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Abstract 17 

Models relating sediment supply to catchment properties are important in order to use the geological 18 

record to deduce landscape evolution and interplay between tectonics and climate. Water-discharge 19 

(Qw) is an important factor in the widely used BQART-model, which relates sediment load to a set of 20 

measureable catchment parameters. Although many of the factors in this equation may be 21 

independently estimated with some degree of certainty in ancient systems, water-discharge (Qw) 22 

certainly cannot. An analysis of a world database of modern catchments with 1255 relevant entries  23 

shows that the commonly applied equation relating catchment area (A) to water-discharge 24 

(Qw=0.075A0.8), does not predict water-discharge from catchment area well in many cases (R2=0.5 and 25 

an error spanning c. 3 orders-of-magnitude). This is because the method does not incorporate the 26 

effect of arid and wet climate on river water-discharge. The inclusion of climate-data into such 27 

estimations is an opportunity to refine these estimates, because generalized estimates of 28 

palaeoclimate can often be deduced on the basis of sedimentological data such as palaeosol types, 29 

mineralogy and palaeohydraulics. 30 

This paper investigates how the relationship between catchment area and river discharge vary with 31 

four runoff categories (arid, semiarid, humid, and wet) which are recognizable in the geological record, 32 
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and modifies the coefficient and exponent of the abovementioned equation according to these classes. 33 

Our modified model yields improved results in relating discharge to catchment area (R2=0.95 and error 34 

spanning 1 order-of-magnitude) when core-, outcrop- or regional palaeoclimate reconstruction data 35 

are available in non-arid systems. Arid systems have an inherently variable water-discharge, and 36 

catchment area is less important as a control due to downstream losses. The model here is sufficient 37 

for many geological applications and makes it possible to include variations in catchment humidity in 38 

mass-flux estimates in ancient settings.  39 

1. Introduction 40 

The extent and quality of geomorphological and subsurface datasets has increased greatly in recent 41 

decades, and has made it possible to attempt to reconstruct ancient sedimentary systems from source-42 

to-sink (e.g. Sømme et al., 2009; Galloway et al., 2011; Allen et al., 2013; Michael et al., 2013; Hampson 43 

et al., 2014; Holbrook and Wanas, 2014; Bentley et al., 2015). The goals of such studies are to 44 

understand the coupling between sediment producing catchments (or source areas), sediment-storing 45 

sedimentary basins (or sinks), the sediment routing systems connecting these systems, and how these 46 

interact to record earth history (e.g. Hinderer, 2012; Helland-Hansen et al., 2016). Such studies may 47 

be undertaken in order to predict or estimate parameters of sedimentary transport-networks which 48 

are inaccessible to study due to erosion or burial (Martinsen et al., 2010), understand the propagation 49 

and fidelity of environmental signals through time (Paola et al., 1992; Romans et al., 2016), and 50 

characterise the evolution of past landscapes (e.g. Sømme et al., 2009; Bhattacharya et al., 2016; Eide 51 

et al., in press).  52 

The BQART-approach, based on an empirical model relating sediment load in modern rivers to 53 

catchment parameters, was developed by Syvitski and Milliman (2007). This method has recently been 54 

applied to investigate ancient deposits (Weight et al., 2011, Sømme et al., 2013, Allen et al., 2013). The 55 

details are outlined below, but the model is on the form of an equation with the following parameters 56 

valid for ancient systems: sediment load, catchment area, catchment relief, catchment lithology, 57 

catchment temperature, degree of glacial cover, and water-discharge of the river. Depending on the 58 

available dataset and the questions asked, some of these parameters may be measured, estimated or 59 

modelled, while some parameters are kept as variables (e.g. Sømme et al., 2013; Allen et al., 2013; 60 

