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Summary: 

Background: Interleukin 6 (IL-6) is an important regulator of immunity and inflammation in many 

diseases. Single nucleotide polymorphisms (SNPs) in the IL-6 gene influence outcome after allogeneic 

stem cell transplantation (ASCT), but the possible importance of SNPs in the IL-6 receptor has not been 

examined. We therefore investigated whether SNPs in the IL-6R gene influenced biochemical 

characteristics and clinical outcomes after ASCT. 

Patients and methods: We investigated the IL-6 promoter variant rs1800975 and the IL-6R SNPs 

rs4453032, rs2228145, rs4129267, rs4845374, rs4329505, rs4845617, rs12083537, rs4845618, 

rs6698040 and rs4379670 in a 101 population-based cohort of allotransplant recipients and their family 

donors.  

Results: Patients being homozygous for the major alleles of the IL-6R SNPs rs2228145 and rs4845618 

showed high pre-transplant CRP serum levels together with decreased sIL-6R levels; the decreased IL-

6R levels persisted 6 months post-transplant. In contrast, patients being homozygous for the minor allele 

of the IL6-R SNP rs4379670 showed decreased pretransplant CRP levels. Furthermore, the IL-6R 

rs4845618 donor genotype showed an association with severe acute graft versus host disease (GVHD), 

whereas the donor genotype of the IL-6 SNP rs1800795 was associated with decreased survival 100 

days post-transplant. Finally, the recipient genotype of the IL-6R SNP rs4329505 showed a strong 

association with 2-years non-relapse mortality and this effect was highly significant also in multivariate 

analysis. 

Conclusion: IL-6 and IL-6R SNPs influence the clinical outcome after allogeneic stem cell 

transplantation.   
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INTRODUCTION 

 

   The balance between pro- and anti-inflammatory cytokines during the pre- as well as the post-

transplant period influences the risk of acute or chronic graft-versus-host disease (GVHD) after 

allogeneic stem cell transplantation (ASCT) [1, 2]. Several studies have also demonstrated that the gene 

expression and activity of single cytokines differ between healthy individuals due to single nucleotide 

polymorphisms (SNPs) and this is an independent risk factors for GVHD [3]. SNPs in the Interleukin-6 

receptor (IL-6R) gene influence the balance between pro and anti-inflammatory IL-6 activities [4, 5]. 

The SNP rs1800795 in the promoter region of the IL-6 gene results in increased IL-6 levels and is 

associated with an adverse outcome after allotransplantation [6-10]. In addition, it has recently also been 

shown that polymorphism in Janus kinas 2, that is directly downstream of the IL-6R, are associated with 

increased risk of GVHD [11]. Experimental studies support the hypothesis that there are close links 

between increased IL-6 activity, T-cell development and end organ damage after ASCT [12-15]. Finally, 

IL-6 is a pleiotropic cytokine that is involved in regenerative processes especially in the liver and the 

gastrointestinal tract, two organs that are commonly affected in GVHD [16-19] .  

   IL-6R exists both in a membrane-bound (mIL-6R) and a soluble form (sIL-6R). Only specific cell 

types express mIL-6R, and initiation of downstream signaling through binding of IL-6 to the surface 

expressed mIL6-R/gp130 complex is termed cis or classical IL-6 signaling [20]. On the other hand, sIL-

6R can bind to surface-expressed gp130 that is expressed by most cells and a complete IL-6/IL-

6R/gp130 complex can thereby be formed and initiate downstream signaling even in cells that do not 

express the IL-6R themselves [20]. This is termed trans-signaling; such signaling seems important for 

initiation of many proinflammatory IL-6 effects [20] and can be specifically inhibited by a soluble form 

of gp130 (sgp130). sIL-6 receptor is formed through proteolytic cleavage of the membrane-bound 

receptor by ADAM (A Disintegrin and Metalloprotease) proteases [5, 21]. The sIL-6R levels increase 

during inflammation due to upregulation of ADAMTS-17; the inhibitory capacity of sgp130 is thereby 

overwhelmed and IL-6 trans signaling is initiated [21]. 

   The SNP Ala358Asp/rs2228145 alters the amino acid sequence of the IL-6R chain at the site of 

cleavage by ADAMTS17, and this SNP will thereby alter the rate of proteolytic sIL-6R release [5], 
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Individuals that are hetero- or homozygous for the rs2228145 allele will therefore have significantly 

higher levels of sIL-6R compared to individual that are homozygous for the ancestral allele [4]. Both 

experimental and epidemiological data suggest that rs2228145 modulates IL-6 trans-signaling, and this 

seems to be associated with altered CRP levels, severity of autoimmune diseases and risk of 

cardiovascular disease [22, 23]. Other IL-6R SNPs have also shown independent effects on the levels 

of sIL-6R as well as other soluble inflammatory mediators [4, 24], but the molecular mechanisms behind 

these effects have not been elucidated.  

