to respond, the

strategy should proceed with a default rule. The chances of making a wrong decision may be

substantial, and it is not normally obvious what the implications are. Thus, simulation should

be particularly useful in the testing of such default rules. By fixing particular values during

the simulations, it is also possible to study the consequences of an incorrect user response to

a question concerning data organization, if, for example, an ordinal variable is specified as

continuous. Exploring extreme situations, one may investigate how robust the strategy is. If

the final conclusion is very sensitive to misspecification of a particular quantity, the system

should warn the user and explain what can happen with an erroneous response.

Thus simulation can be used to assess structural uncertainty, risk given structure and technical

uncertainty. Moreover, simulation makes it possible to integrate the uncertainty arising in

separate parts of the strategy. As an example, consider a particular step in a strategy at which

different test procedures can be applied under various formal assumptions about the

distributions involved. A preliminary test will often be made to check these assumptions, and

a complex rule must decide which test procedure should be preferred. The usually intractable

theoretical problem of assessing the properties of the combined procedure is easily solved as

part of the overall simulation for the strategy.
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There is a current trend in statistics towards use of Bayesian methods to adjust for structural

uncertainty (Draper, 1995). Model selection is regarded as a statistical problem with

uncertainty expressed by prior and posterior probabilities, in addition to the inherent

uncertainty of parameter estimates. In practice, this often corresponds to averaging over

several reasonable models. Our simulation approach is conceptually different and is based on

the assumption that an unknown model description exists which is correct for each data set.

When the separate rules in the strategy are activated, decisions must sometimes be made

about this unknown description, but they are based on the observations. Thus the uncertainty

of the model description can be measured by performing simulations. In this manner, the

distributions of the possible conclusions can be estimated under relevant competing models.

In particular cases, simulations may indicate that the strategy does not perform very well at

all. The results may then provide guidance for correcting the strategy. Thus, if a collection

of successive tests turns out to have an inadequate performance, threshold values may be

changed, or some tests may be replaced completely by other procedures. In this way, a

sequence of simulations, applying slightly different strategies, can form the basis of a

learning process. Learning by example is a common method in knowledge acquisition

(Winston, 1984), but this process is closer to learning from ones own mistakes. The final

result will be an improved implementation of knowledge.

4. SIMULATIONS IN EXPRESS

Express is a tool for constructing rule-based systems for data analysis using already existing

statistical software (Aarseth and Heuch, 1996a, 1996b). Statistical strategies may be

implemented by specifying chains of rules according to certain conventions. Results produced

by standard packages, automatically executed by Express when needed, are extracted from

the output and stored in a working memory. This memory also contains information supplied

by the user. On the basis of the quantities determined, decisions are made on how to proceed

with the analysis. Many intermediate results may be found before the system reaches the main

conclusion, and this information is also presented to the user.
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The current, most comprehensive version of Express is implemented on a PC in Fortran and

assembler under MS-DOS (Aarseth and Heuch, 1996a). A Unix version running under the X

Window System was constructed for the purpose of simulation and for testing with a

standardized user interface. Because of the modular design, Express could be transferred

between systems essentially by changing interface routines (Aarseth and Heuch, 1996b). The

X Window version was implemented in Fortran and XVIEW (using C).

When Express executes in standard mode, the user is first asked to indicate which data set

should be analysed, before a chaining of rules is activated. Depending on intermediate results,

the proper analysis will be performed as defined by the strategy implemented. In simulation

mode, a random data set is generated before the chaining of rules begins, and a separate

analysis is performed. This cycle is repeated many times, with a particular conclusion for each

run. Intermediate and end results can be recorded by Express for subsequent analysis. It is

possible to assign fixed values in advance to intermediate quantities considered in the

chaining, so that the ordinary inference mechanism is set aside for these quantities only.

In view of the different simulation requirements, a random number generator has not been

ouilt into the system, but the simulation module has also been designed to utilize external

software. A separate interface to the external generator inserts random numbers into the data

storage of Express, where they can be referred to by the rules. In principle any generator may

be selected, although appropriate NAG routines (NAG, 1993) were applied for generation of

data sets considered in this paper. With this approach, particular care must be taken to ensure

independence between data sets generated, by saving and restoring the current seed value.

