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Patterns of genomic evolution in advanced
melanoma
E. Birkeland1,2, S. Zhang1,2, D. Poduval1,2, J. Geisler3,4, S. Nakken 5,6, D. Vodak5,6, L.A. Meza-Zepeda5,6,7,

E. Hovig 5,6,8,9, O. Myklebost 5,6, S. Knappskog1,2 & P.E. Lønning 1,2

Genomic alterations occurring during melanoma progression and the resulting genomic

heterogeneity between metastatic deposits remain incompletely understood. Analyzing 86

metastatic melanoma deposits from 53 patients with whole-exome sequencing (WES), we

show a low branch to trunk mutation ratio and little intermetastatic heterogeneity, with driver

mutations almost completely shared between lesions. Branch mutations consistent with UV

damage indicate that metastases may arise from different subclones in the primary tumor.

Selective gain of mutated BRAF alleles occurs as an early event, contrasting whole-genome

duplication (WGD) occurring as a late truncal event in about 40% of cases. One patient

revealed elevated mutational diversity, probably related to previous chemotherapy and DNA

repair defects. In another patient having received radiotherapy toward a lymph node

metastasis, we detected a radiotherapy-related mutational signature in two subsequent

distant relapses, consistent with secondary metastatic seeding. Our findings add to the

understanding of genomic evolution in metastatic melanomas.

DOI: 10.1038/s41467-018-05063-1 OPEN

1 Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway. 2 Department of Oncology, Haukeland University Hospital,
5021 Bergen, Norway. 3 Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, 1478 Lørenskog, Oslo, Norway. 4Department
of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway. 5 Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium
Hospital, Oslo University Hospital, 0310 Oslo, Norway. 6Norwegian Cancer Genomics Consortium, Institute for Cancer Research, Oslo University Hospital
–Radium Hospital, 0310 Oslo, Norway. 7 Genomics Core Facility, Department of Core Facilities, Institute of Cancer Research, the Norwegian Radium Hospital,
0310 Oslo, Norway. 8 Department of Informatics, University of Oslo, 0316 Oslo, Norway. 9 Institute of Cancer Genetics and Informatics, The Norwegian
Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway. Correspondence and requests for materials should be addressed to
P.E.Løn. (email: per.lonning@helse-bergen.no)

NATURE COMMUNICATIONS |  (2018) 9:2665 | DOI: 10.1038/s41467-018-05063-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8468-2050
http://orcid.org/0000-0001-8468-2050
http://orcid.org/0000-0001-8468-2050
http://orcid.org/0000-0001-8468-2050
http://orcid.org/0000-0001-8468-2050
http://orcid.org/0000-0002-9103-1077
http://orcid.org/0000-0002-9103-1077
http://orcid.org/0000-0002-9103-1077
http://orcid.org/0000-0002-9103-1077
http://orcid.org/0000-0002-9103-1077
http://orcid.org/0000-0002-2866-3223
http://orcid.org/0000-0002-2866-3223
http://orcid.org/0000-0002-2866-3223
http://orcid.org/0000-0002-2866-3223
http://orcid.org/0000-0002-2866-3223
http://orcid.org/0000-0002-8890-6303
http://orcid.org/0000-0002-8890-6303
http://orcid.org/0000-0002-8890-6303
http://orcid.org/0000-0002-8890-6303
http://orcid.org/0000-0002-8890-6303
mailto:per.lonning@helse-bergen.no
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The incidence of melanoma is rapidly increasing among
light-skinned people1, where both epidemiological2 and
genomic evidence have established the link between mel-

anoma etiology and UV radiation3–5. Many melanomas reveal an
indolent course characterized by locoregional relapses followed by
a rapid emergence of metastatic disease, and there is evidence
suggesting that systemic dissemination may bypass intermediary
stages of lymph node involvement6,7.

Somatic mutations found in a cancer mirror its initiation and
evolution, and genomic sequencing may thus map the progression
of melanomas from earlier stages of development, enabling
inferences that are empowered by comparisons of multiple lesions.
While a few studies have used comparative lesion sequencing to
assess genomic events during the process from benign lesions to
primary melanomas8 and progression from primary to regional
disease9, most studies of metastatic melanoma have explored
genome evolution in response to targeted therapy10–12. A picture
is emerging where most UV-associated mutations arise in the
primary tumor prior to malignant transformation, followed by an
increased frequency of copy number alterations8. The genomic
events driving tumor progression toward advanced disease, how-
ever, remain incompletely understood.

Melanomas have low sensitivity to chemotherapy13. While
recent developments including immune checkpoint inhibitors
and BRAF/MEK targeting agents have improved the outcomes
significantly, many patients do not achieve durable remis-
sions14,15. Thus, improvements in therapy are needed. This may
be facilitated by an improved understanding of genomic events
associated with accelerated growth and dissemination.

Here we performed whole-exome sequencing (WES) of single
or multiple metastases from a cohort of patients with advanced
melanoma. Our findings add novel data to the understanding of
the chronological sequence of genomic alterations. This
includes early copy number gain of the mutated BRAF allele and
the finding that whole-genome duplication (WGD) in general
occurs as a late truncal event. While we found evidence
indicating polyclonal seeding in one patient, this seems to be a
rare event. Among four patients exposed to dacarbazine, we
observed a “mutational signature” in one, probably related to
several MSH6 mutations in her tumor. Moreover, the finding that
radiotherapy toward a lymph node metastasis may influence
mutation signatures in subsequent deposits in organs
distant from the treatment site supports the hypothesis that
cancers may progress also through secondary spread from
metastatic deposits.

Results
Single-base substitutions and indels. We analyzed 114 meta-
static lesions with matched normal tissue from 60 patients
diagnosed with advanced melanoma by WES. All patients were
from a prospective study assessing dacarbazine therapy for
metastatic melanoma16,17. Eighty-six lesions from 53 patients
consisting of at least 20% tumor cells (threshold for copy number
profiling) were selected for further analysis (identified mutations
in these samples are presented in Supplementary Table 1). Mul-
tiple lesions were available from 23 out of the 53 patients, and
single-metastatic lesions were available from the remaining 30
(Table 1, and Supplementary Tables 2 and 3).

