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SUMMARY

We prove the existence and uniqueness for a quasilinear Skorohod stochastic differential
equation with an integral type boundary condition. The initial value may depend on the
values of the process at any instant later than a fixed time e. The result is a direct extension
of a result by Buckdahn and Nualart on Skorohod equations with boundary conditions.
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1 Introduction

The techniques of the anticipating calculus in [NZ86], [NP88] and others have made
it possible to study anticipating stochastic differential equations. The direct exten-
sion of the Ité-stochastic differential equations are the Skorohod equations using the
nonadapted integral originating from [Sko75]. These have been closely studied in the
papers by Buckdahn, [Buc91] and [Buc92]. In particular, quasilinear SDE’s with the
Skorohod integral are studied in [Buc88]. Allowing possibly anticipating coefficients and
initial values opens for a lot of new problems previously only considered for determinis-
tic differential equations. For instance, for the quasilinear equation with the Skorohod
integral

U t
DYy /0 bs(X,) ds + /0 . X, 6W,

the boundary condition
Xo = ¢(X1)

has been studied in [BN93] and existence and uniqueness of a solution have been proved
also for nondeterministic b and . It is clear that this type of boundary condition
requires us to consider nonadapted solutions even in the case where b is adapted and
% deterministic. Boundary conditions for Stratonovich equations are studied in [NP91],
[OP89] and [Don91] and conditions for Markov solutions are derived. In [BN93] it is
shown that if, in the Skorohod case, both b and i are linear and deterministic the
solution can be given an explicit form from which it is clear that the solution is Markov.
But at the same time they give an example where one may also have Markov solutions
when b is nonlinear, at least in the case where b is random. This indicates that it may
be hard to find a natural necessary and sufficient condition for Markovian solutions in
the Skorohod case.

In the present note we would like to generalize the existence and uniqueness result
for the above equation to existence and uniqueness for the same equation but with the
more general condition that

Xo(w) = [ gls,w, Xo(w)] difs)

where [ is a signed Borel measure, E a Borel subset of [¢,1] (for some € > 0) and g a
given measurable function.

One motivation for this more general condition is that since it is not clear whether X
has continuous paths in general (see, however, theorem 4.1 of [BN93] ) it may be more
natural with a condition that takes into consideration a larger part of the trajectory
rather than just the value of X;. And the condition Xy = #(X)) can of course still be
recovered by letting ! be concentrated at s = 1. We will prove existence and uniqueness
for an equation with this kind of boundary condition. It will be necessary with the
stronger nondegeneracy condition f{o2ds > 0 which can be relaxed to [ 02ds > 0
when [ is concentrated at s = 1.




2 Solutions of equations with integral conditions

We will now consider existence and uniqueness of the equation
t t
Xew) = Xo() + [ bsw, Xo(w))ds + [ 0,X,(w) 8W, (2.1)
0 0

with the integral condition

Xo(w) = /Eg [8,w, X,(w)] dI(s). (2.2)

Our result is an extension of theorem 3.3 in [BN93] and we will follow their main lines
of proof. But the first parts of the proof will need several modifications, mainly in

establishing integrability for certain terms. The reader should consult [BN93] for details
when necessary.

We will in the following use the notation I = [0,1] and E a Borel subset of [, 1] for
some € > 0. Our basic probability space will be the classical Wiener space. See [NZ86],
[NP88] and [Nua94] for the elements of stochastic calculus necessary to formulate and
solve our problems.

Let us first list the assumptions.

I

o deterministic, o € L*(I) and / o2dt >0
0

2. bis a measurable function on I x  x R such that, for a.a. w, the following holds:
|be(w, z) — be(w,y)| S e |o —y| forallt €I, z,y€R
|by(w,0)] <T forallt e[

where 7 is a deterministic function with f) ~,ds < T.
3. g is a measurable function on 7 x  x R such that, for a.a. w,
lg(t,w,z) — g(t,w,y)| < k¢|z —y| forallt € E, z,y €R (2.3)

lg(t,w,0)| < c forallte E

where k£ and c are deterministic functions with [k, d|l|(s) < K, [gcsd|l|(s) < C
and |l| denotes the total variation of I.

Note that the conditions for b are as in [BN93] but for o we need to know not only

that |o|> e 02ds > 0 but in fact that f5 o2ds > 0.