   To the best of our knowledge the effects of IL-6R SNPs on the cytokine network and the outcome 

after allotransplantation have not been examined previously. Inhibition of the IL-6/JAK2/STAT 

pathway is now considered as a possible strategy for prophylaxis and treatment for graft versus host 

disease (GVHD) [25]. A more detailed characterization of the possible biological importance of IL-6R 

SNPs will then be needed as a part of the scientific basis for further clinical studies of IL-6 targeting 

therapy in allotransplant recipients. In the present study, we therefore investigated how specific IL-6R 

SNPs influence pre- and post-transplant serum levels of C reactive protein (CRP), IL-6 sIL-6R, sgp130 

as well as the risk of acute and chronic GVHD after ASCT. 

 

PATIENTS AND METHODS 

 

Patients  

   The study was approved by the local Ethics Committee (REK VEST 2013/ 634 and REK VEST 

2015/1410; Regional Ethics Committee III, University of Bergen, Norway). Only patients with an 

available family donor were transplanted at our center during the study period (from January 2006 until 

June 2016), and this represents all allotransplanted patients with family donors from a defined 

geographical area of Norway (Norwegian Health Regions III, IV and V). No transplantations with other 

donor types were included. The decision to proceed to transplantation was taken by the Norwegian 

Advisory Board for Stem Cell Transplantation and based on national guidelines.  
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Design of the study 

   Primary goal. The primary goal in our present study was to investigate the effects of different SNPs 

on (i) pre- and post-transplant serum levels of CRP, sIL-6R and sgp130, and (ii) clinical outcomes.  

   Selection of SNPs. More than 1000 SNP have been identified in the IL-6 receptor gene [26]. The 

selection of SNP to be analyzed was based on review of the available literature, and in addition we 

required that all selected SNPs should have a minor allele frequency (MAF) of at least 10%. The IL-6R 

SNP rs2228145 was included because it is important for the release rate of sIL-6R, it has well-defined 

biological effects [5] and influences outcome in several inflammatory disorders e.g. rheumatoid arthritis, 

asthma and cardiovascular disease [27-29]. To evaluate if other independent SNPs in the IL-6R gene 

are important for serum levels or posttransplant outcomes we used the same tagging SNPs as described 

previously by Lopez-Lasanta et al [29]. In summary, each of the SNPs rs4379670, rs6698040, 

rs4845374, rs4453032 and rs4845618 independently tags approximately 100 different SNPs (r2 above 

0,7) within the IL-6R gene.  

   We identified one cohort of allotransplant recipients where the effects of 8 IL-6R SNPs had been 

examined [30, 31]. Two of these SNPs were excluded from our study due to an expected minor allele 

frequency below 0.1 %, and 5 of the other SNPs were excluded because they show strong linkage 

disequilibrium (r2 >0,7)  with the tagging SNPs rs4379670 or rs4845618 according to the SNP 

Annotation and Proxy Search database [32]. The last of these 8 SNPs was rs4845617 that had weak 

linkage disequilibrium both with the selected tagging SNPs, and therefore was included in our study. 

Finally, based on our review of the literature we also included the two SNPs rs4329505 and rs12083537 

because they are independent of rs2228145 with respect to influence on CRP levels, responses to anti-

IL6 treatment and risk of autoimmune disease [33-35].  

   The IL-6 promoter region SNP rs1800975 influences IL-6 expression and outcome after 

allotransplantation and was therefore included in our study [8-10, 31]. 

   Clinical outcomes. The clinical outcomes were defined as (i) risk of acute GVHD requiring high-dose 

steroid treatment; (ii) transplant-related mortality at day +100 post-transplant (acute GVHD is defined 

as a complication mainly occurring before day +100); (iii) transplant-related mortality 2 years after 

transplantation (relapse usually occurs during the first two years after allotransplantation); and (iv) the 
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risk of chronic GVHD requiring systemic immunosuppression. Acute and chronic GVHD were 

diagnosed according to generally accepted criteria [36]. All patients with acute GVHD were evaluated 

using the Glucksberg score, and patients who required intravenous treatment with at least 1 mg/kg/day 

of methylprednisolone (or equivalent steroid dose) for acute GVHD were considered to have serious 

(i.e. grade 2-4) acute GVHD. For evaluation of chronic GVHD we performed a landmark analysis where 

we only included patients that were alive at day +100 posttransplant without relapse. Patients that were 

previously treated with high-dose steroids for aGVHD were also excluded from the analysis to reduce 

the heterogeneity of this group and ensure that only patients with classic chronic GVHD were included 

and not patients that could have chronic overlap [37]. Furthermore, this selection of patients ensured 

that all patients included in the landmark analysis were only treated with one systemic 

immunosuppressive drug (cyclosporine A) and started taper off cyclosporine A at day +100; we thereby 

we had a very simple and reliable readout of chronic cGVHD that could be defined as development of 

a clinical picture consistent with chronic GVHD requiring systemic immunosuppression either by an 

additional immunosuppressive agent/treatment to cyclosporine A or by prolongation of the ongoing 

cyclosporine A prophylaxis. Standard comorbidity index scores (HCT-CI and EBMT-score) were not 

systematically implemented or register until after 2012 and were therefore available only for a minority 

of patients. 

