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Chapter 1. Introduction 

1.1. Motivation 

Acoustic methods are important tools in fisheries research. For most fish 

species, the use of echo sounder measurements as a first step in abundance 

estimation has been experienced to yield at least as accurate results as any other 

method.183,140 Echo sounders are also used for other purposes in marine 

research, e.g. biomass and size estimation of plankton. 

Echo integration based on sound bursts with a single operating frequency is 

commonly used for fish abundance estimation.167 The choice of frequency is a 

trade-off between range and ability to make quantitative measurements on 

small animals.139,223 Modern fisheries research vessels are often capable of 

using several echo sounder frequencies simultaneously. One potential 

advantage of multi-frequency methods is improved discrimination between 

different species compared with single frequency techniques. This can 

contribute to reducing the uncertainty in fish stock assessments. 

During recent development of echo sounders with increased accuracy and 

dynamic range, one has become aware that significant effects of nonlinear 

sound propagation can occur with the operating frequencies and output powers 

used in fisheries research.29,30,233,234 Excess sound attenuation due to nonlinear 

effects (“nonlinear attenuation”) is not accounted for in the presently used echo 

sounders. Increased knowledge of what importance nonlinear attenuation may 

have for methods in fisheries acoustics is of interest. 

Nonlinear effects depend on several factors such as transmitted frequency, 

acoustic intensity, sound propagation distance, and properties of the sound 

source and the water. Tichy et al.233,234 made measurements along the sound 
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beam axis of a 200 kHz echo sounder in fresh water and found that the 

attenuation at the operating frequency due to nonlinear sound propagation can 

reach several decibels. The experimental results were compared with 

simulations made by Baker and Lunde.29 Nonlinear attenuation may pose a 

problem for abundance estimation, and in particular for discrimination between 

species by means of multiple frequencies. The investigation of Tichy et 

al.
233,234 uncovered a need for further quantitative investigations of nonlinear 

attenuation off the sound beam axis, at longer distances from the sound source, 

and in seawater. The echo sounder frequencies used by IMR at present are 

18 kHz, 38 kHz, 70 kHz, 120 kHz, 200 kHz, 364 kHz, and 710 kHz.144 

Nonlinear attenuation seems to be a potential problem for the 120 kHz and 

higher operating frequencies.13 

The subject of finite-amplitude sound propagation has been widely studied. 

The particular implications within fisheries acoustics are however not known 

well enough to eliminate measurement errors due to nonlinear effects. The goal 

of the present work is to increase the quantitative knowledge of the nonlinear 

effects experienced by fisheries research echo sounders using two common 

operating frequencies. The results may provide a basis for reducing or 

correcting for measurement errors due to nonlinear attenuation. The accuracy 

with which such corrections can be made under relevant conditions is 

investigated. There is also some interest in exploring the possibility of using 

nonlinear effects, as e.g. the second harmonic frequency component generated 

through intense sound propagation, to increase the amount of information 

obtained through echo sounder measurements. Measurement and simulation 

results for the second harmonic frequency component are reported, but 

attention is primarily given to the problem of nonlinear attenuation. 
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1.2. Overview of the work 

Nonlinear sound propagation effects in the sound beams of fisheries research 

echo sounders are investigated experimentally and by numerical simulations. 

Echo sounders with 120 kHz and 200 kHz operating frequencies are 

considered. An attempt is made to quantify the excess attenuation due to 

nonlinear effects in fresh water and seawater. Consequences of such 

attenuation for fisheries research applications are discussed. Results for the 

second harmonic frequency component generated through nonlinear distortion 

are also presented. 

Definitions and relations from underwater and fisheries acoustics that are used 

in the work are summarized in Chapter 2. In addition, a brief account is given 

of the most relevant features in the history of nonlinear acoustics. The model 

and numerical algorithm used in the present work are described, and an 

overview is given of other methods. 

One of the questions that the present work seeks an answer to is how accurately 

the numerical algorithm used here can predict nonlinear attenuation in cases of 

interest in fisheries acoustics. Test simulations are run to obtain an estimate for 

the simulation uncertainty. Uncertainty contributions due to the sound 

propagation model, the numerical algorithm, and uncertainties in the input 

parameters are investigated in Chapter 3. Source radii, frequencies, amplitudes, 

and parameters of the water are set so that they correspond to the 

measurements in the present work. An estimate is made of a combined 

simulation uncertainty for the paraxial sound field radiated by a uniform 

circular piston in a stiff baffle. 

The sound source descriptions used for simulations are discussed in Chapter 4. 

Sound pressure measurements are made in the near fields of three echo sounder 

transducers in order to characterize the sound sources and investigate the 

applicability of the numerical algorithm. The measurement results are used to 

make alternative source conditions for numerical simulations. Simulations of 
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linear sound propagation are made with uniform piston source conditions and 

those obtained from near field measurements. The results from simulations 

with different source conditions are compared. 

In Chapters 5 and 6, sound pressure measurements in the acoustic fields 

radiated by 120 kHz and 200 kHz echo sounders are carried out with a 

hydrophone. In addition, experimental backscatter measurements are made 

with calibration spheres as reference targets. This is done to establish 

correspondence between the nonlinear attenuation measured with the 

hydrophone and possible errors in target strength measurements made with the 

echo sounders. The calibration spheres are used by IMR in their routine echo 

sounder calibrations. Moreover, measurements of sound propagation to longer 

distances than approximately 10 m are made with calibration spheres instead of 

the hydrophone. The position of the target and the amplitude of the signal 

transmitted by the echo sounder are varied. 

Water tanks offer a well-controlled environment and accurate positioning of the 

echo sounder transducers, hydrophone, and reference target. Measurements in 

an indoor fresh water tank are described in Chapter 5. The pressure amplitudes 

for the fundamental and second harmonic frequency components are 

investigated. Measurement results are compared with results from simulations 

using both the uniform piston and near field measurement source conditions. 

The nonlinear attenuation along the sound beam axis and the increase in the 

-3 dB beam angle are quantified. Simulations of nonlinear attenuation in fresh 

water are compared with experimental results reported in the literature. 

Chapter 6 describes measurements performed in seawater. Sound pressure and 

target strength measurements are performed from a floating stage near land. 

Experimental target strength measurements are also carried out on the research 

vessel G. O. Sars. The experimental results are compared with results from 

simulations. The axial nonlinear attenuation is quantified. The volume and area 

backscattering coefficients for a distribution of small targets are key quantities 
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in fisheries acoustics. The consequence of nonlinear attenuation for 

measurements of such coefficients is discussed in Chapter 7. Results from 

experimental measurements on mackerel schools are reported and compared 

with simulations. 

The obtained results are summarized in Chapter 8, and some suggestions are 

made for further investigations. A list of references follows Chapter 8, 

organized in alphabetical order after the name of the first author. References 

without author names are listed first. A list of symbols is included in 

Appendix A, while the Bergen Code programme used in the present work is 

listed in Appendix B. Appendix C contains calibration data for the Reson 

TC 4034 hydrophone that has been used for sound pressure measurements. 
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Chapter 2. Background 

This chapter provides some useful background information for the present 

work. An overview of relevant definitions and expressions from underwater 

and fisheries acoustics is given in Section 2.1. Section 2.2 gives a brief account 

of the most relevant features of the history of nonlinear acoustics. A survey of 

numerical methods for simulating nonlinear sound propagation is also given, 

along with a description of the model and numerical algorithm chosen for the 

present work. As the target audience of this dissertation primarily belongs to 

the fisheries research society, some more attention is given to nonlinear 

acoustics than to the history and theoretical basis of fisheries acoustics. 

2.1. Basic principles of fisheries acoustics 

Echo sounders have been used to detect fish since 

the first systematic experiments were carried 

out by R. Balls in the North Sea in 1933.101 

Today, acoustic methods are used extensively 

both in fisheries and in fisheries and marine 

research. Combined with other information such 

as trawl sampling data, results from echo 

counting and echo integration contribute to the 

knowledge basis for management of fish stocks in 

rivers, lakes, and the sea.167,223 Reviews of the 

history of fisheries acoustics can be found for 

example in the books by Simmonds and 

MacLennan223 and Forbes and Nakken.101 
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Acoustic abundance estimation of marine resources is commonly performed 

with calibrated echo sounders. Short sound bursts are transmitted vertically into 

the sea, and backscattered signals from targets in the water column are 

recorded and processed. In modern echo sounder systems, up to six frequencies 

are used simultaneously to derive information on sizes, species, and abundance 

of fish and plankton.141 The volume backscattering coefficient sv is calculated 

from the backscattered energy from a volume of small scatterers, and is the 

acoustic parameter used for abundance estimation. The target strength TS of 

single scatterer can sometimes provide additional information. Target strength 

measurements are central in echo sounder calibration. The accuracy of an echo 

sounder is maintained through regular calibrations by means of copper or 

tungsten carbide spheres with known acoustic properties.86,98 

This section summarizes some definitions and expressions from underwater 

acoustics that are necessary in the present work, with emphasis on echo 

sounders for marine research. 

2.1.1. Theory of sound propagation 

In a homogeneous propagation medium, waves from echo sounder transducers 

and single scatterers such as isolated fish are regarded as spherically diverging 

in the far field.250 Consider a spherical sound wave radiated by a source at r = 0 

(Figure 2.1). The source transmits a harmonic signal on the form of exp(jωt), 

where t is time and ω = 2πf is angular frequency. The complex sound pressure 

amplitudes p at two positions (r0,θ,ϕ) and (r,θ,ϕ) along a line through the 

origin, relate to each other as138 

( ) ( )
( )0

0( ) 0 20
0, , , , 10

r r
jk r r r

p r p r e
r

α

θ ϕ θ ϕ
− −− −= ⋅ . (2.1) 

The sound pressure amplitude is assumed sufficiently small to avoid nonlinear 

effects. r0, r, θ, and ϕ are spherical coordinates with the sound source at their 
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origin (Figure 2.1). k = ω/c0 is the wave number, c0 is the small-signal sound 

speed, and α is the absorption coefficient measured in decibels per metre. 

x

y

z

ϕ

θ

( r , θ , ϕ

r

 
Figure 2.1. Coordinate system for description of sound propagation. The origin is centred at 

the face of the echo sounder transducer. 

rms ( , , ) ( , , ) 2p r p rθ ϕ θ ϕ=  is the effective sound pressure of the harmonic 

wave. The sound pressure level (SPL) at a field point (r,θ,ϕ) (Figure 2.1) is 

defined as 

( ) ( )rms
10

ref

, ,
SPL , , 20log

p r
r

p

θ ϕ
θ ϕ = , (2.2) 

where pref is a reference value normally chosen equal to 1 µPa rms. In the far 

field, the acoustic intensity can be written138 

( ) ( )2
rms

0 0

, ,
, ,

p r
I r

c

θ ϕ
θ ϕ

ρ
= , (2.3) 

and thus the intensity level (IL) is 

2
ref

10 10

ref 0 0 ref

IL 10log SPL 10log
pI

I c Iρ
= = + . (2.4) 
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The reference intensity Iref is customarily equal to 1 Wm-2.138 ρ0 is the ambient 

density. The transmission loss (TL) due to sound propagation in a spherically 

diverging field is, from Equations (2.1) and (2.3),250 

( )
( )10 10 0

0 0

( , , )
TL 10log 20log

, ,

I r r
r r

I r r

θ ϕ
α

θ ϕ
= − = + − . (2.5) 

2.1.2. Transducer properties 

The complex current source (transmit) sensitivity of an acoustic transducer is 

defined as the ratio of the pressure amplitude produced at the reference point 

(r0,0,0), to the complex electrical current amplitude i through its terminals upon 

transmission,250 

( )0 ,0,0p r
S

i
= . (2.6) 

The reference distance r0 is normally equal to 1 m. Upon sound reception, an 

incident plane wave with complex free field pressure amplitude pinc produces 

an open circuit voltage amplitude U0 across the transducer terminals. The ratio 

of U0 to pinc is the voltage receive sensitivity M,250 

0

inc

U
M

p
= . (2.7) 

The free-field pressure amplitude of the incident wave is its sound pressure 

amplitude when it is not affected by the presence of the transducer or other 

objects. For spherically diverging sound waves, the expression 

0

00 20
s

0

2
10

r

jkrrM
J e

S j f

α

ρ
= = ⋅  (2.8) 

relates the receive and transmit sensitivities of a reciprocal transducer.165,2 Js is 

the spherical reciprocity parameter. 
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When the radiation pattern of the sound source is known, the sound pressure 

amplitude at an arbitrary point (r,θ,ϕ) in the far field can be expressed in terms 

of the axial amplitude at a reference distance r0 and the directional factor138 

H(θ,ϕ), 

( ) ( ) ( )
( )0

0( ) 0 20
0, , , ,0,0 10

r r
jk r r r

p r H p r e
r

α

θ ϕ θ ϕ
− −− −= ⋅ ⋅ . (2.9) 

The directional factor is normalized to the axial sound pressure amplitude so 

that H(0,ϕ) = 1. In the special case of a uniformly vibrating, circular plane 

piston with radius a, mounted in an infinitely stiff planar baffle of infinite 

extent, the far field directional factor is138 

( ) ( )12 sin
,

sin

J ka
H

ka

θ
θ ϕ

θ
= . (2.10) 

J1 is the first-order Bessel function of the first kind. 

The source level (SL) is defined for a projector as the axial far-field sound 

pressure level at the reference distance r0,
250 

( )rms 0
10

ref

,0,0
SL 20log

p r

p
= . (2.11) 

If (r0,0,0) is not in the far field, where the signal can be treated as spherically 

diverging, Equation (2.1) is used for extrapolating the axial sound pressure 

amplitude from the far field to the reference point. 

2.1.3. Backscattering from a single target 

Fisheries research echo sounders are used for measuring two key quantities – 

the target strength TS for a single scatterer, and the volume backscattering 

coefficient sv for a volume of scatterers.168 
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Backscattering from a single target is illustrated in Figure 2.2. The 

backscattering cross-section of a target at position (r,θ,ϕ) is defined as141,168 

( )
0

2bs 10
bs 0 10

, ,

r
I

r
I r

α

σ
θ ϕ

′

′= ⋅ , (2.12) 

where I(r,θ,ϕ) is the intensity of the incident sound. Ibs is the intensity of the 

backscattered sound at distance 0r′  from the target, in the opposite direction of 

the incident sound wave. As r0 in the definition of source sensitivity 

(Equation (2.6)), the reference distance 0r′  is usually one metre.  

Target strength is defined as250 

0

bs bs 10
10 10 2

0

TS 10log 10log 10
( , , )

r
I

I r r

ασ
θ ϕ

′
− 

= =  ′ 
. (2.13) 

The target strengths of fish and plankton are important parameters in fisheries 

research. They vary greatly with species, size, orientation, depth, sound 

frequency and other parameters.223 

I

I ( r , θ , ϕ)

I b s

 
Figure 2.2. Sound transmission and backscattering from a single target. 

The definition of backscattering cross-section above refers to a harmonic wave. 

For signals with finite bandwidth, such as sound bursts, the measured 

backscattering cross-section depends on the frequency response of the echo 

sounder and the frequency dependence of the target’s scattering properties. The 

effective backscattering cross-section σbs,eff is the weighted average of σbs(ω) 

over the bandwidth of the sonar.95 A two-way power frequency response Pr0(ω) 

for the echo sounder system can be used to calculate σbs,eff,
223 
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( ) ( ) ( )bs,eff bs r0 r0

0 0

P d P dσ σ ω ω ω ω ω
∞ ∞

= ∫ ∫ . (2.14) 

The finite bandwidth of the measurement system is accounted for e.g. in the 

calculation of theoretical target strengths of calibration targets. An echo 

sounder calibration is thus only valid for measurements made with e.g. the 

burst duration used during that calibration. Although σbs,eff is the quantity 

measured in practice, the harmonic wave backscattering coefficient σbs is used 

in the rest of this chapter. 

2.1.4. Sonar equation and power budget 

The system of an echo sounder that measures the backscattering coefficient of a 

single target is described by a sonar equation250 

EL = SL – TL + TS – TL, (2.15) 

where the echo level EL is the free-field sound pressure level of the 

backscattered sound signal in the water at the position of the echo sounder 

transducer. The same transmission loss TL appears twice to account for sound 

attenuation in both propagation directions between the echo sounder transducer 

and the target. 

Substitution of Equations (2.5)–(2.7), (2.11), and (2.13) into Equation (2.15) 

yields for the axial field, 

( ) 0
0

2

0 0 bs20 10
2

0

10 10
r

r rU r
iS

M r r

αα σ ′
− − − 

=   ′ 
, (2.16) 

where r is the distance between the echo sounder transducer and the target. A 

form of Equation (2.16) is sought in terms of electrical power transferred 

through the transducer terminals upon transmission and reception. The 

transducer intensity gain function G(θ,ϕ) is138 
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( ) ( )
( )

( )

2

2

4

4 ,
, ,

,

H
G D

H d
π

π θ ϕ
θ ϕ η θ ϕ η

θ ϕ

⋅
= =

Ω∫
, (2.17) 

where η is the electroacoustic efficiency of the transducer and D(θ,ϕ) is the 

directivity function. Ω is solid angle. Unlike the directional factor H(θ,ϕ), the 

directivity function refers to intensity, and is not normalized to the axial value. 

The integral of D(θ,ϕ) over all solid angles is equal to unity. 

The intensity It,sph(r) due to an omnidirectional sound source at r = 0, is 

( ) t 10
t,sph 2

10
4

rP
I r

r

αη
π

−
= . (2.18) 

Pt is the electric power transferred to the sound source, so that Ptη becomes the 

radiated acoustic power. Accounting for transducer directivity by inserting 

D(θ,ϕ), the intensity It of the transmitted wave at distance r0 becomes 

( ) ( ) ( )0 0t t10 10
t 0 2 2

0 0

, ,
, , 10 10

4 4

r rP D PG
I r

r r

α αη θ ϕ θ ϕ
θ ϕ

π π

− −
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If the point (r0,θ,ϕ) is in the far field,138 
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Equations (2.6), (2.9), (2.19), and (2.20) and the relation 

2

T
t 2

i R
P =  (2.21) 

can be combined to 
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RT is the real part of the transducer’s electrical input impedance ZT = RT + jXT. 

S’(θ,ϕ) is the current source sensitivity generalized from the axial direction to 

an arbitrary direction (θ,ϕ). The spherical reciprocity relation (Equation (2.8)) 

is assumed to apply to the echo sounder transducer, so that M·S = Js·S
2. Also 

assuming that the directional factor H(θ,ϕ) is the same upon signal reception as 

for transmission, M can be generalized to M’(θ,ϕ) the same way as S is 

generalized to S’, and 
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The electrical power Pr transferred through the terminals of the transducer upon 

signal reception is 

222
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U is the complex voltage amplitude across the transducer terminals. The 

electrical input impedance of the receiving circuit is ZL = RL + jXL, and 

T T TZ R jX′ ′ ′= +  is the electrical output impedance of the transducer (see 

Figure 2.3). U is related to the open-circuit voltage amplitude U0 in 

Equation (2.7) through TZ ′  and ZL, 
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U Z Z

U Z Z Z Z
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. (2.25) 
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Figure 2.3. Thevenin equivalent circuit for the echo sounder transducer upon 

signal reception. 

Squaring Equation (2.16) and inserting Equations (2.21) and (2.23)–(2.25), one 

obtains the power budget equation 
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where 

σsp = 4πσbs (2.27) 

is the spherical scattering cross-section141,168 and λ = c0/f is the acoustic 

wavelength. As the reference distances r0 and 0r′  are both set equal to 1 m, they 

have been cancelled against each other. FZ is a factor due to the relation 

between the transducer’s electrical input and output impedances and the input 

impedance of the electric receiver circuit, 

2 2
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The impedance ZL of the receiver circuit can be matched to the transducer 

output impedance TZ ′  to maximize the power transfer from the transducer upon 

signal reception. This is achieved by making ZL equal to the complex conjugate 

of TZ ′ . FZ then becomes 
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TZ ′  is not known in practice, but is often assumed equal to the input impedance 

ZT. If the transducer’s electrical input and output resistances are equal, the 

impedance matching factor FZ becomes unity, and Equation (2.26) becomes 

what is sometimes referred to as the “classic radar equation”.1  

It is not unusual that a high value for the impedance ZL is chosen instead of the 

optimal value for power transfer. This is done to maximize the voltage across 

the receiver terminals. |U| approaches its open-circuit value |U0| as |ZL| is 

increased. FZ becomes zero in the high impedance limit, as no energy is 

transferred to the receiver circuit. The formalism of Equation (2.26) with FZ = 1 

is still sometimes used, measuring the voltage U across the transducer terminals 

and e.g. substituting |U/2|2RT/(2|ZT|2) for Pr. The measured voltage is in this 

case approximately twice the value it would have of ZL were optimised for 

power transfer. Inaccuracies due to such assumptions are cancelled through the 

echo sounder calibration. 

The choice and implementation of sonar or power budget equations in echo 

sounders vary. The supplier should be consulted for the details that apply to a 

specific instrument. 

2.1.5. Backscatter from a volume 

Counting of detected single echoes is one method for fish abundance 

estimation. When two or more targets are so close together that their echoes 

overlap, however, they are not counted correctly by single echo detection 

algorithms.167 Such error can be compensated for to a certain point, but 

regarding the received echo energy as volume backscatter is a better alternative 

when a certain density of targets is exceeded.167 
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The scattering from small targets in the water column can be treated as a 

continuous signal with varying amplitude.223 If all the backscattered energy 

from a volume V0 is assumed to be from targets of interest, their density is 

commonly assumed to be proportional to the volume backscattering coefficient 

sv of that volume.96 When the distribution of targets is homogeneous, sv can be 

written141 

spbs
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The σbs,i are the backscattering cross sections of each individual scatterer in the 

volume. ∂σbs/∂V is the contribution of the volume element dV to the total 

backscattering cross section of V0.
141 

Equation (2.26) can be reformulated as an integral over the volume V of 

contributors to the received backscattered power,141 
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The volume element dV' can be treated as part of a thin spherical shell of 

thickness c0τ/2, where τ is the time duration of the transmitted signal. When τ 

is small compared to t, dV' can be approximated by 

2 21
02dV dr r d c r dτ′ = ⋅ Ω ≈ ⋅ Ω . (2.32) 

Insertion into Equation (2.31) yields 
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The equivalent two-way solid beam angle (“equivalent beam angle”) is defined 

as250 
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where G0 = G(0,0). By inserting (2.34) into (2.33), one obtains for the volume 

backscattering coefficient,141 
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The distance r = c0t/2 if the burst is transmitted at time t = 0 and the sound 

speed c0 is constant. 

The area backscattering coefficient sa for a layer between the depths z1 and z2 is 

given by141 

2
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a v

z

s s dz= ∫ . (2.36) 

The nautical area scattering coefficient (NASC)223 is defined as 

sA = 4π(1852)2
sa,  (2.37) 

with unit m2/nmi2 (square metre per square nautical mile). 

The equivalent beam angle ψ for an echo sounder transducer is normally 

supplied from the manufacturer in an individual calibration sheet. Its value can 

in general be affected by such factors as aging and the mounting of the 

transducer. Methods have been developed to measure the equivalent beam 

angle on vessel mounted transducers.191,208 ψ is sometimes approximated with 

the expression250 

2
3 dB4

5800

θ
ψ −≈  (2.38) 

for transducers that resemble a circular plane piston with uniform velocity 

amplitude distribution, where 3 dB2θ−  is the -3 dB beam width. The logarithmic 
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quantity 

10Ψ 10log
1 steradian

ψ
=  (2.39) 

is often used for specifying the equivalent beam angle. Since for most 

transducers only a small fraction of the transmitted energy is projected outside 

the main lobe, the side lobes have little effect on the value of ψ.223 

2.1.6. Expressions used in echo sounder measurements 

Target strength of single scatterers 

Single beam echo sounders cannot measure the direction of incidence of a 

received echo. This is unimportant for measurements of the volume 

backscattering coefficient, where the total received echo energy is integrated 

(Equation (2.35)). The system’s ability to measure the target strength of a 

single scatterer is however limited. A practical power budget equation for such 

echo sounders is stated with the axial gain G0 = G(0,0) substituted for the gain 

function G(θ,ϕ) in Equation (2.26). Target strength measurements are then only 

valid for targets on the sound beam axis.141 Assuming that the absorption loss 

over the distance r0' is negligible, 
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 (2.40) 

Such TS measurement results, which have not been compensated for the 

transducer’s directivity, are referred to as uncompensated target strength TSunc 

in the present work. 

Dual beam and split beam echo sounders sense the angle of incidence of 

received echoes and compensate for the two-way transducer directivity. Target 
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strengths of scatterers within a certain off-axis angle can thus be measured 

more accurately. Split-beam echo sounders are used in the present work, with 

transducers divided in four quadrants. When single echoes are detected, relative 

phase measurements between the quadrants indicate the direction to the target. 

The echo amplitude is compensated with a simple polynomial model, for which 

the parameters are determined in the echo sounder calibration procedure. 

Equation (2.41) describes the beam compensation function that is used in the 

Simrad EK60 echo sounder,18 
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 (2.41) 

θx and θy are the measured off-axis angles to the target in the along ship and 

athwart ship directions, respectively. ∆θx, ∆θy, θ-3 dB,x, and θ-3 dB,y are offset 

angles and half-intensity beam angles, respectively. The offset angles are 

included to ensure that TS = TSunc on the sound beam axis. 

The last term on the right hand side of Equation (2.40) is the only term that 

contains the distance r to the target. The echo sounder accounts for the sound 

propagation distance by means of time-varied gain (TVG) in the receiver 

electronics or in software. The product of the received echo power from a 

single scatterer sufficiently far from the transducer, and the TVG function 

2
4 010

TVG40 ( ) 10 ,
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r
c t

f r r r
α

= ⋅ = , (2.42) 

becomes independent of distance. 