5. A STRATEGY FOR ONE-WAY ANALYSIS OF VARIANCE

We consider a simple strategy (Fig. 1) for investigating whether location parameters differ

between separate samples, without making any prior assumptions about the underlying

distributions. This strategy has been implemented in Express (Aarseth and Heuch, 1996a). We

emphasize that most statistical strategies in knowledge-based systems will be considerably

more complicated, and that this basic example has been selected to illustrate the general use
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of simulation. The Shapiro-Wilk test (Shapiro and Wilk, 1965) is used first to check for

normality in each sample. In case the normality assumption is accepted, the Levene test for

equal variances (Levene, 1960) is performed. If one cannot assume that the samples have

identical variances, the Brown-Forsythe test (Brown and Forsythe, 1974a) is carried out to

decide whether location parameters differ. Otherwise, the standard F test is applied. If there

are indications that any sample is non-normal, the non-parametric Kruskal-Wallis test (Kruskal

and Wallis, 1952) is executed. Nominal significance levels of the separate tests are set to 0.05

in the current implementation, although much higher levels might be justified for preliminary

tests (Bancroft and Han, 1983). In fact, with 3 samples, the effective level of the combined

test for normality is 1-0.953=0.143. In any case, it is clearly difficult to predict the overall

performance of the strategy without resorting to simulation.

Despite its simplicity, and despite warnings against reuse of data in successive tests, this

strategy probably reflects common practice among many users of statistics. The choice of tests

is likely to be influenced by the procedures available in the software used regularly. The tests

for normality, standard analysis of variance and the non-parametric test are included in nearly

all major statistical packages, whereas the Levene and Brown-Forsythe tests are not always

accessible. In our implementation, all test are carried out by BMDP (Brown, 1990), which is

started by Express, and the relevant results are extracted from the BMDP output.

To study the properties of the strategy in Fig. 1 as implemented in Express, we generated data

from normal, t 4 and exponential distributions in 3 samples, each comprising 20 observations.

The range of each exponential distribution was defined so as to give the prescribed mean

value. The results, with 6 different combinations of parameter settings, are presented in Table

1. Each simulation included 5000 replicates.

For skewed heteroscedastic samples, the strategy does not perform very well. Thus the

probability of concluding that location parameters differ is as high as 22.9% for exponential

distributions with identical means and standard deviations 1.0, 2.0 and 3.0, respectively. Table

2 presents a more detailed summary of the simulations in this particular case. Not all

intermediate results determined by Express are used to establish a particular final conclusion.

For example, the /?-values for equal variances, for the ordinary F and for the Brown-Forsythe
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test are all calculated in the same execution of BMDP. If any such value is needed during the

chaining of rules, the remaining two values are found at the same time. For this reason, the

Express simulation module reports two different sets of results, as shown in Table 2. The

results on the lefthand side are not always referred to in order to reach a final conclusion but

may still provide useful information for evaluating components of the strategy.

The counts on the righthand side of Table 2, reflecting replicates for which the chaining of

rules passed through the results considered, show that among the 5000 replicates, 4979 led

to the conclusion that the observations were non-normal, with subsequent application of the

Kruskal-Wallis test. Not surprisingly, this test rejected the hypothesis far too often in the case

of scaled exponential distributions with identical means but different variances.

To improve the strategy, the Kruskal-Wallis test might be avoided when variances appear to

differ between samples. Because of its robustness (Tan and Tabatabai, 1985), the Brown-

Forsythe test might even be applied when non-normality is indicated. However, the Levene

variance test may have an unacceptably high probability of type I error under non-normality

(Brown and Forsythe, 1974b; Loh, 1987). In addition, the overall check for normality is not

very reliable, although an adjustment for multiple testing might be introduced with a higher

number of samples. Another option is to introduce robust procedures which are superior in

power, e.g. the test proposed by Tan and Tabatabai (1986) in place of the Brown-Forsythe

test. We will explore a different approach, incorporating bootstrap methods.

6. STRATEGIES BASED ON BOOTSTRAP METHODS

Bootstrap methods are typically introduced to reduce the uncertainty of risk given structure.