 

Preparation of plasma samples and analysis of cytokine levels 

   Pretransplant samples were collected either on the day of the pre-transplantation evaluation or on the 

day of admission for stem cell transplantation (median 23 days pretransplant, interquartile range (IQR) 

14 days). Blood samples and clinical information (i.e. data on relapse, GVHD, and other transplant-

related complications) were collected every third month during the first year posttransplant and 

thereafter once a year. 

   Serum was prepared from venous blood within 2 hours after sampling. The serum was transferred to 

cryotubes and stored at -80°C until analyzed. Bio-Plex kits were used for analysis of IL-6, sgp130 and 

sIL-6R (sCD126) levels (Bio-Rad, Hercules, CA, USA), and all samples were analyzed using the 

Luminex®200™ Bio-Rad platform. All other blood tests included in this study were performed 
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immediately after sampling at Laboratory for Clinical Biochemistry, Haukeland University Hospital, 

and the same methods and technology were used throughout the study period for all these analyses.  

 

DNA sample preparation and genotyping 

   For all donor’s and patient’s DNA was extracted from peripheral blood or heparinized bone marrow 

and thereafter purified using QiaSymphony DSP DNA kit (Qiagen, Venlo, The Netherlands). DNA 

quantity and quality was measured using a Nanodrop ND-1000 spectrophotometer and aliquoted into 

96 wells plates at a target concentration of 2-20 ng per well. The rs6698040 was analyzed using a 

TaqMan assay whereas all other SNPs were analyzed using KASP assays with ViiA7 instrument (Life 

Technologies).  

 

Statistical analyses 

   Allele frequencies, r2 and possible deviation from the Hardy-Weinberg equilibrium were calculated 

using Haploview version 4.2 (Broad Institute, Cambridge, MA, USA; downloaded from 

http://www.broad.mit.edu/mpg/haploview). All other statistical analyses were performed using the Stata 

Version 14 (StataCorp. 2009; Stata Statistical Software, College Station TX) and GraphPad Prism 5 

(Graph Pad Software, Inc., San Diego, CA, USA). Spearman’s correlation for bivariate samples was 

used for correlation analyses, continuous variables were compared using non-parametric tests (Kruskal–

Wallis one-way analysis of variance/Man-Whitney-U test). The Chi-Square tests and Fisher’s exact tests 

were used to compare categorized variables. Differences were regarded as statistically significant when 

p-values <0.05. 

   Overall survival was calculated using the Kaplan-Meier product limit method. For competing risk 

analysis cause of death was either classified as relapse-related or treatment-related. Crude and adjusted 

subdistribution hazard ratios (SHR) were calculated using cumulative incidence regression methods as 

described by Fine and Gray [38], for therapy related mortality TRM at two different time points (day 

+100 post-transplant and 2 years after transplantation). Risk of developing acute GVHD was calculated 

in a similar manner with death from relapse or other causes as competing risk factors. In advance it had 
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been defined that age and covariates with p-value <0.1 in univariate analyses should be included in the 

adjusted model.  

   The effect of each SNP on GVHD or transplant-related mortality was primarily evaluated as 

homozygous major allele versus heterozygous/homozygous minor allele. For some SNPs with previous 

proven significance of major allele or for SNPs with low minor allele frequency (less than 15 persons 

with homozygous minor allele) homozygous minor allele versus heterozygous/homozygous major allele 

was compared. 

 

RESULTS  

 

Patient and donor characteristics 

   During the observation period 105 allotransplantations were performed at our institution. Two patients 

were retransplanted due to leukemia relapse (1 acute myeloid leukemia (AML) and 1 acute 

lymphoblastic leukemia (ALL) patient); both patients were retransplanted with their original donor but 

with a different myeloablative conditioning regime. Only data from the first transplantation were 

included in our analyses. Thus, our study is based on the data from 103 allogeneic stem cell 

transplantations.  

   The characteristic of the 103 patients and their donors are summarized in Table 1 together with the 

expected SNP frequencies [26]. DNA was available for 101 of the 103 recipients and for 101 of the 103 

donors. Granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood stem cell grafts 

were used except for four patients with aplastic anemia and a patient transplanted with stem cells from 

a donor below 15 years of age. These five patients received bone marrow grafts. Except for the patients 

with aplastic anemia only 2 additional patients received anti-thymocyte globulin (ATG) in addition to 

standard GVHD prophylaxis with methotrexate and Cyclosporine A. A majority of 92 patients received 

conditioning treatment with fludarabine/busulfan or cyclophosphamide/busulfan. Busulfan was given 

intravenously in all these patients. 
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Two subsets of SNPs show strong linkage disequilibrium  

   The results from the genotyping of 10 SNPs are summarized in Table 2. The overall genotype recall 

and the recall for each of the SNPs was ≥98%; those patients that were not successfully genotyped were 

usually the same patients for each SNP and this observation suggests that the DNA quality for these 

patients was inferior. No deviations from Hardy Weinberg equilibrium were observed. Calculated r2 and 

relative chromosome positions are shown in Figure 1. As expected, high linkage disequilibrium (LD) 

was observed between (i) rs4453032, rs2228145 and rs4129267; and between (ii) rs4845374 and 

rs4329505. For these two SNP groups we therefore report only the results for the SNPs rs2228145 and 

rs4845374, respectively. 