The number of somatic variants identified in coding regions
per patient (average across samples for patients with multiple
biopsies) varied substantially, with between 17 and 4089
mutations identified (range: 0.34–81.8 mutations per megabase,
median: 9.6; Fig. 1a). With few exceptions, tumors with primary
origins at sun-exposed sites all displayed mutational patterns
characterized by C>T transitions at dipyrimidine sites, in contrast

to tumors derived from areas not exposed to UV radiation
(Fig. 1b), consistent with UV-induced DNA damage (Fig. 1c).
One acral melanoma had a UV-associated mutational signature,
as has also been observed by others18,19. Overall though, patients
with sun-exposed primary tumors had a higher mutational load
than patients with primary lesions at sites with little or no such
exposure (p < 0.001, Mann–Whitney U-test [MW]; Supplemen-
tary Figure 1a). No difference in mutation load between the
lymph node and subcutaneous or visceral organ metastases was
recorded (Supplementary Figure 1b).

Among nine patients diagnosed with metastatic melanoma
without known primary lesions, the types and numbers of mutations
resembled those observed in metastases from sun-exposed primary
lesions, strongly suggesting cutaneous origins (Fig. 1, Supplementary
Figure 1a) as previously reported by others20.

Driver mutations and genomic complexity. Using a con-
servative approach to identify driver mutations, we considered
mutations in a set of predefined genes based on recently pub-
lished studies3,21,22. Mutations in these genes were manually
assessed to determine their status as drivers or passengers
(Methods section). The complete list of mutations in these
genes is presented in Supplementary Table 4. Driver mutations in
BRAF and NRAS were detected among 28 (53%) and 17 (32%)
patients, respectively (Fig. 1d), with one patient carrying a non-
canonical driver mutation in BRAF (p.E586K) in combination
with a driver mutation in NRAS (p.Q61L). While protein-altering
mutations in NF1 were identified in five patients, only two of
these fulfilled our criteria for definition as driver mutation. Driver
mutations in GNAQ and GNA11 were identified in two uveal
melanomas, and a driver mutation in KIT was found in mucosal
melanoma.

Considering patients with multiple sampled lesions, all driver
mutations identified were shared between metastatic deposits,

Table 1 Patient characteristics

Baseline characteristics Patients

Sex
Female 22
Male 31
Disease origin
Cutaneous (non-glabrous skin)
Head 5
Upper extremities 5
Trunk 20
Lower extremities 7

Acral 3
Uveal 2
Mucosal 2
Primary unknown 9
Number of samples
1 30
2 16
≥3 7

Molecular characteristics

Mutational subtype
BRAF 27
NRAS 17
NF1 2
Triple wild type 7
Genome duplication
Near-diploid 32
Genome duplicated 21
Total 53
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except for two patients, both revealing heterogeneous and
subclonal distribution of the p.Y163C TP53 mutation.

In accordance with previous reports22,23, we found the
number of mutations to vary according to driver mutation
status in BRAF, NRAS, and NF1 (p= 0.002, Kruskal–Wallis
rank-sum test [KW]; Supplementary Figure 1c). Based on copy
number profiling (Supplementary Figure 2a), we inferred
whole-genome duplication (WGD) events to have occurred in
about 40% of patients (Supplementary Figure 2b), with no
difference between tumors harboring BRAF (11/27) or NRAS
(7/17) mutations. The duplication events likely predated

evolutionary divergence of metastases, as they were identified
across all lesions obtained from these patients. Notably, the
genomic complexity (defined as the fraction of the genome in
an aberrant state, i.e., deviation from a balanced copy number
of two for diploid tumors and four for WGD) was substantially
higher in samples with WGD, with a mean of 69% for WGD
and 30% for diploid tumors (p < 0.001, MW test; Supplemen-
tary Figure 2c). A difference in genomic complexity of this
magnitude indicates a greater propensity for genomic altera-
tions following genome duplication, as previously reported in
other cancer forms24,25.
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Heterogeneity across intraindividual lesions. We also observed
larger copy number diversity (defined as the mean number of
copy number alterations separating samples from individual
patients) in patients if WGD was present compared to patients
with diploid tumors, where the median copy number diversity of
patients with diploid and WGD cancers was 2.8 (range 1–26) and
23 (range 6–161), respectively (p= 0.004, Fig. 2a). This suggests
the copy number evolution to be an ongoing process occurring at
a higher rate in melanomas with WGD. Diversity in copy num-
bers was observed across the genome, with no chromosome being
overrepresented (p= 0.3, KW test; Supplementary Figure 3).

In order to investigate the mutational heterogeneity between
melanoma metastases, we identified trunk and branch mutations
for each of the 23 patients having multiple lesions examined.
Mutations were classified as trunk mutations when found in all
lesions examined from a particular patient, or when the absence
of a mutation could be explained by a copy number loss or lack of
sequencing depth in a sample without this mutation. Branch
mutations were accordingly defined as those mutations whose
absence could not be explained by the same features. Branch
mutations were further defined as private when exclusively
identified in a single sample. Thus, we defined mutational
diversity for each patient as the average number of branch
mutations across lesions.

Patients generally displayed a low degree of mutational
diversity (range: 0.5–893, median: 5) when compared to the
number of trunk mutations (range: 17–3966, median: 465; Fig. 2b,
c). Thus, with the exception of a single patient (MM02) whose
metastatic deposits contained 89% branch mutations (probably
related to chemotherapy exposure; see below), the branch

mutations for each individual patient accounted for only
0.08–14.9% of the mutation load. Notably, across patients, no
correlation between the number of trunk mutations and
mutational diversity was observed (rs= 0.01, p= 0.95, Spear-
man’s rank correlation).

While the number of mutations private to any lesion varied
substantially (range 0–1156), the number of private mutations
revealed a remarkable within-patient consistency, indicating an
intrinsic propensity for mutational accumulation (Supplementary
Figure. 4). Excluding patient MM02, who had an extremely high
number of private mutations in both lesions sampled, from
statistical comparison, we found the degree of intraindividual
variation across the sample set to be significantly lower as
compared to interindividual variation (p= 0.003, Levene’s test for
homogeneity between groups). Assessing within-patient differ-
ences in types of branch mutations, we found small variations in
mutation types related to private mutations across samples, as
well as branch mutation types according to clonal status
(Supplementary Figure. 5a and b), supporting mutational
accumulation to be related to tumor intrinsic phenotypes.