Backscatter from a volume 

A different TVG function is used for measurements of volume backscattering. 
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As stated in Equation (2.35), the volume backscattering coefficient can be 

calculated from the received power Pr as follows, 
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As r appears only to the second order in Equation (2.35), the TVG function 

fTVG20 used for sv measurements is different from that for target strength 

measurements, 

2
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f r r
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The two functions shown in Equations (2.42) and (2.43) are sometimes called 

“40 log r” and “20 log r” TVG functions, respectively, due to their logarithmic 

forms. At short distances, a so-called near range correction can be made to the 

TVG function.167,109 Such a correction is not made in the echo sounders studied 

in the present work. 

2.1.7. Calibration and accuracy 

The two-way axial transducer gain 2
0G  and the four parameters for the beam 

compensation function for target strength measurement (Equation (2.41)) are 

determined through regular echo sounder calibrations.98,10 The equivalent two-

way beam angle ψ is not measured in the regular echo sounder calibrations, but 

is usually a transducer calibration result supplied from the manufacturer. 

Fisheries research echo sounders are commonly calibrated by means of 

standard targets. Modern calibration targets are spheres of copper or tungsten 

carbide, with dimensions that depend on the operating frequency.98,100 Their 

target strengths are calculated from the sphere radius and ratios between 

material parameters of the sphere and the surrounding medium.85,119,95 The 

accuracy of calculated target strengths has been claimed to be within 

±0.1 dB.97,100 
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38.1 mm-diameter tungsten carbide spheres with 6% cobalt binder are used for 

calibration of 120 kHz and 200 kHz echo sounders.100,98 The calibration sphere 

is suspended in the sound beam with monofilament nylon lines to minimize 

reflections from other objects than the sphere. In particular, trapped air could 

affect the measurements. To reduce such problems, the sphere is immersed in 

soap water before it is lowered into the sea. Conductivity and temperature are 

measured in the water column to provide accurate absorption and sound speed 

values. 

The distance from the echo sounder transducer to the calibration sphere is 

usually between 10 m and 25 m, depending on surrounding factors such as 

water depth and currents. While measurements of the echo from the calibration 

sphere are being recorded, the sphere is moved in the alongship and 

athwartship directions. Measurements are thus obtained with the calibration 

sphere in different positions throughout the area approximately within θ-3 dB. 

The distance between the sphere and the echo sounder transducer is kept as 

constant as possible. 

The two-way axial transducer gain and the four parameters of the beam 

compensation function are calculated from the recorded measurements. In the 

echo sounders used in the present work, a separate value for the axial gain is 

obtained for volume backscattering measurements. This is based on the 

measurements with the calibration sphere near the sound beam axis.10 

Based on a five-year study of EK400 echo sounders, Simmonds222 concluded 

that ±6% (±0.3 dB) accuracy can be achieved for measurements of integrated 

echo energy with a recently calibrated echo sounder (referred to the 95% 

confidence level). Better accuracy is expected from more modern echo 

sounders like the EK60 used in the present work.178 
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2.2. Nonlinear sound propagation 

2.2.1. Some central developments in nonlinear acoustics 

Accounts of the history of nonlinear acoustics can be found many places in the 

literature.52,53,57 A brief summary is given here, focusing on the developments 

that are seen as the most pertinent to finite-amplitude propagation effects in 

sound beams. The historical summary is for a large part based on the work of 

Blackstock.57 Reviews of numerical algorithms for nonlinear sound 

propagation are given by Ginsberg and Hamilton,110 Aanonsen et al.,277 and 

Duck.88 The methods that are seen as relevant for the present investigation 

account for diffraction, absorption, and nonlinear distortion in a finite 

amplitude sound beam. A simple survey of existing alternatives is presented. 

Historical overview of nonlinear acoustics 

It is often said that the discipline of nonlinear acoustics was born in 1755 with 

the work of Leonhard Euler. He formulated the conservation equations of mass 

and momentum for a fluid and combined them with Boyle's law to arrive at a 

wave equation for an isothermal gas.57 In 1808, Poisson found an exact solution 

for progressive plane waves of finite amplitude in an isothermal gas. In terms 

of the particle speed v, it can be written57 

( )v g z v b t= − +   , 

where g is an arbitrary function. z is position in a spatial (Eulerian) coordinate 

system, t is time, and b is the sound speed in an isothermal gas. 

According to Poisson's solution, the maximum and minimum pressure of an 

initially sinusoidal sound wave will coincide after a certain time of 

propagation. Stokes (1848)226 made the first sketches that illustrate waveform 

distortion due to the phase speed variation within a sound wave. He also 

derived conservation laws for mass and momentum that must hold across a 



 32 

shock. These were later known as two of the three Rankine-Hugoniot shock 

relations.203 

Airy15 studied the frequency contents of an initially sinusoidal wave and found 

that a second harmonic component is generated through its propagation. He 

noted that the ratio of pressure amplitudes between the second harmonic and 

the fundamental frequency component should grow linearly with distance, 

frequency, and source amplitude. This was later supported by the experimental 

results of Thuras, Jenkins, and O'Neil,232 published in 1935. 

Until Earnshaw's work in 1860,89 sound propagation had been regarded as an 

isothermal process. This resulted in a discrepancy between theoretical and 

experimentally measured sound speeds. Following a suggestion from Laplace, 

Earnshaw derived an expression for sound propagation in an adiabatic gas. 

Earnshaw also considered an arbitrary pressure-density relation.57 

In 1931 and 1935, respectively, Fay92 and Fubini108 published explicit 

expressions for a plane finite-amplitude wave generated by a sinusoidally 

vibrating source. The two results are not equivalent, but apply to different 

regions of the sound field. Both can be expressed as Fourier series of 

fundamental and higher harmonic frequency components.57 Fay's solution 

predicts a sawtooth-like waveform for strong excitations, with increased 

absorption due to the energy transfer to higher harmonics. The solution is valid 

in the so-called sawtooth region, where the distance from the sound source 

z > 3lD. lD = c0/(βεω) is the plane wave shock formation distance due to 

Hugoniot, for an initially sinusoidal wave with angular frequency ω = 2πf. β is 

the nonlinearity coefficient,57 and ε is the acoustic Mach number. 

The Fubini solution is not valid beyond the point of shock formation.55 It 

applies to a lossless gas, and is consistent with the result found by Airy15 for 

the amplitude of the second harmonic frequency component.57 By means of 

weak shock theory, Blackstock55 later formulated a more general solution 
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which agrees with those of Fubini and Fay in their respective regions of 

validity and also applies to the intermediate region. 

Langevin was the first to present measurements of a coefficient of nonlinearity 

in fluids, based on a Taylor series expansion of the pressure-density 

relation.57,49 His work is reported in an article by Biquard.51 Langevin also 

found an expression for the profile of a steady shock wave in a liquid, and 

observed that decay and thickening of the shocks would eventually restore the 

wave to sinusoidal form. He predicted that an ideal sawtooth wave would 

decay inversely with distance, as can also be inferred from Fay's solution.57 

The generation of sum and difference frequency components in intense sound 

fields with two primary frequencies was demonstrated by Thuras et al. in 

1935.232 Lighthill160,161 used the basic equations of fluid dynamics to develop a 

theory for what he called the aerodynamic generation of sound. Calculations 

based on his work and measurements of sum and difference frequencies from 

sound beams intersecting at a right angle in air were presented by Ingard and 

Pridmore-Brown128 in 1956. 

Intensity dependent attenuation of finite-amplitude sound waves, as predicted 

by Fay in 1931,92 was reported after several experiments from around 

1940.102,248,184,169 Several theoretical and experimental works followed the 

initial investigations. The connection with nonlinear sound propagation was 

made in 1954 by Fox and Wallace,103 who modelled the propagation medium 

as a nonlinear transmission line. 

Burgers’ equation63 from 1948 describes the propagation of plane, finite-

amplitude waves in thermoviscous fluids. The equation has an exact analytical 

solution that can be expressed in terms of definite integrals.123,76 The Burgers 

equation has been used by a great number of authors for solving one-

dimensional propagation problems.54,93,163,190,154 Blackstock generalized the 

equation to apply to arbitrary absorption and dispersion in 1985.56 
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Keck and Beyer133 presented analytical expressions for the harmonic overtones 

generated through nonlinear distortion in a plane wave. They compared their 

results for the second and third harmonic with measurements obtained by 

Krasil’nikov et al.148 Keck and Beyer also calculated an effective absorption 

coefficient for a plane sound wave of finite amplitude.133 

Westervelt263 used an equation due to Lighthill to derive a dissipationless 

second-order wave equation, published in 1957. His result had also been 

obtained somewhat earlier by Eckart.57,90 Westervelt also derived a source 

function that describes the generation of sound through nonlinear interaction 

between two primary sound fields.263,262 The parametric acoustic array, which 

he suggested in 1963,264 consists of two collinear sound beams with high 

amplitude. The primary sound beams can act as an end-fire array of virtual 

acoustic sources, producing a narrow sound beam with frequency equal to the 

difference between the primary field frequencies. Several authors conducted 

further investigations of the parametric acoustic array,155,37,40,120,274,175,179 only a 

small fraction are referenced here. Westervelt also suggested the parametric 

receiving array. His theory required the primary fields (incident sound field and 

receiver “pump wave”) to be highly collimated, but the result has been 

extended to a number of cases that are better suited for practical 

applications.39,41,266,99 Naze Tjøtta, Tjøtta and their co-workers186,238,46,83 

developed a general theory of the nonlinear interaction between sound waves. 

In 1969, Zabolotskaya and Khokhlov271 presented a second order wave 

equation that describes nonlinear sound propagation in a confined, 

axisymmetric beam in a lossless medium. Asymptotic solutions have been 

derived for various cases.272,216,257,150 An absorption term was added to the 

Zabolotskaya-Khokhlov equation by Kuznetsov,151 who thus obtained the 

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. An interesting survey of 

the works of Burgers, Zabolotskaya and Khokhlov, and others, is given by 

Rudenko et al.215 Østerbø275 and Naze Tjøtta and Tjøtta237 have presented 

alternative derivations of the KZK equation, using inner and outer expansion 
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methods and a singular perturbation method, respectively. Several asymptotic 

solutions of the Zabolotskaya-Khokhlov equation were presented during the 

1970s.216,257,150 

Experimental investigations of finite amplitude sound beams from plane 

piston-like sources have been carried out by authors such as Gould et al.,112 

Lockwood et al.,163 Shooter et al.,221 Moffett,180 and Baker et al.23 The 

measurements have generally been performed in fresh water, and with higher 

frequencies and smaller beam widths than in the present work. 

In medical ultrasound, where nonlinear harmonic generation is today exploited 

actively,64,88 excess attenuation due to nonlinear effects was pointed out in 

1980 by Muir and Carstensen181 and Carstensen et al.67 

Numerical approaches to nonlinear sound propagation 

Cook78
 and Van Buren and Breazeale251 used the model suggested by Fox and 

Wallace103 in numerical calculations of the propagation of plane waves of finite 

amplitude in an absorbing fluid. The effects of nonlinearity and absorption 

were separated and superposed over incremental propagation steps in space. 

The effect of nonlinear distortion was calculated in the time domain, and the 

solution was Fourier transformed in each propagation step to account for 

thermoviscous absorption in the frequency domain. Pestorius proposed a 

combined time-frequency numerical algorithm for arbitrary plane finite-

amplitude waveforms.201 Nonlinear distortion was accounted for in the time 

domain, and absorption and dispersion in the frequency domain. The Pestorius 

algorithm was extended by Bass and Raspet36 and used for calculations of 

shock wave propagation in the atmosphere. The time domain part of the 

algorithm is based on weak shock theory and thus assumes thin shocks. 

In 1971, Fenlon93 presented an algorithm that solved a set of coupled spectral 

equations obtained by inserting a Fourier series trial solution in the Burgers 

equation. The initially infinite set of equations was truncated and solved with a 
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finite difference method. His pure frequency domain method had the 

computational advantage that it did not depend on Fourier transformations in 

each calculation step. Fourier series solutions for plane wave propagation have 

since been sought on the basis of other governing equations. An overview is 

given by Aanonsen et al.277 Fenlon93 and Trivett and van Buren249 also 

considered spherically and cylindrically spreading waves using similar 

methods. Cleveland et al.74 have used the Burgers equation to describe sound 

propagation with position-dependent medium parameters by adding an 

algorithm that determines the ray path. 

Bakhvalov et al.31 integrated the Zabolotskaya-Khokhlov271 equation directly 

by means of finite differences. The sound propagation process is diffusion-like 

in the parabolic approximation, so that the Zabolotskaya-Khokhlov and KZK151 

equations may be integrated step by step in the direction of propagation without 

concern for backward-propagating wave components.110 The algorithm of 

Bakhvalov et al.31 propagates the solution forward in uniform spatial steps, 

starting from a time continuous boundary condition specified in the source 

plane. Results were reported for axisymmetric problems with Gaussian and 

fourth-order polynomial amplitude distributions. The discontinuity in a uniform 

piston source condition was not handled. The amplitudes of the frequency 

components were found by analysing the calculated time waveforms. The 

method of Bakhvalov et al. was later extended to account for absorption.33 

Calculations were made for weak focusing32 and for the nonlinear interaction 

between two collinear sound beams.34 

Zhileikin273 proposed a frequency domain solution of the KZK equation in 

1982. He reformulated the problem as an infinite system of equations for the 

Fourier components of the solution, and solved a truncated system by means of 

finite differences. The fast Fourier transform was used twice in each step of the 

calculation to account for nonlinearity in the time domain. 

Naze Tjøtta and Tjøtta led the development of a finite difference algorithm that 
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solves the KZK equation fully in the frequency domain.35,276,277 This algorithm 

and its successors are commonly referred to as the Bergen Code, and have been 

developed further and applied to a variety of problems. As in the works of 

Fenlon,93 Zhileikin,273 and others, a Fourier series trial solution was inserted 

into the KZK equation.276,35 The resulting infinite set of equations was 

truncated and solved entirely in the frequency domain for the near field of an 

axisymmetric sound source. Unlike earlier algorithms, the Bergen Code is able 

to simulate the sound field radiated by a piston source with uniform amplitude 

distribution. A coordinate transformation that enabled simulation of nonlinear 

sound propagation in the far field was introduced in 1984.278,114 The transform 

is referred to as the Transformed Beam Equation (TBE). The Bergen Code is 

discussed further in Section 2.2.4. 

The nonlinear progressive equation (NPE) was derived by McDonald and 

Kuperman170,171 for their numerical study of nonlinear sound propagation in 

inhomogeneous media. The equation was derived from the Euler equations of 

fluid dynamics and an adiabatic equation of state. It is similar to the KZK 

equation, but with the roles of time and propagation distance reversed.170 The 

KZK equation is more convenient for boundary value problems, where an 

initial time waveform is prescribed in the plane of the source.276,157 The NPE is 

formulated in a wave-following coordinate system, and the algorithm due to 

McDonald and Kuperman requires an initial space waveform to be prescribed 

at an instant in time. The algorithm was originally used to study finite 

amplitude sound propagation in the ocean.171,17,68,69,172 In 1990, Too and 

Ginsberg244 modified the NPE approach to apply to axisymmetric sound beams 

in the paraxial approximation. Results from their simulations were compared 

with the Rayleigh integral and experimental results from the literature.23,180,163 

The NPE approach and the Bergen Code are reported to yield “comparable 

accuracy”, although the KZK equation inherently accounts for dissipation and 

the NPE does not.244 The NPE has been rewritten in spherical coordinates245 to 

facilitate simulations in the far field of focused and unfocused sound beams. A 
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thermoviscous absorption term was added by Too and Lee.246,247 

In an algorithm described in 1991, Sparrow and Raspet224 used a finite 

difference time stepping approach to solve the second-order fundamental 

equations of acoustics.115 Their solution was given in two dimensions and 

applied to the propagation of a spherical spark pulse in a finite axisymmetric 

geometry. Examples were also given of reflection from hard surfaces. The 

algorithm is able to describe multiple waves in arbitrary directions, but at a 

high computational cost.224 

Christopher and Parker71 proposed an angular spectrum method for modelling 

nonlinear propagation in an axisymmetric sound beam in 1991. Their 

numerical solution is propagated forward incrementally from the plane of the 

sound source using the method of fractional steps. In one substep, a discrete 

Hankel transform was applied to account for diffraction and attenuation. A 

frequency domain solution to Burgers’ equation was used in a separate substep 

to account for nonlinear distortion. Christopher and Parker71 compared their 

results with some previously reported experiments.87,23 A modified version of 

the code has been used to model sound propagation from an electrohydraulic 

shock wave lithotripter.72
 Vecchio and Lewin252 have proposed a similar 

method for non-axisymmetric sound beams.  

Many practical applications involve short sound bursts and pulses with high 

intensity. Although frequency domain methods can be applied to pulsed 

ultrasound,24,26 they are in general best suited for describing wave propagation 

that results from a narrow-band excitation signal. The computational cost can 

be significantly lower for time domain calculations than for simulations in the 

frequency domain when pulsed sound is simulated.107 In 1997, Tavakkoli et 

al.
230,231 presented a pure time domain method based on the work of 

Christopher and Parker.71 Arbitrary absorption is accounted for by convolution 

with a causal finite impulse response filter, while nonlinearity is included in the 
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form of the Poisson solution. Simulations were compared with experimental 

results.231,206,207 

Khokhlova et al.135 extended the method of Tavakkoli et al.231 to apply to an 

intense continuous-wave sound beam. They compared the result with a new 

frequency domain algorithm for solving the KZK equation. The new algorithm 

is based on operator splitting and optimised for describing shock wave 

propagation.135 Good agreement was reported between both models and 

experimental data.135,219 Nouri-Baranger et al.188 chose a frequency domain 

approach similar to that of Khokhlova et al.135 to simulate sound beams from 

plane, non-axisymmetric transducers. 

With the Bergen Code276,277 as their starting point, Lee and Hamilton157 

developed an algorithm for solving the KZK equation fully in the time domain. 

The first results were published in 1995.157 The so-called Texas Code has been 

used in numerous works. Averkiou et al.19 investigated self-demodulation of 

sound bursts in fluids with strong absorption experimentally and theoretically. 

Averkiou and Hamilton21 studied pulsed sound waves from plane and focusing 

piston sources. Several authors have compared results from the Bergen Code 

and the Texas code and reported good agreement.21,22,158 The Texas Code has 

been extended from its original axisymmetric geometry to three dimensions,268 

and it has been used for calculations involving multiple relaxation 

phenomena157,75 and turbulence.58 Bouakaz et al.
59 obtained a three-

dimensional algorithm similar to that of Lee and Hamilton, and compared their 

results with measurements in the sound field of a square transducer59 and a 

clinical scanner.60 

Hallaj and Cleveland113 and Huijssen et al.124 obtained explicit finite difference 

time domain (FDTD) solutions of an equation due to Westervelt.264,115 Huijssen 

et al.
124 compared their results in the linear, lossless case with analytical 

solutions to confirm the validity of the model. Simulated nonlinear beam 

patterns were compared with Texas Code157,60 solutions of the KZK equation 
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and hydrophone measurements. In the regions where the KZK equation is 

known to be inaccurate, the results of Huijssen et al.124 was reported to agree 

better with measurement results. However, as their algorithm operates in the 

time domain, it is not well suited for simulating continuous waves or long 

sound bursts. Ginter,111 who implemented the equations of mass and 

momentum conservation and the equation of state directly, also used the 

explicit FDTD method. Arbitrary frequency power-law attenuation was 

accounted for in the time domain.111,159 

In 1999, Campos-Pozuelo et al.65 proposed a finite element approach based on 

second order perturbation theory, yielding results that are said to be consistent 

with the Westervelt equation65. The three-dimensional geometry and surface 

vibration pattern of the sound source can be arbitrarily chosen. However, 

approximations are made that are only valid at distances much shorter than the 

shock formation distance.65 Campos-Pozuelo et al. compared numerical 

simulation results with measurements for a stepped-plate transducer. 

Kagawa et al.129 derived approximate equations for the fundamental and second 

harmonic frequency components based on an equation due to Kuznetsov.151 

The equations were solved with the finite element method. FE simulations 

based on an incrementally linear approach265 were made by Wojcik et al.265 

Hoffelner et al.121 obtained a finite element solution of the full Kuznetsov’s 

equation,151 avoiding the parabolic approximation and at the same time 

accounting consistently for diffraction, absorption, and nonlinearity.151 Results 

from their simulations were compared with the Fubini and Fay solutions and 

with measurements in the sound field of a high intensity focused ultrasound 

transducer. Their model has been used in a theoretical investigation of acoustic 

streaming and radiation force,122 and for calculations of nonlinear standing 

waves.149 
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2.2.2. Nonlinear effects and fisheries acoustics 

Linear sound propagation has been assumed in fisheries acoustics from the 

emergence of fisheries research echo sounders in the 1930s until today. During 

the development of new echo sounders, with increased accuracy and dynamic 

range, one became aware of waveform distortion due to sound propagation 

through water.233 Experimental233,234 and theoretical investigations using the 

Bergen Code29,30 were made in 2000–2002. Their results indicate that 

significant nonlinear sound propagation effects can occur in the 120 kHz and 

higher frequency echo sounder sound beams under relevant operating 

conditions for fisheries research echo sounders. 

An investigation was launched in 2003 in cooperation between Christian 

Michelsen Research AS, the University of Bergen, Institute of Marine 

Research, and Simrad AS, in order to obtain quantitative results for the 

nonlinear effects to be expected in fisheries acoustics. The present work is part 

of this effort. 

Tichy, Solli, and Klaveness234 reported experimental and numerical results for 

the excess attenuation in the axial field of a 200 kHz echo sounder due to 

nonlinear effects. They suggested that an adjustment should be introduced to 

obtain correct target strength measurements, and that the transmitted power 

should be reduced when possible to minimize the nonlinear effects. 234 Limits 

on the output powers for fisheries research applications have been 

recommended by Simrad.13 Simmonds and MacLennan223 have suggested 

somewhat different limits to the source level based on the results of Shooter et 

al.
221 

2.2.3. The KZK equation 

The Bergen Code, which is used for numerical simulations in the present work, 

is based on the Khokhlov-Zabolotskaya-Kuznetsov equation.271,151 The KZK 

equation is a popular model for nonlinear sound propagation in the paraxial 
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region of a sound beam. As the equation is parabolic, it is well suited for 

solution by finite differences. Absorption, diffraction and nonlinearity are 

accounted for to the second order. For the sake of discussions elsewhere in the 

present work, a derivation that follows the same lines as that of Kuznetsov151,115 

is sketched below, with emphasis on certain points of interest. The sources 

referred to above give a more detailed account of the derivation. An overview 

of the KZK equation and other equations of nonlinear acoustics is found in 

Hamilton and Morfey.115 

The following quantities are defined: 

position x = (x1,x2,x3), 

particle velocity v = (v1,v2,v3), 

particle speed v = |v|, 

characteristic particle speed amplitude v0, 

equilibrium pressure P0, 

sound pressure p', 

pressure P = P0 + p', 

equilibrium density ρ0, 

density perturbation ρ', 

density ρ = ρ0 + ρ',  

time t, 

shear viscosity µ, 

bulk viscosity µB, 

heat conductivity κ, 

frequency f, 

angular frequency ω = 2πf,  

small-signal sound speed 0 ,0( / )sc P ρ= ∂ ∂ , 

entropy at equilibrium s0, 

entropy perturbation s', 
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entropy s = s0 + s', 

temperature T. 

Pressure, density, and entropy are expressed as sums of their equilibrium 

values and perturbations. c0 is the isentropic, small-signal sound speed, as in 

Chapter 2. 

An approximate wave equation valid to the second order in the acoustic Mach 

number ε = v0/c0 and the first order in the Stokes number η = µω/ρ0c0
2 is 

sought. ε and η are considered to be of comparable smallness so that their 

combined order can be characterized by a generic ordering parameter ε� .115 

The basic equations138,115 for the dynamics of a continuous medium are the 

equation of continuity, 

( ) 0
t

ρ
ρ

∂
+∇ ⋅ =

∂
v , (2.44) 

the Navier-Stokes momentum equation, 

( ) ( )2 1
B 3P

t
ρ µ µ µ

∂ + ⋅∇ = −∇ + ∇ + + ∇ ∇ ⋅ ∂ 
v v v v , (2.45) 

the entropy equation, 

( )
2

22 1 2
B 2 3

ji k
ij

j i k

vv v
T s T

t x x x
ρ κ µ µ δ

 ∂∂ ∂∂ + ⋅∇ = ∇ + ∇ ⋅ + + −    ∂ ∂ ∂ ∂   
v v , (2.46) 

using Einstein’s summation convention, and an equation of state for the 

medium, 

( ),P P sρ= . (2.47) 

For an isentropic fluid, the equation of state can be approximated by a second-

order Taylor expansion around equilibrium,103 
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ρ ρ
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   ′ ′
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. (2.48) 

The parameter of nonlinearity B/A is thus given by49 

2
0
2 2
0 ,0s

B P

A c

ρ
ρ

 ∂
=  ∂ 

. (2.49) 

Also allowing changes in entropy, the 2O( )ε�  equation of state becomes115 

2
2 20

0 0

,00 2

c B p
P P c s

A s ρ

ρ ρ
ρ

′∂ ′ ′ ′− ≈ + +  ∂ 
. (2.50) 

The vector identities ∇∇∇∇(∇∇∇∇ · v) = ∇∇∇∇2
v + ∇∇∇∇×∇∇∇∇×v and (v · ∇∇∇∇)v = ½∇∇∇∇v2 – v×∇∇∇∇×v, 

where v2 = v · v, are inserted into Equation (2.45). Terms that contain ∇∇∇∇×v are 

mainly associated with vorticity, and decay exponentially with distance from 

boundaries if the mean motion of the propagation medium is zero. Discarding 

such terms and those of order higher than ε, ηε, and ε2, Equations (2.44)–(2.46) 

combine to115 

( ) 2 2 24 1
0 03 2Bp v
t t

ρ µ µ ρ ρ
∂ ∂′ ′+∇ = + ∇ − ∇ −
∂ ∂
v v

v , (2.51) 

2
0 0

s
T T

t
ρ κ

′∂ ′= ∇
∂

. (2.52) 

Inserting O( )ε�  expressions into 2O( )ε�  terms are assumed to result in errors of 

third order. By substitution of the first-order relations115 

2
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s ρ

ρ
ρ

 ∂ ∂  =   ∂ ∂   
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c c TcT

c cρ ρ

− ∂
= ∂ 

, 
2

2

2 2
0

1 p
p

c t

′∂′∇ =
∂

, (2.53) 

into Equations (2.44), (2.50), (2.51), and (2.52), they can be combined to the 

second-order nonlinear wave equation278 
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1 1p p
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ρ
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L . (2.54) 

cp and cv are specific heats for constant pressure and volume, respectively. The 

nonlinearity coefficient β = 1 + B/2A, and the diffusivity of sound is278,115 

( )
3
0 24

B3 2
0 0

1 1 1

2v p

c

c c

ακ
δ µ µ

ρ ρ π

 
= + + − =  

 
. (2.55) 

The classical absorption coefficient138 for a harmonic wave with frequency f is 

α' = α2 f
 2. The quadratic dependence upon frequency is inherent in the 

dissipation term in Equation (2.54).56 

When local nonlinear effects are negligible in comparison with the cumulative 

nonlinear distortion that builds up through propagation, the term containing the 

second-order Lagrangian density 

2
21

02 2
0 02

p
v

c
ρ

ρ
′

= −L  (2.56) 

can be disregarded.277 In general, this is the case for progressive quasi-plane 

waves at distances greater than one wavelength from the sound source.115 

Equation (2.54) then becomes what Hamilton and Morfey115 call the Westervelt 

equation.264 This is the equation used by Hallaj and Cleveland113 and Huijssen 

et al.
124 in their numerical simulations. 