In [Buc88] it is shown that in the case where X, € L*°() the solution X; to the
equation 2.1 can be written in the form

Xt = Zt(At,X()(At))Lt. (24)
Here, Z;(w, z) is the solution (for fixed w) to the equation
t
Zy(w,z) =z + / LT ow)bs [T, Lo (Tow) Za(w, )] ds
0
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and L; = exp (f(f o, 6W; — 2 G dT). T; and A; are defined as the following absolutely
continuous transformations from  to Q:

tA-
Tw = w+/ G dr
0

tA-
w—/ o, dr.
0

It is then the case that X € L*(I x Q) and 140X € Dom § for all ¢t. But as long as
g is not bounded, we cannot assume Xj to be bounded and thus we have to consider
solutions X € Np>1 L{ (I x ) for which 0 X € (Dom )y, (see definition 2.2 later).

We have the following estimates for Z and g [BN93]:

Atw

1Zi(z) — Zi(y)| < €™ |z — y| (2.5)
t
|Zu(w,7)| < e (|x| +r [ L;‘(T,w)ds) (2.6)
0
where T'; = [+, ds, and
lg(t,w,:v)] S ktlzl+ct- (27)

We are now ready to prove the existence and uniqueness of an appropriate initial
condition Xj.

Proposition 2.1 Let b,0 and g satisfy the conditions 1-3 on page 2. Then there ezists
a unique random variable Xy which solves the equation

el = /E 915w, Zo(Agw, Xo(Asw)) Ls(w)] di(s) (2.8)
and for which

sup sup |Xo(As, -+ As)| < 0 a.s..
k>0 sy---sx €1

Proof.

Let Y;, Y, be stochastic variables and write
Wi(w) = [ gls,w, Z,(Aw, Yi(Aw)Lo(@)] dlis),  i=1,2
if the integrals exist. Then, by using 2.3 and 2.5 we have
[Wi(w) = Waw)] < € [ koL, [Yi(Aw) = Ya(Aw)] dlil(s) (2.9)
and by 2.6 and 2.7 we have
Wilw)| < ¢ [ kLy(w) [Vi(Aw)| dli(s) + M(w), i=1,2 (2.10)

where

M(w) = FeF/EksLs(w)/os LY w) dud|i|(s) + C.

Observe that
sup sup M(A, - Agjw) < M(w) ae.

k>0 s1-sp€l
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We now define the sequence X((,n) recursively by
X)) = 0
DG /E g [s,0, Z,(Asw, XV (Aw)) Ly(w)] di(s). (2.11)

We must first show that Xé")(w) is well defined, i.e. that the integral on the right hand
side exists as a random variable. Clearly, the integrand is, for a.a. w, a measurable
function of s. Assume, by induction, that

sup sup IX((,")(AS1 . -A,kw)’ < oo.
k>0 sy---sx €1

Then, from 2.10, we see that
X)) < o [ kL) [X§(A)] dll(s) + M(w)

and from this it is clear that

sup sup lXé"+1)(Asl~~-A,kw)’ < eF/Ek,Ls(w)dUI(s)

kZO s1--8x €I
xsup sup |X{V(A,, - A,w)| + M(w),(2.12)

kzo 818 €l

hence X{" (w) is well defined for all n and a.a. w.
The next step is then to establish the existence of the stochastic variable X, as the limit
of Xén). From iterating 2.11 and using 2.9 we can see that

X(gn)(Aal ) - Xon—l)(A-’l)

XS - x| < & [ kL, d|i|(s1)

< enF/E...[Eiljl{ksiLsi(Asl--'As,._l)}

x| X (A, -+ Au) = XA - A dil(s) <<+ dlil(s1)

L---/P;ﬁ{ksifzsi}exp [— > /()"A”azdf] d|l|(sn) - -~ d|l|(s1)

=il 1<i<3<n

IA

xe™ sup sup lX((,l)(Asl - Ag,)
k>0 s1--sk €1

Since f3*"* o2dr > [§ 02 dr it follows that

= ]| €
‘X(gn-f-l) _ XOTL)| S 6nF exp [_n(—n2_)/o 0_3 d,’_}

x{/ k3L3d|l|(s)} sup sup \X((,l)(Asl...Ask) .
E

k>0 sy--sx €l

< oo and it follows that,

Now, according to 2.12, supsqSup,, .. .e; lX(gl)(Ag1 - A,
a.s.,

sup sup IX(gn)(Aﬂ o Ask) - XO(A81 T Ask)

kZO s1--sk€l

— 0
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as n — oo for some random variable Xo with sup,sqsup,,..,,e7|Xo(As, - As,)| < o0
Then it should be verified that X really satisfies the equation 2.8. But, when letting
n — oo in

il = L [5,0, Zu( Ao, X (Aww) Lo ()] di(s),

we see, by using the estimate 2.9, that the right hand side converges to
Je9s,w, Z,(Asw, Xo(Asw))Ls(w)] dI(s).