Mutational diversity was significantly lower in tumors harbor-
ing a BRAF versus an NRAS or NF1 mutation (p= 0.01, KW test;
Fig. 2d). While this mirrored the difference in mutational load in
general, the lack of correspondence between the number of trunk
mutations and mutational diversity between tumors suggests
these observations to be independent. No correlation between
mutational and copy number diversity across patients was
observed (rs=−0.07, p= 0.8, Spearman), and copy number
diversity was unrelated to BRAF, NRAS, or NF1 mutational status
(p= 0.8, KW test).

d
150

50

100

0

Diploid Genome duplication

C
op

y 
nu

m
be

r 
di

ve
rs

ity

40

50

30

10

20

0

800

BRAF NRAS NF1

M
ut

at
io

na
l d

iv
er

si
ty

a

b
M

M
01

M
M

02

M
M

08

M
M

16

M
M

17

M
M

19

M
M

22

M
M

24

M
M

25

M
M

34

M
M

40

M
M

43

M
M

52

M
M

53

M
M

61

M
M

66

M
M

21

M
M

31

M
M

32

0

1000

2000

3000

4000

0

25

50

75

100 2000

B
ra

nc
h 

m
ut

at
io

ns
A

ll 
m

ut
at

io
ns

Branch mutations, not private

Private mutations

Wild type

Trunk mutations

M
M

73

M
M

11

M
M

85

M
M

38

c

Fig. 2 Mutational heterogeneity. a Copy number diversity according to whether genome duplication was identified in samples from each patient.
b Branch mutations (found in more than one, but not all samples) and private mutations (found exclusively in one sample) per lesion. For MM02, a
separate axis is used to capture the large number of private mutations. c All mutations (private, branch, and trunk mutations) presented together for each
lesion. d Mutational diversity (average number of branch mutations per sample) in patients according to driver mutation status of BRAF and NRAS. The Y-
axis is broken for clarity due to the high mutational diversity in MM02

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05063-1

4 NATURE COMMUNICATIONS |  (2018) 9:2665 | DOI: 10.1038/s41467-018-05063-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Categorizing patients into four groups based on the largest
anatomical distance between sampled lesions (same site; different
site, but same region; different regions; or different organ system),
we observed no difference in either mutational or copy number
diversity related to anatomic distance between the samples (p=
0.3 and p= 0.7, KW test; Supplementary Figure 6). Also, there
was no difference in diversity between synchronous metastases
and those collected with an intervening time period (p= 0.5 and
0.7, KW test, for mutational and copy number diversity,
respectively).

Shift in mutational processes. Comparing trunk to branch
mutations, there was a clear shift in the types of mutations
between the two groups, with branch mutations being drawn
from a much more widely distributed repertoire of mutation
types (Fig. 3). All of the patients with multiple sampled lesions
had primary lesions in sun-exposed locations (or unknown pri-
maries) and, consistent with a history of sun-exposure, muta-
tional signature analysis26 revealed 42–93% (median 84%) of
trunk mutations to belong to the UV signature (Supplementary
Figure. 7a). The limited number of branch mutations made any
signature derivation uncertain. However, we observed a mutation
pattern consistent with an UV signature in a total of six out of 14
patients (Fig. 3 and Supplementary Figure 7b), and in one patient
(MM01), UV-related mutations was the major mutation type in
the branches. In contrast, we observed no enrichment of UVA-
associated T>G transversions27,28.

Evaluation of polyclonal seeding. Studies of metastatic
cancers including melanoma have unveiled polyclonal seeding
and complex patterns of metastatic dissemination9,29. Applying
the pigeonhole principle30, the cellular prevalence of
mutations can be used to infer the order of mutational accu-
mulation and selective sweeps in populations of cancer cells.
When comparing the cellular prevalence of mutations in two
different samples of common ancestry, subclonal mutations
shared across lesions may indicate polyclonal seeding, while the
presence of lesion-private and clonal (defined as a mutation
occurring in all tumor cells in that lesion and not in others)
mutations would preclude such an interpretation and likely
indicate a monoclonal origin.

We compared the relative variant allele frequency (rVAF;
reflecting cellular prevalence) of private mutations in each lesion
to that of trunk mutations (Fig. 4a, Supplementary Figure. 8). The
rVAF distribution of trunk mutations was used to infer the likely
clonal status of private mutations in each sample. Although many
private mutations were clearly subclonal (e.g., MM17; Fig. 4a), 41
out of 53 samples revealed at least one clonal private mutation
(Fig. 4b), implying an absence of polyclonal seeding. Only two
patients (MM24 and MM31) lacked clonal private mutations
altogether. Except for two mutations in MM31 having low rVAFs
in both sampled lesions, these patients did not have shared
subclonal mutations. Thus, we concluded that there was no
strong evidence supporting polyclonal seeding in these patients
either. Cross-sample mutation clustering, applying PyClone31,
corroborated these observations (Supplementary Figure 9). Yet, in
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one patient (MM61; Supplementary Figure 10), from whom five
lesions were sampled, three were without clonal private muta-
tions, and a number of shared mutations with low rVAFs were
detected in multiple samples, possibly indicating a population of
cells shared subclonally between lesions31. These findings may
indicate polyclonal origins of, or reseeding between, lesions in this
patient.

The common finding of private clonal mutations is consistent
with a monoclonal origin of most metastatic lesions and
indicates branching evolution. Furthermore, the observation
of a UV-related mutational signature in a fraction of branch
mutations (Supplementary Figure. 7b) could indicate that different
metastases may originate from different subclones in the primary
tumor.