A sound beam propagating along the positive x3 axis is considered in a 

reference frame that moves at speed c0 in the same direction. The variations in 

the sound field with x3 due to absorption, nonlinearity, and diffraction are all 

assumed to be of order ε� .271,151 The spatial variations in the x1 and x2 directions 

are assumed to be of the order 
1

2ε�  more rapid.271,151 The slow scale 

( )1 2 3, ,p p x x x′ ′ ′ ′ ′= , ( ) ( )1 1
2 2

1 2 3 1 2 3, , , ,x x x x x xε ε ε′ ′ ′ = � � � , 3

0

x
t t

c
′ = −  (2.57) 
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is inserted into Equation (2.54) with 0=L . t' is retarded time. The resulting 

O( 3ε� ) term is omitted. This corresponds to approximating a hyperbolic 

equation with a parabolic equation.115 Only one-way, paraxial sound 

propagation is described.265 The so-called parabolic approximation reduces the 

domain of validity for the model, but yields an equation that is well suited for 

solution by finite differences.31,276 Transforming back from ( )1 2 3, ,x x x′ ′ ′  to 

( )1 2 3, ,x x x , one obtains the Khokhlov-Zabolotskaya-Kuznetsov (KZK) 

equation,271,151 

2 3 2 2
20

3 3 3 2
3 0 0 02 2 2

c p
p

x t c t c t

δ β
ρ⊥

  ′∂ ∂ ∂
′− ∇ − = ′ ′ ′∂ ∂ ∂ ∂ 

. (2.58) 

2 2 2 2 2
1 2x x⊥∇ = ∂ ∂ + ∂ ∂  is called the transverse Laplacian operator. 

2.2.4. The Bergen Code 

The development of the Bergen Code was initiated by professors Jaqueline 

Naze Tjøtta and Sigve Tjøtta at University of Bergen early in the 1980s.35,276,277 

The entirely frequency domain solution of the KZK equation271,151 has become 

widely used in investigations of time periodic, finite-amplitude wave 

propagation in sound beams. A version of the Bergen Code has been chosen for 

the numerical simulations in the present work. The programme is well suited 

for the geometry of the studied problem. The author is not aware of any 

indications that other algorithms yield more accurate simulation results for the 

fundamental and second harmonic frequency components along the sound 

beam axis. 

Development of the programme 

The original version of the Bergen Code algorithm assumes an axisymmetric 

problem, which reduces the geometry to two dimensions. A frequency 

transform of the dimensionless KZK equation (Equation (2.60) below) is 

solved in incremental steps in the direction of the symmetry axis. A set of 
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algebraic equations is obtained by means of implicit finite differences and 

solved by iteration in each propagation step. Numerical results were first 

obtained for the near field of uniform and Gaussian circular piston 

sources.35,276,277 

For an axisymmetric problem, the solution is initiated with a source condition 

specified along a line perpendicular to the symmetry axis. The source condition 

is given at equidistant points starting on the axis and ending at the chosen width 

of the numerical grid. In each propagation step, the number of points and the 

spacing between them are the same as in the previous. The rectangular grid 

thus produced is not well suited for describing the spherically diverging far 

field. The grid must be sufficiently wide so that interactions with its boundary 

do not affect the solution significantly. At the same time, the fine resolution 

needed to describe the sound source and near field adequately, must be 

maintained. The great number of grid points that are necessary to meet both 

demands makes simulations of the far field computationally expensive. 

To enable far field simulations without an excessive number of grid points, the 

KZK equation was recast in a transformed coordinate system by Aanonsen et 

al.
278 (Equation (2.63)). The transformation between the coordinate systems 

corresponds to a mapping between a rectangular grid and one for which the 

width increases linearly with distance from the source plane (Figure 2.4). The 

resulting equation is referred to as the Transformed Beam Equation (TBE), and 

has the same form as the dimensionless KZK equation. A similar coordinate 

transformation approach has been used by Bakhvalov et al.,31 

Aanonsen et al.278,114 made simulations of the far field of a circular piston. 

They compared their results with measurements made by Lockwood et al.,163 

Moffett,180 and Riley.213
 Alternative coordinate transformations have been 

introduced later to follow the geometry of a focused sound beam.118,240,241,269,132 

Weakly focused sound beams can be simulated with the Transformed Beam 

Equation by specifying a phase shaded source condition.25,20 



 48 

Bergen Code simulations of the sound fields of plane uniform piston sources 

have been compared with measurements by several authors, such as Baker et 

al.,23 Kamakura et al.,130 Nachef et al.,182 and Averkiou and Hamilton.20 Good 

agreement is reported, although the parabolic approximation limits the model 

accuracy close to the sound source and far from the sound beam axis. 

The use of implicit finite differences in the first Bergen Code versions35,276-278 

imposed restrictions on the step length in the direction of propagation. The 

Richtmyer procedure211 was taken into the algorithm by Berntsen and 

Vefring44,45 to yield an inherently stable solution without the same restrictions. 

Moreover, the set of algebraic equations obtained in each propagation step was 

made to form a tridiagonal system, which can be solved without iteration. The 

efficiency of the Bergen Code was significantly increased through these 

changes. 

The new algorithm was used by Vefring253,255,254 to simulate nonlinear effects 

in axisymmetric sound beams and nonlinear interactions between collinear 

sound beams.256,239,240 Vefring compared his results for the primary sound 

waves with linear theory, and those for the sum and difference frequencies with 

quasilinear theory.254 Reiso205,204 made modifications to the Bergen Code for 

investigating sound propagation in inhomogeneous media. 

Although the Bergen Code solves the KZK equation entirely in the frequency 

domain, the propagation of pulses can be implemented by specifying the 

Fourier spectrum of the excitation signal in the source condition.24,26,187 The 

signal is represented by a finite number of harmonics of a chosen fundamental 

frequency. A broadband source condition can drastically increase the 

computational cost, as one needs to retain a sufficient amount of harmonics of 

the frequencies contained in the excitation signal. 

Kamakura et al.131 developed a new computer programme for solving the 

Transformed Beam Equation, following the same lines as Aanonsen et al.278 

They employed the alternating direction implicit (ADI) method to solve the 
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equation in three dimensions, which made possible the simulation of sound 

beams radiated by rectangular sound sources. Berg and Naze Tjøtta38 presented 

another three-dimensional Bergen Code implementation using the ADI method. 

The improvements that had been introduced by Vefring et al.240 to make the 

axisymmetric version more efficient, were included in their programme. 

Simulations produced with the implementation due to Berg and Naze Tjøtta38 

were compared with measurements by Sahin and Baker217 and Baker et al.27 

The Bergen Code and codes based on it have been used in several recent works 

such as those of Baker and Lunde,29,30 Divall and Humphrey,84 Labat et al.,152 

Rielly,212 Tao et al.,229 and Kourtiche et al.147
 

Dimensionless KZK equation 

The KZK equation (Equation (2.58)) is recast in the dimensionless coordinates 

(ξ1, ξ2, σ) = (x1/a, x2/a, x3/R0). The characteristic lengths a and R0 are related 

through the expression R0 = ka2/2, where k = ω/c0 is the wave number. Thus, if 

a is the radius of a uniform circular piston sound source, R0 is the 

corresponding Rayleigh distance for a harmonic wave with angular frequency 

ω. Substituting the dimensionless retarded time τ' = ωt' = ω(t–x3/c0) and the 

normalized sound pressure 

0 0 0/p p c vρ′= , (2.59) 

into Equation (2.58), one can write276 

2 3 2
2 2

0
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4 4 2
R

R p p
l

α
τ σ τ τ

⊥
 ∂ ∂ ∂′−∇ − = ′ ′ ′∂ ∂ ∂ ∂ 

. (2.60) 

v0 is a particle speed amplitude characteristic of the sound field. In simulations 

of sound propagation from a uniform piston, v0 is usually the speed amplitude 

of the piston. The dimensionless transverse Laplacian operator may be written 
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2 2
2

2 2
1 2ξ ξ

⊥
∂ ∂

∇ = +
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, (2.61) 

and 2 3
0/ 2cα δω′ =  and ( ) 1

Dl kβε −
=  are the absorption coefficient and the plane 

wave shock formation distance, respectively. One should note that the subscript 

D has been used in other works to identify the diffraction length (Rayleigh 

distance). The notation in the present work has been adapted from the works by 

Naze Tjøtta, Tjøtta, and their co-workers.276,277,237 ε = v0/c0 is the peak particle 

speed Mach number. For the special case of an axisymmetric beam, Aanonsen 

et al.
278 substituted 

2 1
ξ

ξ ξ ξ
⊥

 ∂ ∂
∇ =  ∂ ∂ 

, (2.62) 

where ξ = ξ , 1 1 2 2ξ ξ= +ξ e e . Equations (2.61) and (2.62) are equivalent in an 

axisymmetric geometry. e1 and e2 are unit vectors in the x1 and x2 directions, 

respectively. 

According to Aanonsen et al.,277 their result is valid for arbitrary frequency 

dependent absorption. They propose to add a frequency dependent term to δ to 

account for relaxation. This should enable the solution to include dispersive 

effects such as treated by Korpel146 and Trivett and van Buren249 in their one-

dimensional models. However, Aanonsen et al.277 only present calculation 

results for absorption with quadratic frequency dependence. 

Transformed Beam Equation 

When the axisymmetric version of Equation (2.60) is solved numerically on a 

rectangular domain in the (ξ,σ) plane,276 the transverse extent of the numerical 

grid imposes a serious restriction on the tractable propagation distance. As the 

sound beam diverges spherically in the far field, a wide grid is necessary to 

avoid reflections from its boundary. The excessive number of calculation 

points needed to obtain the necessary grid width at the same time as an 
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adequate resolution is kept near the sound source, restricts the numerical 

approach of Aanonsen et al.276,277 for a large part to the near field. 

To be able to simulate sound propagation in the far field, Equation (2.60) was 

transformed into a new set of dimensionless coordinates by Aanonsen et al.,278 

2

p,
1 1

ξ
τ τ

σ σ
′= = −

+ +
ξ

u . (2.63) 

A rectangular numerical grid in the (u,σ) plane, where u = |u|, corresponds to a 

physical calculation area for which the width increases with the axial distance 

σ from the sound source. The transformation is illustrated in Figure 2.4. 

uξ

u
max

u
max

σσ
−1 0 0  

Figure 2.4. Sketches of the two-dimensional calculation region for solving the Transformed 

Beam Equation for an axisymmetric problem. The same area is shown in the (ξ,σ) 

dimensionless coordinate system (left) and the (u, σ) transformed coordinate system (right). 

A new parabolic equation for 

p( , , ) (1 ) ( , , )T pσ τ σ σ τ′ ′= +u ξ , (2.64) 

which has the same form as Equation (2.60), can be written in the transformed 

coordinates, 

( ) ( ) ( )
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u . (2.65) 
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2∇u  is the transverse Laplacian with respect to u, defined in the same way as 

2
⊥∇  is with respect to x. Equation (2.65) is referred to as the Transformed Beam 

Equation (TBE).278 

Problem formulation in the frequency domain 

By inserting a trial solution276,278 

( )p p
1

sin cosn n

n

T g n h nτ τ
∞

=

′ = +∑ . (2.66) 

into Equation (2.65), one obtains a set of coupled partial differential equations 

for the Fourier coefficients gn and hn, 
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 (2.67) 

1,2,n = … . 

Insertion of the same trial solution (2.66) into the dimensionless KZK 

equation (2.60) instead of the TBE yields a set of equations on the same form 

as Equation (2.67).276 The same approach has been used earlier by Fenlon93 for 

solving the Burgers equation. 

In the following, the first terms on the right-hand sides of Equations (2.67) are 

referred to as “absorption terms”. The second terms are referred to as 

“diffraction terms”, while the third are called “nonlinearity terms”. 
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Boundary conditions 

Within the parabolic approximation, the plane wave impedance relation is valid 

between the axial component v3 of the particle velocity and the sound 

pressure237, 

0 0 3p c vρ′ = . (2.68) 

v3/v0 consequently satisfies Equation (2.60). The solution of the KZK and TBE 

equations becomes the same whether the boundary conditions are prescribed in 

terms of pressure or the axial particle velocity component. Also, as p’ = 0 when 

v3 = 0, Equation (2.68) entails that there is no distinction between an infinitely 

stiff and an infinitely compliant baffle. For an axisymmetric piston source 

situated in the plane σ = 0 with particle velocity v3 = fs(ξ) sin τ on its surface, 

the source (boundary) condition becomes278 

2 2
1 s 1 s( )cos , ( )sin ,

0, 0, 2.n n

g f u u h f u u

g h n

= =

= = ≥
 (2.69) 

In the special case of a uniform, circular piston oscillating sinusoidally with 

peak velocity amplitude v0, mounted in an infinitely stiff baffle of infinite 

extent, 

s

1, 1
( )

0, 1
f

ξ
ξ

ξ
≤

= 
>

. (2.70) 

ξξξξ and u are equal in the source plane (Equation (2.63)). Some alternative 

amplitude and phase shaded source conditions are discussed in Section 4.3. 

When an axisymmetric problem is considered, the axis is a boundary for the 

numerical grid. The boundary condition at u = 0 is ∂gn/∂u = 0, ∂hn/∂u = 0 to 

obtain symmetry in the sound pressure. The artificial boundary at u = umax is 

also reflecting. umax must be set large enough so that the reflections do not 

cause significant error in the solution of interest.278,114 
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Numerical solution 

The infinite set of equations (2.67) is truncated in order to obtain a numerical 

solution. The Nh first pairs of equations for gn and hn are retained. The solution 

is calculated in steps in the direction of propagation. The computation starts at 

the source plane, which is given as an initial condition. In each step, the 

solution is calculated at Nu equidistant points from u = 0 through u = umax 

(Figure 2.4). As the solution varies more slowly in the far field than in the near 

field, the length lσ of each propagation step can be increased with distance from 

the source plane. This contributes to reducing the computational cost of the 

simulations. The step length parameter λσ controls the resolution in the axial 

direction, 

lσ(σ) = λσ(1 + σ)2. (2.71) 

The Crank-Nicholson method80 is used to integrate the absorption and 

diffraction terms throughout most of the sound field (Richtmyer procedure44). 

The nonlinearity terms are expressed with explicit finite differences.45 In order 

to damp down Gibbs oscillations from discontinuities in the source condition, 

some initial calculation steps are made with implicit differences instead of the 

Crank-Nicholson method.254 The effect of this approach is discussed in more 

detail in Chapter 3. 

The Bergen Code version used in the present work has been implemented by 

Berntsen.47,48 The programme includes the modifications described by Berntsen 

and Vefring in 198644 and 1987.45 Slight changes to the representation of the 

input parameters and the output of calculation results have been made by the 

author. Moreover, the step length adjustment feature for the initial implicit 

steps has been disabled as a constant length limp is used for these steps in the 

present work. A listing of the used programme has been included in 

Appendix B to ensure the repeatability of the presented simulations. 
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Chapter 3. Simulation uncertainty 

Simulations performed with the Bergen Code have been compared with 

measurements and other models in a large number of investigations, as 

described above. However, the author is not aware of sufficiently detailed and 

precise accounts of the accuracy with which the programme can be expected to 

predict finite amplitude sound propagation in cases relevant to the present 

work. An attempt has therefore been made to identify and quantify as many 

uncertainty contributions as possible. As far as it has been practical, the 

obtained uncertainties have been treated in accordance with the Guide to the 

Expression of Uncertainty in Measurement.
3
 

The Bergen Code offers a direct frequency domain solution of the KZK 

equation.
271,151

 The KZK equation is generally accepted as a reliable 

description of the acoustic field in the paraxial region, not too close to the 

sound source.
131
 The sound burst durations used in the present work are 

30 periods of the drive frequency or more. A continuous wave approximation is 

considered adequate for the description of the steady-state region within the 

burst. The frequency domain representation used in the Bergen Code is suitable 

for the application. 

A Bergen Code implementation for axisymmetric sound beams has been used 

in the present work. The axial symmetry reduces the numerical problem from 

three to two physical dimensions, which in turn reduces the computational cost 

of the algorithm substantially.
126,268

 

The relative combined standard uncertainty E(psim) = u(psim)/psim of a numerical 

simulation result for the effective sound pressure psim can be expressed as a 

combination of three uncorrelated contributions, 
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2 2 2

sim model num param
( )E p E E E= + + . (3.1) 

The model uncertainty Emodel is the relative standard uncertainty with which the 

mathematical model is able to describe the intended physical process. The 

effect of the parabolic approximation inherent in the KZK equation is 

investigated in the linear case, because in this case simulation results can be 

compared with analytical solutions not employing the parabolic approximation. 

Such solutions are not available for finite-amplitude sound propagation. Other 

uncertainties of the model are identified, but their magnitudes are not 

determined (Section 3.1). 

Enum is the relative standard uncertainty introduced by the numerical solution 

algorithm (Section 3.2). As for the model uncertainty, this uncertainty 

contribution is investigated directly in the case of linear sound propagation. 

Analytical solutions for the linearized parabolic equation are used for 

reference. For finite amplitude sound propagation, the author is not aware of 

adequate reference solutions. An attempt is therefore made to extrapolate the 

results for linear propagation to cases of nonlinear sound propagation relevant 

for the present work. 

A sensitivity study is made in order to investigate the uncertainty contribution 

Eparam due to uncertainties in the physical input parameters that describe the 

sound source and the propagation medium. This is treated in Section 3.3. 

The identified contributors to each of the uncertainties Emodel, Enum, and Eparam 

are summarized in Table 3.1. The meaning of each of the very brief contributor 

descriptions in the table is explained in Sections 3.1–0. Unless otherwise stated, 

the uncertainties presented in this work are standard uncertainties, i.e., referred 

to a 67% confidence level.
3
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Table 3.1.  Overview of contributors to the Bergen Code simulation uncertainty. The 

abbreviated descriptions of the uncertainty contributors are explained in Sections 3.1–0. 

category uncertainty contribution 
contribution 

quantified 

model 

- parabolic approximation, Epar 

- idealized source condition, Esource 

- axisymmetry assumption, Esymm 

- continuous wave approximation, Econt 

- quadratic absorption law, Eα 

- second order nonlinearity, Eorder 

- other uncertainty contributions, Emisc,1 

yes 

no 

no 

no 

no 

no 

no 

numerical algorithm 

- beam pattern convention, Egeom 

- spectral truncation, Eharm 

- finite grid width, Ewidth 

- numerical rounding, Ernd 

- finite differences, Efd 

- numerical grid resolution, Egrid 

- numerical damping of solution, Eimp 

- Gibbs oscillations, Eimp 

- other contributions, Emisc,2, Emisc,3 

yes 

yes 

yes 

no 

no 

yes 

yes 

yes 

no 

input parameters 

source radius, frequency, 

source pressure, sound speed, 

absorption coefficient, density, 

nonlinearity coefficient 

yes 

3.1. Model uncertainty 

The model relative standard uncertainty Emodel can be written 

2 2 2 2 2 2 2

model par source symm cont order misc,1E E E E E E E Eα= + + + + + + , (3.2) 

where 
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Epar is the relative standard uncertainty contribution due to the 

parabolic approximation, 

Esource is the relative standard uncertainty contribution due to the 

idealized source condition (circular, uniform plane piston in infinite 

baffle) used for the simulations, 

Esymm is the relative standard uncertainty contribution due to the 

theoretical assumption of axisymmetry, 

Econt is the relative standard uncertainty contribution due to the 

assumption of continuous waves, 

Eα is the relative standard uncertainty contribution due to the 

frequency-squared power law absorption inherent in the model 

Eorder is the relative standard uncertainty contribution due to the KZK 

equation being of second order, and 

Emisc,1 is the relative standard model uncertainty contribution due to 

factors that have not been identified in the present work. This 

contribution is set equal to zero in the present discussion. 

The model uncertainty consists of many contributions that are difficult to 

estimate. The uniform piston description of the sound source and the parabolic 

approximation are assumed to dominate when nonlinear effects can be 

neglected. When finite amplitude sound propagation is simulated, other 

limitations of the chosen model may well be significant. This is however not 

easy to investigate, as reference solutions or measurements for nonlinear sound 

propagation with the required accuracy are not known to the author. 

Parabolic approximation 

The parabolic approximation inherent in the KZK equation is said to be valid in 

points that are close to the sound beam axis and at the same time not too close 

to the sound source.
237
 Its precise domain of validity depends on the desired 

accuracy, and can be investigated in the idealized case of linear sound 

propagation from a circular, plane piston with uniform velocity distribution 
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mounted in an infinite baffle. The relative standard uncertainty Epar due to the 

parabolic approximation is assumed similar to the difference between the 

solutions of the linearized parabolic equation
236
 and the ordinary linear 

solutions
138
 for the same idealized case. 

Absorption is disregarded. The exact absolute value of the sound pressure 

amplitude along the axis of a circular, plane, uniform piston in an infinitely 

stiff baffle of infinite extent is
137,138

 

( )
2

lt 0 0 0

1
,0 2 sin 1 1

2

a
p r c v kr

r
ρ

     = + −  
     

. (3.3) 

The piston has radius a and oscillates with particle velocity amplitude v0 and 

frequency f. The wave number k = 2πf/c0, and c0 is the small-signal sound 

speed. The coordinates (r,θ) refer to a polar coordinate system with the polar 

angle θ = 0 along the sound beam axis. r is distance from the sound source. 

Axisymmetry is assumed, and the azimuth angle ϕ is omitted. An 

approximation for the sound pressure amplitude in the point (r,θ) in the far 

field can be written
138
 

( ) ( )2
1

lt 0 0 0

2 sin
,

2 sin

J kaka
p r c v

r ka

θ
θ ρ

θ
= , (3.4) 

where J1 is the first-order Bessel function of the first kind. The axial lossless 

solution of the linearized parabolic equation is
236
 

( )
2

par 0,0 2 2cos
2

ka
p r p

r
= − . (3.5) 

The first term of Naze Tjøtta and Tjøtta’s
236
 Equation (15) is taken as an 

approximation for the far field. Without absorption, it becomes 
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( ) ( )2
1

par 0

2 tan
,

2 sin

J kaka
p r p

r ka

θ
θ

θ
= . (3.6) 

p0 is the peak sound pressure amplitude on the surface of the sound source, 

which within the parabolic approximation satisfies
237
 p0 = ρ0c0v0. 

Equations (3.4)–(3.6) are evaluated for the frequencies, source radii, and sound 

speeds shown in Tables 3.2 and 3.3. Two cases that correspond to simulations 

of the 120 kHz and 200 kHz echo sounders used in the present work are 

considered. Results for the axial sound pressure amplitude and the beam pattern 

are shown in Figures 3.1 and 3.2, respectively. At distances of more than 

two metres from the sound source, the agreement between Equations (3.5) and 

(3.3) is within 0.002 dB. The parabolic approximation changes the calculated 

number and positions of the axial minima in the near field, causing large 

discrepancies inside the outermost maximum. 

The parabolic equation is commonly said to be invalid near the sound 

source,
150,236

 where z/a becomes  of the same order as (ka)
1/3
. z is the Cartesian 

coordinate in the direction of the sound beam axis, z = r cos θ  (Figure 2.1). 

a(ka)
1/3
 is equal to 0.16 m for the 120 kHz sound source and 0.10 m with the 

200 kHz parameters. This condition seems sufficient only if uncertainty less 

than ±0.1 dB is not required (Figure 3.1). 

In the far field, the parabolic approximation (3.6) agrees well with 

Equation (3.4) within approximately 4º off the axis (Figure 3.2). The 

discrepancy between the sound pressure amplitudes is less than 0.1 dB for 

θ < 6º. The calculated angular position of the first minimum is underestimated 

with approximately 0.1º, which yields great difference between the calculated 

sound pressure amplitudes for a given θ when the minimum is approached 

(Figure 3.2b). 
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Based on the results shown in Figures 3.1 and 3.2, 0.01 dB is chosen for 

20 log10 (1+Epar) in the far field off axis. For the axial field, 20 log10 (1+Epar) is 

0.001 dB. 
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Figure 3.1.  a) Axial solution ppar of the linearized parabolic equation and exact axial field plt for a 

uniform circular piston using parameters for the 200 kHz echo sounder simulations (Tables 3.2 and 3.3). 

b) Ratio between the solutions for the 120 kHz and 200 kHz echo sounder simulations. 
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Figure 3.2.  a) Far-field solution ppar of the linearized parabolic equation and the linear far field 

approximation plt using source parameters for the 200 kHz case (Tables 3.2 and 3.3). The distance r 

from the sound source is 10 m. b) Ratio between ppar and plt for the 120 kHz and 200 kHz echo 

sounder simulations. 