 

The IL-6/IL-6R SNPs have no major influence on serum CRP levels in healthy peripheral blood 

stem cell donors  

   The donors were regarded as healthy controls, and prior to the stem cell mobilization with G-CSF they 

all had an expected low serum CRP level (median 1 mg/L, range 1-21 mg/L, IQR 1), i.e. an undetectable 

level below < 1 mg/L was observed for half of the donors and the level was within the normal range for 

90% of them. Furthermore, after G-CSF treatment at the time of peripheral blood stem cell harvesting 

the serum CRP level of the donors showed a significant increase (n=96, median 8 mg/L, range 1-49 

mg/L, IQR 10, p-value <0.01). There was a significant correlation between premobilization CRP level 

and the levels after G-CSF treatment (ρ=0,43, p-value <0,01). Neither the premobilization levels, the 

CRP increase nor the serum CRP levels after G-CSF treatment showed significant associations with any 

of the SNPs (data not shown).  

 

The IL-6R SNPs rs2228145, rs4845618 and rs4379670 recipient genotype have significant effects 

on pretransplant levels of CRP and sIL-6R in allotransplant recipients 

   The recipients’ pretransplant levels of IL-6, sIL-6R, sgp130 and CRP are presented in Table 3. The 

two IL-6R SNPs rs2228145 and rs4845618 showed significant associations with the pretransplant CRP 

serum levels, and higher levels were then observed for patients homozygous for the major alleles (Figure 

2). In contrast, both these SNPs also showed significant associations with the pretransplant sIL-6R 
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levels, but lower sIL-6R levels were then seen for patients homozygous for the major alleles. The two 

SNPs had no effects on sgp130 serum levels or IL-6 levels.  

   The recipient IL6-R SNP rs4379670 also had an effect on the CRP levels with significantly lower CRP 

levels in patients being homozygous for the minor allele.  

   None of the other recipient or donor SNPs showed any influence on pretransplant serum levels of 

CRP, sIL-6R or sgp130 (data not shown), not even the SNP rs1800975 in the IL-6 promoter region that 

has been associated with altered IL-6 levels during inflammation [6, 39, 40].  

 

The effects of the IL-6R SNPs rs2228145 and rs4845618 recipient genotype on sIL-6R levels are 

maintained after stem cell transplantation 

   Serum levels of CRP, sIL-6R, IL6 and sgp130 after transplantation were available for 69 of the patients 

with a median time of 182 days posttransplant (range 83-372 days, IQR 248 days); the median levels 

are given in Table 3. These patients represent a selected subset of patients with a stable clinical situation 

(median age 44 with range 15-70 years; 44 men and 30 women) and therefore being able to travel to the 

transplantation center for clinical evaluation and standardized blood sampling and handling of the serum 

samples. At the time of posttransplant sampling the majority of patients had a ECOG performance status 

0-1, no signs of severe intercurrent infections and no signs of relapse. When analyzing the overall results, 

we could still observe a significant effects of the two IL-6R SNPs rs2228145 and rs4845618 on serum 

levels of sIL-6R (Figure 2) after the transplantation, but we could not detect any significant effect on 

CRP (Figure 2) or sgp130 levels (data not shown).  

 

The IL-6R SNP rs4845618 donor genotype is associated with increased incidence of acute GVHD  

   The overall cumulative incidence of severe acute GVHD (aGVHD) requiring high-dose steroid 

treatment was 45.5 % (Figure 3a). Transplantation with a non-sibling donor was significantly associated 

with an increased risk of aGVHD (p-value <0,01, (subdistribution hazard ratios (SHR) 3,32, 95% 

confidence interval (CI) 1,58-6,96), while pretransplant CRP levels, age, female donor to male recipient 

and CMV positive donor to CMV negative recipient were not associated with a higher risk of aGVHD 

in our cohort.  
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   Only the IL-6R SNP rs4845618 donor genotype was associated with an increased incidence of 

aGVHD (p-value 0.04, SHR 1.79, 1.01-3.2). This donor genotype was still associated with aGVHD 

requiring high-dose steroid treatment in an adjusted model including age, sibling vs non-sibling and 

donor rs4845618 genotype (p-value 0,05 SHR 1,75 95% CI 1,00-3,08) (Table 3). Finally, neither the 

donor nor the recipient genotype of the other IL-6R SNPs had any significant influence on the risk of 

aGVHD, and this was also true for the IL-6 promoter SNP rs1800975.  