Potential influence of therapy. Two patients revealed atypical
mutational patterns probably caused by prior therapy. One
patient (MM02) had received two cycles of dacarbazine after
mistakenly being diagnosed with metastatic disease. Eight months
later she was correctly diagnosed with a distant subcutaneous
metastasis to the abdominal region and a locoregional relapse,
both of which were sampled. Nearly all private mutations were
observed to occur clonally (within all cells) in the distant
metastasis, but in a minor subpopulation of cells (~15%) in the
locoregional relapse (Figure. 11a) and were further attributed to a
mutational process previously ascribed to temozolomide treat-
ment in glioblastoma and melanoma32,33. Emergence of this
signature has been found to depend on concomitant inactivation
of DNA mismatch repair and, potentially, DNA methyltransfer-
ase MGMT in glioblastoma33,34. Here we identified three private
MSH6 mutations in two lesions sampled from this patient, all of
which coincided with the (sub-)clonal populations of hypermu-
tated cells (Supplementary Figure. 11a). Further, reassessing
previously published data16, we identified transcriptional loss of
MGMT in one, while the second sample revealed an MGMT

expression level close to the median across the sample set (Sup-
plementary Figure. 11b). Notably, neither this signature nor
mutations affecting MSH6 was detected in tumors from any other
of the three patients with at least one sample collected ≥6 months
after dacarbazine therapy.

The second patient (MM85) received regional radiotherapy
following surgical removal of a submandibular lymph node
metastasis, with subsequent sampling of two metastatic lesions: a
liver deposit (5 months later) and a subcutaneous lesion on the
chest wall (6 months later; Supplementary Figure. 12a). Here, a
large fraction of both trunk and private mutations constituted a
unique mutational signature of small deletions, typically two
nucleotides in length (Supplementary Figure. 12b), akin to a
recently described pattern of mutations in radiation-induced
secondary malignancies35. To the best of our knowledge, such a
signature has not been described in melanomas. Strikingly, all
private deletions were clonal, contrasting other private mutations
in these samples (Supplementary Figure 12c). The finding of this
signature in both subsequent samples located well outside the
radiation field strongly favors the hypothesis of secondary spread,
indicating the cells from the radiated submandibular area, and
not the calvarian primary lesion (Supplementary Figure. 12a), to
be the most recent common ancestor. However, in another five
patients having tumor samples collected ≥6 months after
initiation of radiation therapy, we did not observe a similar
mutational signature. While we could not detect any mutations in
DNA repair genes in the tumor tissues of patient MM85, it
remains likely that this tumor may harbor particular defects
conducive to the development of signature mutations in response
to ionizing radiation.

Sequence of genetic alterations during melanoma development.
The relative timing of genomic events occurring throughout
cancer progression may be inferred by integrating information
about copy number alterations and somatic VAFs36,37. The
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finding of a higher genomic complexity (Supplementary Fig-
ure. 2c) and a higher copy number diversity (Fig. 2b) among
patients with WGD is consistent with ongoing genomic evolution
following WGD38. Indeed, the majority of copy number events in
patients with WGD was estimated to have occurred after genome
duplication (n= 21, median: 63%, range: 27–83%; Fig. 5a).
Contrasting copy number alterations, most SNVs and indels
appeared prior to WGD in most patients (median: 89%; range:
22–100%; Fig. 5b).

BRAF mutations are known to be early events in melanoma39

and have been associated with an increase in BRAF copy
number5,22,40,41. We observed low-level copy number
gains of at least one BRAF-containing allele in 21/27 tumors
with BRAF mutations, compared to four out of 26 in tumors wild
type for BRAF (p < 0.001, Fisher exact test). The copy
number gains all comprised broad regions of chromosome 7,
except for a single patient harboring a focal (although still low
level) gain of the BRAF gene. Strikingly, out of the 21 patients
with concurrent mutation and copy number increase of
BRAF, the mutated allele was the one gained in 20 patients
(Fig. 5c). We did not observe associations between copy number
elevations and driver mutations for any other oncogene,
including NRAS (Supplementary Figure. 13). Interestingly, when
assessing the allele-specific copy numbers of segments carrying
BRAF, the most parsimonious solution indicated that BRAF gains
are most likely to occur prior to WGD in eight out of nine
informative patients.

Based on the evidence presented, we may postulate a general
model for the order of events in the evolution of metastatic
melanoma (Fig. 6). This model is characterized by early
acquisition of driver mutations in key genes such as BRAF and
NRAS which, in the case of BRAF, is usually followed by a gain of
the mutated allele. Whole-genome duplication in general occurs
as a later event, taking place after most UV-induced mutations,
but prior to most copy number alterations. Following divergence
of metastases, mutational accumulation is low and shifts away
from UV-induced mutations to others, with a fairly consistent
mutational rate within each patient.

Discussion
While previous studies have described genomic alterations
occurring in melanoma progression8,42, including regionally
advanced disease9,43,44, limited knowledge exists in regard to
distant metastases. To the best of our knowledge, this is the first
study systematically exploring genomic heterogeneity in mela-
noma across multiple distant metastatic deposits.

We found most mutations to be truncal events. This is of
relevance to driver mutations in particular, as we found a very
low number of these to be heterogeneous in line with observa-
tions in regional metastatic disease9,43,44. The low number of
heterogeneous mutations indicate metastatic divergence to be a
late event, resembling recent findings in breast cancer45. Taking
the observation of a UV-related mutational signature among
some branch mutations into account, these findings are con-
sistent with the hypothesis that different metastases may arise
from separate late-developing subclones in the primary tumor,
although other explanations may not be excluded.

We observed a surprisingly high intrapatient consistency
regarding the number of private mutations across individual
lesions. Interestingly, a similar phenomenon was recently
described in metastatic breast cancer45. The finding of this phe-
nomenon across two tumor forms with quite different mutational
patterns32 indicates this to be an intrinsic propensity related to
several cancer forms. Moreover, the observation that hetero-
geneity correlates to BRAF mutation status, as was also made by
others in primary melanoma8, further supports the underlying
genetic mechanisms associated with this process.

Our data indicate most metastases to have a monoclonal origin,
even though we found indications of reseeding in one patient.
This somewhat contrasts the findings of Sanborn and colleagues9,
who described reseeding as a more common phenomenon.
Notably, many of the tumors from which they uncover shared
subclones were locoregional relapses located in close anatomical
proximity. Thick and large primary cutaneous melanomas are
known to be associated with a substantial risk of locoregional
relapse, despite wide margins in surgical excisions46,47, consistent
with local invasion, and it is reasonable to postulate that similar
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processes may regulate the development of locoregional relapses
as well.