Idealized source condition 

In most simulations in the present work, the sound source is described as a 

baffled, uniform, circular piston that radiates a continuous sinusoidal signal. 
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The piston radius is selected such that it yields the same -3 dB opening angle as 

the far field radiation pattern measured in a corresponding experiment. The 

echo sounder transducers used as sound sources have been designed for lower 

side lobe levels than in the radiated field of a uniform piston. The discrepancy 

introduced by the difference between the source description of the model and 

the vibration pattern of the sound source in the experiments may be expressed 

in terms of a relative standard uncertainty Esource. The importance of this 

discrepancy is not addressed here, but the subject is revisited in Chapter 4. 

Axisymmetry assumption 

The effective source radii are calculated from far field directivity 

measurements where the sound source has been panned around a single axis. 

This renders the calculation somewhat vulnerable to irregularities in the 

radiated far field. In a regular echo sounder calibration, -3 dB beam angles 

(half-beamwidths) are found from a great number of measurements that cover 

the paraxial region quite uniformly. Both along ship and athwart ship beam 

angles are calculated. The difference between them ranges from less than 0.01º 

to 4%, but is typically close to 2% for the calibration measurements that have 

been made in connection with the present work. The relative uncertainty Esymm 

introduced by the departure from rotational symmetry (also referred to as 

“axisymmetry” in the present work) has not been quantified here. 

Continuous wave approximation 

Although the echo sounders use sound bursts of finite duration, the simulations 

assume continuous waves. The shortest burst duration used in the experiments 

is 256 µs. A 120 kHz measured sound burst then contains approximately 20 

periods with nearly constant amplitude. The reported sound pressure amplitude 

measurements refer to this part of the signal, and should correspond closely to 

continuous wave conditions. The uncertainty contribution Econt due to the 

continuous wave assumption is thus neglected. 
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Quadratic absorption law 

Frequency-squared power law absorption, α' = α2 f
 2
, where α2 is a constant 

absorption coefficient for the propagation medium, is assumed in the 

theoretical model. This relation is applicable to pure water,
105,138

 but does not 

describe the absorption in sea water equally well.
106
 Also, gas bubbles and 

other impurities in the water can have great influence on absorption and 

nonlinearity and thus contribute to the uncertainty contribution Eα. Pure water 

where the square power law holds is considered in this chapter, and Eα is 

neglected. 

Second order nonlinearity 

As the Khokhlov-Zabolotskaya-Kuznetsov
151,271

 equation describes sound 

propagation to the second order, there are higher order effects that are not 

accounted for.
242,243

 The error thus made can be expressed in terms of a 

standard relative uncertainty contribution Eorder. The purpose of the simulations 

in the present work is to predict sound pressure amplitudes for the fundamental 

and second harmonic frequency components. Higher order effects are not 

expected to influence such results significantly for the frequencies and source 

levels that are considered. Attempts to quantify their importance have not been 

made here. Eorder is neglected in the calculation of the combined simulation 

uncertainty. 

Model uncertainty summary 

The full relative uncertainty contribution Emodel due to the employed 

mathematical model (KZK equation and idealized source condition) has not 

been quantified properly. 

In particular, the uniform, plane piston description of the sound source, and for 

seawater the quadratic absorption law, are important uncertainty contributors 

that have not been accounted for. Within the paraxial region, their contributions 

to Emodel are expected to be greater than that of the parabolic approximation. As 
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these factors are variable and difficult to estimate in a general manner, they are 

still not included in the uncertainty estimate. 

For the purpose of the present discussion, the relative standard model 

uncertainty 20 log10 (1+Emodel) is set equal to 20 log10 (1+Epar), i.e., 0.01 dB for 

the far field off axis (θ < 6º) and 0.001 dB for the axial field. 

3.2. Uncertainty contribution due to the 
numerical algorithm 

Finite difference methods are often preferred for solving differential equations 

due to their formal simplicity, but are generally prone to convergence 

problems.
278,220

 Although the Richtmyer procedure as implemented in the 

Bergen Code is considered inherently stable,
45
 care must be taken when 

simulation results of high accuracy are required. The sensitivity of the solution 

to grid resolution and other numerical parameters that influence the 

computational process is investigated here, and the relative standard 

uncertainty contribution Enum due to the numerical algorithm is estimated. Enum 

can be expressed as a combination of several contributions (Table 3.1), 

2 2 2

num geom np misc,2E E E E= + + , (3.7) 

where 

2 2 2 2 2 2 2 2

np harm width rnd fd grid imp misc,3E E E E E E E E= + + + + + + . (3.8) 

Egeom is due to a mismatch between how beam patterns are read from 

the simulation results and the way they are measured in the 

experiments, 

Enp is due to the combined uncertainty due to the parameters that 

govern the numerical solution process, 

Eharm is due to the limited number of harmonics retained in the 
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calculations (spectral truncation), 

Ewidth is due to the finite extent of the numerical grid in the transverse 

direction, 

Ernd is due to numerical rounding, 

Efd is due to the choice of finite differences (order), 

Egrid is due to the numerical grid resolution, 

Eimp is due to the number and length of initial implicit steps, which 

influence the numerical damping and the amount of Gibbs oscillations 

in the solution, and 

Emisc,2 and Emisc,3 are due to factors that have not been identified in the 

present work. They are set to zero in the present discussion. 

A series of test simulations is described below. Results for low amplitude 

sound propagation are compared with analytical solutions. Simulations are also 

carried out for nonlinear sound propagation, and their sensitivities to the 

parameters of the calculation are compared with the low amplitude case. Based 

on this comparison, an estimate is suggested for Enum in the finite-amplitude 

case (Table 3.6). The Bergen Code version discussed in Section 2.2.4, which 

solves the Transformed Beam Equation by means of the Richtmyer procedure, 

has been used in this investigation and throughout the present work. 

3.2.1. Indicators for comparison between simulation results 

In order to make the comparison of a large number of simulation results 

practical, each is represented by four scalar values for each of the fundamental 

and the second harmonic frequency component. The indicator values are 

illustrated in Figure 3.3. Ia,1 and Ia,2 are mean values of the simulated effective 

fundamental sound pressure p1,sim along the sound beam axis, 

( )
,2

,1

a, 1,sim

,2 ,1

1
,0 , 1,2

m

m

z

m

m m z

I p z dz m
z z

= =
− ∫ . (3.9) 
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z and x are Cartesian coordinates in the axial and transverse directions, 

respectively. Corresponding indicator values for the simulated effective sound 

pressure amplitude p2,sim for the second harmonic frequency component are 

denoted with a prime, I'a,1 and I'a,2. The first z interval for averaging is chosen 

to cover the near ranges where the majority of hydrophone and calibration 

sphere measurements have been made, [z1,1, z1,2] = [2 m, 10 m]. The second 

indicator value Ia,2 is intended to cover far distances from the sound source, 

[z2,1, z2,2] = [50 m, 190 m] (cf. Figure 3.3a). 

Numerical errors are expected to increase with the angular distance off axis. In 

each calculation step, the axisymmetric Bergen Code version used in the 

present work calculates the sound pressure amplitude along a line 

perpendicular to the axis. The indicator values Ib,1 and Ib,2 are averages of p1,sim 

along such lines, from xm,1 = zm tan 4º through xm,2 = zm tan 6º (Figure 3.3b), 

,2

,1

b, 1,sim

,2 ,1

1
( , ) , 1,2

m

m

x

m m

m m x

I p z x dx m
x x

= =
− ∫ . (3.10) 

As for the axial field, corresponding values I’b,1 and I’b,2 are defined for the 

second harmonic frequency component. 

To produce beam patterns with constant distances r from the sound source, the 

simulation algorithm must perform calculations along a series of very closely 

spaced lines. This involves an unwanted complication of the numerical grid. 

Averaging along a line is therefore used instead. The consequence of this 

choice is discussed in the next section. The axial distances z from the source 

plane are chosen equal to z1 = 9.5 m and z2 = 200 m. 
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Figure 3.3. Indicators for comparing simulation results. a) Mean values Ia,1 and Ia,2 of the sound 

pressure amplitude along the axis of the sound beam. b) Mean values Ib,1 and Ib,2 of the sound pressure 

amplitude along lines through the axis, in the planes z = z1 = 9.5 m and z = z2 = 200 m, respectively. The 

Ib,m mean values are taken over the x intervals x ∈ [zm tan 4º, zm tan 6º]. 

3.2.2. Numerical uncertainty contributors 

Beam pattern convention 

As discussed above, the simulated beam patterns are in the present work taken 

from the calculated sound pressure along a line perpendicular to the sound 

beam axis. Directivity measurements are normally specified for constant 

distance r between the sound source and the hydrophone or acoustic scatterer. 

Beam patterns for constant r with sufficient angular resolution can be obtained 

from the Bergen Code either by interpolation between neighbouring calculation 

steps or by forcing very short propagation steps in a small region leading up to 

z = r. The latter approach would however entail an unwanted change in the 

numerical grid. 

When measured and simulated beam patterns are compared in the present 

work, an angle dependent contribution ∆psim is added to the difference in sound 

pressure amplitude. The difference ∆r between the distance r from the origin 

and the axial coordinate z for a field point (Figure 3.4), 
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1
1

cos
r r z z

θ
 ∆ = − = − 
 

, (3.11) 

is equal to 2.4·10
-3 
z when θ = 4º. Only considering spherical spreading, the 

derivative of the sound pressure with respect to r is 

sim sim
( , ) ( , )p r p r

r r

θ θ∂
≈ −

∂
. 

For the introduced error ∆psim in the sound pressure, one can write 

sim sim
sim sim

1 1
1 1

cos cos

p p
p r z p

r rθ θ
∂    ∆ ≈ ∆ ⋅ = − − ⋅ ≈ − −   ∂    

. (3.12) 

The sound pressure level along a line perpendicular to the sound beam axis 

(constant z) is thus approximately 0.02 dB lower than for constant r when 

θ = 4º. The error is small compared to other uncertainty contributions 

(Table 3.12). Simulation results for angles between 0 and 6º are of interest. 

Instead of introducing an angle dependent correction factor, a relative standard 

uncertainty contribution Egeom is included in the simulation uncertainty budget 

(Table 3.6) to account for the different beam pattern conventions used in the 

measurements and the simulations. Its value is chosen such that 

20 log10 (1+Egeom) = 0.02 dB. 

∆r

r

z

z

θ

 
Figure 3.4. Arc (constant r) and line (constant z) for specifying beam patterns. 
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Spectral truncation 

The number Nh of harmonics retained in the calculations and the numerical grid 

width umax determine the spectral and spatial limits of the simulation domain 

(Section 2.2.4). Energy accumulates in the highest-order retained harmonic 

components, introducing an error that spreads to lower frequency components 

as the solution is marched forward. A relative standard uncertainty contribution 

Eharm is thus introduced in the simulation result. For simulations with peak 

source condition amplitude p0 = 1 Pa, Nh is chosen equal to 10 in the present 

work. The relative change in the calculated fundamental frequency component 

when the number of harmonics is doubled to 20 is less than 5·10
-5
. 

In all cases where higher source condition amplitudes than 1 Pa are used, Nh is 

set to 50. The chosen value is a trade-off between truncation error and 

computational cost. The calculation time for each harmonic component in each 

step is proportional to Nh
2
. A typical simulation for the present work with 

Nh = 50 requires between two and four hours CPU time on the personal 

computers that are used (AMD Athlon XP 1900+ and Intel Pentium 4, 

2.66 GHz processors). In the test runs where Nh or the numerical grid 

resolution is varied, the computation times can be several times longer. For 

simulation series 1 and 2 (Table 3.2), with both source condition amplitudes, a 

doubling of Nh from 50 to 100 causes a relative change of less than 5·10
-5
 in the 

fundamental and second harmonic frequency components. This is insignificant 

compared with the effects of other parameters. 

However, for simulation series 3 and 4 with p0,peak = 1000 kPa, the ratio 

between results calculated with Nh = 50 and Nh = 100 reaches 0.15 dB in the 

second harmonic frequency component. This is considered an unacceptably 

high value for 20 log10 (1+Eharm) in comparison with other contributions to the 

numerical uncertainty (Table 3.5). Increasing Nh to reduce the spectral 

truncation error is not desirable because of the consequences for the 

computational cost. Several schemes have been used in earlier works to 

increase accuracy without having to make calculations for an excessive number 



 70 

of harmonics. For example, Nh can be varied automatically during the 

calculation process to ensure a sufficient number of harmonics at the same time 

as the required time is minimized.
254
 Analytical methods have been developed 

to enable reduction of the number of numerically evaluated harmonics without 

degrading the accuracy of the result.
24,134,202

 Damping schemes that drain 

excess energy from the highest frequency components also reduce the effect of 

truncation. A common method is to prevent each harmonic from obtaining 

greater amplitude than its neighbour of lower order.
249,35,114

 

In the present work, a damping factor similar to the Newtonian friction scheme 

used by Ystad and Berntsen
269
 is applied in the frequency domain. The 

amplitudes of the Nd highest harmonics are multiplied with a quadratic 

polynomial in each step of the calculation, 

( ) ( )
h h

2

d

d

, , 1 ,N m N m

N m
p u p u

N
σ σ− −

  − ′′ = ⋅ −  
   

 (3.13) 

 m = 0, 1, 2, ..., (Nd–1). 

This damping scheme is used in high amplitude simulations for the 200 kHz 

fundamental frequency throughout this work. It is also used for Series 3 and 4 

of test simulations described in this chapter (Table 3.2). The number of damped 

harmonic components is kept equal to 20, and the total number of retained 

harmonics Nh = 50. Doubling Nh with the damping scheme active yields 

maximum relative changes of 0.03 dB in the fundamental and second harmonic 

component amplitudes, which is deemed acceptable. Simulations with Nh = 100 

with and without the described damping scheme agree at least to within a 

relative difference of 5·10
-5
.  

Variations with Nh in the indicator values along and off the sound beam axis 

are shown for simulation series 4 with p0 = 1000 kPa in Figures 3.5a and 3.5b, 

respectively. Series 4 (Table 3.2) has been chosen because it yields the 

strongest nonlinear distortion and thus the greatest truncation errors. Results 
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are shown with and without damping of the Nd = 20 highest harmonics. One 

should note that the result for each indicator is normalized to its value obtained 

with Nh = 140. The different indicators do not tend towards the same value as 

Nh is increased, nor does Figure 3.5 indicate convergence towards any external 

reference value. The question of accuracy of the simulations of finite amplitude 

sound propagation is treated further in Section 3.2.5. Based on the results 

shown in Figure 3.5, relative standard uncertainty contributions of 

20 log10 (1+Eharm) = 0.03 dB on axis and 20 log10 (1+Eharm) = 0.003 dB off axis 

due to the choice of Nh = 50 are inserted in Table 3.5 for the simulations of 

high-amplitude sound propagation. 
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Figure 3.5. Relative values of the indicators Ia,1, Ia,2, Ib,1, and Ib,2 (fundamental frequency component) and 

corresponding values for the second harmonic frequency component (indicated with prime), for different 

Nh. Values are shown for simulations with and without damping of the 20 highest harmonic frequency 

components. Each indicator is normalized to its value for Nh = 140. f = 210 kHz, p0 = 1000 kPa 

(simulation series 4). a) Axial field, b) indicators off axis. 

Equation (3.13) describes a fixed scaling of the magnitudes of the Nd highest 

harmonics in each step of the calculation. Consequently, the damping of the 

solution depends strongly on the step length lσ. As lσ is not constant throughout 

the calculation region (Equation (2.71)), neither is the damping rate. The step 

length can easily be compensated for, but this was not considered necessary in 

the present investigation. 
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Finite grid width 

The zero pressure boundary condition at the outer edge u = umax of the 

numerical grid causes reflections that propagate towards the sound beam axis 

and may eventually interfere with the solution in the paraxial region. Because 

the numerical grid is rectangular in the transformed coordinates (σ, u), the 

width ξmax(σ) in the normalized, spatial (ξ,σ) coordinates increases linearly 

with σ (Section 2.2.4), 

ξmax(σ) = umax (1 + σ). (3.14) 

umax is chosen such that reflections from the boundary of the numerical grid do 

not influence the investigated part of the solution, for which θ is less than 6º 

(Table 3.3). With umax = 10, a doubling does not yield any observed change in 

the indicators (Equations (3.9) and (3.10)) for the fundamental and second 

harmonic frequency components. The relative uncertainty contribution Ewidth is 

therefore neglected. 

Other authors have used absorbing boundary layers to reduce 

reflections.
269,27,73,91

 This is particularly useful in numerical studies of focused 

ultrasound, but is not deemed necessary in the present work. 

Numerical rounding and finite differences 

Numerical rounding might cause errors when very high grid resolutions are 

chosen, though the inherent stability of the algorithm is said to counteract their 

growth.
276
 Evidence of such errors are not seen explicitly in the data presented 

here (Figures 3.7 and 3.8), and the uncertainty contribution Ernd due to such 

rounding is therefore neglected. 

Moreover, the uncertainty contribution Efd due to the Taylor series truncation 

inherent in the choice of finite-order finite differences
276,43

 is not treated 

specifically in the present work, but is instead neglected. A comparison of 

some possible choices for the finite differences can be found in a report by 
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Berntsen and Vefring.
43
 

Numerical grid resolution, damping, and Gibbs oscillations 

In each step of the calculation, the truncated set of differential equations (2.67) 

is solved for Nu equally spaced points from u = 0 through u = umax 

(Section 2.2.4). For a given umax (Table 3.3), the grid resolution in the 

transverse direction is determined by Nu. The numerical grid is illustrated in 

Figure 3.6. 
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Figure 3.6. Sketch of the numerical grid. Nimp initial implicit steps are performed with 

constant step length limp. After the implicit steps, the Richtmyer procedure is used. The step 

length is then determined by Equation (2.71). In each step of the calculation, the solution is 

calculated in Nu equally spaced points from u = 0 through u = umax. Not to scale. 

The first few calculation steps are performed with implicit finite differences. 

The implicit method has a damping effect and is used to suppress Gibbs 

oscillations due to discontinuities in the source condition.
45,220

 However, the 

damping also acts upon the sought solution. The number Nimp and length limp of 

the fully implicit computation steps should be determined such that Gibbs 

oscillations are eliminated at the same time as the wanted solution is damped as 

little as possible. The step length parameter λσ determines the step length lσ(σ) 

between each calculation step where the Richtmyer procedure is used 

(Section 2.2.4). lσ(σ) increases quadratically with distance from the sound 
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source (Equation (2.71)). The relative standard simulation uncertainty 

contributions 

2 2 2

grid 1 2E E E= +  (3.15) 

due to the selected values for Nu and λσ, respectively, and the uncertainty 

contribution 

2 2 2

imp 3 4E E E= +  (3.16) 

due to the choices for Nimp, and limp are investigated in Sections 3.2.3–3.2.5. 

3.2.3. Test simulations for the influence of grid parameters 

Sound propagation from a uniform circular piston in an infinitely stiff baffle of 

infinite extent is considered. Bergen Code simulations are run with different 

values for the parameters Nu, λσ, Nimp, and limp, which control the resolution of 

the numerical grid and the number and length of initial implicit calculation 

steps. 

The test simulations are organized in four series as shown in Table 3.2. Series 1 

and 2 are for frequencies and ka values that bracket those used for the 120 kHz 

echo sounder in the present work. The parameters for Series 3 and 4 relate the 

same way to the 200 kHz echo sounder simulations. Simulations for 

comparison with linear theory are made with p0 = 1 Pa peak pressure amplitude 

for the source condition. Corresponding finite amplitude simulations are made 

with somewhat higher amplitudes than in Chapters 5 and 6 (Table 3.2). It is 

assumed that any amplitude-dependent errors increase or decrease 

monotonically with p0 within the range of interest. The medium parameters 

shown in Table 3.3 correspond approximately to fresh water at room 

temperature and have been used in the test simulations. Values and ranges of 

variation for the other parameters (Tables 3.3 and 3.4) were chosen on the basis 

of initial tests.
196
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Table 3.2. Sound source parameters for the test simulations for the numerical uncertainty 

contribution. The source condition pressure amplitude p0 refers to the peak sound pressure. 

 series 1 series 2 series 3 series 4 

fundamental frequency f 110 kHz 130 kHz 190 kHz 210 kHz 

uniform piston source radius a 53.7 mm 52.7 mm 32.3 mm 32.6 mm 

low amplitude on source p0 1 Pa 1 Pa 1 Pa 1 Pa 

high amplitude on source p0 500 kPa 500 kPa 1000 kPa 1000 kPa 

wave number times radius ka 25.0 29.0 26.0 29.0 

 

The four parameters Nu, λσ, Nimp, and limp are varied systematically to obtain 

estimates for the relative uncertainty contributions Egrid and Eimp due to the 

configuration of the numerical grid (Equations (3.15) and (3.16)). While one of 

the parameters is being varied, the others are kept at their “unperturbed” values 

shown in Table 3.4. These unperturbed parameter values are used for the 

simulations elsewhere in the present work. 

Table 3.3. Constant parameters used in the test simulations for Enum. 

parameter value 

sound speed c0 1485 m/s
 

absorption coefficient α2 2.5·10
-14
 Np/(m Hz

2
) 

nonlinearity coefficient β 3.51 

density ρ0 998.2 kg/m
3 

number of harmonics, low amplitude Nh 10 

number of harmonics, high amplitude Nh 50 

damped harmonics, Series 3 and 4 Nd 20 

numerical grid width umax 10 
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Table 3.4. Parameters related to numerical grid resolution and damping of Gibbs oscillations. 

Unperturbed values and range of variation for each parameter in the test simulations for Enum. 

parameter unperturbed minimum maximum 

number of points, transverse Nu 16 000 4000 25 000 

step length parameter λσ 2.0·10
-4 5.0·10

-6 
4.0·10

-4 

number of initial implicit steps Nimp 10 5 20 

length of initial implicit steps limp 5.5·10
-3
 3.0·10

-3 
1.5·10

-2 

3.2.4. Test simulation results, low amplitude 

Analytical reference solutions 

The effect of nonlinear distortion on the indicator values (Equations (3.9) and 

(3.10)) is negligible when the peak sound pressure amplitude of the source 

condition is 1 Pa. Simulation results are compared with analytical solutions of 

the linearized parabolic equation.
236
 These are the same solutions that were 

used above to investigate the importance of the parabolic approximation, 

except that absorption is included here. Such comparison yields a direct 

estimate for the uncertainty contribution Enp,0 (Equation (3.8)) due to the 

numerical algorithm in the linear case. Redefining ppar from the previous 

section, taking absorption into account, the analytical solution of the linearized 

parabolic equation for the sound pressure amplitude can be written
236
  

( )
2 2 2

par 0,0 exp 1 2cosh 2cos
2 2 2

a a ka
p r p r

r r r

α
α

   ′  ′= − + −   
     

 (3.17) 

for the axial sound field, and 

( )
( )

( )( )

2 2 22

par 0 2

1

cos 1
, exp

2 2 cos

tan

sin

a rka
p r p r

r r

J k j a

ka

θ
θ α

θ

α θ

θ

 + + ′= − 
  

′+
×

 (3.18) 

for the approximate far field.
236
 α' = α2f

 2
 is the absorption coefficient in Nepers 

per metre. 
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Equation (3.18) is a far field approximation.
236
 The thus introduced uncertainty 

can be investigated through the results shown in Figure 3.7b (treated further 

below). The ratio between Ib values calculated from Bergen Code simulations 

and from Equation (3.18) is plotted as a function of the transverse resolution 

parameter Nu. Ratios between Ib,1 results (z = 9.5 m) are marked with plus signs 

and dots, while ratios between Ib,2 results (z = 200 m) are marked with triangles 

and squares. The results for r = 9.5 m and r = 200 m agree to within 0.003 dB, 

which is small compared to the ratios themselves. The far field approximation 

inherent in Equation (3.18) is therefore neglected in the following. 

Comparison between numerical and analytical solutions 

The differences between the indicator values calculated from simulation results 

and the analytical expressions (3.17) and (3.18) are shown in Figures 3.7–3.10. 

The plotted values are 

par 10

(Bergen Code simulations)
deviation from 20log

(analytical, linearized parabolic eq.)

I
p

I
= , (3.19) 

where I is short for Ia,1, Ia,2, Ib,1, or Ib,2. 

The unperturbed parameter values in Table 3.4 yield indicator values between 

0.008 dB and 0.013 dB greater than for the analytical solution for the axial 

field. The discrepancy seems to increase somewhat with distance from the 

sound source. 

The simulated indicator values off axis Ib,1 and Ib,2 are between 0.003 dB and 

0.016 dB below those of the analytical far field approximation, when the 

unperturbed parameter values in Table 3.4 are used. The greatest deviations are 

seen in simulation series 2 and 4, which have the highest ka numbers 

(Table 3.2). The width of the sound beam decreases with ka, thus increasing the 

slope of the beam pattern between θ = 4º and θ = 6º. A slight miscalculation of 

the width of the main lobe may thus contribute to the observed ka dependence 

in Ib,1 and Ib,2. 
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Based on the deviations noted above, the standard relative uncertainty 

contribution Enp (Equation (3.8)) due to the numerical algorithm for low 

amplitude sound propagation (denoted Ep,0) is estimated such that 

20 log10 (1+Enp,0) = 0.01 dB for the axial sound pressure amplitude and 0.02 dB 

for the simulated sound field within θ = 6º (Table 3.6). An attempt to 

extrapolate these results to finite amplitude sound propagation is made in 

Section 3.2.5. 

Sensitivity to individual parameters 

To form a basis for estimating the numerical uncertainty in the finite-amplitude 

sound propagation case, the sensitivity of the solution to each parameter in 

Table 3.4 is first investigated in the case of the low source condition amplitude 

(near-linear sound propagation). The results are presented on the form of 

uncertainty contributions in Table 3.5. 