Eide et al., in press).  61 

In the absence of good palaeohydraulic data, such as dimensions of trunk channels and bedforms 62 

within them (e.g. Bhattacharya and Tye 2004; Holbrook and Wanas, 2014), or extremely well-63 

constrained modern analogues with well-chosen regional curves (Davidson and North, 2009), water 64 

discharge in ancient rivers is difficult to estimate well. In most studies using the BQART-approach in 65 

ancient systems, water-discharge is estimated using a power-law function relating river discharge (Qw) 66 

and catchment area (A), which was proposed by Syvitski and Milliman 2007: 67 

Eq. 1: Qw = kAm 68 

where Qw is water-discharge in m3/s, A is catchment area in km2, k is an empirical constant set to 0.075, 69 

and m is an empirical constant set to 0.8. However, some catchments are much drier than others (e.g. 70 

Fig 1; Beck et al., 2015), and this is not taken into account in this model. Therefore, using this model 71 

may lead to large, systematic errors in the estimation of water-discharge (up to 2.5 orders of 72 

magnitude, excluding outliers, c.f. Figs. 2A, 3).  73 



Because generalized interpretations of large-scale climate can be made from simple geological 74 

observations (e.g. Retallack, 1997; Parrish, 1998; Hay, 2008), it should be possible to improve estimates 75 

of water-discharge of ancient catchments if geological data are available. In this paper, a global 76 

database of catchment properties of rivers discharging into the ocean (Milliman and Farnsworth, 2011) 77 

is used to improve the model for water-discharge from catchments. This model is presented as Eq. 1. 78 

It is shown that discharge may be predicted from catchment area (and vice versa) at an acceptable 79 

level of precision and accuracy by using the method presented in this paper: choosing appropriate 80 

values for k and m in Eq. 1 by classifying studied deposits into four runoff classes (arid, semiarid, humid 81 

and wet). These classes can readily be estimated by geological palaeoclimatological indicators (e.g. 82 

palaeosol types, presence of climate-sensitive sedimentary environments such as evaporites and 83 

aeolian dunes) and published palaeogeographic reconstructions. This yields simple, reliable and well-84 

constrained inputs to source-to-sink models.  85 

Thus, the goals of this paper are threefold: (1) to present an improved model for estimating 86 

relationship between river discharge and catchment area for different climate types in modern 87 

environments, (2) to outline how these relationships may be employed in deep time stratigraphic 88 

successions where proxies for palaeoclimate can be retrieved, and (3) to investigate in which settings 89 

this model might be inappropriate. 90 

2. Background 91 

2.1 The BQART-model 92 

In deep-time systems (>> 1 Ma), significant parts of sediment sinks are often preserved in 93 

sedimentary basins, but the sediment source areas are commonly eroded or extensively modified 94 

(e.g. Blum and Pecha, 2014; Eide et al., 2016; Eide et al., in press). Ancient catchment areas may be 95 

reconstructed to some degree using different thermochronological methods, such as detrital zircon 96 

and fission track data (e.g. Gallagher et al., 1998; Fedo et al., 2003; Lisker et al., 2009). However, 97 

these methods require significant skill, time, funds and material. Thus, a popular and well-established 98 

method used to investigate source-to-sink relationships in ancient systems is to apply the BQART-99 

method developed by Syvitski and Milliman (2007) (e.g. Weight et al., 2011; Allen et al., 2013; 100 

Sømme et al., 2013). It is an empirical model, based on global regression of modern catchment data, 101 

and uses the following equation for catchments with average mean temperatures > 2°C: 102 

Eq. 2: Qs = ωBQw
0.31A0.5RT 103 

where Qs is sediment load (Mt/yr), ω is a constant of proportionality set to 0.0006, Qw is long term 104 

water-discharge (km3/yr), A is catchment area (km2), R is maximum relief in the catchment (km), T is 105 

long-term average temperature in the catchment (°C) and B is a factor based on the glacial erosion 106 

factor (I), lithology (L), trapping efficiency of lakes and reservoirs (Te), and human-influenced soil 107 

erosion (Eh), given by the following equation: 108 

Eq. 3: B = IL(I-Te)Eh 109 

In non-glaciated, pre-human catchments, the factor B simplifies to lithology (L) only. Some inherent 110 

limitations to this model should be pointed out: it only includes suspended load (which is commonly 111 

taken to be > 90% of total load); and that it is based on time series in the order of 30 years, and thus 112 



underestimates sediment transport related to rare, catastrophic events (Milliman and Farnsworth, 113 