The patient (MM61) in whom we found indications of
reseeding between metastases had an unusual clinical phenotype
with numerous (>100 prior to death) cutaneous metastatic
deposits on the truncus, shoulders and head area in addition to
the 5 lesions sampled (Supplementary Figure. 10c-d). This sug-
gests this cancer to have an organ-specific propensity for the
development of cutaneous metastases48, potentially, including a
high migratory potential for metastatic cancer cells within the
skin. Thus, while this patient presented with distant metastatic
disease, the trafficking of tumor cells might be more akin to the
pattern of reseeding observed in regionally disseminated disease9.

An important topic relates to the sequence of genomic events
during cancer progression. We found WGD to occur prior to
metastatic divergence, and the high copy number diversity asso-
ciated with WGD relative to near-diploid tumors suggests an
ongoing process of copy number alterations, resembling findings
in other tumor forms45,49. While genomic complexity is a classic
prognostic marker in many tumor forms, how WGD relates to
melanoma prognosis remains to be elucidated in larger series.

We found selective low-level gains of the mutated BRAF allele as
a remarkably common early event in BRAF-mutated tumors, gen-
erally pre-dating WGD. BRAF mutations have previously been
described in primary melanoma to be associated with the frequently
observed arm- or chromosome-spanning gains of 7q40, which is
consistent with our current results. This likely contrasts BRAF gains
associated with acquired resistance to BRAF-inhibitors which, when
reported, has occurred through focal amplification of smaller seg-
ments10,50. While it seems reasonable to postulate low-level gain of
BRAF to provide a selective growth advantage analogous to the
fitness-gains associated with low-level gains of mutant KRAS in lung
cancer51, this issue warrants more research.

Emergence of the alkylating chemotherapy signature we
observed in one patient has been related to DNA mismatch
repair defects, with less evidence implicating inactivation of
MGMT in glioblastoma33,34,52. While the signature has been
described in melanomas subsequent to temozolomide treat-
ment32, so far it has not been related to any genomic altera-
tions. Our findings of this signature in a patient harboring
several MSH6 mutations, but not among dacarbazine-exposed
patients without mutations, may indicate DNA mismatch
repair defects to play a role in melanoma as well.

Ionizing radiation is a well-known carcinogen53, and sec-
ondary cancers arising in areas of previous radiation have been

described to reveal a distinct radiation-related mutational sig-
nature characterized by an accumulation of small deletions35.
We found multiple private and truncal 2-nt deletions resem-
bling this pattern of mutations in two distant metastatic
deposits 5 and 6 months after radiotherapy for a regional lymph
node metastasis. The issue of secondary metastatic spread
remains controversial in melanoma7, as well as in other tumor
forms, much due to the fact that it is difficult to find direct
evidence for this phenomenon. Chemotherapy exposure should
affect tumor cells, including micrometastases, independent of
anatomical location; in contrast, radiotherapy is applied to a
localized area, with limited radiation scattering outside the
treatment field. In this case, we found the radiation signature to
constitute a form of “cellular labeling”, strongly indicating
secondary seeding from the radiation-treated lymph node to
the chest wall and liver. While the biological effects of these
radiation-induced deletions are unknown, the rapid emergence
of two novel deposits <6 months after radiation both char-
acterized by clonal 2-nt deletions should raise concerns that
radiation therapy in some cases may enhance metastatic pro-
pensity and tumor aggressiveness.

In conclusion, this study provides evidence for common pat-
terns of genomic alterations in melanoma progression. In most
cases metastatic deposits seems to have a monoclonal origin with
the possible exception of patients harboring multiple cutaneous
deposits. The issue of potential secondary spread from metastatic
deposits may have significant clinical implications; thus, further
studies characterizing melanoma as well as other cancer metas-
tases should seek to identify radiation-induced mutation sig-
natures in all patients having previous exposure to radiotherapy.

Methods
Patients and sample collection. The patients analyzed in this study were part of a
single-arm prospective study assessing the response to dacarbazine therapy for
metastatic melanoma16,17. Out of a total study population of 85 patients,
114 samples from 60 patients and corresponding benign tissue material (blood)
were available for analysis by whole-exome sequencing. Samples from all biopsies
were examined by a pathologist to ensure representative tissue. Data from 53
individuals (86 samples) are presented; the remaining samples were excluded due
to low tumor cell content (<20%). Patient- and sample-level characteristics are
detailed in Supplementary Tables 2 and 3, respectively.

All tumor samples were snap-frozen in the operating theater. Peripheral blood
was collected at initial biopsy collection.

Ethical approval. The clinical study as well as the genomic analysis was approved
by the Regional Ethics Committee of Western Norway (REK Vest; reference

BRAF/NRAS
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UV radiation

Mutational clock

Therapy-induced mutations

Copy number events

Sun exposed primary tumors

Some therapy exposed tumors

Genome duplicated tumors

Metastatic divergence

All tumors
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Fig. 6 Model of progression for metastatic melanoma. Purple fields portray the timing of mutational processes, with increased thickness indicating higher
mutational activity. Lower opacity indicates variability in timing of processes in relation to each other; e.g., timing of UV radiation in relation to the timing of
genome duplication events
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numbers 020/00-109.99, 030/06-06/5520, and 2012/1740). All patients provided
written informed consent.

DNA sequencing. Approximately 1 mg of genomic DNA from tumor and mat-
ched normal tissue were used for library construction using the Agilent Sur-
eSelectXT Human All Exon V5 kit (covering 50 mega-bases of exonic sequence).
Libraries were paired-end sequenced using Illumina’s TruSeq SBS chemistry v3 on
a HiSeq2500, resulting in a median depth of coverage in the targeted regions
ranging from 140 to 422 for tumor samples (median across samples: 271), and
43–233 for normal samples (median across patients: 87).

Somatic variant calling pipeline. Reads of each sample were mapped (lane-wise)
with BWA mem54 to the human reference genome (build b37 with an added decoy
contig, obtained from the GATK resource bundle). Sample-wise sorting and
duplicate marking was performed on the initial alignments with Picard tools
(http://broadinstitute.github.io/picard). GATK tools55 were subsequently used for
two-step local realignment around indels, with matching samples (i.e., tumor and
its corresponding normal) being processed together. Each sample’s pair-end read
information was then checked for inconsistencies with Picard and base-quality
recalibration was performed by GATK. Somatic variant calling on the matching
paired samples was done by using the intersection of MuTect56 (somatic SNV
detection) and Strelka57 (somatic SNV and indel detection). Block substitutions
were defined as somatic mutations at consecutive positions where the variant allelic
frequency of each was within 5% of the average allelic frequency of the two var-
iants. The program FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used for quality control of analysis input data. GATK tools were used
for computing coverage statistics based on the recalibrated alignment files. Func-
tional annotation of SNVs and InDels was performed with ANNOVAR (release
2015Mar22), using RefSeq as the gene transcript reference.