 

IL-6/IL-6R SNPs did not influence the risk of classic chronic GVHD 

   To evaluate the risk of chronic GVHD (cGVHD) a landmark analysis was performed. At day +100 

post-transplant 46 of the original 101 patients were either dead, experienced relapse or had aGVHD still 

requiring continued high-dose steroid treatment on day +100. Twenty-five of the remaining 55 patients 

could subsequently wean off systemic immunosuppression as planned without any experience of 

cGVHD whereas 9 patients had a relapse when they were still on immunosuppression but without any 

manifestations of cGVHD. The last 21 patients experienced chronic GVHD that required either 

additional/new or prolonged systemic immunosuppression. Thus, the cumulative incidence of cGVHD 

was 38.3 % (Figure 3b). Because none of these 21 patients were previously diagnosed with acute GVHD, 

we ensured that we only included patients with classic chronic GVHD without any chronic overlap [37]. 

and we could use a simple and reliable readout by defining “cGVHD requiring additional systemic 

immunosuppression” as a clinical picture of chronic GVHD requiring either an additional or new 

immunosuppressive drug/treatment or prolonged ciclosporin A treatment.  

   Due to the small number of patients with cGVHD calculations were only possible for a minority of 

the selected SNPS (rs2228145, rs48456187 and rs120835357). As described above, the donor rs2228145 

genotype had a significant impact on both pre- and posttransplant sIL-6R serum levels. However, 

patients carrying the rs2228145 had only a nonsignificant trend of higher frequency of cGVHD 

compared with patients homozygous for the ancestral allele, whereas patient age showed a significant 

effect. In an adjusted model both age and rs2228145 patient genotype had a significant effect (Table 4). 
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The recipient genotype of the IL-6R SNP rs4329505 influences non-relapse mortality 2 years 

post-transplant 

   Kaplan Meier plots for the overall survival and the cumulative incidence of transplant-related morality 

(TRM) are given in Figure 3c and 3d. Survival was 81.8 % at day +100 posttransplant and 55,2 % 2-

years posttransplant, whereas the cumulative incidences of transplant-related mortalities at the same 

time points were 16.0 % and 27.8 %, respectively. 

   Pretransplant CRP levels were associated with an inferior outcome in univariate analysis whereas 

conditioning regimen, age and female donor/male recipient were not. The donor genotype for the IL-6 

promoter SNP rs1800795 was also associated with decreased survival, whereas neither the donor nor 

the recipient genotype of the IL-6R SNPs were associated with outcome at day +100 post-transplant. 

The rs1800795 donor genotype still had a significant effect on early TRM in an adjusted model also 

including age and pretransplant CRP level. 

   Factors that were associated with an increase in the 2 year TRM in the univariate analysis, were donor 

type (sibling vs non-sibling), age and pretransplant CRP levels. Although the donor genotype for the IL-

6 SNP rs1800795 was associated with adverse prognosis at day +100 (see above), a similar effect was 

not observed for the 2 years survival. However, the recipient genotype rs4329505 was associated with 

higher 2-years non-relapse mortality, and the effect of this SNP was highly significant also in the 

multivariate analysis. (Table 5) 

 

DISCUSSION 

 

   Both experimental evidence and clinical studies suggest that IL-6 has a role in the regulation of 

inflammation and immunity in allotransplant recipients [25, 41, 42]. Although the effects of SNPs in the 

IL-6 gene on outcome after ASCT have been investigated previously [7-10], the possible importance of 

SNPs in the IL-6R gene has not been examined in detail. In our present pilot study we therefore 

investigated a panel of IL-6R SNPs, and observed an association between specific SNPs, non-relapse-

mortality and systemic sIL-6R/CRP levels.  
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   IL-6 is the main driver of CRP production; systemic IL-6 levels are therefore strongly correlated with 

CRP levels and can explain approximately 40-50% of intra-individual CRP variations [1, 43]. Previous 

studies have identified four different IL-6R SNPs (rs2228145 previously reported as rs8192284, 

rs12083537 previously reported as rs1386821, rs4329505 and rs484561) that independently influence 

sIL-6R levels [4, 24, 44]. These SNPs may then influence the levels of sIL-6R and mIL-6R and thereby 

the IL-6 functions and finally the CRP release. The biological consequences of this genetic variation 

have been best characterized for rs2228145 and rs4845617. While rs2228145 alters the proteolytic 

shedding of IL-6R from cell membrane, the rs4845617 is located in the IL-6R gene promoter region and 

influences IL-6R mRNA transcription [44]. rs2228145 seems to have the strongest effect on IL-6 

signaling and explains approximately 30% of the intra-individual variations in sIL-6R levels [4, 24]. 

The effect of rs12083537 and rs4329505 on sIL-6R level are generally weaker, i.e. in the range of 0.4-

1.1 % [4]. In the present study we observed significant associations between several IL-6R SNPs and 

the pretransplant levels of both CRP and sIL-6R.  