Figure 3.7 indicates that the numerical solution seems to behave asymptotically 

as the number of grid points in the transverse direction Nu is increased. The 

greatest ratio between indicator values for Nu = 8000 and Nu = 16000 is found 

in the axial field, and is equal to 0.005 dB. This is chosen as the relative 

standard uncertainty contribution 20 log10 (1+E1) due to the choice of 

Nu = 16000 (Table 3.5). 

Figure 3.8 shows the value of Equation (3.19) as a function of the step length 

parameter λσ. Changes in λσ over the chosen range (Table 3.4) have negligible 

effect on the Ia,1, Ib,1, and Ib,2 values, but are more important for Ia,2 (axial field 

at great distance from the source). The λσ dependence seems more clearly 

convergence-like than the Nu dependence. For λσ = 2.0·10
-4
, 20 log10 Ia,2 is 

0.004 dB higher than what it seems to converge towards for small λσ. Doubling 

λσ from 2.0·10
-4
 yields a 0.01 dB increase in 20 log10 Ia,2. This is taken as an 

upper bound for its contribution to the numerical uncertainty along the sound 

beam axis (20 log10 (1+E2) in Table 3.5). It should be noted that the abscissas in 
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Figures 3.8, 3.12, and 3.16 are logarithmic. 
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Figure 3.7. Simulation results with p0 = 1 Pa. Deviation in decibels from the analytic solution ppar 

as function of the number Nu of numerical grid points in the transverse direction. a) Axial indicator 

values. b) Off-axis indicator values. 
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Figure 3.8. Simulation results with p0 = 1 Pa. Deviation in decibels from the analytic solution ppar 

as function of the step length parameter λσ. a) Axial indicator values. b) Off-axis indicator values. 

The simulated axial field varies rapidly with the number of implicit steps Nimp 

for small values of the parameter (Figure 3.9). This is ascribed to the Gibbs 

oscillations that the initial implicit steps are intended to reduce. It is therefore 

assumed that Nimp should be above these smallest values. For Nimp 

approximately greater than 9, the magnitude of the axial solution increases 

linearly with the number of implicit steps. Nimp should be chosen in such a way 
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that the effect of the implicit steps on the solution becomes as small as 

possible. When Nimp = 10, its contribution to the simulation error is assumed 

similar to the ratio between each axial indicator value and its minimum 

(Figure 3.9a). This is approximately 0.005 dB (20 log10 (1+E3) in Table 3.5). 

Unlike for the axial field, the off-axis indicator values Ib,1 and Ib,2 decrease 

almost linearly with Nimp throughout the investigated interval. This makes the 

uncertainty contribution difficult to assess. The maximum ratio between the 

results for Nimp = 6, where the minimum in the axial indicator values is found, 

and the results for Nimp = 10, is 0.006 dB. This is chosen as a relative 

uncertainty estimate (20 log10 (1+E3)) off the sound beam axis. 

The implicit step length limp and the number of steps Nimp have similar influence 

on the numerical solution (Figure 3.10). The uncertainty contribution due to limp 

when it is chosen equal to 5.5·10
-3
 is stipulated on the basis of the observed 

variations for smaller step lengths, and is set to 0.005 dB for the axial field and 

0.01 dB for the indicator values off axis (20 log10 (1+E4) in Table 3.5). 

The estimates of uncertainty contributions due to the individual parameters are 

not all well founded. They are primarily intended for use in combination with 

the observed total deviation from the analytical solution. The obtained data 

form the basis for an uncertainty estimate for the finite amplitude case, as 

discussed in the next section. 

3.2.5. Test simulation results, high amplitudes 

The comparison with analytical solutions above yields an estimate of the 

relative uncertainty contribution Enp,0 due to the numerical solution process 

when nonlinear effects are negligible. Although analytical expressions also 

exist for finite amplitude sound propagation,
133,54,176,177,150

 none that apply to a 

sound beam and claim the accuracy desired here are known to the author. 
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Figure 3.9. Simulation results with p0 = 1 Pa. Deviation from the analytic solution ppar as function 

of the number of initial implicit calculation steps Nimp. a) Axial indicator values, b) Off-axis 

indicator values. 
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Figure 3.10. Simulation results with p0 = 1 Pa. Deviation from the analytic solution ppar as 

function of the length limp of the initial implicit calculation steps. a) Axial indicator values, b) Off-

axis indicator values. 

The solution’s sensitivity to the individual parameters is presented in the same 

way as for the low amplitude case, but without comparison with any reference 

solution. For each of the four cases in Table 3.2, the indicator values 

(Equations (3.9) and (3.10)) are plotted relatively to the simulation for which 

the four parameters in Table 3.4 have their unperturbed values, 

10

(one perturbed parameter)
plotted value 20log

(all parameters unperturbed)

I

I
= . (3.20) 
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The sensitivities to the calculation parameters are compared with the 

corresponding sensitivities shown above for the low-amplitude case. The 

numerical uncertainty Enp,0 obtained for low amplitude is scaled with the ratio 

between the obtained sensitivities to provide a corresponding uncertainty Enp 

(Equation (3.8)) that applies to the simulated finite amplitude sound 

propagation. 

Sensitivity to individual parameters 

The change from low to high source amplitude (Table 3.2) reduces the Nu 

dependence of the fundamental frequency component somewhat. As shown in 

Figure 3.11, the Ia indicator values for Nu = 8000 are up to 0.004 dB higher 

than for Nu = 16000. For the Ib values, the corresponding ratio is 0.002 dB. 

These results are taken as uncertainty contributions due to Nu (20 log10 (1+E1) 

in Table 3.5), as was also done for the low amplitude case. 

Figure 3.12 indicates the λσ dependence of the simulation result for the 

fundamental frequency component. Doubling λσ from 1.0·10
-4
 to its 

unperturbed value 2.0·10
-4
 yields a maximum change of 0.01 dB in 20 log10 Ia,1 

and 0.02 dB in 20 log10 Ia,2 (Figure 3.12a). Small λσ are assumed to yield the 

most accurate solution. The indicator values seem to converge towards a value 

approximately 0.01 dB from that of the simulation that corresponds to 

unperturbed parameter values. The relative uncertainty contribution for the 

axial field is taken to be 20 log10 (1+E2) = 0.02 dB, corresponding to the choice 

for the low amplitude case. The relative uncertainty value chosen for the 

indicator values off axis is 0.01 dB (Figure 3.12b). The damping of the Nd 

highest harmonics has not been employed in the simulations presented in 

Figure 3.12, as excess damping would obscure the convergence-like behaviour 

for small λσ. 

The Nimp and limp dependencies of the indicator values for the fundamental 

frequency component are shown in Figures 3.13 and 3.14, respectively. The 

results are similar to those obtained for the low amplitude case, although 
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especially the solution’s sensitivity to limp is greater. The corresponding 

uncertainty contributions E3 and E4 are estimated the same way as for the low 

amplitude case. The results are found in Table 3.5. 

The indicator values for the second harmonic frequency components are 

denoted I'a,1, I'a,2, I'b,1, and I'b,2. Their dependence on the four varied parameters 

are indicated in Figures 3.15–3.18. The results for the second harmonic are 

very similar to those for the fundamental frequency component. Uncertainty 

contributions due to each of the four parameters Nu, λσ, Nimp, and limp are 

inferred the same way as above and inserted in Table 3.5. 
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Figure 3.11. Simulation results for the fundamental frequency component with p0 = 500 kPa for the 

110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the transverse grid resolution Nu. a) Axial indicator values, 

b) off-axis indicator values. 
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Figure 3.12. Simulation results for the fundamental frequency component with p0 = 500 kPa for the 

110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the step length parameter λσ. a) Axial indicator values, 

b) off-axis indicator values. 
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Figure 3.13. Simulation results for the fundamental frequency component with p0 = 500 kPa for the 

110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the number Nimp of initial implicit calculation steps. a) Axial 

indicator values, b) off-axis indicator values. 
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Figure 3.14. Simulation results for the fundamental frequency component with p0 = 500 kPa for the 

110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the length limp of the initial implicit calculation steps. a) Axial 

indicator values, b) off-axis indicator values. 
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Figure 3.15. Simulation results for the second harmonic frequency component with p0 = 500 kPa for 

the 110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the number of numerical grid points in the transverse 

direction Nu. a) Axial indicator values, b) off-axis indicator values.  
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Figure 3.16. Simulation results for the second harmonic frequency component with p0 = 500 kPa for 

the 110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the step length parameter λσ. a) Axial indicator values, b) off-

axis indicator values. 

a)

2
0
⋅l

o
g

1
0
 [

I
’
 /

 I
’
(u

n
p
e
rt

u
rb

e
d
)]

N
imp

5 10 15 20

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

I’
a,1

, 110 kHz, 190 kHz

I’
a,2

, 110 kHz, 190 kHz

I’
a,1

, 130 kHz, 210 kHz

I’
a,2

, 130 kHz, 210 kHz

b)

2
0
⋅l

o
g

1
0
 [

I
’
 /

 I
’
(u

n
p
e
rt

u
rb

e
d
)]

N
imp

5 10 15 20

−0.03

−0.02

−0.01

0

0.01

0.02

I’
b,1

, 110 kHz, 190 kHz

I’
b,2

, 110 kHz, 190 kHz

I’
b,1

, 130 kHz, 210 kHz

I’
b,2

, 130 kHz, 210 kHz

 
Figure 3.17. Simulation results for the second harmonic frequency component with p0 = 500 kPa for 

the 110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the number Nimp of initial implicit calculation steps. a) Axial 

indicator values, b) off-axis indicator values. 
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Figure 3.18. Simulation results for the second harmonic frequency component with p0 = 500 kPa for 

the 110 kHz and 130 kHz frequencies, and 1000 kPa for the 190 kHz and 210 kHz frequencies. 

Dependence of the indicator values on the length limp of the initial implicit calculation steps. a) Axial 

indicator values, b) off-axis indicator values. 

3.2.6. Combined numerical uncertainty 

An ad-hoc approach is taken to obtain an indication of the numerical 

uncertainty to expect for simulations of finite amplitude sound propagation. 

The five relative uncertainty contributions Eharm, E1, E2, E3, and E4 in Table 3.5 

are assumed to relate to Enp (cf. Equation 3.8) as 

2 2 2 2

np harm grid imp misc,3

2 2

s misc,3

E E E E E

E E

≈ + + +

= +
, (3.21) 

where, from Equations (3.21), (3.15), and (3.16), 

2 2 2 2 2 2

s harm 1 2 3 4E E E E E E= + + + + . (3.22) 

The rightmost column in Table 3.5 contains the calculated values for 

20 log10 (1+Es) for the low amplitude case and for the simulated fundamental 

and second harmonic frequency components in the finite-amplitude case. 

As discussed above, direct comparison with analytical values in the linear case 

yields relative standard uncertainties 20 log10 (1+Enp,0) = 0.01 dB and 
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20 log10 (1+Enp,0) = 0.02 dB on and off the sound beam axis, respectively 

(Table 3.6). To obtain a stipulation of the corresponding values Enp for high 

amplitude sound propagation (fundamental and second harmonic component), 

Epn,0 is scaled with the ratios of Es for the high and low amplitude cases, 

s
np np,0

s

(finite amplitude)
(finite amplitude)

(linear case)

E
E E

E
= ⋅ . (3.23) 

The results for 20 log10 (1+Enp) are shown in Table 3.6. 

The scaling of the numerical uncertainty is made under the assumption that the 

chosen values for the five parameters Nh, Nu, λσ, Nimp, and limp are the 

predominant uncertainty contributors. 

Table 3.5. Estimated relative uncertainty contributions due to spectral truncation, resolution, and initial damping. 

Combined uncertainty Egrid intended for comparison between low and high amplitude simulation results (Equation 3.21). 

sound 

pressure 

indicators 

number of 

harmonics Nh 

transverse 

number of 

points Nu 

axial step 

length 

parameter λλλλσσσσ 

number of 

implicit steps 

Nimp 

length limp of 

implicit steps 

combined 

uncertainty 

contribution 

 20 log10 (1+Eharm) 20 log10 (1+E1) 20 log10 (1+E2) 20 log10 (1+E3) 20 log10 (1+E4) 20 log10 (1+Es) 

low amplitude, fundamental frequency component  

Ia,1, Ia,2 0.0004 dB 0.005 dB 0.01 dB 0.005 dB 0.005 dB 0.01 dB 

Ib,1, Ib,2 0.0004 dB 0.005 dB 0.001 dB 0.006 dB 0.01 dB 0.01 dB 

high amplitude, fundamental frequency component  

Ia,1, Ia,2 0.03 dB 0.004 dB 0.02 dB 0.007 dB 0.02 dB 0.04 dB 

Ib,1, Ib,2 0.003 dB 0.002 dB 0.01 dB 0.006 dB 0.01 dB 0.02 dB 

high amplitude, second harmonic frequency component  

I'a,1, I'a,2 0.03 dB 0.007 dB 0.02 dB 0.005 dB 0.02 dB 0.04 dB 

I'b,1, I'b,2 0.003 dB 0.005 dB 0.03 dB 0.02 dB 0.04 dB 0.05 dB 

In addition to the numerical uncertainty Es, the combined uncertainty Enum due 

to the numerical algorithm (Equation 3.7) encompasses the contribution due to 

the difference in beam pattern geometries Egeom, 
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2 2 2

num np geomE E E= + . (3.24) 

Table 3.6 shows the resulting numerical relative uncertainties Enum, which are 

inserted in the total simulation uncertainty budget (Table 3.12). For the highest 

source condition amplitudes, 20 log10 (1+Enum) becomes equal to 0.04 dB for all 

the indicators for the fundamental frequency component. For the second 

harmonic, the relative numerical uncertainties become 0.04 dB and 0.06 dB on 

an off the sound beam axis, respectively. In the low-amplitude case (p0 = 1 Pa), 

20 log10 (1+Enum) becomes 0.01 dB for Ia,1 and Ia,2, and 0.03 dB for Ib,1 and Ib,2. 

Table 3.6. Combined numerical relative standard uncertainty Enum, calculated by means of 

Equation (3.7). The relative uncertainties are given in decibels in the table, although they are not 

defined as logarithmic quantities. The corresponding linear values are used in all calculations. 

high amplitude 

axial pressure amplitude (Ia,1, Ia,2) 

low 

amplitude 

fundamental 

fundamental 

component 

second 

harmonic 

beam pattern geometry Egeom - - - 

uncertainty due to solution process Enp 0.01 dB 0.04 dB 0.04 dB 

combined numerical uncertainty Enum 0.01 dB 0.04 dB 0.04 dB 

off-axis pressure amplitude  (Ib,1, Ib,2)   

beam pattern geometry Egeom 0.02 dB 0.02 dB 0.02 dB 

uncertainty due to solution process Enp 0.02 dB 0.03 dB 0.06 dB 

combined numerical uncertainty Enum 0.03 dB 0.04 dB 0.06 dB 

 

In summary, the numerical uncertainty for the low-amplitude simulations is 

based on comparison with analytic solutions of the linearized parabolic 

equation. The sensitivity of the simulation result to parameters that govern the 

numerical calculation has been compared between the cases of low and high 

amplitudes. An estimate of the numerical relative uncertainty Enum for the high 

amplitude simulations has been obtained by scaling the uncertainty for the low-

amplitude case. The same approach has been used for both the fundamental and 

the second harmonic frequency component. It has not been confirmed that such 
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scaling yields a valid result. In particular, the basis for providing an uncertainty 

estimate for the simulated second harmonic frequency component can be 

questioned. 

3.3. Uncertainty contribution due to physical 
input parameters 

The simulated effective sound pressure psim is a function of a range of 

parameters that describe the sound source and the propagation medium 

(Table 3.1), 

( )sim sim 1 2 7, , , , ,p p r q q qθ= … . (3.25) 

The parameters considered are 

source radius, q1 = a, 

operating frequency, q2 = f, 

source condition sound pressure amplitude, q3 = p0, 

sound speed, q4 = c0, 

absorption coefficient, q5 = α2, 

density, q6 = ρ0, and 

nonlinearity coefficient, q7 = β. 

The propagation medium is assumed homogeneous so that all the parameters 

qm, m = 1,2,…,7, and their uncertainties are constants. All the medium 

parameters c0, α2, ρ0, and β depend on temperature, salinity, and pressure and 

are thus correlated. To simplify the calculations the combined uncertainty 

contribution is here evaluated as if the parameters were not correlated, yielding 

a worst-case estimate. If the relative standard uncertainty for each parameter qm 

is E(qm), the relative standard simulation uncertainty contribution Eparam 

(Equation (3.1)) due to uncorrelated input parameter uncertainties can be 

written 
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( ) ( )( )
7

2 2

param misc,4

1

m m

m

E s q E q E
=

 = ⋅ +
 ∑ . (3.26) 

The relative sensitivity coefficient s(qm) due to qm is
3
 

( ) sim

sim ,

, 1,2, ,7m
m

m r

q p
s q m

p q
θ

∂
= =

∂
… . (3.27) 

3.3.1. Sensitivity study 

A sensitivity study is performed to determine the relative standard uncertainty 

contribution Eparam due to the uncertainties in the 7 parameters listed above. 

Sampling-based relative sensitivity coefficients are estimated numerically by 

comparing simulation results for which each physical parameter qm is perturbed 

one at a time by ±10% from a centre value (Tables 3.7–3.10). The relative 

sensitivity coefficients are approximated by 

( ) sim

sim ,

, , 1,2, ,

n

m
m

m q n m

p q
s q m n N

p q
≠

 ∆ ∆
≈ = 
 

… . (3.28) 

Two sets of simulations are made for each of the 120 kHz and 200 kHz echo 

sounders radiating in fresh water. Calculations are made with p0 = 1 Pa peak 

on-source sound pressure amplitude and with sound pressure amplitudes that 

correspond approximately to 1000 W electrical output power for the echo 

sounders used in the present work. The parameters listed in the lower half of 

Table 3.3 and the “unperturbed” values in Table 3.4 are used for the spectral 

truncation, numerical grid width and resolution, and damping of Gibbs 

oscillations. 

The physical parameters, i.e., the uniform piston source radius, frequency, 

source condition amplitude, sound speed,
50
 absorption coefficient,

138
 density,

258
 

and nonlinearity coefficient
79
 are chosen so that they correspond approximately 

to measurements performed in fresh water at (20±2)ºC temperature (Chapter 5). 
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3.3.2. Results 

Tables 3.7 and 3.8 show the obtained relative sensitivity coefficients of 

120 kHz simulations due to 10% perturbations in the physical parameters 

(Section 3.3.1). Table 3.7 shows the obtained relative sensitivity coefficients 

for the axial indicator values Ia,1, I'a,1, Ia,2, and I'a,2 (Equation (3.9)). The prime 

refers to the second harmonic frequency component. The sensitivity 

coefficients shown in Table 3.8 are for the off-axis indicator values Ib,1, I'b,1, 

Ib,2, and I'b,2 (Equation (3.10)). Sensitivity coefficients for the 200 kHz 

simulations are calculated the same way, and are shown in Tables 3.9 and 3.10 

for the indicator values on and off the sound beam axis, respectively. 

Low amplitude 

The relative sensitivity coefficients for the axial field due to frequency, source 

condition sound pressure amplitude, and sound speed, are approximately equal 

to unity when nonlinear effects can be neglected (Tables 3.7 and 3.9). The 

source radius sensitivity coefficient is twice as large, while the sensitivity to 

perturbations in the absorption coefficient is an order of magnitude smaller. 

Although the source radius is known to influence the beam pattern strongly, the 

reported sensitivity coefficients for the radiated field off axis are smaller than 

for the axial field. The Ib indicators are mean values along lines perpendicular 

to the sound beam axis between θ = 4º and θ = 6º. As a decrease in source 

radius yields both widening of the main lobe and loss of axial sound pressure 

amplitude (Equation (3.6)), much of its effect may be averaged out in the 

calculation of the indicator value. 

Frequency changes have the same relative influence on the width of the beam 

pattern as changes in the source radius. Its effect on the axial sound pressure 

amplitude is however an order smaller (Equation (3.6)). The off-axis relative 

sensitivity coefficient with respect to frequency is close to -1. The sensitivity 

coefficients due to the sound speed are similar to those for the frequency, but 

with opposite sign. 
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The low amplitude solution is not sensitive to density. This is in agreement 

with the analytical solution of the linearized parabolic equation 

(Equations (3.5) and (3.6)), where ρ0 does not appear. 

High amplitude 

The dependence of the axial fundamental sound pressure amplitude on source 

radius, frequency, source amplitude, and sound speed, is weakened by 

nonlinear attenuation. 

The pressure amplitude for the source condition p0 and the nonlinearity 

coefficient β appear together as a product in the normalized KZK equation 

(2.60). Its solution is multiplied with p0/2
1/2
 to obtain the simulated effective 

sound pressure psim. The relative sensitivity coefficients s(p0) due to p0 and s(β) 

due to β, are thus connected through the relation s(p0) = 1 + s(β). The density 

ρ0 appears inverted in the same expression as p0 and β, yielding a sensitivity 

coefficient that is equal in magnitude but with opposite sign to that due to β. 

The pressure amplitude of the second harmonic frequency component is 

somewhat more sensitive than that of the fundamental to perturbations in most 

of the parameters. This yields a greater uncertainty for the simulated second 

harmonic component than for the fundamental (Table 3.11). 

Contribution to the combined simulation uncertainty 

Table 3.11 shows an estimate of the relative standard uncertainty Eparam due to 

uncertainties in the physical input parameters for simulations of nonlinear 

sound propagation with 200 kHz fundamental frequency. Comparison of 

Tables 3.7–3.10 indicates that similar results apply to the 120 kHz case. In 

order to obtain a conservative uncertainty estimate, the relative sensitivity 

coefficients with the greatest absolute values in Tables 3.7–3.10 have been 

chosen for the calculation. The standard uncertainties correspond 

approximately to fresh water with temperature (21±1)ºC. 
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The standard uncertainties in the uniform piston source radius a and source 

condition pressure amplitude p0 in Table 3.11 are based on the measurements 

presented in Chapter 5. The uncertainty with which p0 is determined is clearly 

the predominant contributor to Eparam. The uncertainty in the source radius is 

also important. 

Greater variability and hence uncertainties must be expected in the acoustic 

medium parameters for seawater. The differences in the sensitivity coefficients 

indicate that the properties of the sound source should still be expected to 

dominate the estimate for Eparam. 
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Table 3.7. Relative sensitivity coefficients calculated from 10% perturbation in parameters of the sound 

source and propagation medium. 120 kHz, fresh water, axial field. 

relative sensitivity coefficient s(qm) 

2 m < z < 10 m 50 m < z < 190 m parameter qm centre value 

Ia,1 I'a,1 Ia,2 I'a,2 

low amplitude   

source radius a 52.8 mm +2.0 - +2.0 - 

frequency f 121.212 kHz +0.98 - +0.91 - 

pressure amp. p0 1 Pa +1.0 - +1.0 - 

sound speed c0 1485 m/s -1.0 - -1.0 - 

absorption coeff. α2
 

2.5·10
-14
 Np/m Hz

2 -0.0018
 

- -0.038 - 

density ρ0 1000 kg/m
3 

0.0 - 0.0 - 

nonlinearity coeff. β 3.50 0.0 - 0.0 - 

high amplitude   

source radius a 52.8 mm +1.8 +2.9 +1.3 +1.8 

frequency f 121.212 kHz +0.78 +2.1 +0.18 +0.62 

pressure amp. p0 426 kPa +0.88 +1.7 +0.57 +0.88 

sound speed c0 1485 m/s -0.48 -3.1 +0.62 -0.52 

absorption coeff. α2
 

2.5·10
-14
 Np/m Hz

2 -0.0016
 

-0.0055 -0.024
 

-0.084 

density ρ0 1000 kg/m
3 

+0.12 -0.65 +0.43 +0.13 

nonlinearity coeff. β 3.50 -0.12 +0.66 -0.43 -0.12 
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Table 3.8. Relative sensitivity coefficients calculated from 10% perturbations in parameters of the 

sound source and propagation medium. 120 kHz, fresh water, indicator values off axis. 

relative sensitivity coefficient s(qm) 

z = 9.8 m z = 200 m parameter qm centre value 

Ib,1 I'b,1 Ib,2 I'b,2 

low amplitude   

source radius a 52.8 mm +0.10 - +0.10 - 

frequency f 121.212 kHz -0.85 - -0.97 - 

pressure amp. p0 1 Pa +1.0 - +1.0 - 

sound speed c0 1485 m/s +0.92 - +0.92 - 

absorption coeff. α2
 

2.5·10
-14
 Np/m Hz

2 -0.0036 - -0.074 - 

density ρ0 1000 kg/m
3 

0.0 - 0.0 - 

nonlinearity coeff. β 3.50 0.0 - 0.0 - 

high amplitude   

source radius a 52.8 mm +0.19 -1.1 -0.48 -0.33 

frequency f 121.212 kHz -0.85 -1.7 -0.97 -1.7 

pressure amp. p0 426 kPa +0.97 +2.0 +0.89 +1.8 

sound speed c0 1485 m/s +0.95 +0.081 +1.1 -0.17 

absorption coeff. α2
 

2.5·10
-14
 Np/m Hz

2 -0.0035 -0.012 -0.070 -0.25 

density ρ0 1000 kg/m
3 

+0.032 -0.96 +0.10 -0.75 

nonlinearity coeff. β 3.50 -0.032 +0.96 -0.11 +0.75 
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Table 3.9. Relative sensitivity coefficients calculated from 10% perturbations in parameters of the 

sound source and propagation medium. 200 kHz, fresh water, axial field. 

relative sensitivity coefficient s(qm) 