2011). Furthermore, although water-discharge is a weak variable in the Eq. 2 (i.e. it has the lowest 114 

exponent), it is also the most variable of the variables. For natural systems in the database (Milliman 115 

and Farnsworth, 2011), water-discharge varies across six orders-of-magnitude, versus 5 orders-of-116 

magnitude for area, three orders-of-magnitude for relief, two for temperature and one for lithology. 117 

Thus, compared to the natural variability of the other factors, it the second-most important variable 118 

controlling sediment discharge.  119 

2.2. Catchment relief, lithology and temperature 120 

For ancient catchments, factors such as relief, bedrock type, catchment palaeotemperature and 121 

presence and extent of glaciers may often be approximated based on regional geological evidence, 122 

and from published global data. Relief (R) may be estimated through modern topographic analogues 123 

(systems draining uplifted rift shoulders, flat plains or large orogens; c.f. Parrish, 1998), fission track 124 

analysis, or preserved palaeosurfaces (e.g. Leturmy et al., 2003; Sømme et al., 2009). Bedrock type (L) 125 

may be estimated through provenance studies of detrital mineralogy and clast composition, and 126 

extrapolation of geological maps into now eroded areas. Catchment temperature (T) may be estimated 127 

from global palaeo-general circulation models (e.g. Sellwood and Valdes, 2006), isotope-based 128 

palaeotemperature-estimates (Sun et al., 2012), reconstructions based on plant communities and 129 

palynofloras (e.g. Paterson et al., 2016), and geological evidence such as palaeosol types (e.g. Wright, 130 

1990; Mack and James, 1994; Kraus, 1999; Parrish, 1998; Retallack, 2001; Müller et al., 2004; Nystuen 131 

et al., 2014).  132 

2.3. Catchment area 133 

Catchment area (A) is in most cases hard to constrain accurately in ancient systems, due to erosional 134 

and tectonic modification. In systems with a marked topographic axis, such as in convergent and 135 

transpressive regimes, catchment area may be estimated using distance to the topographic axis and 136 

Hack’s Law (Hack, 1957; Rigon et al., 1996). However, these are also the most short lived and unstable 137 

source-to-sink systems, and sediment transport networks are prone to change through time 138 

(Woodcock, 2004).  139 

2.4. Water-discharge, climate and runoff 140 

In uplifted, dissected and well-exposed systems, water-discharge (Qw) may be estimated using 141 

palaeohydraulic methods based on exposed trunk river channel dimensions (Bhattacharya and Tye, 142 

2004; Holbrook and Wanas, 2014). These methods may also be applied to subsurface datasets: 143 

attribute maps derived from 3D-seismic data may give full plan view control of parts of deposits of 144 

fluvial systems, and thickness of channels and bedforms can be measured in core. However, such 145 

comprehensive datasets are commonly not available. In cases where very well-constrained modern 146 

analogues have been determined, regional hydraulic geometry curves from comparable modern 147 

systems could be applied to derive catchment area and water-discharge (Davidson and North, 2009). 148 

However, there is generally significant uncertainty in defining suitable analogues for regional hydraulic 149 

geometry curves, especially in ancient times with varying global climates and equator-pole 150 

temperature gradients (c.f. Hay, 1998). 151 

Syvitski and Milliman (2007) presented Eq. 1 as a simple method to estimate water-discharge from 152 

catchment area. However, this method is clearly inadequate to relate discharge and catchment area, 153 

because two equally large catchments in different climates will have very different water-discharge 154 



(Fig. 1), owing to varying amounts of rainfall and evapotranspiration (e.g. Mu et al., 2007; Beck et al., 155 

2015).  156 

The runoff (ratio of annual river discharge to catchment area) of rivers varies with climate (Fig. 1). 157 