As so few assumptions are needed, however, they also seem to hold some promise for

reducing structural uncertainty. Hjort (1994) considered the bootstrap and other computer

intensive methods in connection with model selection. In this section we evaluate a strategy

based on bootstrap tests only.

Fisher and Hall (1990) studied bootstrap methodology in one-way analysis of variance,
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considering two statistics, the ordinary F

(1)

and the James statistic (James, 1951)

where X., is observation number j in sample number i, r is the number ofr n, r «.
samples, n = E/z. , X. = -LEX., and X = .iEÉx. .

' Vi y -i-v-l y

As emphasized by Fisher and Hall (1990), the basic principles of bootstrap hypothesis testing

differ from those for constructing confidence intervals. First, it is essential that resampling be

carried out under the null hypothesis (Hall and Wilson, 1991). In the heteroscedastic case in

analysis of variance, this implies that resamples should be drawn from the separate groups

of observations, after the transformation Y.. = X -X, has been applied. In the

homoscedastic case, resampling should be carried out for each group among all original

observations, after application of the transformation \X.. - X.)/6. . Resampling ignoring

these guidelines lead to inadequate tests with low power. Second, the test statistic should be

asymptotically pivotal, i.e. the asymptotic distribution should not depend on unknown

parameters; otherwise the level of the test may be affected. Fisher and Hall (1990) showed

that Tx is pivotal in homoscedastic problems while T 2 also has this property in the

heteroscedastic case. By means of Edgeworth expansions, they demonstrated that the error in

the significance level was greater for Tx than for T 2 in the case of unequal variances. This

result was verified by simulations.

An ideal bootstrap strategy for one-way analysis of variance would be based on T 2 when

variances differ and T{ otherwise. This strategy should be superior to that based on T 2 only,

as the test involving Tx has a higher power in the homoscedastic case. As no prior

i nit.-x..)1T _ n-r m1 r- \ ~ «i I

T m^nl (n,-l)(x,-X.f

7=l
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assumptions can be made about variances, we still need a preliminary test to select the

appropriate statistic. We again resort to the Levene test, based on a statistic given by

expression (1) with the observations replaced by absolute deviations Z = \Xr -X | from

the sample mean. To compensate for the high probability of type I errors in non-normal

situations, we first explored a bootstrap version of the original Levene test, resampling from

the quantities Z in the same way as in the homoscedastic case described above. Table 3

shows the results of simulations for exponential distributions. As before, nominal levels were

set to 5%. Obviously, the probability of type I error exceeds by far the nominal level of 5%

for the bootstrap Levene test, possibly because of the variance heterogeneity of the quantities Z.

and the lack of independence. In the case of a normal or tA distribution, this bootstrap Levene

test performs quite well with regard to type I error. However, as indicated by the lower part

of Table 3, a strategy based on the preliminary bootstrap Levene test, followed by one-way

analysis of variance bootstrap tests involving Tx or T 2, still gives a reasonable error probability

for the final conclusion, relating to location parameters.

We nonetheless decided to replace the variance test with a modified bootstrap version.

Exploratory simulations were performed to compare different approaches. Considering

absolute deviations Uij = \ X.. -M. | from the sample median M( , in analogy with a non

bootstrap version of the Levene test introduced by Brown and Forsythe (1974b), led to a more

robust but still far from perfect procedure (Table 4). In the extensive study of Conover et al.

(1981) of about 50 statistics used for testing homogeneity of variances, this particular statistic

was among the very few which performed adequately. Another natural modification of the

Levene test is to insert the transformed observations £/.. into T 2 rather than T, in the hope

of eliminating the problem of unequal variances. Regardless of statistic used, our simulation

results were rather similar, and each bootstrap Levene test had about the same performance

as the corresponding non-bootstrap Levene test studied by Brown and Forsythe (1974b). We

thus decided to retain the bootstrap version of the test for equal variances, with

deviations U.. from the sample median inserted into the Tx statistic, and with resampling

carried out as in the heteroscedastic situation.