2 m < z < 10 m 50 m < z < 190 m parameter qm centre value 

Ia,1 I'a,1 Ia,2 I'a,2 

low amplitude   

source radius a 32.5 mm +2.0 - +2.0 - 

frequency f 200.000 kHz +0.99 - +0.99 - 

pressure amp. p0 1 Pa +1.0 - +1.0 - 

sound speed c0 1485 m/s -1.0 - -1.0 - 

absorption coeff. α2
 

2.5·10
-14
 Np/m Hz

2 -0.0050 - -0.10 - 

density ρ0 1000 kg/m
3 

0.0 - 0.0 - 

nonlinearity coeff. β 3.50 0.0 - 0.0 - 

high amplitude   

source radius a 32.5 mm +1.3 +1.56 +0.81 +0.92 

frequency f 200.000 kHz +0.15 +0.46 -0.41 -0.60 

pressure amp. p0 820 kPa +0.49 +0.69 +0.27 +0.33 

sound speed c0 1485 m/s +0.93 +0.25 +1.7 +1.8 

absorption coeff. α2
 

2.5·10
-14
 Np/m Hz

2 +0.0013
 

-0.010 -0.050
 

-0.20 

density ρ0 1000 kg/m
3 

+0.51 +0.32 +0.73 +0.67 

nonlinearity coeff. β 3.50 -0.51 -0.31 -0.73 -0.67 
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Table 3.10. Relative sensitivity coefficients calculated from 10% perturbations in parameters of the 

sound source and propagation medium. 200 kHz, fresh water, indicator values off axis. 

relative sensitivity coefficient s(qm) 

z = 9.8 m z = 200 m parameter qm centre value 

Ib,1 I'b,1 Ib,2 I'b,2 

low amplitude   

source radius a 32.5 mm +0.014 - +0.014 - 

frequency f 200.000 kHz -0.98 - -1.4 - 

pressure amp. p0 1 Pa +1.0 - +1.0 - 

sound speed c0 1485 m/s +1.0 - +1.0 - 

absorption coeff. α2
 2.5·10

-14
 Np/m Hz

2 -0.0098 - -0.20 - 

density ρ0 1000 kg/m
3 

0.0 - 0.0 - 

nonlinearity coeff. β 3.50 0.0 - 0.0 - 

high amplitude   

source radius a 32.5 mm +0.14 -0.68 +0.15 -0.19 

frequency f 200.000 kHz -0.90 -1.5 -1.2 -2.3 

pressure amp. p0 820 kPa +0.80 +1.6 +0.60 +1.1 

sound speed c0 1485 m/s +1.3 +0.45 +1.7 +0.96 

absorption coeff. α2
 2.5·10

-14
 Np/m Hz

2 -0.0085 -0.029 -0.17 -0.62 

density ρ0 1000 kg/m
3 

+0.21 -0.58 +0.41 -0.083 

nonlinearity coeff. β 3.50 -0.20 +0.59 -0.40 +0.096 
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Table 3.11. Relative simulation uncertainty contribution Eparam due to the physical input parameters. 

parameter qm value 
rel. standard 

uncertainty 

E(qm) 

rel. sensitivity 

coefficient 

| s(qm)| 

rel. standard 

uncertainty 

contribution 

squared 

axial field (Ia,1, Ia,2), fundamental frequency component  

source radius a 32.5 mm 0.003 1.5 2.0·10
-5 

frequency f 200.000 kHz 0.0001 0.4 1.6·10
-9 

pressure amp. p0 820 kPa 0.033 0.6 3.9·10
-4 

sound speed c0 1485 m/s 0.002 1 4.0·10
-6 

absorption coeff. α2
 2.5·10

-14
 Np/m Hz

2 0.1 0.02 4.0·10
-6
 

density ρ0 1000 kg/m
3 0.0002 0.5 1.0·10

-8
 

nonlinearity coeff. β 3.50 0.006 0.5 9.0·10
-6
 

sum of squared uncertainty contributions 4.3·10
-4 

relative standard uncertainty Eparam due to physical parameters 0.021 

relative standard uncertainty in decibels 0.2 dB 

 
axial field (Ia,1, Ia,2), second harmonic  frequency component  

source radius a 32.5 mm 0.003 2 3.6·10
-5 

frequency f 200.000 kHz 0.0001 1 1.0·10
-8 

pressure amp. p0 820 kPa 0.033 1.5 1.1·10
-3 

sound speed c0 1485 m/s 0.002 2 1.6·10
-5 

absorption coeff. α2
 2.5·10

-14
 Np/m Hz

2 0.1 0.5 1.0·10
-4
 

density ρ0 1000 kg/m
3 0.0002 0.5 1.0·10

-8
 

nonlinearity coeff. β 3.50 0.006 0.5 9.0·10
-6
 

sum of relative variances 0.0050 

relative standard uncertainty Eparam due to physical parameters 0.071 

relative standard uncertainty in decibels 0.6 dB 
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off axis (Ib,1, Ib,2), fundamental frequency component  

source radius a 32.5 mm 0.003 0.2 3.6·10
-7 

frequency f 200.000 kHz 0.0001 1 1.0·10
-8 

pressure amp. p0 820 kPa 0.033 1 1.1·10
-3 

sound speed c0 1485 m/s 0.002 1 4.0·10
-6 

absorption coeff. α2
 2.5·10

-14
 Np/m Hz

2 0.1 0.06 3.6·10
-5 

density ρ0 1000 kg/m
3 0.0002 0.2 1.6·10

-9 

nonlinearity coeff. β 3.50 0.006 0.2 1.4·10
-6 

sum of squared uncertainty contributions 0.0011 

relative standard uncertainty Eparam due to physical parameters 0.034 

relative standard uncertainty in decibels 0.3 dB 

 
off axis (Ib,1, Ib,2), second harmonic  frequency component  

source radius a 32.5 mm 0.003 0.6 3.2·10
-6 

frequency f 200.000 kHz 0.0001 2 4.0·10
-8 

pressure amp. p0 820 kPa 0.033 1.6 2.8·10
-3 

sound speed c0 1485 m/s 0.002 1 4.0·10
-6 

absorption coeff. α2
 2.5·10

-14
 Np/m Hz

2 0.1 0.5 2.5·10
-3 

density ρ0 1000 kg/m
3 0.0002 0.6 1.4·10

-8 

nonlinearity coeff. β 3.50 0.006 0.6 1.3·10
-5 

sum of relative variances 0.0053 

relative standard uncertainty Eparam due to physical parameters 0.073 

relative standard uncertainty in decibels 0.6 dB 

3.4. Combined simulation uncertainty 

The estimated uncertainty contributions for simulations of finite amplitude 

sound propagation are summarized in Table 3.12. The idealized uniform piston 

representation of the sound source, which is assumed an important error 

contributor, has not been accounted for here. The importance of the source 

condition is investigated to some extent in Chapter 4. The square frequency 

power law used here for absorption does not apply well to seawater. This is 

discussed further in Chapter 6. 
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Adequate reference solutions are not found for finite amplitude sound 

propagation. The uncertainty estimate has therefore been extrapolated from the 

linear case by means of sensitivity analyses. As also some error sources are 

unaccounted for, the uncertainty estimate in Table 3.12 should not be used 

without careful consideration of the underlying assumptions and which factors 

have been taken into consideration (cf. Table 3.1). 

The relative uncertainty contribution Eparam related to the physical input 

parameters dominates the uncertainty estimate. 
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Table 3.12. Estimate of the combined relative standard uncertainty E(psim) for the simulations 

of nonlinear sound propagation. 

on axis 
fundamental frequency 

component 

second harmonic 

component 

 

relative 

standard 

uncertainty 

relative 

variance 

relative 

standard 

uncertainty 

relative 

variance 

model uncertainty Emodel 0.0001 1.3·10
-8 

0.0001 1.3·10
-8
 

numerical algorithm Enum 0.005 2.1·10
-5 

0.005 2.1·10
-5 

parameter uncertainties Eparam 0.021 4.3·10
-4 

0.071 5.0·10
-3 

sum of relative variances 4.5·10
-4 

 5.0·10
-3 

relative combined standard uncertainty E(psim) 0.021  0.071 

relative combined standard uncertainty in dB 0.2 dB  0.6 dB 

 

off axis 
fundamental frequency 

component 

second harmonic 

component 

 

relative 

standard 

uncertainty 

relative 

variance 

relative 

standard 

uncertainty 

relative 

variance 

model uncertainty Emodel 0.001 1.3·10
-6 

0.001 1.4·10
-6
 

numerical algorithm Enum 0.005 2.1·10
-5 

0.007 4.8·10
-5 

parameter uncertainties Eparam 0.034 1.1·10
-3 

0.073 5.3·10
-3 

sum of relative variances 1.1·10
-3 

 5.3·10
-3 

relative combined standard uncertainty E(psim) 0.034  0.073 

relative combined standard uncertainty in dB 0.3 dB  0.6 dB 
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Chapter 4. Near field measurements 

The sound field radiated by a 

uniformly vibrating, plane, circular 

piston in an infinitely stiff baffle of 

infinite extent is a classical problem. 

The uniform piston source condition 

used in Chapter 3 is therefore well suited 

for comparing Bergen Code simulations 

with other theoretical results. It is also a convenient starting point for 

simulations when the details of the sound source’s vibration pattern are not 

well known. 

The Bergen Code version used in the present work requires an axisymmetric 

source condition specified in a plane. It allows shading of the amplitude and 

phase. The echo sounder transducers used as sound sources in the experiments 

have been designed to radiate an axisymmetric sound beam with weaker side 

lobes than for a uniform piston. 

To be able to assess the applicability of the circular-piston source condition, a 

measurement set-up is designed for measuring the relative sound pressure 

amplitude and phase in a plane parallel to the face of three echo sounder 

transducers. Measurements are made approximately 2 mm from the face of 

each transducer. The degree of axisymmetry (rotational symmetry) of the 

measured near field is investigated. An attempt is made to provide 

axisymmetric source descriptions for Bergen Code simulations that correspond 

more closely to the experimental conditions than the uniform piston 

idealization. The results presented here give some information on the 

importance of the uncertainty contribution due to the uniform piston 

idealization. 



 104 

Similar near field measurements have been described by Saito et al.
218

, Ward et 

al.,
259

 and Humphrey et al.
125

 Saito et al. used the measurement results to 

determine the primary velocity amplitude on the face of a focusing sound 

source. Humphrey et al.
125

 compared sound pressure measurements in the near 

field with optical methods for characterization of sound sources. Ward et al.
259

 

obtained a somewhat idealized source condition based on near field 

measurements, and used it in Bergen Code simulations. The author is not aware 

of published works where results from near field measurements have been 

applied directly as source conditions for the Bergen Code. 

The experiment is described in Section 4.1, while the measurement results are 

presented in Section 4.2. In Section 4.3, source conditions for Bergen Code 

simulations are derived based on the measurement results. Some tests are made 

for linear sound propagation. The performance of simulations based on the near 

field measurement source conditions is examined further in Chapter 5. 

4.1. Experiment 

This section describes how the near field measurements were carried out. The 

experimental arrangement is described first, followed by an account of the 

processing of the measurement results. 

4.1.1. Experimental arrangement 

Near field measurements were made for three Simrad echo sounder transducers 

(Figure 4.1). Table 4.1 shows the transducer models, serial numbers, operating 

frequencies, and transmit voltage amplitudes used for the near field 

measurements. It is also indicated where the transducers are used for 

measurements of nonlinear sound propagation. The sound propagation 

measurements are described in Chapter 5 (measurement sets H1, H2, and H3) 

and Chapter 6 (E1 and E2). 
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Table 4.1. Echo sounder transducers used in near field measurements. 

transducer 

model 

serial 

number 

operating 

frequency 

rms input voltage 

amplitude 

nonlinearity 

measurement sets 

ES120-7C 230 121.212 kHz 6.1 V H2, E2 

ES200-7C 120 200.000 kHz 6.4 V H3, E1 

ES200-7CD 102 200.000 kHz 4.8 V H1 

A fresh water tank with dimensions 2.5×2.5×2.5 m
3
 was used, with the echo 

sounder transducer and hydrophone placed sufficiently far from the walls and 

water surface to keep echoes from interfering with the measurements. The 

water temperature was (11±1)ºC. 

The three transducers are made for split-beam echo sounders. Their active 

elements are arranged in four quadrants that can be controlled separately. The 

quadrants were coupled in parallel and driven by an ENI 240L power amplifier 

(Figure 4.5). An Agilent 33120A function generator was used to generate 

80-cycle sine bursts to be transmitted. The burst repetition rate was chosen 

such that a burst was not transmitted until all detected reverberation from the 

previous bust had died out. 

  

Figure 4.1. ES200-7C (left) and ES120-7C (right) echo sounder transducers. The ES200-7CD 

transducer looks equal to the ES200-7C. 

Each transducer was mounted in a square aluminium plate with 240 mm sides 

(Figure 4.2). To enable mechanical alignment between the transducer face and 
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the axes of the two-carriage hydrophone positioning system (Figure 4.6), the 

transducers were mounted so that they protruded 1.0 mm from the aluminium 

plate. The intended forward direction when mounted on a vessel is marked on 

the echo sounder transducer. The transducers were mounted with the forward 

direction pointing upwards, i.e., in the positive x direction (Figure 4.6). The 

starboard direction then coincides with the positive y direction. 

Test measurements were made to determine whether the presence of the 

mounting plate had any influence on the radiated far field. As an alternative to 

the described flush mounting, the transducers were fastened to another plate by 

screw holes on their back. No difference was measured in the radiation patterns 

at 1.5 m distance. 

A Precision Acoustics PVDF needle hydrophone with 1-mm-diameter active 

area and integrated preamplifier was mounted as shown in Figures 4.2–4.6. 

Some trials were carried out to investigate the possibility of standing waves 

between the sound source and the hydrophone,
127

 but evidence of such 

problems was not observed. The diameter of the hydrophone needle is much 

smaller than one wavelength, and its presence is assumed to have negligible 

influence on the measured sound pressure. Also, it is assumed that the probe is 

omnidirectional for the frequencies used here, and that the active area of the 

hydrophone is too small to impose significant spatial averaging on the 

measurement result.
28,116

 

A Cartesian coordinate system is defined with its origin at the centre of the face 

of the echo sounder transducer (Figure 2.1). The z axis is parallel with the 

radiated sound beam. Two linear stages of type PI M521.DG and PI M535.22 

with 1 µm specified resolution
4,5

 were used to position the hydrophone in the x 

and y directions, respectively (Figures 4.2 and 4.6). The positioning system, 

oscilloscope, and function generator were controlled with a personal computer, 

which also stored the measured waveforms. The hydrophone was moved in 

steps of 2.0 mm and 2.5 mm for the 200 kHz and 120 kHz measurements, 
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respectively. The chosen step lengths were smaller than one-half wavelength, 

λ/2 = 3.6 mm for 200 kHz and 6.0 mm for 120 kHz. 

 

     

Figure 4.2. Left: Flush mounted ES200-7C echo sounder transducer. Right: Linear 

translation stages used for two-dimensional positioning of the hydrophone in a plane parallel 

to the transducer’s face. The horizontal hydrophone mounting tube is seen at the bottom of 

the vertical tube. 

 

 
Figure 4.3. Needle hydrophone in horizontal mounting tube. 

 

Measurements were made throughout a rectangular area, following a path such 

as illustrated in Figure 4.6. The size of the covered area should be such that the 

sound pressure amplitude at its edges is insignificant.
125

 In the present work, 

the sound pressure amplitudes along the edges were accepted as sufficiently 

low if they were at least 30 dB below the strongest measured signal. 
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Figure 4.4. Dimensions (in millimetres) of the hydrophone assembly 

in front of a 200 kHz sound source. 

 

The signal received by the hydrophone was amplified by its integral amplifier 

and then further with a Reson VP1000 voltage preamplifier, before it was 

digitized with a LeCroy 9361 digital sampling oscilloscope (Figure 4.5). 50 Ω 

terminators were used at the far ends of both the cables connected to 

preamplifier outputs. The synchronization signal from the function generator 

was used to trigger the oscilloscope. In order to utilize the 8 bits of resolution 

optimally, the first few measured bursts for each hydrophone position were 

used to adjust the oscilloscope’s voltage range. The average of 80 sweeps was 

then transferred to the computer, effectively yielding approximately 11 bits of 

resolution.
8
 The full waveform was stored together with relative position from 

the translation stages. 
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hydrophone preamplifier oscilloscope

computerfunc.generatorpower amp.transducer

dps controllerstages

 
Figure 4.5. Diagram of instruments and signal and control flow. 

 

y

x

z

        
Figure 4.6. Principle sketch of the positioning system (left) and the path followed by the 

hydrophone across the transducer surface (right). Figure 4.4 shows the distance between the 

echo sounder transducer and the hydrophone more correctly. 

4.1.2. Signal processing 

Time window 

The first signal arrival at the hydrophone originates from the nearest part of the 

echo sounder transducer’s active area. To obtain a measurement that 

corresponds to a continuous transmitted wave, it is necessary to wait until all 

contributions from the surface of the transducer have arrived and reached 

steady state. 
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With the hydrophone position (x,y,z) is meant the position of its needle tip.  

The distance between the hydrophone and the symmetry axis of the echo 

sounder transducer is 

2 2

nr x y= + . (4.1) 

The earliest accepted start time t0 = t0(x,y) for steady-state measurements is 

( ) 2 2

0 0,axis max f

0

1
, ( , )t x y t d x y a z

c
 = + − +
 

, (4.2) 

where t0,axis is the time when the signal measured on the z axis has reached 

steady state. t0,axis is chosen by inspection of the received wave form when 

rn = 0. dmax(x,y) = {[af + rn(x,y)]
2
 + z

2
}

1/2
 is the distance between the 

hydrophone and the farthest point on the face of the echo sounder transducer, 

of which the radius is af. Due to the spatial resolution of the measurement grid, 

the maximum error in rn is approximately 1.8 mm for the ES120-7C transducer 

and 1.4 mm for the 200 kHz transducers. 

The hydrophone mount consists of a horizontal steel tube machined to 

minimize reflections (Figure 4.3). A vertical tube connects the hydrophone to 

the translation stages, and is the source of the first significant echo that may 

interfere with the direct signal from the echo sounder transducer. The time of 

arrival for this echo is quite insensitive to the hydrophone position. The time 

window for measurements is ended at its lower bound tend, which, if the sound 

transmission starts at t = 0, is 

mount
end

0

2z l
t

c

+
= . (4.3) 

lmount = 152 mm is the distance from the tip of the hydrophone needle to the 

vertical tube (Figure 4.4). The distance z between the plane of the transducer 

face and the hydrophone is approximately 2 mm. With a measured temperature 

of (11 ± 1)ºC, the sound speed is calculated to c0 = (1451 ± 4) m/s,
50
 which 
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yields tend = (210.9 ± 0.6) µs (Table 4.2 and Figure 4.7). Some backscatter from 

the hydrophone and preamplifier bodies is seen between t0 and tend, with 

maximum amplitude 25 dB below the direct signal. 

Figure 4.7 shows two acquired waveforms. The section of the received burst 

that falls between t0 and tend is coloured red. The first plot (Figure 4.7a) shows a 

waveform obtained with the hydrophone at the centre of the sound source. The 

figure is representative of the signals that are stronger than approximately 

-25 dB relative to the amplitude measured at the centre of the sound source. 

The waveform shown in Figure 4.7b is obtained with the hydrophone in the 

corner of the covered rectangle, i.e. with the maximum distance to the sound 

source. Although the signal seems to have disappeared in noise, the region 

within the calculated time window is processed the same way as where the 

signal is clearly visible. 
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Figure 4.7. Examples of measured wave forms. The part of each measurement that 

corresponds to steady-state, free field conditions is marked in red. a) Measurement made at 

the centre of the sound source. b) Measurement made in the corner of the sampled region, at 

maximum distance from the sound source. 
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Table 4.2. Time windows for near field measurements with the hydrophone at the centre (rn = 0) 

and the edge (rn = af) of the echo sounder transducer face. The minimum time window length is 

used where the distance from the symmetry axis is at its maximum. 

periods within time window 

(tend – t0)·f transducer 
outer radius 

af [mm] 

wavelength 

λ [mm] 
centre edge minimum 

ES120-7C 76.0 11.94 ± 0.03 13 6 3 

ES200-7C 50.0 7.26 ± 0.02 26 19 15 

ES200-7CD 50.0 7.26 ± 0.02 26 19 15 

 

Fourier transformation 

The relative amplitude and phase of each received signal U(t) is extracted from 

its discrete Fourier transform. Before transformation, the signal is interpolated 

linearly and resampled so that the sampling rate becomes an integer multiple of 

the carrier frequency. The greatest integral number of periods between t0 and 

tend (Table 4.2) is submitted to discrete Fourier transformation, 

21

0

1ˆ ˆ( ) ( ) , 0,1,2,..., 1
lmN j
N

m

l

m
U f U U l t e m N

N t N

π− −

=

 = = ∆ = − ∆ 
∑ . (4.4) 

∆t is the sampling interval. The ˆ ( )U f  that corresponds to the carrier frequency 

is taken from the Fourier spectrum. The same relative results are found with 

and without multiplying the time signal with the “flattop” window function 

implemented in Matlab. 

Phase compensation 

Misalignment between the transducer face and the xy plane of the positioning 

system could introduce a false asymmetry in the measured phase. The mean 

values of the phase measured within four rectangles as indicated in Figure 4.8 

are calculated. A linear function is added to the phase so that each pair of mean 

values along the x and y axes, respectively, become equal. The average phase 
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measurements indicate that the physical alignment between the transducer face 

and the xy plane is within 0.1º for the 120 kHz transducer and 0.5º for the 

200 kHz transducers. Possible deviations between the mechanical and 

acoustical (phase) symmetry axes of the echo sounder transducers contribute to 

this angle. 

Humphrey et al.
125

 point out that the need for phase stability puts stringent 

requirements on temperature variations during the measurements. The 

temperature changed less than 0.15º in their case, which did not seem 

significant. During the measurements presented here, the temperature was not 

monitored with the same accuracy. Each measurement took approximately 

24 hours and the temperature at the end of each measurement was within one 

degree of the temperature at the start. The measured phase seems 

axisymmetric. No particular systematic variation is seen with the vertical (x) 

coordinate, in which direction the hydrophone movement was the slowest 

(Figure 4.6). 

 

 

Figure 4.8. Regions for averaging of the measured phase, used to compensate for 

misalignment between the echo sounder transducer and the hydrophone positioning system. 
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4.2. Measurement results 

The complex pressure amplitude pn of a measured signal pne
jωt

 can be 

expressed through its absolute value and phase, 

n ( , )

n n( , ) ( , )
j x y

p x y p x y e
φ= ⋅ . (4.5) 

Figures 4.9–4.17 show the measured values of |pn(x,y)| and φn(x,y) relative to 

those obtained in the point closest to the centre of the sound source. Bilinear 

interpolation has been used to double the number of data points in each 

direction for the pseudocolour and surface plots. A phase plot without such 

smoothing is shown in Figure 4.8. Figures 4.10, 4.13, and 4.16 show all the 

acquired measurement points (green dots) as function of the distance rn from 

the centre of the sound source. 

The measurement results obtained along the eight radial paths marked with 

dashed lines in the pseudo-colour plots (Figures 4.9, 4.12, and 4.15), are 

indicated with dotted black curves in Figures 4.10, 4.13, and 4.16. The solid 

black curves represent mean values of the eight traces, and the error bars 

indicate the standard deviation between them. The agreement between the rn 

dependence of amplitude and phase in different directions from the centre 

provide an indication of the degree of axisymmetry in the measured field. 

When the amplitude is 20 dB below the value measured at rn = 0, the amplitude 

and phase standard deviations are as shown in Table 4.3. 

Table 4.3. Distance rn from the centre and standard deviations for the absolute value and 

phase of pn(x,y) when the measured sound pressure amplitude is 20 dB below that at the 

centre of the source. 

transducer rn(-20 dB) 
amplitude relative 

standard deviation 

phase standard 

deviation 
figure 

ES120-7C 65 mm 1.9 dB 22º 4.10 

ES200-7C 44 mm 3.8 dB 14º 4.13 

ES200-7CD 47 mm 1.3 dB 17º 4.16 
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The measured amplitude and phase vary slowly with distance from the centre. 

While the amplitude decreases almost monotonically with rn in a large part of 

the covered area, the phase is more constant within the radius of the transducer 

face. Sharp phase peaks are seen along the edge of the transducers. Outside this 

area, the phase decreases approximately as –krn, where k is the wave number. 

Evidence of some difficulty in extracting the phase from the weakest signals is 

seen in the outer parts of the measurement areas. 

Some systematic departure from axisymmetry is seen in the measurements for 

the ES120-7C and ES200-7CD transducers, particularly in the phase (Figures 

4.9b and 4.15b). The measured phase is slightly greater near the diagonals than 

near the horizontal and vertical lines through the origin. 

The ES200-7CD transducer seems to have a small defect close to the forward 

edge of its active element (Figures 4.15). A small area with reduced sound 

pressure amplitude is seen around (x,y) = (33 mm, -7 mm) in Figure 4.15a. The 

feature can also be seen in the phase (Figure 4.15b). 

The measured irregularities are not expected to be of great importance for the 

far field. Moreover, the departures from axisymmetry are not the same for the 

two 200 kHz echo sounders. It is concluded that the assumption of an 

axisymmetric geometry should be adequate for numerical simulations of the 

radiated sound field. 
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Figure 4.9. a) Relative sound pressure level, and b) relative phase in a plane parallel to the 

face of the ES120-7C echo sounder transducer. The black dashed lines show the eight paths 

used for extraction of one-dimensional amplitude and phase data. 
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Figure 4.10. One-dimensional amplitude (a) and phase measurements (b) for the ES120-7C 

transducer. Results from all the measurement points are marked in green. The black curve 

and error bars show mean value and standard deviations calculated from the values along the 

eight radial paths marked in Figure 4.9. 
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Figure 4.11. Alternative presentation of the amplitude (top) and phase (bottom) measurement 

results for the ES120-7C transducer, shown in Figure 4.9. 
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Figure 4.12. a) Relative sound pressure level, and b) relative phase in a plane parallel to the face of the 

ES200-7C echo sounder transducer. The black dashed lines show the eight paths used for extraction of one-

dimensional amplitude and phase data. 
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Figure 4.13. One-dimensional amplitude (a) and phase measurements (b) for the ES200-7C 

transducer. Results from all the measurement points are marked in green. The black curve and error 

bars show mean value and standard deviations calculated from the values along the eight radial paths 

marked in Figure 4.12. 
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Figure 4.14. Alternative presentation of the amplitude (top) and phase (bottom) measurement 

results for the ES200-7C transducer, shown in Figure 4.12. 
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Figure 4.15. a) Relative sound pressure level, and b) relative phase in a plane parallel to the face of 

the ES200-7CD echo sounder transducer. The black dashed lines show the eight paths used for 

extraction of one-dimensional amplitude and phase data. 
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Figure 4.16. One-dimensional amplitude (a) and phase measurements (b) for the ES200-7CD 

transducer. Results from all the measurement points are marked in green. The black curve and error 

bars show mean value and standard deviations calculated from the values along the eight radial paths 

marked in Figure 4.15. 
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Figure 4.17. Alternative presentation of the amplitude (top) and phase (bottom) measurement 

results for the ES200-7CD transducer, shown in Figure 4.15. 
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4.3. Experimental source conditions for 
numerical simulations 

The echo sounder transducers are designed to generate lower side lobes than a 

uniform circular piston. The possibility of using the results from the near field 

measurements (Figures 4.10, 4.13, and 4.16) as an alternative to the uniform 

piston idealization in the simulations is investigated. 