Runoff of rivers is commonly given in mm km-1 yr-1, and is therefore easily compared with catchment-158 

averaged rainfall. The runoff efficiency of a catchment is the ratio of runoff to catchment-averaged 159 

rainfall, and is commonly lower in drier catchments due to higher evapotranspiration and infiltration 160 

losses, and high in wetter catchments due to moister soil (e.g. McCabe and Wolock, 2016). Thus, runoff 161 

of rivers is strongly dependent upon climate, as more precipitation will lead to higher runoff due to 162 

increase in both the availability of water, and increase in runoff efficiency.  163 

3. Dataset and methods 164 

This study is based on analysis of the global database of catchment properties presented by Milliman 165 

and Farnsworth (2011), which collates a wealth of information from modern catchments debouching 166 

into the ocean, such as sediment supply, relief, climate, location, and most importantly for this study: 167 

catchment area and water-discharge. These systems are investigated using cross plots and power law 168 

regression (Figs. 2-4), and are further investigated using published data and publically available 169 

satellite imagery. The database (Milliman and Farnsworth, 2011) contains 1531 entries, and 1255 of 170 

these have information about catchment area and river discharge. Furthermore, 72 of these systems 171 

have information about pre-dam discharge. For these systems, the pre-dam discharge is used to 172 

provide values for runoff and discharge. It is worth noting that many of the rivers with pre-dam 173 

discharge-values are well-known rivers with extensive water management systems (e.g. Murray-174 

Darling, Nile, Colorado), indicating that these are the catchments which have been changed most by 175 

human intervention. Although most other catchments will likely have some amount of damming or 176 

watercourse interventions, this cannot be accounted for using the utilized database. 177 

The boundaries for runoff categories employed by Milliman and Farnsworth (2011) in their 178 

compilation, (arid 0-100; semiarid 100-250; humid 250-750; and wet >750 mm km-1 yr-1) gave good 179 

results and are adopted in this study.  180 

4. Results 181 

4.1. Analysis of accuracy using fixed constants in Eq. 1 182 

Figure 2A presents the actual catchment area for all catchments in the database, versus predicted 183 

catchment area using Eq. 1 and the fixed constants from Syvitski and Milliman (2007). This plot shows 184 

that using this method, catchment area is underestimated for arid systems, and overestimated for wet 185 

systems. Furthermore, this method leads to large variation in error (c. 2.5 orders of magnitude when 186 

outliers are excluded) of estimation of catchment areas for arid systems (Fig. 2A). Semiarid, humid and 187 

wet systems generally show little variation in error and generally constrain the input with some 188 

accuracy (within 30x).  189 

Figure 3 presents the runoff of all systems in the database (Milliman and Farnsworh, 2011), plotted 190 

against the error of the catchment area estimation. Using fixed values for k and m in Eq. 1, error in the 191 

catchment area estimation is dependent on runoff alone. Using this method, catchment area is 192 

systematically and strongly underestimated in arid systems (median error: 0.06x), systematically 193 



underestimated in semiarid systems (median error: 0.4x), correctly estimated for humid systems, and 194 

systematically overestimated for wet systems (median error: 4x).  195 

4.2. Determination of coefficients in Eq. 1 for each runoff class 196 

In order to obtain new constants for each of the four runoff classes, power-law regression was 197 

performed on cross plots of catchment area versus runoff for each of the four runoff classes (Appendix 198 

A1). Determined best-fit exponents and correlation coefficients (R2) are presented in Table 1. Plots of 199 

actual versus estimated catchment area using the proposed model are presented in Fig. 4. These show 200 

a significant improvement compared to using fixed constants (c.f. Fig. 2A), but also large variations in 201 

arid systems. The previous and the proposed model are compared in Figures 2B and 2C, including and 202 

excluding arid systems, respectively. This shows that estimates of catchment area are significantly 203 

improved using the proposed method. However, catchment area estimation appears to be too variable 204 

to be useful in arid catchments.  205 

5. Discussion 206 

5.1. Recognition of runoff classes in ancient deposits 207 

Defining the runoff class of ancient deposits makes estimations of river discharge and catchment area 208 

more accurate (Fig. 2B, Table 1). The key assumption in this work is that the runoff classes defined in 209 

this study would correspond to geologically observable factors. As the study of ancient climates is a 210 

science in itself, only a superficial overview can be presented here. For a comprehensive view, see 211 

important works by e.g. Hay (1998; 2008), Hay and Floegel (2012); Parrish (1998) and Driese et al. 212 