Most of the analysis (starting with the local realignment step) was limited to
exome regions (the “exome” was in this context defined by Agilent exome v.
5 sequencing probe targets).

Driver mutation definitions. Mutations in a set of genes previously identified as
drivers in melanoma3,21,22 were manually assessed for likely status as drivers. For
all considered genes, driver mutations were defined as drivers if they (1) were
canonical melanoma-associated mutations; (2) as likely drivers based on evidence
of gain or loss of function in the published literature, or if the positions were
recurrently mutated in other forms of cancer; or as (3) inactivating if they occurred
in tumor suppressors and disrupted the protein reading frame (i.e., nonsense,
frameshift, or splice site mutations). Otherwise, mutations were deemed to be
passengers (Supplementary Table 4). Patients were categorized according to driver
mutation status in BRAF, NRAS, and NF1, where mutations at the canonical
mutational hot-spots for BRAF (p.V600 or p.K601) and NRAS were prioritized in
the case of driver mutations in more than one of these genes.

Mutational signature analysis. DeconstructSigs26 was used to estimate the con-
tribution of mutational processes to the observed patterns of mutations. Con-
tributions from 5 mutational processes that have been described in melanoma were
assessed (signatures 1, 5, 7, 11, and 17)32,58. Observed mutational patterns were
corrected for the 3-base composition of exonic regions in the genome. Signatures
reported in the COSMIC database (v79) were used as reference for the mutational
pattern associated with each process58.

For signature analysis of branch mutations we used a lower threshold of n= 10
mutations. Given that this number of mutations is too low for precise estimates of
percentage contribution to individual signatures, we also performed manual
assessment of mutations, focusing on typically UV-related mutations (such as
YC>T transitions).

Copy number profiling. Copy number profiling was performed using an in-house
algorithm optimized for the present dataset. Our algorithm was established to take
advantage of two features in the data:

1. To optimize CNA and tumor purity estimates by use of the observed variant
allele frequency of somatic mutations (i.e., to fit CNA estimates on to VAF of
SNVs).

2. In the cases with multiple samples per patient, to take advantage of samples
with high tumor purity to optimize allele-specific copy numbers across
samples within the same patient.

In brief, copy number determination was carried out in three stages: First,
segmentation was performed based on shifts in observed allele frequencies of
heterozygous SNPs between genomic regions with differences in copy numbers.
Second, allele-specific copy numbers across the genome, as well as tumor cell
content, were estimated based on the magnitude of shifts in allele frequency of
heterozygous SNPs relative to regions with a loss of the minor allele, or based on
allele frequency of somatic mutations in the absence of copy number alterations.
Third, in patients with multiple samples, cross-sample corrections were made for
breakpoint identification and copy number determination based on a combination
of germ line and somatic variant allele frequencies. False discovery rates were

estimated by simulation, rather than SNP-based benchmarking tools59, since the
current dataset was restricted to WES.

The algorithm was based on the allelic frequency of germ-line variants in tumor
and normal samples. Based on the ratio of sequencing depth between tumor and
normal, tumor allelic copy numbers uncorrected for normal cell content, the
relative copy number (RCN), can be observed. In theory, the interval between
RCNs is directly proportional to the difference in number of alleles between
adjacent copy number segments. Therefore, the absolute tumor copy number
(TCNs) can be determined through inferring the interval of a RCN and the lowest
observed RCN value, which normally corresponds to a copy number of zero, or loss
of one allele. Based on this, we performed copy number profiling, as follows:

Segmentation. Identification of potential breakpoints: Potential break points were
identified based on shifts in allelic frequency of heterozygous SNPs in each tumor
relative to the corresponding normal sample across chromosomes. Here, a sliding
window approach was used, where the genome was split into bins of 4 Mb, with a
step size of 1Mb. If the number of SNPs in a given bin was <40, the bin was
merged with the nearest neighboring bin. For the i-th bin, which included ki SNPs,
we compared the standard deviation of major allele frequency between tumor and
normal sample. If there was no difference, the B allele frequency (BAF) of the bin
was regarded as 0.5 (bi= 0.5). Otherwise, bi was defined as the median value of
allele frequencies mi. A potential break point containing region was defined by a
difference in BAF exceeding 0.015 between adjacent bins. This cutoff at 0.015 was
determined by simulation of randomly generated break points:

At each BAF ranging from 0 to 1, with increments of 0.01, we generated
1000 simulation datasets, each including 40 segments. A randomly assigned
number of SNPs was assigned to each segment, ranging from 40 to 1200, and
coverage of each SNP followed the distribution of SNPs in the current exome
sequencing dataset (geometric distribution; p= 0.01). Allelic read counts were
modeled using the binomial distribution B(N, BAF), where N was the total
sequencing depth of the SNP, and BAF ranged from 0 to 1. For the simulation data
corresponding to each BAF we calculated the absolute differences of average BAF
from all SNPs between two adjacent segments. In order to determine the
significance of difference, we defined an empirical p-value for the likelihood that
two segments corresponding to the same theoretical BAF were randomly separated.
We estimated the empirical p-value based on the simulation data corresponding to
each BAF, and found that a difference of 0.015 corresponded to an empirical p-
value of 0.05.

p ¼ # Δ � cutoffð ÞBAF
# segmentsð Þ � 1ð Þ �# simulationð Þ ;

where # represented the counts and Δ represented the difference between adjacent
segments.