Simulation results for the corresponding overall strategy, analogous to those in Table 1, are

shown in Table 5. This bootstrap strategy is evidently superior to our first strategy for one
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way analysis of variance. The problems involving the level for heteroscedastic exponential

distributions have disappeared without any substantial reduction in power.

7. COMPARISON OF STRATEGIES WITH SEPARATE TESTS

The bootstrap strategy for one-way analysis of variance combines the use of the F and James

statistics, preceded by a preliminary test. Additional, more extensive simulations were carried

out to evaluate this strategy, denoted by Ss , to compare in particular with separate bootstrap

tests based on T{ and T 2 and the ordinary F test. Tables 6-8 show the results for seven

different distributions: normal, f 4, exponential, %] , the Sy Johnson distribution with 7=o, B=l

(which is symmetric with a very high kurtosis), uniform and a skewed beta distribution. When

needed, distributions were scaled to obtain the correct mean and variance.

Tables 6-8 also include results for a slightly modified bootstrap strategy S2O, with a formal

level for the Levene test of 20% rather than 5%. As the power of the bootstrap Levene test

is relatively low for skewed distributions (Table 5), the statistic Tx will tend to be selected too

often for the last test in the strategy S 5. The increase in level for the Levene test is intended

to reduce this bias.

The tables indicate that the bootstrap test based on Tx is very similar to the ordinary F test

with regard to significance level and power. This lack of improvement is exactly what can

be expected with a bootstrap involving a statistic which is not asymptotically pivotal (Beran,

1988). For the parameter combinations considered, both tests reject the hypothesis too often

for heteroscedastic skewed sampling distributions such as the exponential and %] » although

this does not seem to occur with different sample sizes. In contrast, the bootstrap test based

on T 2 is rather conservative for distributions with a large kurtosis, skewed or not. Of the two

separate bootstrap tests, that based on T{ has in general a higher power in homoscedastic

cases, although any comparison must also take into account the predominantly higher level

of this test. The test based on T 2 is superior in heteroscedastic situations, with a pronounced

difference especially when sample sizes differ (Table 7).
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To a large extent, the strategy S 5 appears to combine the favourable properties of the

bootstrap tests based on r, and T 2. However, the probability of type I error is still quite high

for heteroscedastic skewed distributions. The strategy S2O seems to avoid this problem,

retaining in most cases the superior power of S 5. Whether the gain in using one of the

strategies S 5 and 520 is large enough to justify such a procedure, must be decided in each

practical application.

8. DISCUSSION

We have compared basic strategies for one-way analysis of variance, adapted to rather general

classes of underlying sample distributions. More sophisticated strategies could easily be

incorporated into knowledge-based systems, with more far-reaching conclusions about the

location parameters. A system of this kind was constructed by Bell et al. (1989). Our

emphasis has been on illustrating the evaluation of uncertainty through simulation, a purpose

best served by simple strategies.

Our initial strategy attempted to combine the general flexibility of a non-parametric method

with the superior power of methods based on normal distribution theory. The attempt largely

failed, apparently because the Kruskal-Wallis test is not adapted to the null hypothesis

prescribing equal location parameters with possibly different degrees of variation. Specific

non-parametric tests for such hypotheses are not readily available (Lehmann, 1975; Section

7A). The subsequent strategies consist essentially of a preliminary variance test, followed by

a specific test for location parameters. Preliminary tests for selecting statistics have been

studied extensively in other models, in particular two-sample problems (Bancroft and Han,

1983; Markowski and Markowski, 1990; Moser and Stevens, 1992). In some situations, a

preliminary test with an appropriate significance level can improve the overall performance

although the gain is doubtful in other cases. Using a preliminary test before selecting a

suitable bootstrap statistic in analysis of variance was suggested by Fisher and Hall (1990).

Efron and Tibshirani (1993) pointed out that bootstrap methodology can increase the degree

of automation in statistical practice. This also holds true for more general problems handled
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by knowledge-based systems. Structural uncertainty is minimized with bootstrap strategies but

not eliminated, as confirmed by our simulation results. The structural simplicity of bootstrap

methods is another advantage, although this is not always reflected in the implementation.