(2005).  213 

There are several depositional features which are preserved in sedimentary systems (c.f. Fig. 5) and 214 

observable in the geological record (Table 2) that makes it possible to interpret whether deposition 215 

occurred under arid, semiarid, humid or wet conditions. These include particular palaeosol types 216 

(calcretes, oxisols, coals) and features (e.g. Mack and James, 1994; Bestland, 1997), aeolian dunes, 217 

plant communities (e.g. Paterson et al., 2016), soil color, mineralogy, fluvial architectures (Retallack, 218 

2001; Nystuen et al., 2014), and isotopes (Cerling, 1984). However, care must be taken as climate in 219 

the basin can be different from that in the catchment area (Fig. 1; c.f. Nystuen et al., 2014). 220 

Furthermore, it must be pointed out that several of the features mentioned here are not controlled by 221 

runoff alone, but are also partly a function of temperature and evaporation. Models for estimating 222 

runoff in cold and polar systems are not well-developed, and the method presented here would likely 223 

not work well in such systems.  224 

5.2. Comparison to method using fixed constants 225 

Comparison between the method presented here (varying constants by climate class) versus the 226 

method using fixed constants in Eq. 1 is presented in Fig. 3. This figure shows that the method using 227 

fixed constants performed well for systems with runoff within the ranges 200-800 mm km-1 yr-1 (Fig. 228 

3), a range which contains 43% of the catchments in the database. For the wet category, which contains 229 

30% of the data, the proposed method is significantly better than using fixed constants (Fig. 3). 230 

Furthermore, this study shows that it is difficult to estimate runoff for arid systems, as annual discharge 231 

is not primarily controlled by catchment size in such systems. Still, the proposed method decreases the 232 

error of arid systems by two orders of magnitude. Finally, this study shows that water-discharge and 233 



catchment area can be related with a high degree of confidence if the runoff class of the system can 234 

be determined, with the exception of arid systems. 235 

The results of sediment mass-flux calculations from ancient catchments, made using the BQART-236 

approach (Syvitski and Milliman, 2007), change significantly when runoff class of the studied system is 237 

taken into accountThe difference for sediment load (QS in Eq. 2) calculated using water-discharge from 238 

the two methods presented herein (fixed constants versus variable constants for each class) is greatest 239 

for small, dry catchments and for large, wet catchments  (Table 3).. For small (100 km2) arid and 240 

semiarid catchments, using varying constants in Eq. 1 yields a 69% and 40% decrease in sediment load, 241 

respectively, compared to results using fixed constants. For large (106 km2, ‘continental’ scale 242 

catchments) humid and wet catchments, using variable constants for each climate class gives a 36% 243 

and 73% increase in sediment load, respectively. Thus, this study shows that it is important for studies 244 

using the BQART-approach in ancient systems to take runoff into account, not only catchment 245 

temperatures.  246 

5.3. Human influence and validity of methods 247 

The majority of world catchments have some degree of human influence. In the database (Milliman 248 

and Farnsworth, 2011), 72 of the 1255 catchments also have data about pre-dam discharge. 29% of 249 

these are classified as arid based on runoff, 29% are semiarid, 31% are humid and 11% are wet. Post-250 

dam discharge decrease in 71 of the 72 catchments, and the reduction ranges from 11% (Tapti, India) 251 

to 99% (Colorado, USA), and no correlation between the amount of decrease and runoff or catchment 252 

area exists. This indicates that post-dam discharge reduction is mainly determined by water 253 

management strategies and water demand, not natural properties inherent to catchments, making 254 

this difficult to correct for in a global dataset. 255 

It is worth noting that the catchments with pre-dam discharge-data in the database often represent 256 

highly populated catchments with well-known and large water management projects, such as the Nile 257 