4.3.1. Source conditions from measurements 

The distance z between the face of the sound source and the plane in which the 

near field measurements are made is neglected. The measurement results are 

inserted directly into the source condition for the Bergen Code. Near field 

measurements made in different planes perpendicular to the sound beam axis 

may yield different results. It is assumed that measurements made in any such 

plane would yield essentially the same simulation result for the far field. 

A scaling of the measured near field sound pressure amplitude was sought to 

obtain source conditions that yield the same simulated axial amplitude in the 

far field as for a uniform circular piston source condition with radius a and 

peak pressure amplitude p0. Within the approximation of the KZK 

equation
151,271

 (Section 2.2), the pressure and the axial particle velocity 

component are proportional. The acoustic intensity in the source plane, where 

the particle velocity is in the axial direction, is thus proportional to the pressure 

amplitude squared. 

As a first estimate, the measured sound pressure amplitude pn(rn) is scaled so 

that the integral of the square of the axisymmetric pressure amplitude over the 

source plane becomes the same as for the uniform piston source condition. The 

source condition pressure amplitude ps then becomes 
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Equal power transfer through the source plane does not necessarily lead to 

equal axial sound pressure for different source configurations. The effective 

uniform piston source radius a is determined from the -3 dB angle measured in 

the transducer’s far field radiation pattern (Section 5.2.1). The integral in 

Equation (4.6) is evaluated with the trapezoidal rule over the rn for which 

measurements have been made (Figures 4.10, 4.13, and 4.16). The sound 

pressure amplitude is set equal to zero outside the rectangle covered by the near 

field measurements. The resulting source conditions for the three transducers 

are shown in Figures 4.18 and 4.19. The corresponding uniform piston source 

conditions used in Chapters 5 and 6 are indicated in the same figures (4.18a 

and 4.19a). The radii of the uniform piston source conditions are calculated to 

yield the same -3 dB beam angles as measured in the far field. 

Although the 200 kHz transducers have similar design, the results of the near 

field measurements are somewhat different (Figure 4.19). The differences may 

in part be due to amplitude and phase variations with distance from the sound 

source, as there may be small differences in the distance between each 

transducer face and the plane in which the measurements were made. 

The Bergen Code source condition for an axisymmetric problem is specified in 

Nu equally spaced points along a radial line in the source plane. The first point 

is on the symmetry axis, u = 0, and the last is at the boundary of the calculation 

region u = umax. u = rn/a is a nondimensional transverse coordinate. Values for 

ps(rn) are assigned to the Nu grid points by linear interpolation. In accordance 

with Equation (2.69), the Fourier coefficients of the source condition become 
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The source condition specified in terms of g1 and h1 for the ES120-7C 

transducer is shown in Figure 4.18b. 

0 20 40 60 80 100

0

0.5

1

1.5

r
n

  [mm]

|
p

s

(
r n

)
|
 
/
 
p

0

a)

0 2 4 6 8 10

−1

−0.5

0

0.5

1

1.5

2

u

b)

g
1

(u)

h
1

(u)

 

Figure 4.18. a) Scaled sound pressure amplitude for the ES120-7C echo sounder transducer (see 

Figure 4.10 for the phase φs = φn). The corresponding uniform piston source condition is indicated with 

dashed lines. b) Source condition based on the measurements for the ES120-7C transducer on the form of 

g1 and h1 as input to the Bergen Code. 
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Figure 4.19. Source condition amplitude (a) and phase (b) based on near field measurements for the 

ES200-7C and ES200-7CD echo sounder transducers (cf. Figures 4.13 and 4.16). The amplitudes are 

scaled to yield the same integrated pressure squared as each transducer’s corresponding uniform piston 

source condition (shown in Figure a). 
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4.3.2. Simulation results for linear sound beams 

Bergen Code simulations are made for the ES120-7C, ES200-7C, and 

ES200-7CD echo sounder transducers, respectively. Results for the effective 

sound pressure plin are shown in Figures 4.20–4.22. To avoid nonlinear 

distortion, the simulations have been performed with p0 = 1 Pa peak source 

condition amplitude. Simulations based on the near field measurements are 

compared with simulations using the uniform piston source condition. 

As good overall agreement is seen in the axial sound pressure levels, no change 

is made to the scaling of the near field measurements described by 

Equation (4.6). 

The same qualitative differences between simulation results from using 

different source conditions are seen for all three transducers. The source 

conditions based on measurements yield smoother axial near fields than the 

uniform piston source condition, but only small differences are seen in the axial 

field far from the transducer. The far field main lobe becomes wider with 

measurement source conditions than with the uniform piston, and the first side 

lobe is lower. This is not unexpected, as low side lobe levels is among the 

design specifications for the transducers.
235

 The difference in lobe widths is 

small in terms of the -3 dB beam angle, which is consistent with the effective 

plane piston source radius a having been determined from the measured -3 dB 

beam angle. 

The differences between the simulation results for the two 200 kHz echo 

sounders (Figures 4.21 and 4.22) give some indication of the sensitivity of the 

linear solution to changes in the source condition (Figure 4.19). 

Measurements of finite-amplitude sound propagation in fresh water are 

presented in Chapter 5. Simulations based on both the uniform piston and the 

near field measurement source conditions obtained here are compared with the 

measurement results. 
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Figure 4.20. Simulated effective sound pressure plin for low amplitude sound propagation. Comparison 

between results from the uniform piston source condition and a source condition based on near field 

measurements for the ES120-7C (s/n 230) transducer. a) Axial pressure amplitude relative to the 

equivalent plane piston amplitude. b) Far field directivity at distance r = 300 m. 

0.1 1 10 100 500

−60

−50

−40

−30

−20

−10

0

10

distance r  [m]

2
0

⋅lo
g

1
0

(
p

l
i
n

 
/
 
p

0
,
r
m

s

)

a)

near field measurement

uniform piston

−15 −10 −5 0 5 10 15

−50

−40

−30

−20

−10

0

angle θ  [°]

2
0

⋅lo
g

1
0

[
p

l
i
n

(
r,

θ
)
 
/
 
p

l
i
n

(
r,

0
)
]

b)

near field measurement

uniform piston

 
Figure 4.21. Simulated effective sound pressure plin for low amplitude sound propagation. Comparison 

between results from the uniform piston source condition and a source condition based on near field 

measurements for the ES200-7C (s/n 120) transducer. a) Axial pressure amplitude relative to the 

equivalent plane piston amplitude. b) Far field directivity at distance r = 300 m. 
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Figure 4.22. Simulated effective sound pressure plin for low amplitude sound propagation. Comparison 

between results from the uniform piston source condition and a source condition based on near field 

measurements for the ES200-7CD (s/n 102) transducer. a) Axial pressure amplitude relative to the 

equivalent plane piston amplitude. b) Far field directivity at distance r = 300 m. 
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Chapter 5. Sound propagation in 
fresh water 

Fisheries research echo sounders are used in lakes and rivers, in coastal waters, 

and at sea. A wide variety of water temperatures, salinities, and particle and 

bubble contents are therefore encountered. Fresh water at room temperature, as 

normally found in indoor water tanks, is a rare special case. Still, excellent 

control with the environment and precise positioning systems make sound 

propagation measurements from indoor facilities invaluable for comparison 

with theory. 

The fresh water tank used by Tichy et al.
234
 in their measurements of nonlinear 

attenuation in the axial field of a 200 kHz echo sounder transducer, was made 

available for further investigations. The results are presented in this chapter. 

Section 5.1 describes measurements made with a calibrated hydrophone in the 

sound fields of 120 kHz and 200 kHz echo sounders. The sound pressure 

amplitudes for the fundamental and second harmonic frequency components 

are extracted from the measured waveforms. Also, target strength 

measurements are performed with a 200 kHz echo sounder and a reference 

target. This is done to obtain an indication to whether errors in target strength 

measurements can be linked directly to the nonlinear attenuation of the 

fundamental frequency component. 

Numerical simulations of nonlinear sound propagation in fresh water are 

described in Section 5.2. The simulations for comparison with measurements 

are carried out with two sets of sound source descriptions. One is the uniform 

circular piston, with radius and pressure amplitude determined from 

hydrophone measurements in the far field. The other source condition is based 

on near field measurements, as described in Section 4.3. Simulation results are 



 129 

also compared qualitatively with some measurement results for long range 

sound propagation in fresh water, described in the literature.
221,163

 

The results from measurements and simulations are presented in Section 5.3. 

The simulations with the two types of source conditions are compared with 

each other and with the hydrophone measurements for the fundamental and 

second harmonic frequency components. Simulation results are used to isolate 

the nonlinear attenuation of the fundamental frequency component. The 

experimental target strength measurements are compared with the same 

simulations. 

5.1. Measurements in fresh water 

5.1.1. Measurement facilities and echo sounders 

Sound fields of Simrad EK60 echo sounders with 120 kHz and 200 kHz 

operating frequencies (Figure 5.1) were investigated experimentally in a 

15×6×6 m
3
 (length×width×depth) fresh water tank in the laboratory of 

Simrad AS in Horten, Norway. The water kept (20±2)ºC temperature and was 

stirred and filtered daily to reduce temperature gradients and particle contents. 

A digital positioning system enabled rotation of the echo sounder transducers 

around the x and z axes (Figure 5.4), with relative accuracy of at least 0.1º. The 

transducers were mounted one at a time at the centre of a short end of the tank, 

at approximately 2.5 m depth. 

Tables 5.1 and 5.2 give an overview of the measurements discussed in this 

chapter. The results are divided into measurement sets H1, H2, and H3, 

corresponding to experiments made at different times. The H1 and H3 

measurements were made with 200-kHz echo sounders, while the H2 

measurements are for the 120 kHz drive frequency. Three different instrument 

set-ups have been used. The hydrophone measurements with and without a 

preamplifier at the hydrophone terminals are described in the following section, 
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while the backscatter measurements using calibration spheres are discussed in 

Section 5.1.3. 

 
Figure 5.1. ES200-7C transducer (left) and ES120-7C transducer (right). 

The EK60 echo sounder was controlled from a standard personal computer. 

The echo sounder consists of the computer, one or more transceiver units and 

one transducer for each transceiver. Burst duration, burst interval, and electrical 

output power are selected in the echo sounder control software. The burst 

duration was set to 256 µs. The time interval between bursts was 0.30 s for the 

H1 and H2 measurement sets and 0.40 s for the H3 measurements (Tables 5.1 

and 5.2). The 0.30 s interval was sufficient to ensure that no reverberation from 

the previous burst was noticed when a new was transmitted. For simplicity, the 

output power settings are referred to by their nominal values W in this work, 

although there is some discrepancy between the nominal value and the actual 

transferred electrical power. The effective voltage amplitude Ut across the 

transducer terminals was measured for each of the used power settings 

(Table 5.5). 

100 W, 600 W and 1000 W nominal power settings were used with the 

120 kHz echo sounder. The power settings chosen for the 200 kHz echo 

sounder were 150 W, 1050 W, and 1500 W in the first (H1) measurement set, 

and 50 W, 150 W, and 1000 W in the second (H3). The normal maximum 

power setting for both echo sounders when used for fisheries research is 

1000 W. 
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Table 5.1. Axial measurements of nonlinear distortion in fresh water. 

measure-

ment set 
time frequency 

EK60 power 

setting 

axial 

fields 

instrument 

set-up 

H1a Aug. 2004 200 kHz 150 W 1 hydrophone 

H1b Aug. 2004 200 kHz 1050 W 1 hydrophone 

H1c Aug. 2004 200 kHz 1500 W 1 hydrophone 

H1d Aug. 2004 200 kHz 45 W 1 sphere 

H1e Aug. 2004 200 kHz 150 W 1 sphere 

H1f Aug. 2004 200 kHz 1500 W 2 sphere 

H2a Dec. 2004 120 kHz 100 W 1 hydrophone 

H2b Dec. 2004 120 kHz 600 W 1 hydrophone 

H2c Dec. 2004 120 kHz 1000 W 1 hydrophone 

H3a Mar. 2006 200 kHz 50 W 1 hyd. preamp. 

H3b Mar. 2006 200 kHz 150 W 1 hyd. preamp. 

H3c Mar. 2006 200 kHz 1000 W 1 hyd. preamp. 

Table 5.2. Directivity measurements in fresh water. 

measure-

ment sets 
frequency 

no. of 

distances  

distances 

r [m] 

instrument 

set-up 

H1abc 200 kHz 2 5.60, 9.18 hydrophone 

H1ef 200 kHz 2 9.12, 9.22 sphere 

H2 120 kHz 1 9.50 hydrophone 

H3 200 kHz 1 8.65 hyd. preamp. 

5.1.2. Hydrophone measurements 

Hydrophone and positioning 

A Reson TC 4034 hydrophone was used for measurements of axial sound 

pressure and radiation patterns of the echo sounder transducers. Results from 

hydrophone directivity measurements for 100 kHz, 200 kHz, and 300 kHz 

incident sound waves were supplied with the hydrophone.
9
 An additional 
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directivity measurement at 400 kHz was made by National Physical 

Laboratory, UK (NPL).
11
 The hydrophone is nearly omnidirectional at 

frequencies of 200 kHz and below.
9
 For the 400 kHz frequency, its sensitivity 

changes with 0.25 dB per degree within 10º of the axial direction of 

incidence.
11
 

The hydrophone’s sensitivity has been calibrated by NPL using three-

transducer spherical reciprocity at frequencies from 100 kHz through 500 kHz. 

Spot measurements were made at 121.212 kHz, 200.000 kHz, and their integer 

multiples.
12
 These hydrophone sensitivities of special interest to the present 

work are listed in Table 5.3. The sensitivity calibration has been made for 

sound waves impinging from a direction normal to the hydrophone’s symmetry 

axis. A reference mark has been made on its side to specify the direction 

toward the sound source.
12
 ±3º uncertainty is specified for the orientation of the 

hydrophone.
12
 

The orientation used by NPL for the hydrophone sensitivity calibration is 

referred to as 0º in their “xy plane” directivity plot.
11
 For the corresponding, 

“horizontal” directivity plots provided by Reson,
9
 however, the serial number 

printed on the side of the hydrophone is used as a reference mark. Reson’s 0º 

orientation is therefore 14º counter clockwise from that used by NPL when the 

hydrophone is viewed from its rear (cable) end. 

The “xz plane” directivity plot from NPL
11
 and the “vertical” directivity plots 

provided by Reson
9
 refer to the orientation for which the sound source lies on 

the hydrophone’s symmetry axis as 0º. This is the hydrophone orientation used 

for the measurements reported in the present work. The direction of incidence 

during the measurements is thus 90º off the direction for which the hydrophone 

calibration was performed.
12
 The standard uncertainties listed in Table 5.3 are 

root-mean-square combinations of the reported ±0.5 dB calibration uncertainty 

(referred to the 95% confidence level),
12
 the contribution of the ±3º orientation 

uncertainty during calibration,
12
 and the difference between the hydrophone’s 
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orientation during calibration and during the measurements presented below. 

The two latter uncertainty contributions have been estimated by linear 

interpolation of linear-scale relative uncertainties read from the directivity plots 

for 100, 200, 300, and 400 kHz operating frequencies.
9,11 

Calibration 

certificates for the hydrophone can be found in Appendix C. 

Table 5.3. Open-circuit sensitivity levels from the Reson TC4034 hydrophone calibration 

certificate.
12
 Estimated relative standard uncertainties when the tip of the transducer is 

pointed towards the sound source. 

frequency 

[kHz] 

sensitivity level 

[dB re 1 V/µµµµPa] 

rel. standard 

uncertainty [dB] 

121.212 -218.4 0.3 

200.000 -217.8 0.4 

242.424 -219.1 0.7 

363.636 -216.0 0.8 

400.000 -222.3 0.7 

The hydrophone was mounted at the end of a custom-made horizontal steel 

tube, machined to minimize reflections (Figures 5.2 and 5.3). The length of the 

horizontal tube was 2 metres (Figure 5.3) in order for the hydrophone to reach 

the shortest distances to the echo sounder transducer. A counterweight was 

attached on the rear end of the tube to reduce strain in the vertical tube that 

connected it with the positioning system (Figure 5.3). A three-axis digital 

positioning system enabled movement of the hydrophone with relative 

uncertainty of approximately 1 mm in the x, y, and z directions. The 

hydrophone assembly vibrated somewhat after each move to a new position. 

Detectable phase oscillations were allowed to die out before any sound 

pressure measurements were recorded. The waiting time after each 

repositioning was typically 2 minutes. 

Measurements of the axial field were made for distances up to 10 m between 

the echo sounder transducer and the hydrophone. For directivity measurements, 
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the hydrophone was kept at a constant position to make the angle between the 

incident sound wave and the hydrophone axis as small and constant as possible. 

The echo sounder was rotated around the x axis (cf. the coordinate axes in 

Figure 5.4), which corresponds to the alongship direction for a hull-mounted 

transducer. Negative angles put the hydrophone in the forward direction 

relative to the echo sounder transducer. 

 
Figure 5.2. Side view of the Reson TC4034 hydrophone mounted in a steel tube. 

Signal reception 

The H1abc and H2 measurement sets (Tables 5.1 and 5.2) were performed with 

the hydrophone connected by its 10 m integral cable to an Agilent 54621A 

digital sampling oscilloscope (Figure 5.3). For the H3 measurements, a 

Philips PM5171 preamplifier was used at the end of the hydrophone cable. A 

15 metre RG58 coaxial cable connected the preamplifier to the oscilloscope, 

with a 50 Ω terminator across the oscilloscope terminals. The preamplifier gain 

was set to 0 dB. Calibration measurements on the preamplifier with cable and 

terminator were made with an Agilent 33120A function generator as signal 

source, yielding the gain factor 0.54 ± 0.02 for the relevant signal amplitudes at 

200 kHz and 400 kHz frequencies. 

The electrical load on the hydrophone can be treated as a parallel combination 

of a resistance RL = 1 MΩ and a capacitance CL. CL = 14 pF when the 

hydrophone is connected directly to the oscilloscope, and 50 pF when the 

Philips PM5171 preamplifier is used. The resulting impedance ZL is
214
 

 
2

L L L
L 2 2 2

L L1

R j C R
Z

C R

ω
ω
−

=
+

. (5.1) 



 135 

The ratio between the end-of-cable loaded hydrophone sensitivity ML and the 

corresponding open circuit sensitivity M reported in the hydrophone calibration 

data is
214
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ZL is the load impedance, and ZH is the hydrophone output impedance. 

Assuming that the hydrophone’s input and output impedances are equal, 

calibration data supplied from the manufacturer suggest that the worst-case 

absolute value of the ratio ML/M should be approximately 0.99 for the 

fundamental and second harmonic frequencies. As the results seem somewhat 

inconclusive, loading corrections are not made to the presented results. The 

electrical loading of the hydrophone is instead included as a contributor to the 

measurement uncertainty (Table 5.4). 

Data acquisition and processing 

The digital sampling oscilloscope was used for recording the signals received 

from the hydrophone. 2000-point waveforms were transferred to a computer 

for storage (Figure 5.3). The acquired waveforms were multiplied with the 

“flat-top” time window implemented in Matlab, and 16 000-point discrete 

Fourier transforms (Equation (4.4)) were obtained by zero padding. To obtain 

the measured root-mean-square sound pressure amplitude for each frequency 

component, the corresponding rms voltage magnitude was divided by the 

corresponding hydrophone sensitivity (Table 5.3). For the H3 measurements, 

where a preamplifier was used, the result was also divided by the preamplifier 

gain factor. 

The Agilent 54621A oscilloscope has 8 bit analogue to digital converters 

(ADCs) and was operated with 200 MS/s sample rate. A built-in smoothing 

feature averaged the samples that corresponded to each of the 2000 points in 

the waveform transferred to the computer. 12 bit and 10 bit effective 
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resolutions were thus obtained for the 120 kHz and 200 kHz measurements, 

respectively, depending on the chosen time scale setting.
8
 The oscilloscope 

voltage range was adjusted so that the peak-to-peak amplitude of the signal 

spanned approximately 90%. For an ideal b-bit ADC, the signal to noise ratio 

for a sinusoidal signal is then (in decibels)
225
 

2

ADC 10 10

3
SNR 10 log 4 10 log 0.90

2
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The peak-to-peak amplitude of the measured ambient noise was 0.5 mV 

immediately before signal transmission from the echo sounder. This is 46 dB 

below the lowest-amplitude echo sounder signal measured along the sound 

beam axis. The ratio between the lowest signal power spectra and the measured 

noise power spectrum is 80 dB or greater for the fundamental frequencies. 

 
Figure 5.3. Experimental set-up for hydrophone measurements (H1abc and H2). 

The set-up for the H3 measurement series is equal except that a preamplifier is 

used between the hydrophone and the digital sampling oscilloscope. 

Combined uncertainty 

The combined standard uncertainties indicated in Table 5.5 are based on the 

hydrophone calibration uncertainty (cf. Table 5.3), noise, positioning 
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uncertainty, and slight voltage amplitude fluctuations that are observed in the 

transmit signal across the transducer terminals. An uncertainty budget is shown 

in Table 5.4.
81
 The sound pressure level for the second harmonic frequency 

component is taken to be 20 dB lower than the fundamental in the uncertainty 

estimates for ambient noise and quantization. This yields a conservative 

relative uncertainty estimate for the central part of the main lobe, where the 

second harmonic level is higher for most of the source levels used. 

The uncertainties are somewhat different for the directivity measurements. In 

this case, the measured sound pressures depend more strongly on the 

hydrophone’s position in the sound beam. The importance of ambient noise 

also increases with distance from the axis due to the lower signal amplitudes. 

The H3 measurements are made with the oscilloscope set to average over 

16 bursts. This may yield more stable results when the amplitude of the 

transmitted signal fluctuates. On the other hand, if the hydrophone is not 

completely still during the measurements, the phases of received signals 

change between each burst. This can cause deformation of the average signal. 

Oscillations in the measured phase was observed in a small period after each 

time the hydrophone had been moved to a new position. The measurements 

were delayed until such oscillations had died out. 
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Table 5.4. Uncertainty budget for the axial sound pressure measurements. 

Fundamental frequency components 

source 

rel. standard 

uncertainty 

contribution 

contribution to 

relative variance 

angular alignment of hydrophone 0.02 4·10
-4
 

hydrophone positioning on axis 0.012 1.4·10
-4
 

hydrophone sensitivity 0.047 2.2·10
-3
 

electrical loading of hydrophone 0.01 1.0·10
-4
 

ambient noise 5·10
-5
 2.5·10

-9
 

quantization 0.001 1·10
-6 

digital postprocessing 0.001 1·10
-6
 

sum of relative variances: 2.8·10
-3
 

relative combined standard uncertainty: 0.053 

relative combined standard uncertainty (dB): 0.5 dB 

relative expanded uncertainty (95% confidence level, dB): 0.9 dB 

Second harmonic frequency component 

source 

rel. standard 

uncertainty 

contribution 

contribution to 

relative variance 

angular alignment of hydrophone 0.035 1.23·10
-3
 

hydrophone positioning on axis 0.012 1.4·10
-4
 

hydrophone sensitivity 0.084 7.0·10
-3
 

electrical loading of hydrophone 0.01 1.0·10
-4
 

ambient noise 5·10
-4
 2.5·10

-7
 

quantization 0.01 1·10
-4
 

digital postprocessing 0.001 1·10
-6
 

sum of relative variances: 8.6·10
-3
 

relative combined standard uncertainty: 0.093 

relative combined standard uncertainty (dB): 0.8 dB 

relative expanded uncertainty (95% confidence level, dB): 1.5 dB 
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Measured parameters 

The water temperature is assumed uniform, and was measured to (21 ± 1)ºC for 

the H1 and H2 measurement sets and (19 ± 1)ºC for the H3 measurements. 

The effective transmit voltage amplitude Ut was measured across the terminals 

of each transducer quadrant. The amplitudes reported in Table 5.5 are mean 

values for the transducer. The standard uncertainty estimates for the voltages 

are due to small differences between the four quadrants and on fluctuations 

between bursts, caused by the echo sounder hardware. The fluctuations seem to 

depend on power setting, burst duration, and burst interval. 

Sound propagation is assumed nearly linear for the lowest power settings 

(Table 5.5). By finding the best fit between the absolute value of 

Equation (2.1), 

( ) ( )
( )00 20

0, , , , 10
r rr

p r p r
r

α

θ ϕ θ ϕ
− −

= ⋅ , (5.4) 

and the measured axial sound pressure amplitudes between r = 3 m and 

r = 10 m, one can obtain the spherical-wave extrapolated value of the sound 

pressure amplitude prms(r0,0,0) at r0 = 1 m. The polar coordinates r, θ, and ϕ 

relate to the Cartesian coordinate system as illustrated in Figure 2.1. r is 

distance to the sound source, θ is angle off the sound beam axis, and ϕ is 

azimuth angle. The transmit voltage response (TVR) is defined as 









⋅=⋅=
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log20

µPa/V 1
log20TVR

t

0rms

1010
U

rpS
V , (5.5) 

where SV is the voltage source sensitivity of the transducer. 