Neither bootstrap test included in our strategy was readily available in any package known

to us. Our initial implementation was in S-Plus, but to achieve a higher efficiency in

simulations, the routines were rewritten in Fortran calling the NAG library. As the finite

sample properties of practical bootstrap methods have often been neglected (Young, 1994),

a detailed evaluation of any strategy incorporating such procedures is needed.

We have outlined how simulation may reveal important attributes of strategies. The skepticism

among some statisticians towards automated data analysis by knowledge-based systems may

be related to the problem of measuring strategy performance. In a review of statistical

methods based on computer technology, Hand (1994) emphasized that simulation studies

require extensive planning. It is thus essential to recognize underlying distributions which are

genuinely important. An initial comparative study of strategies can be more restricted than

a subsequent investigation of the strategy thought to be nearly optimal. Even then, our final

simulation study of the strategies S 5 and S2O included samples drawn from distributions of

similar shape only. In view of the large number of possibilities, practical limits must be set

to the simulations, depending on conditions likely to arise in applications.

For this reason, a simulation facility should be included in the knowledge-based system itself,

enabling the user to investigate strategy performance under conditions relevant to his own

practice. Thus, in the study of strategies for one-way analysis of variance, we have only been

able to deal with 3 samples. As strategies cannot be evaluated in advance for all conceivable

combinations of sample sizes, the possibility of studying finite sample properties in each

relevant situation should also be of great value. Moreover, the user may be interested in joint

distributions of several statements made while the strategy is executed, or possibly only in

certain aspects of the distributions. A system incorporating an interface to a reliable, well

established package of generators is likely to attract most potential users. Such tools should

make it easier to construct knowledge-based systems of real practical value. If the user is

given an opportunity to study the behaviour of the strategy in a relevant setting, the system

designer will not always need to be overly concerned about fine-tuning. On the other hand,
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complaints about poor strategies may be supported by simulation results.

In practical situations involving hypothesis tests, the simulation module will often be used to

determine an estimate of the actual significance level when the observations provide relatively

strong support in favour of the alternative hypothesis. If there is no evidence against the null

hypothesis, estimates of power will be called for. Ideally the level of the procedure should

be adjusted beforehand, but this may be difficult because of the complexity of the strategy

and the inaccuracy of the assumptions. Even users who do not wish to take advantage of the

implemented strategy in practical data analysis, may be interested in the simulation module

for assessing uncertainty.

Constructing a general measure of the uncertainty attached to a particular conclusion, reached

at the end of a long chain of rules, is a more difficult problem than evaluating a strategy

under reasonable fixed parameter combinations. Data-based simulation, relying on ideas

similar to parametric or non-parametric bootstrap, may provide essential information. The

mechanism for generating random samples may then depend only on certain aspects of the

observations. The objective will differ somewhat from that of ordinary bootstrap, as

conclusions will be studied under circumstances related to those observed but still slightly

different, an approach similar to model expansion (Draper, 1995). Appropriate distributions

for resampling may be determined by methods such as non-parametric density estimation

(Silverman, 1986) or adaptation to a flexible family of distributions such as the Johnson

system (Aarseth and Heuch, 1996c).

When a strategy is evaluated through simulation, randomly drawn samples should be analysed

by the implementation in the knowledge-based system. Only in this way can overall

uncertainty be assessed, taking into account approximations, problems of scaling and accuracy

of numerical procedures, possibly coded in external software. The simulation module may

thus be used by the system designer as an effective debugger. Future work should aim at

combining results from simulations with other techniques for evaluation and improvement of

strategies. In particular, refinement facilities (Zlatereva and Preece, 1994) which can improve

the strategy automatically on the basis of simulation results, represent an interesting challenge.
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Table 1

Probabilities (in percent) of deciding that location parameters differ, estimated by 5000
simulations, for the basic analysis of variance strategy given in Fig. 1, with 3 samples
of size 20.