(NE Africa), Orange (S Africa), Los Angeles (USA), Colorado (USA) and Huanghe (China) (c.f. Fig. 1). It 258 

may therefore be speculated that discharge from catchments without pre-dam discharge data is 259 

generally less affected by human intervention than catchments with pre-discharge data. Thus, it is 260 

estimated that the coefficients presented here, which are conditioned to post-dam catchment 261 

discharge, might underestimate final discharge to some degree. However, further research would be 262 

needed to constrain this amount. 263 

5.4. Large discharge variations in arid systems 264 

This study illustrates that discharge from arid catchments is not controlled to a great degree by 265 

catchment area. This is not surprising, as rivers in arid catchments show flashy discharge and have 266 

significant downstream discharge losses. Because of this, discharge during one flood event may be 267 

greater than the discharge of several years combined (e.g. Tooth, 2000; Milliman and Farnsworth, 268 

2011). Thus, discharge of rivers in arid catchments is more dependent upon the amount and location 269 

of rainfall during one single flood, and the degree and extent of wetting prior to the flood, than the 270 

size of the catchment itself. Large arid catchments have the potential to loose significant amounts of 271 

water through infiltration and evaporation, and this is particularly likely for parts of the catchment 272 

located far from the river mouth. This leads to low predictability of discharge in arid systems for a 273 

method which uses catchment area as input.  274 



6. Conclusions 275 

When reconstructing ancient source-to-sink systems, estimates of water-discharge (Qw) and 276 

catchment area (A) are crucial in order to apply mass-balance models. Here, it is demonstrated that 277 

the previous method (Qw=0.075A0.8) works reasonably well in semiarid and humid settings, but that it 278 

yields a significant overestimation of catchment area in wet systems, and a significant underestimation 279 

of catchment area in arid systems. Because catchment climate can be readily defined from geological 280 

evidence, a new method with different exponent and coefficient for each runoff class is presented. 281 

This study shows that it is possible to achieve improved correspondence between measured and 282 

predicted values (R2-values of 0.95) in non-arid modern systems. However, arid systems show too high 283 

variability to be reliably predicted in this way, because of the large temporal variation in rainfall and 284 

high downstream losses discharge for arid systems. This has important implications for studies which 285 

employ the BQART-method in ancient systems, because climatic changes may strongly influence 286 

sediment flux from catchments.  287 
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 297 

Fig. 1: World map showing present-day global runoff (Beck et al., 2013; 2015), locations of river outlets from 298 

catchments in the database of modern systems (Milliman and Farnsworth, 2011), and major world catchments. 299 



 300 

Fig. 2: Cross plots showing relationship between actual and estimated catchment area using different constants 301 

k and m (Table 1). Data points are from the catchment database of Milliman and Farnsworth (2011), N=1255. A) 302 

Cross plot showing estimates of catchment area of modern catchments using fixed values for k and m (k=0.075 303 

and m=0.8) across different runoff classes. Note the systematic underestimation and large spread of errors in 304 

estimation of arid catchment area, and the systematic overestimation of wet catchment area. B) Comparison of 305 

results using fixed k and m, versus varying k and m based on runoff class, as proposed herein. C) Comparison of 306 

results using fixed k and m, versus varying k and m based on runoff, for all data excluding arid systems (i.e. plot 307 

is as (A) without arid systems).  308 



 309 

 310 

Fig. 3: Runoff and error in catchment area estimation using fixed versus variable constants in Eq. 1 for 1255 311 

modern catchments (from Milliman and Farnsworth, 2011). An error value of 1 indicates no error in the 312 

catchment estimation, and error values of 0.1 and 10 indicate ten times under- and overestimation of catchment 313 

area, respectively. Note the large errors associated with wet and arid systems using fixed constants (grey 314 

squares), and how this improves significantly using the method proposed in this contribution (coloured symbols 315 

for each class). 316 

 317 



 318 

Fig. 4: Cross plots showing actual catchment area versus catchment area estimated from water-discharge in 319 

modern catchments, using Eq. 1 and different values of constants k and m for each runoff class (Table 1). Note 320 

the improved fit between actual and estimated area compared to Fig. 2A, and note that errors are still large for 321 

arid systems. See Table 1 for correlation coefficients. Data points are from the catchment database of Milliman 322 

and Farnsworth (2011), N=1255. 323 

 324 

 325 

Fig 5: Satellite images of sedimentary systems in the four runoff categories, showing the clearly different 326 

landscapes that would be expressed as detectable geological indicators. For locations, see Fig. 1. A) Orange River, 327 