   Serum samples included in the current study were collected at scheduled visits at 3, 6, 9 or 12 months 

posttransplant. However, a significant number of patients with severe GVHD, complicating infections 

and other disabling diseases were not able to attend all of these visits at the transplantation center since 

patients were recruited from a large geographical area. This has several implications for the 

interpretation of the results. Firstly, this explains the reduced number of patients analyzed posttransplant 

and the large variation for the time point for the post-ASCT serum samples. Secondly, that patients 

included in the analysis should be regarded as a selected group of patients, with a higher performance 

status, without any disabling infections or inflammatory condition at the time of serum sampling. The 

relatively low CRP levels observed for these patients probably reflect this patient selection, and the 

influence of inflammatory transplant related-factors (mainly infections or GVHD) on serum levels of 

sIL-6R and CRP was thereby minimized. To summarize, our intention with the posttransplant analyses 

of mediator levels was to (i) ensure standardized sampling and sample preparation (i.e. collect samples 

at the transplantation center),  (ii) analyze samples collected after hematopoietic stem cell reconstitution 

(i.e. 2-3 months after transplantation) but during the first year posttransplant (iii) for patients being in a 

stable clinical situation and being able to travel to the transplantation center (i.e. most patients having 
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ECOG performance status 0-1; no complications that could initiate an acute phase reaction or influence 

serum mediator levels). These three criteria were our priority, and to fulfill them we had to compromise 

and accept a variation in time of sampling. However, we have to emphasize that the variation in sampling 

time may influence our results, e.g. we expect the immune reconstitution to differ between patients 

examined 3 and 12 months posttransplant. 

   The biological context of the IL-6 system differs between healthy individuals/controls (i.e. stem cell 

donors) and allotransplant recipients. We observed significant associations between IL-6R SNPs and 

CRP as well as sIL-6R levels only for the recipients but not their donor; these observations suggest that 

the biological context (patients vs healthy individuals) actually is important and responsible for this 

increased IL-6 effect on the acute phase response (i.e. a marker of inflammation) in allotransplant 

recipients. However, the strong influence of rs2228145 is similar for allotransplant recipients and other 

patients and suggests a similar impact of altered proteolytic shedding when a proinflammatory context 

is present. 

   An effect of rs2228145 could not be observed for posttransplant CRP levels. However, the patients 

available for posttransplant evaluation represent a selected subset characterized by high performance 

status as well as no signs of severe infections, relapse or severe GVHD. As expected their serum CRP 

levels showed only a minor variation (CRP levels < 6 mg/L for most of these patients).  

   Several previous studies have shown that high pretransplant CRP levels are associated with high 

transplant-related mortality but without any apparent effect on the rate of GVHD [1, 45-49]. The 

rs4329505 IL-6R SNP had a significant and independent effect on transplant-related mortality. This 

effect was detected only after 2 years but not at day +100 post-transplant. Immunological reconstitution 

after allotransplantation in adult patients usually takes several months [50], and a possible explanation 

for detecting this effect only after 2 years may thus be a differences in the immunological context at 

these time two points possibly caused by the delayed immune reconstitution. This SNP has previously 

been reported to influence the response to IL-6 inhibition and has also been linked to the severity of 

chronic inflammatory disease [33, 51]. Unfortunately, due to the low allele frequency for this SNP an 

analysis of its possible effect on cGVHD was not possible.  
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   The SNP rs4845618 in the IL-6R gene has been used as a tagging SNP. One study described an effect 

of this SNP on the risk of joint destructions in patients with rheumatoid arthritis independent of other 

SNPs in the IL-6R gene [29]. Allotransplant recipients have a unique overall biological context 

including several abnormalities of immunocompetent cells early after transplantation, and in this setting 

rs4845618 seems to influence both the IL-6 network (increased sIL-6R levels), inflammatory regulation 

(altered CRP levels) and the clinical course (risk of acute GVHD). 

   To the best of our knowledge the effects of different SNPs in the IL-6R gene have only been examined 

in one previous heterogeneous cohort of allotransplant recipients [30, 31]. In these two studies the effects 

on various endpoints of 256 different SNPs in various cytokine and cytokine receptor genes were 

examined; 8 of these SNPs being in the IL-6R gene [30, 31]. However, this study did not examine the 

effects of SNPs known to functional effects on the IL-6 system, and they only observed an association 

between rs4845617 and ocular chronic GVHD [31]. We could not detect any associations between any 

SNP and chronic GVHD, but it should be emphasized that we only examined a subset of the patients 

with classic chronic GVHD. 