Normal distribution

78.2 100

22.0 69.2

t 4 distribution

87.5 100

29.1 86.0

Exponential distribution

95.5 100

22.9 7.1 74.1

H,=o, |i2=o, |i3=o n,=o, p2=0.5, n3=l M,=o, n2=l, n3=2

o,=l, a2=l, a3=l

a,=l, a2=2, a3=3



Table 2
Results of 5000 simulations in Express, for the strategy in Fig. 1, with 3 samples of size 20
from scaled exponential distributions with u,=o, u2=o, H3=o and at=l, <J2=2, a3=3.

Among all simulations Among simulations
leading to a conclusion leading to a conclusion

used in the inference

Yes No Total Yes No Total

Intermediate
conclusions

Are all samples 21 4979 5000 21 4979 5000
normally distributed?

Is p-value for equal 18 3 21 18 3 21
variance < 0.05?

Is p-value associated 3 18 21 1 2 3
with ordinary F < 0.05?

Is p-value for Brown- 2 19 21 1 17 18
Forsythe F < 0.05?

Is p-value for Kruskal- 1142 3837 4979 1142 3837 4979
Wallis test < 0.05

Overall conclusion

Do location parameters 1144 3856 5000
differ between samples?



Table 3

Results of 5000 simulations for the bootstrap strategy using a bootstrap version of the
original Levene test, with 3 samples of size 20 from a scaled exponential distribution.

Levene test: Probability (in percent) of deciding that variances
differ.

11.0 11.5 10.8

66.9 66.3 68.2

Final conclusion: Probability (in percent) of deciding that
location parameters differ.

Hj=o, h3=o ju,=o, M2=0.5, h3=l h,=o, n3=2

a,=l, o2=l, a3=l

a,=l, g2=2, a3=3

a,=l, c2=l, a3=l

Oj=l, <J2=2, c3=3

5.3 80.9 100

5.3 20.2 79.1



Table 4

Probabilities (in percent) of deciding that variances differ, estimated by 5000 simulations,
using the median in the Levene bootstrap test, for 3 samples of size 20 from scaled
exponential distributions.

Levene test: Probability (in percent) of deciding that variances
differ

3.1 3.1 2.8

44.8 44.8 44.1

H,=o, M2=o, n3=o M2=0.5, \i3=\ n,=o, n3=2

<7,=1, C2=l, C3=l

a,=l, a2=2, a3=3



Table 5

Probabilities (in percent) of deciding that location parameters differ, estimated by 5000
simulations, for the bootstrap strategy using the sample median in the Levene bootstrap
test, for 3 samples of size 20.

Normal distribution

5.6 21.1 79.4

H,=o, 2=o, n3=o n,=o, n2=0.5, n3=l Ml =o, \i3=2

a,=l, cf2=l, cj3=l

Oi=l, <t2=2, c3=3



a,=l

o,=l

<T, = 1

a,=l

c,=l

a,=l

o,=l

a,=l

Table 6
Probabilities (in percent) of deciding that location parameters differ, estimated
by 5000 simulations, for the ordinary F test, bootstrap tests based on Tx and
T 2, and bootstrap strategies S 5 and S2O , with 3 samples of size 20.

Normal distribution

tA distribution

Exponential distribution

2
Xi distribution

Uniform distribution

M,=o, m 2=o, m,=o M,=o, n2=0.5, n3=l M,=o, M2=l» M3=2

F 7, T 2 55 520 F 7, T 2 S 5 Sw F 7, T 2 S 5 Sx

a,=l, Oj=l, Oj=l 4.8 5.3 3.9 5.3 5.0 87.1 87.2 83.1 87.1 87.3 100 100 99.9 100 100

o,=l, a2=2, a3=3 6.0 6.7 4.1 4.7 3.6 28.7 29.9 36.9 36.9 35.0 81.6 82.0 88.9 87.6 88.8

<7,=1, a2=l, <J3=l 4.3 4.9 3.7 4.5 4.4 79.2 79.6 62.4 79.5 79.6 99.9 99.9 99.2 100 99.9

o,=l, a2=2, a3=3 6.5 7.2 3.7 5.6 4.4 18.0 19.2 22.6 21.1 22.0 78.9 80.9 77.7 79.4 77.4