Determining the precise breakpoint and merging of segments: In order to deter-
mine a more precise breakpoint between bins, regions flanking the potential
breakpoint (±4Mb) were split into smaller windows, each including 3 SNPs. For
each SNP, we used the major allele frequency (m) in the following analysis. The
average m value of the first window was compared to the rest of the flanking region.
If the difference was more than 0.018, the midpoint of these two sub-regions was
regarded as the final breakpoint. The cutoff at 0.018 was determined by estimation
of simulation data using the same parameters as above. Based on the simulation
data, we found the maximum random error between adjacent segments with the
same theoretical BAF was no more than 0.018; although, the random error
increased when BAF was closer to 0.5 (Supplementary Figure 14). If a difference of
more than 0.018 was not identified by this initial assessment, the window was
extended to encompass the second window and compared to the rest of the flaking
region. This procedure was repeated until a break point was found, or until the end
of the flanking region was reached. If no break points exceeding 0.018 were found,
the potential break point was discarded. The genome was thus split into multiple
segments according to these final break points, and m values corresponding to each
segment were estimated (mi and mi

�! representing the major allele frequency of
segment i and maximum allele frequency of all SNPs in segment i, respectively).

Estimating allelic tumor copy numbers and tumor purity. The relative copy
number (RCN) of each allele for each segment can be obtained based on the
following formula.

CNAHi ¼ mi ´ ratioi;

CNALi ¼ 1�mi
� �

´ ratioi;

where i was the i-th segment. CNAH represents the relative allelic copy number of
the major allele, and CNAL represents the relative allelic copy number of the minor
allele. Ratio represents the ratio of sequencing depth between tumor and control.
For each segment, we estimated the allelic RCNs based on the CNAH and CNAL.

CNALs of all segments were integrated by multiplying it with the number of
SNPs in each segment. If the resulting distribution of weighted relative minor allele
copy numbers had at least two peaks, we considered the minimal peak value as CN
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= 0, and the second as CN= 1 or CN= 2. The distance between copy numbers,
DIS, can be calculated based on CN= 0 and CN= 1 or CN= 2.

DIS ¼ CN1� CN0
DIS ¼ ðCN2� CN0Þ=2:
According to the CN0 and DIS values, allelic TCN of each segment

corresponding to each relative copy number state was determined as follows:

dCNAi ¼ round
CNi � CN0

DIS

� �
:

Where i represented the i-th segment and round means that values are rounded to
the nearest nonnegative whole number. Major (CNH) and minor (CNL) allelic
copy numbers were thus calculated.

A tumor sample consists of a mixture of tumor cells and normal cells. For each
locus in a chromosome, the expected major allele frequency of SNPs can be
calculated as follows:

fmajor ¼
α ´CNHþ 1� αð Þ

α ´CNtotal þ 2 1� αð Þ ;

where α is the tumor cell fraction. Thus, the tumor purity for each imbalanced
segment was estimated through the following formula.

α ¼ 2 ´ fmajor � 1

CNH� 1þ fmajor 2� CNtotalð Þ :

Weighting genomic segments as above, the density peak of purities calculated
across segments was used as the tumor purity for each sample. Without sufficient
imbalanced segments to obtain tumor purity, we used mutation allelic frequencies
in balanced segments (TCN= 2; i.e., mutations on one allele) to estimate tumor
purity. The allelic frequency of mutations is given by

fmut ¼
α ´CNmut

α ´CNtotal þ 2 1� αð Þ :

Thus, the tumor purity would be the local peak of mutations density across
genome segments with balanced copy number 2. The tumor purity was then
inferred from the mutation allele frequency in these segments:

α ¼ 2 ´ fmut:

Inferring allelic tumor copy number and tumor purity of non-reference sam-
ple. For patients from whom multiple samples were analyzed, data from the dif-
ferent samples was used to adjust each other, adding strength to the estimates. In
these cases, the sample with the highest tumor purity was coined the “reference
sample” while the others were termed “non-reference” samples. Segments in non-
reference samples with copy number 0 or copy number 1 were inferred from the
corresponding segments in the reference sample. The difference in relative copy
numbers (DIS) was estimated based on these segments with copy number 0 and
copy number 1. Allele-specific copy numbers were re-evaluated based on the CN0
and DIS estimates, and tumor purity was calculated as shown above. For each non-
reference sample, if TCNs of 50% segments differed from the reference sample, we
would re-infer the TCN for this non-reference sample in case of genome doubling
or tripling.

Estimation of multi-sample tumor allelic copy numbers by clustering of
somatic mutations. The estimation of TCNs based on frequencies of mutations
can be used to tune the accuracy of copy number calls estimated from SNPs. This
approach can be strengthened by use of multiple samples from the same patient. In
the present study, such additional tuning was performed for patient MM01, due to
the combination of low tumor cell fraction and high ploidy. Thus, we submitted
mutations shared between different samples from this patient to K-mean clustering
based on variant allele frequencies of mutations in all combinations of the patient´s
samples. The number of clusters, k, was defined to select the optimal clustering.
Here, the number of clusters resulting in the minimum average sum of squared
errors E(C) for k in the range of 2–5 was selected, where E(C) was defined as:

E Cð Þ ¼
P

n

2

� �
s¼1

Pk
t¼1

P
o2Cts

d o; centsð Þ
n

2

� � ;

where n was the number of samples, s was the combination of two sample, cents
was the centroids of cluster t in combination s, and o represented the mutation in
cluster t of combination s. The distance d was calculated as Euclidean distance.

The optimal combination of pairwise comparisons of samples based on
clustering was regarded as a standard to infer TCNs of each sample from the same
patient. For each previously identified segment of the samples, the median value of
mutation allele frequencies, corrected for copy number and tumor cell content,
mapping into each standard cluster was regarded as the value of the cluster. We
determined the optimal combination of two samples based on maximization of
inter-cluster distances and minimization of intra-cluster distances. First, the
distance between clusters from a combination of two samples was calculated. The
distance d between two clusters Ci and Cj was defined as the Euclidean distance
between the cluster centroids ceni and cenj.

d ¼
X
i¼j

d Ci;Cj

� �
¼

X
i¼j

d ceni; cenj
� �

:

The combination with maximum clustering distance was retained. In cases with
more than one possible combination, the optimal combination of two samples was
derived from the minimum average intra-cluster distances between centroids; the
intra-cluster distance being defined as:

d ¼
Pk

t¼1

P
oi≠oi2Ct

d oi; oj
� �

Pk
t¼1

Ctj j
2

� � ;

where Ctj j was the number of mutation cluster Ct. The combination with the
minimum intra-cluster distance was regarded as the optimal combination of two
samples.

Mutation frequencies of all standard clusters from all segments in the sample
were integrated to estimate their probability densities. For any tumor copy number
(TCN) state, F, local peak values of mutation frequency distributions were regarded
to correspond to specific copy number states, f.