It remains to prove the uniqueness of the solution X,. Let Yy be another solution
with supysqsupy, ..o, er [Yo(As, - - Ay, )| < co. By again using 2.9 repeatedly we have

sup sup |Xo(As - - As) — Yo(A,, -+ As,)|
k>0 sy---sx €I
nll n(n—1) rc , "
<e wp._T—/@w{/hhwwﬁ
0
xsup sup |Xo(As, - -As)— Yo(As - - Ayl
kZO 818k €I

and the right hand side approaches zero as n — oo.
O

Let us now proceed to the main result. Having proved the existence of X, one would
of course like to prove that X; given by 2.4 is a solution to the equation which satisfies
the given integral condition. However, since X, may be unbounded it is necessary
to introduce the localized domain (Dom é)joc for the Skorohod integral. Consider the
following conditions for a sequence of random variables F),:

F,eD'? foralln
A= R (2.13)
|F.| <1 as. foralln

Definition 2.2 Assume that the measurable process u verifies [y |u,|? dt < oo a.s. for
some p > 2.

o If there exists a sequence F, satisfying the conditions 2.13 with
Jo |DiFy* dt € L™(Q) and F,u € LP(I x Q) for all n, we say that u € L} (Ix%Q).

o If there exists a sequence F, satisfying the conditions 2.13 with
2
E [fol |us D F, | dt] < oo and 1y gFu € Dom § for all n and t € I, we say that
u € (Dom 8)joc.

Theorem 2.3 Let b, 0 and g satisfy the assumptions 1-3 on page 2. The process X,
defined by 2.4 is a solution to equation 2.1 with the integral condition 2.2 for which
X € Np>o LY, (IXQ) and 0 X € (Dom )i, it is unique among the elements of L (I xQ)
with 0 X € (Dom §)1oc provided that [} 42 ds < <.

Proof. We can find an upper bound for Xj by




X< 5 x|
k=0

gekrexp{_k(k; 1) /0‘ afds} {/E T d|l|(s)}k

X sup sup ‘Xél)(Asl - As)
k>0 s1--sx €l

y ;ekrexp{_ﬁ(’“_;ﬂ/o‘ o2 ds} {/E kL, d|l|(s)}k < M.

Let us denote the last sum on the right by o;. We see that

IA

1
1X,| < Leet (a1 T / L7 ds) .
0

Define now the localizing sequence F, as F, = f(2 [;k,L,d|l|(s)) where f € CP(R)
is bounded by 1, f(z) = 0 when |z| > 2 and f(z) = 1 when |z| < 1. It is now
clear that F, is a localizing sequence for X € N,5,L} (I x Q) if only we can show that
Jg ks L, d|l|(s) € D'? and that D, [ k,L,d|l|(s) = o [z 1(t < s)k,L, d|l|(s) since the last
equality implies that [} |D,F,|* dt € L®()). To this end we approximate the integral
Jg ksLs d|l|(s) by integrals of step functions and then use lemma 1.2.3 of [Nua94]:

Lemma 2.4 Assume that the sequence {G,} C D"? converges to G in L*(Q) and that
1
supE/ |Dth|2 dt < co.
n 0

Then G € D' and DG, — DG weakly in L*(I x Q).

Define "
L& =3"15,(s)Lijn

1=0
where By = {0}, B; = ((¢ — 1)/n,i/n], : = 1,...,n. By the continuity of L we have the
convergence

ks L™ (w) — kyLy(w)

for all s, a.s. and, by the dominated convergence theorem, this has the consequence that

/Ekng") d|l|(s)—>/EksLs dll|(s) in L*R).

Now, to apply lemma 2.4 we see that [ k,L{™ d|I|(s) € DM?,

D, (/Ekng")dm(s)) - D, (Zn:Lf/n/Bi ksd[l[(s))

1=0

22 )
= LUt S ym [k dll(s)

= at/Eks [Z 1{t < %}13,(3)&/”] d|i|(s)
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which converges in L*(I x Q) (strongly) to o; [z 1(t < s)k,L,d|l|(s) and furthermore

that

1 2 2
¥ L ) B (s i2)
E/O (Dt/EksLs d|l|(s)) dt < |o? /Ek3d|l|(s) E (sup £2) < oo,

Hence we have proved that [g ks L, d|l|(s) € D'2.
The rest of the proof is identical to the proof of theorem 3.3 in [BN93] and will not

be included. a
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