Johnson's Sv distribution; y=o, s=l

Beta distribution; p=2, q=\

a,=l, a2=l, o3=l 5.1 5.7 4.8 5.8 5.3 79.0 79.4 73.9 79.3 78.2 100 100 100 100 100

a,=l, a2=2, a3=3 6.5 6.5 4.6 5.1 4.7 23.6 24.3 32.0 31.7 30.8 69.5 70.0 83.9 83.8 84.3

C2=l, a3=l 5.2 5.7 4.4 5.7 4.7 79.6 80.1 75.8 80.0 79.6 100 100 100 100 100

o2=2, ct3=3 6.4 6.6 5.1 5.4 4.8 23.1 24.0 31.6 31.4 30.4 72.3 72.2 85.0 84.2 83.8

<T2=l,a3=l 3.8 5.1 3.8 4.5 3.6 80.8 81.0 51.3 81.8 78.4 99.7 99.8 95.9 99.7 99.4

a2=2, a3=3 7.7 8.6 3.0 6.9 5.4 16.6 19.0 17.8 16.9 17.4 82.6 84.3 65.9 81.8 72.9

o2=l, a3=l 4.3 4.9 2.2 4.9 4.6 81.7 82.5 73.9 82.5 81.1 99.5 99.6 98.2 99.6 99.4

a2=2, a3=3 5.0 5.7 2.6 4.4 3.5 27.8 28.9 31.3 31.3 30.8 76.5 77.5 79.1 79.5 81.0

o2=l, a3=l 4.8 5.1 4.3 5.1 5.8 79.5 79.8 76.4 79.8 78.3 100 100 100 100 100

c2=2, a3=3 6.1 6.5 5.2 5.3 5.1 22.2 23.1 31.5 31.6 32.2 71.7 72.5 85.8 85.7 86.1



Table 7

Probabilities (in percent) of deciding that location parameters differ, estimated by
5000 simulations, for the ordinary F test, bootstrap tests based on Tx and T 2, and
bootstrap strategies S 5 and S2O , with 3 samples of size «!=lO n2=2o and «3=30.

Normal distribution

tA distribution

Exponential distribution

2
Xi distribution

Uniform distribution

Mi=o. M2=o. M3=o Mi=o. M2=o-5, M3=l H,=o M2=l M3=2

F ri T 2 Ss s2O F r, T 2 S 5 5M F r, T 2 s 5 s2O

o,=l, Oj=l, o3=l 4.9 5.2 3.8 5.2 5.2 71.6 72.2 62.2 72.1 70.3 99.9 99.9 99.7 99.9 100

a,=l. a2=2, ct3=3 1.9 2.1 2.8 2.9 3.0 9.9 10.4 24.8 24.1 23.8 48.3 49.2 79.3 77.6 79.4

o,=l, o2=l, a3=l 4.9 5.8 4.8 5.8 5.0 72.9 74.1 53.3 74.0 73.7 99.7 99.7 93.3 99.7 99.5

g,=l, a;=2, g3=3 2.8 3.2 2.2 3.5 3.0 6.3 7.2 22.5 17.9 22.3 48.1 50.6 67.9 53.5 64.9

o,=l, a2=l, a3=l 4.3 5.1 4.7 4.7 4.5 76.1 77.2 46.3 77.0 73.6 99.4 99.5 84.1 99.4 98.6

o,=l, g2=2, g3=3 3.5 4.0 1.3 3.8 3.1 5.4 6.4 18.8 10.6 18.4 52.4 55.7 57.3 52.2 50.4

Johnson's Sy distribution; y=o, B=l

o,=l, øj=l, C,=l 5.1 5.5 4.1 5.6 4.5 74.9 75.9 64.4 76.0 76.0 99.1 99.2 95.5 99.1 98.8

g,=l, g2=2, 03=3o3=3 1.8 2.0 1.8 2.3 2.0 13.8 15.0 25.6 22.0 25.5 56.0 57.3 72.9 66.6 72.6