F ¼ f1; f2; ¼ ; fnð Þ

f1<f2<¼<fn;

where fi was the i-th local peak in mutation frequency distribution. The minimum
mutation frequency (fi) in F was defined as corresponding to copy number of 1. We
calculated the interval of TCN as the difference between each fi and fi+1. Further,
based on f1 and interval of TCN, CNH, and CNL of each segment in the sample
were obtained.

Estimation of false discovery rates. To estimate the false positive CNA calls
corresponding to the applied cutoff (a difference in BAF of 0.018 between seg-
ments), we assumed scenarios where the total copy number in tumor cells ranged
from 1 to 8 following a uniform distribution. We simulated 1000 segments (similar
with previous simulation process) under different tumor purities ranging from 1 to
100%, with the different total copy numbers (1–8, respectively; Supplementary
Figure 15). Based on the segments with the same BAF, combining all tumor purity
and total copy numbers, we found the global average false positive rate (FPR) to be
9.88% and the global average false negative rate (FNR) to be 8.44%. The FPR and
FNR decreased with the increasing of tumor purity. At tumor purities below 20%,
FPR and FNR increased rapidly. Importantly, when the tumor purity was higher
than 20%, FPR and FNR was always <10% (Supplementary Figure 15).

Exclusion of samples from analysis. Simulations (see above) introducing dif-
ferent percentages of reads from normal DNA into samples of data from tumor
DNA, indicated that aberrant cell fractions higher than 20% would be sufficient for
accurately calling copy number alterations. Out of the 114 tumor samples that
underwent sequencing, 86 fulfilled this criterion and were used in subsequent
analyses.

Inference of whole-genome duplication. For each sample, to infer whether a
whole-genome duplication event had taken place, we enumerated the fraction of
the genome with a minor allele at copy number 2 and the estimated ploidy. A
manual assignment was then performed, based on the assumptions that (1) the
overall ploidy of a sample having undergone genome duplication would generally
be higher than those of diploid samples, and (2) that the minor allele should be at
copy number 2 in at least some fraction of the genome after a whole-genome
duplication event (Supplementary Figure 2b).

Mutational heterogeneity between samples. For the analysis of inter-lesional
mutational heterogeneity, we considered only mutations whose heterogeneity could
not be reasonably be explained by copy number alterations or lack of sequencing
depth. Thus, mutations were considered to be potentially heterogeneous if (1) in a
sample without a particular mutation, there was no evidence of copy number loss
relative to samples carrying the mutation; and (2) the sequencing depth at the
position was high enough to have a 95% chance of detecting the mutation given an
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allelic fraction of 1 allele out of 4 and the sample-specific tumor cell fraction,
assuming a binomial distribution of variant reads. This resulted in a sample-wise
depth threshold ranging from 56 for samples with a low aberrant cell fraction, to 18
for samples with a high aberrant cell fraction. In addition, a mutation that was not
called by the somatic variant calling pipeline was deemed to be present if the
number of reads supporting the mutation was over 1 and higher than what would
be expected with an error rate of 1/200, assuming a binomial distribution of
supporting reads, with a binomial test p-value of under 0.05. One patient (MM43)
exhibited parallel loss of chromosomes 11q and 14 in each of the sampled lesions.
Heterogeneous mutations on these chromosomes were considered to have been lost
due to copy number alterations.

Calculation of relative VAF and assessment of clonality. As a measure of the
cellular prevalence of each mutation, we calculated the relative variant allele fre-
quency (rVAF) of each mutation as the ratio of observed to expected VAF, given
local copy number state, tumor cell content and estimated number of mutated
alleles:37

rVAF ¼ VAFobs
VAFexp

¼ VAFobs
nmut ´ ρ

2 ´ 1�ρð Þþntot ´ ρ

� � ;

where nmut refers to the number of mutated alleles, ntot refers to the total copy
number at the mutated locus, and ρ refers to the tumor cell content.

Relying on the accuracy of the determination of inter-lesional mutational
heterogeneity, we evaluated the clonality of mutations by comparing the rVAF of
trunk mutations to that of private mutations to infer likely clonal relationships,
using clustering of mutations across samples to validate our findings31. Evaluations
of mutation clonality were based on the interquartile range (IQR) of rVAF values of
trunk mutations only. Thus, mutations were categorized as being subclonal if their
rVAF were below the 25th percentile by 1.5 times the IQR, and otherwise as clonal
if their rVAFs were above 0.5 times the median rVAF. Mutations not specified as
subclonal, and with rVAFs below 0.5 times the median rVAF were considered to be
of unknown clonality.

Relative timing of whole-genome duplication. To determine the fraction of copy
number events that preceded or followed genome duplication, the shortest route to
obtain the observed copy number state for each segment was determined. Here, a
copy number change before duplication would lead to a change in observed copy
number of two copies from the “unaltered” state of two copies, and a copy number
change after genome duplication would lead to a change of one copy. Solving the
resulting equation for the minimum number of events, the sum of events occurring
prior to and following genome duplication was estimated for each allele in each
segment. For each patient, the average number of events across samples was used as
a measure of copy number changes prior to and following duplication. To estimate
the number of mutations that occurred prior to and following genome duplication,
mutations at each allelic state in informative regions of the genome (those with
major:minor allele states of 2:2, 2:1 or 2:0) were enumerated. The fraction, m1, of
mutations preceding duplication was estimated as m1 ¼ 3n2

n1�n2
for copy number 2:1,

or m1 ¼ n2
2n1

for copy number 2:2 and 2:0, where n1, and n2 were the number of
mutations with allele status 1 and 2, respectively.

Statistical analyses. All statistical analyses were performed in the statistical
programming language R (v3.4.1)60. Ranked tests were used for comparisons of
continuous variables across groups (Mann–Whitney U-tests or Kruskal–Wallis
rank-sum tests), or when assessing correlations between continuous variables
(Spearman’s rank correlation), except if otherwise specified. All significance tests
were two-sided, and statistical significance was considered for p < 0.05.

Data availability. Raw sequencing data are not publicly available due to national
regulations regarding privacy concerns of study participants. Data on somatic
mutations are presented in Supplementary Table 1.
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