   One major limitation of studies investigating outcome after ASCT is the recipient heterogeneity and 

differences in transplant related procedures that influence the risk of early and late complications. The 

most important risk factors for GVHD are disease status, patient comorbidity, graft source, use of anti-

thymocyte globulin (ATG) and conditioning therapy [52, 53]. The different transplant related factors 

are often significantly intertwined (e.g. age and type of conditioning regime) so that the effects of single 

factors is often difficult to estimate/demonstrate. Studies investigating prognostic parameters in 

allotransplant recipients should therefore be based on well-characterized and if possible unselected 

patient cohorts. We did not exclude any patients to reduce the heterogeneity of our cohort for most of 

our analyses; as discussed above the only exceptions being the analyses of chronic GVHD (to have 

simple and reliable criteria for outcome) and posttransplant serum levels (to avoid masking of SNP 

effects by ongoing inflammation). For this reason we investigated the effects of IL-6/IL6R SNPs in a 

group of unselected (i.e. population-based) but well-characterized and relatively homogeneous group of 

patients. The large majority of our patients were adult Caucasians transplanted due to hematological 

malignancies, most patients received busulfan-based myeloablative conditioning and the same GVHD 
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prophylaxis (cyclosporine A plus methotrexate), and they were transplanted with G-CSF mobilized stem 

cell grafts derived from HLA-matched family donors. We regard our patient cohort to be representative 

for this particular subset of allotransplant recipients. Even though our cohort is relatively small, our 

results suggest that the IL-6 network is important for the biological characteristics and the clinical 

outcome of these patients. Other independent studies should clarify whether our observations are 

relevant also for other subsets of allotransplant recipients.  

   To conclude, SNPs in the IL-6R gene seem to influence both pre- and post-transplant biological 

characteristics as well as the long-term survival of allotransplant recipients, and the associations with 

sIL-6R levels indicate that IL-6 trans-activation is involved in these effects. Although none of the 

evaluated IL-6R SNPs significantly influenced the risk of acute or chronic GVHD, they seemed to 

influence both pre- and posttransplant IL-6 trans signaling. Future studies should therefore investigate 

whether IL-6 has similar effects also for other subsets of allotransplant recipients, because we 

investigated only a relatively small and selected subset of patients with classic chronic GVHD. However, 

our studies suggest that the immunoregulation varies during the posttransplant period and the timing of 

IL-6 targeting therapy may therefore be essential. Future studies exploring inhibition of Il-6 signaling 

in ASCT should include analysis of the SNPs shown to influence IL-6 trans signaling. 
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Table 1. The characteristics of the allotransplant recipients and their donors included in the analysis. 

RECIPIENTS (n=101)  

  
Age, median and range (Years) 48 (15-70) 
  
Caucasian/non-Caucasian (number) 96/5 
  
Diagnosis (number)  
 AML, de novo 42 
 Myelodysplastic syndrome-AML 17 
 Myelodysplastic syndrome, high-risk 4 
 Acute lymphoblastic leukemia 20 
 Chronic myeloid leukemia 2 
 Myelofibrosis 4 
 Chronic myelomonocytic leukemia 2 
 Myeloproliferative neoplasia, unspecified 2 
 Aplastic anemia 5 
 Chronic lymphocytic leukemia 2 
 Hodgkin’s lymphoma 1 
 Leukemia patients not in remission at transplantation (number) 1 
 aGVHD requiring high dose steroid treatment (number) 1 49 
   
Conditioning regimes (number)  
 Busulfan + cyclophosphamide (myeloablative condition) 74 
 Fludarabine + busulfan (reduced intensity conditioning) 18 
 Antithymocyte globulin + cyclophosphamide 4 
 Others 5 
 
   

GVHD prophylaxis (number)  
 Cyclosporine A + methotrexate 98 
 Cyclosporine A + mycophenolate mofetil 1 
 Cyclosporine A + methotrexate + antithymocyte globulin 2 
   
Stem cell source (number)  
 Peripheral blood mobilized stem cells 96 
 Bone marrow grafts 5 
   

DONORS (n=101)  

  
 Sibling/ Parent/ Other 93/8/0 
 Female/ Male 40/61 
 Female donor to male recipient 22 
 Number of CMV positive recipient 66 
 CMV positive donor to CMV negative recipient 22 
 
   
1 The criteria for high-dose steroid treatment were acute GVHD grade II with gastrointestinal involvement 
or Grade III/IV acute GVHD. 
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Table 2. The investigated SNPs and their frequencies. The tables summarizes the SNPs examined, number of successfully genotyped patients, expected and observed minor 
allele frequency (MAF) of the patients, and patients being either heterozygous or homozygous for major (H-major) or minor (H-minor) alleles. The p-value indicates if there 
was any significant deviation from the Hardy-Weinberg equilibrium (HWE). The expected frequencies refer to previously published data [26]. 
 