Beta distribution; p=2, q=\

a,=l, ct2=l, a3=l 5.1 5.4 4.3 5.7 5.9 70.4 71.0 57.0 70.5 68.8 100 100 99.0 99.9 99.8

g,=l, q2=2, q3=3 2.1 2.6 3.2 3.3 4.7 11.2 11.7 22.5 21.7 23.4 47.7 48.2 77.8 77.2 77.6

c,=l, a2=l, o3=l 5.1 5.8 3.1 5.8 5.2 80.2 80.3 71.4 80.4 80.0 99.7 100 99.2 100 99.9

g,=l, a2=2, g3=3 1.7 2.0 2.4 2.4 2.7 13.2 13.6 28.8 26.2 30.0 48.1 61.2 82.0 78.2 83.1

<T,=1, a2=l, 03=1 5.1 5.5 4.1 5.6 5.5 71.0 71.4 60.8 71.2 69.6 100 100 99.9 100 100

g,=l. a2=2, g3=3 2.4 2.5 3.9 3.9 3.3 9.6 9.9 24.4 24.2 24.5 46.2 47.2 79.9 79.7 81.2



!

Table 8
Probabilities (in percent) of deciding that location parameters differ, estimated by
5000 simulations, for the ordinary F test, bootstrap tests based on Tx and T 2, and
bootstrap strategies S 5 and S2O , with 3 samples of size 10.

Normal distribution

f 4 distribution

Exponential distribution

2
Xi distribution

Uniform distribution

H,=o, m2=o, fi3=o M,=o, M2=0.5, M3=l H,=o, p2=l,

F r, T 2 S 5 520 F r, T 2 S 5 5M F Tx T 2 S 5 Sa

a,=l, a2=l, a3=l 4.7 4.9 2.8 4.8 5.0 45.5 46.5 32.9 46.1 43.8 97.1 96.9 91.2 96.8 96.5

a,=l, a2=2, a3=3 6.2 6.5 3.5 5.6 4.1 14.1 14.6 12.9 15.0 13.7 39.9 40.2 44.7 43.3 44.7

a,=l, a2=l, a3=l 5.3 5.7 2.3 5.6 4.9 56.8 57.8 41.8 57.5 55.8 97.7 97.8 92.4 97.8 97.4

Oi=l, a2=2, a3=3 6.6 6.9 3.0 5.8 3.8 16.9 17.7 14.2 17.4 15.8 50.5 51.8 53.1 53.2 53.7

o,= l, o2=l, o3=l 4.0 4.3 3.1 4.1 4.1 51.0 52.8 25.8 52.5 50.1 95.3 95.5 73.2 95.4 93.9

o,=l, ø2=2, a3=3 7.3 7.7 2.8 6.8 5.7 8.3 9.2 6.8 7.4 8.1 37.8 39.6 32.5 37.0 35.5

a,=l, a2=l, a3=l 4.0 4.7 3.2 4.0 3.1 55.1 56.9 20.8 56.7 53.0 93.5 94.3 57.1 93.8 92.1

o,=l, a2=2, a3=3 9.2 10.2 2.9 9.0 6.4 8.3 9.4 5.9 7.2 5.6 42.8 46.3 24.5 43.6 32.4

Johnson's Sv distribution; 7=o. s=l

o,=l, c2=l, a3=l 5.4 5.8 3.4 5.9 5.3 43.9 44.6 30.0 44.2 43.5 98.0 97.9 92.4 97.9 97.5

ø,=l, a2=2, a3=3 6.3 6.7 3.7 6.3 5.0 13.4 13.8 12.6 14.3 13.7 36.9 37.3 43.6 42.1 45.5

Beta distribution; p=2, q=l

ff,=l, a2=l, a3=l 4.8 5.4 3.3 5.6 5.4 44.9 45.2 28.5 44.8 44.2 97.5 97.5 89.0 97.4 96.7

a,=l, a2=2, a3=3 6.8 7.1 3.4 6.6 5.0 15.5 16.1 12.0 15.5 14.0 38.6 39.3 41.2 41.7 42.5

o,=l, a2=l, a3=l 4.7 5.2 1.6 5.1 4.0 56.8 58.1 37.6 58.0 55.1 94.6 94.8 84.6 94.8 94.3

<?,=!, a2=2, g3=3 5.0 5.4 1.6 4.9 3.8 17.3 18.4 12.7 18.4 17.1 52.2 53.5 46.7 52.7 52.1
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