Namibia. Runoff = 4.5 mm km-1 yr-1. B) Narmada River, India. Runoff = 230 mm km-1 yr-1. C) Grijalva River, Mexico. 328 

Runoff = 460 mm km-1 yr-1. D) Rajang, Indonesia. Runoff = 2 150 mm km-1 yr-1. Image data are © Google 2016. 329 

 330 

Table 1: Runoff category limits, constants k and m, and correlation coefficients (R2) for each of the 331 

populations plotted in Figures 2 and 4.  332 

Table 1: Runoff category limits, constants k and m, and correlation coefficients (R2) for each of the 333 

populations plotted in Figure 2.  334 



Model Class Runoff k m R2 

  (mm yr-1 km-1)    

Eq. 1, fixed 
constants 

All data >0 0.075 0.8 0.50 

All data, arid excluded >100 0.075 0.8 0.74 

 Arid 0-100 0.0005 1.0633 0.72 
Proposed method: 
Eq. 1, constants 
vary by class 

Semiarid 100-250 0.0063 0.9824 0.98 
Humid 250-750 0.0161 0.9839 0.96 
Wet >750 0.0873 0.9164 0.99 

All data >0 varies  varies 0.90 

 All data, arid excluded >100 varies  varies  0.95 

 335 

 336 

Table 2: Generalized criteria for determining palaeoclimate from geological indicators.  337 

 Arid Subarid Humid Wet Notes References 

Runoff  
(mm km-1 yr-1) 

<100  100-250 250-750 >750 - - 

Palaeosol 
types 

Calcisols, 
gypsisols, entisols, 
inceptisols 
 

Calcisols, vertisols 
 

Argillisols, 
spodsols, 
gleysols, 
histosols 
 

Histosols, 
gleysols,  
Oxisols, 
agrillisiols 

Extensive well-drained 
soils not expected in 
sedimentary basins in 
wet and humid 
systems 

Mack and 
James, 1994 

Root types Deep tap-roots Deep tap-roots - Tabular mat  Retallack, 
1997; 2001;  

Mineralogy Presence of 
gypsum, 
carbonate.  

Presence of 
carbonate 

- High 
proportion of 
quartz versus 
feldspar,  

Quartz/feldspar ratio and 
ratios of smectite and 
kaolinite to immature clay 
minerals (illite and 
chlorite) increase due to 
increased chemical 
weathering under higher 
temperature and 
humidity. 

Robert and 
Kennet, 
1994; 
Retallack, 
1997; 
Nystuen et 
al., 2014;  

River 
architectures 

Strongly 
ephemeral/flashy 

Ephemeral/flashy Perennial  Perennial  - Tooth, 2000; 
Nystuen et 
al., 2014 

Other: Nearby aeolian or 
evaporite 
deposits 

- - - - - 

 338 

 339 

Table 3: Change in calculated sediment load using the proposed method to calculate water discharge 340 

as input to the BQART-approach (Eq. 2; Syvitski & Milliman, 2007), compared to using fixed 341 

constants, keeping all other variables equal. 342 

 343 

Area, km2 

Modern 
river at this 

scale 

Change in calculated sediment load 

Arid Semiarid Humid Wet 

6300000 Amazon  -24 % 12 % 52 % 84 % 

1000000 Ganges -35 % 1 % 36 % 73 % 

100000 Colorado -46 % -11 % 20 % 59 % 

10000 Severn -55 % -22 % 5 % 46 % 

1000 Dee -63 % -31 % -8 % 34 % 

100 - -69 % -40 % -19 % 24 % 
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