Gene SNP 
Alleles (nucleotide) 

N1 
Expected Observed 

MAF 
Genotype (number of patients) p-value 

HWE Ancestral Minor MAF H-Major Hetero2 H-Minor 

           
IL-6 rs1800795 G C 101 0,14 0,49 30 40 31 0,054 

 rs1800797 G A 101 0,13 0,50 31 40 30 0,053 
           

IL-6R rs2228145 A C 101 0,29 0,43 34 49 18 1,00 
 rs4845617 G A 99 0,38 0,40 36 46 17 0,7435 
 rs4845374 T A 100 0,18 0,15 73 24 3 0,7285 
 rs4845618 G T 100 0,49 0,44 20 47 33 0,8527 
 rs4453032 A G 100 0,30 0,43 33 49 18 1,00 
 rs4379670 A T 99 0,20 0,24 62 27 10 0,0369 
 rs12083537 A G 101 0,20 0,22 60 38 4 0,8292 
 rs4329505 C T 101 0,22 0,15 74 24 3 0,7416 
 rs4129267 A G 101 0,29 0,43 60 38 4 1,00 
 
 

          

1The number of patients that were successfully genotyped  
2 Hetero, heterozygous 
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Table 3. Systemic serum levels of soluble mediators in allotransplant recipients; a summary of the pre- and 
posttransplant CRP, IL-6, sIL-6R and sgp130 levels in the 101 allotransplant recipients. The median time of 
posttransplant sampling was 182 days (range 83-372) after transplantation. 
 

Mediator 
Pretransplant  Posttransplant 

Median Range IQR  Median Range IQR 
        

CRP (mg/L) 6 (1-120) 12  2 1-150 3 
IL-6 (pg/ ml) 12.6 (0.92–581) 19.6  4,8 1,54-484,1 9,54 
sIL-6R (pg/ 

ml) 11580 (609–42666) 1072  7209 2416-16815 2267 

sgp130 (pg/ 
ml) 54808 (8286–226166) 60005  54789,4 20829-133777,3 17239 

        

IQR: Interquartile range 
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Table 4. Risk of acute and chronic GVHD in our 101 allotransplant recipients; crude and adjusted subdistribution 
hazard ratios (SHR) for acute GVHD (upper part) and landmark analysis for chronic GVHD (lower part).   
 

ACUTE GVHD 

Covariate Reference 
Crude  Adjusted 

p-value SHR 95 % CI  p-value SHR 95 % CI 
         

Age Per decade 0,84 1,02 0,83-1,25  0,58 1,06 0,86-1,31 
Non-sibling  sibling <0,01 3,32 1,59-6,97  <0,01 3,45 1,76-6,75 

Donor 
rs4845618 TT vs TG/GG 0,04 1,80 1,01-3,2  0,04 1,77 1,01-3,09 

         

LANDMARK ANALYSIS CHRONIC GVHD 
 

Age Per decade 0,01 1,72 1,11-2,66  0,01 1,76 1,10-2,80 
Donor 

rs2228145 AA vs AC/CC 0,07 0,46.  0,20-1,09  0,04 0,43 0,19-0,98 
         

SHR: Subdistribution hazard ratio 
CI: Confidence interval 

 
  



26 
 

Table 5. Risk of treatment-related mortality for our 101 allotransplant recipients: Crude and adjusted 
subdistribution hazard ratios (SHR) for treatment related mortality for the 101 allotransplant recipients at day +100 
days and 2 years posttransplant.  

THERAPY RELATED MORTALITY AT DAY 100 POST-TRANSPLANT 

Covariate Reference 
 Crude  Adjusted 

 p-value SHR 95 % CI  p-value SHR 95 % CI 
  

 
       

Age Per decade  0,672 1,06 0,79-1,43  0,971 1,00 0,97-1,03 
CRP level Continuous variable  <0,01 1,02 1,01-1,03  <0,01 1,02 1,01-1,04 

Non-sibling Sibling  0,09 2,64 0,85-8,16  0,309 1,98 0,53-1,03 
Recipient 
rs1800795 GG vs GC/CC  0,02 2,98 1,16-7,68  0,03 3,64 1,11-11,94 

  
 

       

TREATMENT RELATED MORTALITY AT 2 YEARS POST-TRANSPLANT 
 

Age Per decade  0,14 1,21 0,94-1,58  0,01 1,38 1,08-1,79 
CRP level Continuous variable  0,06 1,01 0,99-1,03  <0,01 1,01 1,01-1,03 

Non-sibling Sibling  0,01 3,12 1,26-7,71  <0,01 4,92 2,16-11,21 
Recipient 
rs4329505 CC vs CT/TT  0,03 2,21 1,07-4,58  0,01 2,72 1,25-5,91 
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Figure Legends: 

 

Figure 1.  

The IL-6R SNPs investigated in the study: The relative chromosome position (upper part) of the 

different SNP in the IL-6R (chromosome 1) and linkage disequilibrium expressed by r2 for the analyzed 

SNP (lower panel) are presented in the figure. 

 

Figure 2. The effects of the IL-6R SNPs rs2228145 (a) and rs4845618 (b) on pretransplant 

and posttransplant levels of CRP and sIL-6R. 

 

Figure 3. The outcome after allogeneic stem cell transplantation. The figure shows the cumulative 

incidence of acute GVHD (A) and (B) chronic GHVD for the entire cohort, the overall survival for the 

entire period (C) and the cumulative incidence of TRM (D). 
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