For the higher power settings, where nonlinear distortion cannot be neglected,  

prms(r0,0,0) is not calculated from measurements. Equivalent source levels are 

obtained by scaling the low-power source level with the ratios of input 
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voltages. The calculated values for prms(r0,0,0), TVR, and SL are shown in 

Table 5.5. 

The difference between the obtained results for TVR in the H3a and H3b 

measurements indicates that the 150 W power setting is somewhat high for 

assuming linear sound propagation. The source sensitivity obtained from the 

H1a measurement set is therefore probably a slight underestimate (Table 5.5). 

The cause of the difference between the TVR values obtained from H1a and 

H3b is that different transducers were used in the H1 and H3 measurement sets. 

 

Table 5.5. Measured parameters with estimated standard uncertainties for the sound propagation measurements in 

fresh water. Effective (rms) voltage amplitude Ut across the transducer upon signal transmission, axial sound 

pressure amplitude p extrapolated to r = r0 = 1 m, transmit voltage response, and source level. 

frequ-

ency 

EK60 

power 

setting 

effective 

transducer 

input voltage 

extrapolated 

eff. sound 

pressure 

@ 1 m 

calculated 

transmit voltage 

response (TVR) 

linear 

equivalent 

source level 
measure-

ment set 

f 

[kHz] 

W 

[W] 

Ut 

[V] 

prms(r0,0,0) 

[kPa] 

[dB re 1 µPa/V 

@ 1 m] 

[dB re 1 µPa 

@ 1 m] 

H1a,e 200 150 44 ± 2 92 ± 4 186.4 ± 0.5 219.3 ± 0.3 

H1b 200 1050 119 ± 2   227.9 ± 0.5 

H1c,f 200 1500 143 ± 2   229.5 ± 0.5 

H2a 120 100 38 ± 2 65 ± 2 184.7 ± 0.5 216.3 ± 0.3 

H2b 120 600 96 ± 2   224.3 ± 0.5 

H2c 120 1000 125 ± 2   226.6 ± 0.5 

H3a 200 50 26 ± 1 49 ± 2 185.1 ± 0.5 213.8 ± 0.3 

H3b 200 150 47 ± 2 (85 ± 4) (184.7 ± 0.5) 218.5 ± 0.6 

H3c 200 1000 127 ± 1   227.2 ± 0.5 
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5.1.3. Calibration sphere measurements 

In the analysis of hydrophone measurement results, stable sections of the 

measured sound bursts are Fourier decomposed, as described above. The 

magnitude of each harmonic component is compared with continuous-wave 

simulation results in Section 5.3.1. Nonlinear attenuation is defined in terms of 

the magnitude of the fundamental frequency component (Equation (5.10)). An 

echo sounder system, on the other hand, operates with sound bursts of finite 

duration, and backscattered acoustic energy is evaluated over a finite 

bandwidth (Section 2.1). 

To investigate whether the continuous-wave approach of simulations and 

hydrophone measurements is adequate for predicting the nonlinear attenuation 

experienced by the echo sounder, an additional series of measurements was 

performed in the fresh water tank. The target strength of a 38.1-mm-diameter 

tungsten carbide sphere with 6% cobalt binder was measured with different 

power settings and with the sphere at different positions in the radiated sound 

field. 

Prior to the nonlinearity measurements, the standard EK60 calibration routine 

(Section 2.1.7) was carried out with the ES200-7CD transducer (Table 4.1). 

The calibration sphere was suspended with two 0.4 mm monofilament nylon 

lines approximately 5 m from the echo sounder transducer (Figure 5.4). As for 

the hydrophone measurements, the 256 µs burst duration was selected, for 

which the echo sounder reported a receiver bandwidth of 10.64 kHz. The 

receiver bandwidth is set automatically depending on the duration of the 

transmitted burst. The 300 W power setting used for the calibration was 

somewhat too high to avoid nonlinear effects, but as the purpose here is only to 

calibrate the split-beam direction measurement to the target, the waveform 

distortion should not affect the result significantly. 

With sound speed
50
 c0 = 1485 ms

-1
 and burst duration 1024 µs, the theoretical 

target strength for a WC38.1 calibration sphere is
100
 (-39.3 ± 0.1) dB. Although 
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it has been calculated for somewhat different burst duration, and hence 

bandwidth, than what was used in the experiment, the value is sufficient for the 

present investigation. 

Axial target strength measurements were made with the echo sounder set to 

45 W, 150 W, and 1500 W nominal transmit powers (Table 5.1). 45 W is 

approximately the lowest output power setting available with the EK60 echo 

sounder. The reference target was centred on the sound beam axis, and its 

suspension lines were fixed to the digital positioning system. This allowed 

precision movement in the axial direction (Figure 5.4). The split beam 

functionality of the echo sounder was used to measure whether the calibration 

sphere was on the sound beam axis each time it has been moved. Adjustments 

were made when necessary to keep the sphere within θ = 0.1º. 

Directivity measurements were made by panning the transducer around the 

x axis in steps of 1.0º. The transducer was mounted so that negative angles 

placed the sphere in the transducer’s intended forward direction when mounted 

on a vessel. 150 W and 1500 W power settings were used for the directivity 

measurements (Table 5.2). 

x

y

z

 
Figure 5.4. Positioning of the calibration sphere. 
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5.2. Simulations for fresh water 

5.2.1. Simulations for comparison with measurements 

Finite-amplitude sound propagation is simulated with the Bergen Code version 

discussed in Section 2.2.4, which solves the Transformed Beam Equation by 

means of the Richtmyer procedure. Throughout Chapters 5, 6, and 7, the 

“unperturbed” values of the simulation parameters in Table 3.4 are used in the 

calculations. The 20 highest harmonics are damped according to 

Equation (3.13) when high amplitude sound with the 200 kHz operating 

frequency is simulated. The parameters Nh and umax are selected as in Table 3.3.  

Medium parameters for pure water were calculated from formulae taken from 

Kinsler et al.
138
 for the sound speed, Cotaras and Morfey

79
 for the nonlinearity 

coefficient, Wagner and Pruß
258
 for the density, and Francois and Garrison

105
 

for the absorption coefficient (Table 5.6). 

The polar coordinates (r,θ) are defined as illustrated in Figure (2.1). As the 

geometry for the simulations is axisymmetric, the azimuth angle ϕ is omitted. 

The origin is at the centre of the surface of the sound source, and the axis θ = 0 

coincides with the sound beam axis. From Equation (2.10) it follows that the 

half-intensity angle of a plane piston source with radius a in an infinitely stiff 

baffle of infinite extent satisfies 

3 dBsin 1.6137ka θ− ≈ . (5.6) 

This value is slightly different from that for the half-intensity beam angle, for 

which ka sin θ = 1.6163. Using Equation (5.6) and the hydrophone directivity 

measurements taken with the lowest power settings (Table 5.1), equivalent 

plane piston source radii are obtained for the three echo sounder transducers 

(Tables 4.1 and 5.7). The effective source radius for the ES200-7C transducer 

becomes different depending on whether it is calculated from the 50 W or the 

150 W measurements (Table 5.7, H3). The result from the 50 W measurement 
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is used for the simulations. The difference is attributed to flattening of the main 

lobe due to nonlinear attenuation near the sound beam axis. The effective 

source radius for the ES200-7CD transducer, for which 150 W is the lowest 

power setting (measurement set H1), may thus be slightly underestimated. 

When linear sound propagation is to be simulated, a proper velocity amplitude 

v0 for the plane piston source condition is the one that yields the best fit 

between the measured axial sound pressure amplitude and the expression
137,138

 

(Equation (3.3)) 

2

lt 0 0 0

1
( ,0) 2 sin 1 1

2

a
p r c v kr

r
ρ

     = + −  
     

. (5.7) 

Equation (5.7) gives the exact linear sound pressure amplitude along the axis of 

a uniform plane circular piston with radius a in an infinitely stiff baffle of 

infinite extent. Within the approximation of the KZK equation,
237
 the plane-

wave impedance relation holds between the sound pressure and the axial 

component of the particle velocity. The pressure amplitude p0 at the face of the 

piston is thus given by 

0 0 0 0p c vρ= . (5.8) 

When the lowest power settings are used (measurement sets H1a, H2a, and 

H3a, see Table 5.7), nonlinear attenuation is assumed to be weak or negligible. 

The p0 values for simulations in these cases are determined from the measured 

axial fields and Equations (5.7) and (5.8). For the higher power settings, source 

condition amplitudes are found by scaling the p0 for the lowest used output 

power with the ratios between transmit voltage amplitudes Ut (Table 5.7). The 

source condition pressure amplitudes in Table 5.7 are written in terms of the 

effective sound pressure 0,rms 0 / 2p p= . 
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Table 5.6. Parameters for the propagation medium 

frequency 
temp-

erature 

sound 

speed 

nonlinearity 

coefficient 
density 

absorption 

coefficient 
measu

rement 

set 
f 

[Hz] 

T 

[ºC] 

c0 

[m/s] 
β 

ρ0 

[kg m
-3
] 

α2 

[Np m
-1
Hz

-2
] 

H1 200 000 21±1 1485±3 3.52±0.02 998.0±0.2 (25±1)·10
-15 

H2 121 212 21±1 1485±3 3.52±0.02 998.0±0.2 (25±1)·10
-15 

H3 200 000 19±1 1479±3 3.49±0.02 998.4±0.2 (25±1)·10
-15 

Table 5.7. Source radii and rms pressure amplitudes for the simulations of nonlinear sound 

propagation in fresh water. 

frequency 
power 

setting 

effective 

transducer 

input voltage 

equivalent 

plane piston 

source radius 

rms plane piston 

pressure 

amplitude 
measure-

ment set 
f 

[Hz] 

W 

[W] 

Ut 

[V] 

a 

[mm] 

p0,rms 

[MPa] 

H1a,e 200 000 150 44 ± 2 32.5 ± 0.1 0.208 ± 0.009 

H1b 200 000 1050 119 ± 2 - 0.56 ± 0.03 

H1c,f 200 000 1500 143 ± 2 - 0.67 ± 0.03 

H2a 121 212 100 38 ± 2 52.8 ± 0.1 0.091 ± 0.003 

H2b 121 212 600 96 ± 2 - 0.23 ± 0.01 

H2c 121 212 1000 125 ± 2 - 0.30 ± 0.02 

H3a 200 000 50 26 ± 1 31.5 ± 0.1 0.118 ± 0.005 

H3b 200 000 150 47 ± 2 (30.6 ± 0.1) 0.21 ± 0.01 

H3c 200 000 1000 127 ± 1  0.58 ± 0.02 

5.2.2. Simulations for comparison with other works 

A separate set of simulations is run for comparison with the measurements of 

Lockwood et al.
163

 and Shooter et al.,
163
 who made measurements of finite 

amplitude sound radiated by circular, piston-like sound sources in fresh water. 

Two sets of source and medium parameters were taken from each of their 

papers
163,221

 (“Shooter 1”, “Shooter 2”, “Lockwood 1”, and “Lockwood 2”). 
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Table 5.8 shows the sound speeds
50
, nonlinearity coefficients

79
, absorption 

coefficients
105
, densities

258
, frequencies, source radius, source condition 

amplitudes, and axial distances from the sound source, that were used as input 

to the test simulations. 

Table 5.8. Simulation parameters for comparison with Lockwood et al.
163
 and Shooter et al.

221
 

parameter Shooter 1 Shooter 2 Lockwood 1 Lockwood 2 

temperature T  [ºC] 17.8 24.6 12.2 12.2 

sound speed c0  [m/s] 1476 1495 1456 1456 

nonlinearity coeff. β 3.5 3.6 3.3 3.3 

absorption coeff. α2 [Np/m/Hz
2
] 2.7·10

-14 
2.2·10

-14
 3·10

-14
 3·10

-14
 

density ρ0  [kg/m
3
] 999 997 1000 1000 

frequency f  [kHz] 454 454 454 450 

equiv. source radius a  [mm] 37.8 37.8 37.8 37.8 

source cond. amplitude p0 [kPa] 1–405 1–405 20.5 163 

axial distance from source z  [m] ≤ 33 101.5 107 37.5 

5.3. Results for sound propagation in fresh 
water 

5.3.1. Hydrophone measurement results 

200 kHz operating frequency 

Measurements were made in the sound beams radiated by 200 kHz echo 

sounders with 50 W, 150 W, 1000 W, 1050 W, and 1500 W power settings 

(Tables 5.1 and 5.2). The measured and simulated effective sound pressure 

amplitudes p1,rms(r,θ) for the fundamental frequency component, and p2,rms(r,θ) 

for the second harmonic, are given as functions of the distance r from the 

sound source and polar angle θ off the sound beam axis (Figure 2.1). 

Measured and simulated axial fields are shown in Figure 5.5 for the H1 
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measurement set, Figure 5.7 for the H3 measurements, and Figure 5.9 for the 

H2 measurement set. To facilitate comparison between the results, p1,rms(r,0) 

has been multiplied with the distance r from the sound source. For linear sound 

propagation in the far field, p1,rms(r,0)·r is nearly independent of distance, only 

decreasing slightly due to thermoviscous absorption. Simulation results using 

both uniform piston source conditions and source conditions based on near 

field measurements (Section 4.3) are plotted together with the measurement 

results. The measured and simulated sound pressure amplitudes p2,rms(r,0) for 

the second harmonic frequency component are shown relative to the respective 

fundamental components p1,rms(r,0). 

For the 200 kHz operating frequency (Figures 5.5 and 5.7), agreement within 

0.5 dB is seen in the far field between measurements and simulations for both 

the fundamental frequency component and the second harmonic relative to the 

fundamental. The H3 measurements are an exception, as in this case the source 

condition based on near field measurements yields a greater underestimate of 

the fundamental frequency component. The simulations based on the uniform 

piston source condition are within 0.5 dB of the measurements also here 

(Figure 5.7). When the source levels are high, the second harmonic amplitude 

approaches one-half of that of the fundamental. This is consistent with the 

frequency contents of a sawtooth wave. 

Far field radiation patterns were measured at r = 5.60 m and r = 9.18 m 

distances from the sound source in the H1 measurement set and at r = 8.65 m in 

the H3 measurement set (Figures 5.6 and 5.8, respectively). Sound pressure 

levels are shown for both the fundamental and the second harmonic frequency 

component in each plot. The simulations based on near field measurements 

seem to yield somewhat better agreement with the measurement results off axis 

than the uniform piston simulations. 

As nonlinear attenuation depends strongly on sound pressure amplitude, it 

alters the radiation pattern. The central part of the main lobe is attenuated the 
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most, since the sound pressure amplitude there is the highest. Flattening of the 

main lobe is seen in particular when the power setting is increased to 1000 W 

(Figures 5.8 c), 1050 W (Figures 5.6 c and d), and 1500 W (Figures 5.6 e and 

f). In the H1 directivity measurements at r = 9.18 m (Figures 5.6 b, d, and f), 

the measured -3 dB beam angle increases from 3.5º for the 150 W power 

setting to 4.7º for 1500 W (Table 5.9). The main lobe for the second harmonic 

frequency component also flattens when the source level is high. 

120 kHz operating frequency 

Figures 5.9 and 5.10 show the results from hydrophone measurements and 

simulations of the sound beam radiated by the 120 kHz echo sounder. 100 W, 

600 W, and 1000 W power settings were used. Along the sound beam axis, 

agreement to within 0.5 dB is seen between simulations and measurements for 

the fundamental frequency component (Figures 5.9 a, c, and e). However, the 

measured nonlinear attenuation and second harmonic generation is clearly 

greater than what the simulation results indicate. 

While the discrepancy for the fundamental frequency component increases 

with the power setting, the differences between the measured and simulated 

second harmonic sound pressure levels seem more similar in Figures 5.9 b, d, 

and f. At r = 9.6 m, the simulated second harmonic sound pressure level for the 

100 W power setting is approximately 2.5 dB lower than the measured value. 

The corresponding discrepancy for the 1000 W power setting is 2.0 dB. 

The measured axial sound pressure level for the second harmonic component 

approaches -6 dB relative to the fundamental when the 1000 W power setting is 

used. This relative increase seems more rapid than expected when compared to 

the 200 kHz measurement results. This, combined with the discrepancy 

between the measurement results shown in Figures 5.5 f and 5.7 f, might give 

reason to doubt the accuracy of some of the measurement results. 

Directivity measurements were made at 9.50 m distance from the 120 kHz echo 
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sounder transducer (Figure 5.10). The source condition based on near field 

measurements seems to yield somewhat better agreement between 

measurement and simulation results than the uniform piston source condition, 

in particular for the fundamental frequency component. The flattening of the 

main lobe in the 120 kHz case is not as pronounced as for the 200 kHz 

operating frequency. A 9% increase in the -3 dB angle is seen from the 100 W 

to the 1000 W power settings (Table 5.9). 

5.3.2. Nonlinear attenuation in fresh water 

Choice of source condition 

The presented measurement and simulation results do not indicate clearly 

which type of source condition yields the best agreement between simulations 

and experiments. The source conditions based on near field measurements give 

the best qualitative description of the radiation pattern off axis, where the 

measured sound field departs markedly from that of a uniform piston. 

Simulations based on the uniform piston source condition, on the other hand, 

might seem to yield the most generic results. In addition, the problem of 

acoustic radiation from a plane, circular, uniformly vibrating piston in an 

infinitely stiff, plane baffle of infinite extent has been treated extensively in the 

literature. For these reasons the uniform piston source conditions are chosen for 

the simulations of nonlinear attenuation, although this choice is not optimal. 

The agreement between measurements and uniform piston-based simulations is 

in general good near the sound beam axis and becomes gradually worse with 

the off-axis angle. 

Calculated nonlinear attenuation 

There is some nonlinear distortion even in the sound fields radiated with the 

lowest power settings used in the present work. Hence, the nonlinear 

attenuation cannot be quantified by mere comparison between the high and low 

power measurements. Simulation results with and without accounting for 
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nonlinear effects are compared as an alternative. Bergen Code simulations are 

made with 1 Pa peak source condition amplitude and otherwise the same 

parameters that have been used to obtain the results shown in Figures 5.5–5.10 

(Section 5.2.1). The simulated effective sound pressures for the fundamental 

component using the 1 Pa source conditions are called plin(r,θ). 

The fundamental effective sound pressures p1,sim(r,θ) are simulation results for 

the source condition amplitudes p0,rms in Table (5.7). The simulation results are 

normalized to their respective rms source condition amplitudes, 

2 Pa1

),(
),(,

),(
),( lin

lin

rms,0

sim,1

sim,1

θ
θ

θ
θ

rp
rp

p

rp
rp == . (5.9) 

The normalized axial sound pressure amplitudes are compared in Figure 5.11. 

The values plotted are the negative of what might be called the simulated 

nonlinear attenuation NAsim, 

1,sim

sim 10

lin

( , )
NA ( , ) 20log

( , )

p r
r

p r

θ
θ

θ
= − . (5.10) 

For the 1000 W power setting, simulated nonlinear attenuation of 3.4 dB and 

0.8 dB is obtained for the 200 kHz and 120 kHz drive frequencies, respectively, 

at r = 10 m. The H3 and H2 measurements indicate approximately 0.2 dB and 

0.5 dB higher nonlinear attenuation, respectively (Figures 5.7 and 5.9). It 

should be noted that the relative standard measurement uncertainty has been 

estimated to 0.3 dB (Table 5.4). Further attenuation is predicted at longer 

distances. Measurements for confirmation have however not been made beyond 

10 m in the present work. 

Table 5.9 lists some values for the axial nonlinear attenuation based on the 

simulation results. -3 dB beam angles from the hydrophone measurements are 

also shown. In the column marked “r ≈ 9 m”, the axial nonlinear attenuation is 

for r = 9.0 m, and the -3 dB angles are measured at distances r = 9.18 m (H1), 

r = 9.50 m (H2), and r = 8.65 m (H3). The values reported in Figure 5.11 and 
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Table 5.9 should be interpreted in the context of the degree of agreement 

reported between measurements and simulations. 

Table 5.9. Simulated axial nonlinear attenuation (Equation (5.10)) and measured -3 dB angles for 

some power settings and distances from the sound source. 

 r = 5.6 m r ≈ 9 m r = 50 m r = 100 m r = 300 m 

 NAsim θ-3 dB NAsim θ-3 dB NAsim NAsim NAsim 

200 kHz        

50 W (H3) 0.1 dB - 0.1 dB 3.4º 0.3 dB 0.3 dB 0.4 dB 

150 W (H3) 0.4 dB - 0.5 dB 3.5º 0.9 dB 1.1 dB 1.3 dB 

150 W (H1) 0.4 dB 3.6º 0.5 dB 3.5º 1.0 dB 1.2 dB 1.4 dB 

1000 W (H3) 2.7 dB - 3.3 dB 4.3º 5.0 dB 5.5 dB 5.9 dB 

1050 W (H1) 2.8 dB 4.3º 3.3 dB 4.5º 5.0 dB 5.5 dB 6.0 dB 

1500 W (H1) 3.6 dB 4.6º 4.2 dB 4.7º 6.1 dB 6.6 dB 7.1 dB 

120 kHz        

100 W (H2) 0.1 dB - 0.1 dB 3.4º 0.2 dB 0.2 dB 0.3 dB 

600 W (H2) 0.3 dB - 0.5 dB 3.6º 1.0 dB 1.2 dB 1.6 dB 

1000 W (H2) 0.6 dB - 0.8 dB 3.7º 1.7 dB 2.1 dB 2.6 dB 

5.3.3. Target strength measurements 

A 200 kHz EK60 echo sounder with the ES200-7CD (s/n 102) transducer was 

used with different output power settings to measure the target strength of a 

38.1 mm tungsten carbide calibration sphere. Nonlinear effects contribute to 

the difference between the target strength TSmeas measured by the echo sounder 

and the actual target strength of the target. The hypothesis that the 

measurement error due to nonlinear effects is approximately equal to the 

nonlinear attenuation (NA) of the fundamental frequency component 

(Equation (5.10)), 

TSmeas – TSlin  ≈  NA,  (5.11) 
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is tested by comparing measurement and simulation results. TSlin is the target 

strength that would be measured by the echo sounder in the absence of 

nonlinear effects. 

Numerical simulation 

A numerical result for the measured, or apparent, target strength TSmeas 

reported by the echo sounder, is sought. The normalized sound pressure 

amplitudes lin ( , )p r θ  and 1,sim ( , )p r θ  are defined as in Section 5.3.2 

(Equation (5.9)). Simulations for the ES200-7CD transducer (used in the H1 

measurement set) are used. 

Consider a reference target at the position (r,θ). The simulated incident 

acoustic energy at the position of the sphere is proportional to 2

1,sim ( , )p r θ . 

Contributions to the intensity from other frequency components than the 

fundamental are ignored. Since the intensity level of the backscattered wave is 

approximately 39 dB lower than that of the incident sound field, this wave is 

assumed to propagate linearly back to the transducer. A similar assumption was 

made by Li and Zagzebski
158
 in an investigation related to medical imaging. 

The “40 log r” time varying gain factor (Equation (2.42)) is used by the echo 

sounder to compensate for two-way spherical spreading and absorption. By 

applying the square root of fTVG40(r), one accounts for the attenuation of the 

back-propagating signal only. A correction for the transducer directivity upon 

reception remains. The absolute value of the directional factor H(θ,ϕ) 

(Section 2.1) can be approximated by 

lin

lin

( , )
( , ) ( )

( ,0)

p r
H H

p r

θ
θ ϕ θ= ≈ . (5.12) 

A simulation result for TSmeas is thus 
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The constant factor C accounts for the constants in the calculation of the target 

strength (Equation (2.40)). Its value is adjusted to fit the measurement results 

below. 

The simulated value for TSlin is obtained by substituting lin ( , )p r θ  for 

1,sim ( , )p r θ  in Equation (5.13), 

2
2 2 lin10

lin 10 lin 2

lin

( , )
TS (simulated) 10log ( , ) 10

( ,0)

r
p r

p r r C
p r

α θ
θ

 
= ⋅ ⋅ ⋅ 

 
. (5.14) 

It is seen that Equations (5.13) and (5.14) combine to 

TSmeas(simulated) – TSlin(simulated) = NAsim. (5.15) 

Equations (5.13) and (5.14) are thus consistent with Equation (5.11). 

Measurement and simulation results 

Simulated values of TSlin and TSmeas with 10·log10 C = -32.3 are shown with 

full-drawn curves in Figure 5.12. The upper curve in Figure 5.12a shows the 

simulated axial value for TSlin. The result is compared with measured target 

strengths made with the 45 W power setting. Each plotted measurement point 

indicates the mean value of approximately 50 target strength measurements. 

The error bars indicate the standard deviation. The average values and standard 

deviations have been evaluated in the linear domain. The lower full-drawn 

curve and points shows the simulated (TSmeas) and measured values for the 

1500 W power setting, respectively. 

When the 45 W power setting is used, the measured target strength is 

approximately the same with the sphere at all distances. The measurement 

results for the 1500 W power setting are 3 dB–4 dB lower, depending on the 

distance. It should be noted that the target strength measurements are not 

expected to be accurate at short ranges because of the limited domain of 

validity for the time varying gain function
109,166

 (Section 2.1). Differences 
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between target strength values measured with different power settings for the 

same target position, however, should not be sensitive to near range effects. 

Figure 5.12b shows results from target strength measurements and simulations 

with the calibration sphere at different angles θ off axis, at distance r = 9.12 m 

from the transducer. The values shown with plus signs are average results from 

approximately 50 target strength measurements. The beam compensation 

function has not been applied (cf. Section 2.1). The full-drawn curves show 

simulation results for TSmeas. Two pairs of measurement and simulation results 

are shown in the figure. The upper curve corresponds to the 150 W power 

setting, while the lower corresponds to the 1500 W power setting. 

The agreement of the simulations used in Figure 5.12 with hydrophone 

measurements is indicated in Figure 5.5. 

The results suggest that the difference in measured target strength obtained 

with different power settings is mainly due to nonlinear sound propagation, i.e., 

Equation (5.11) applies approximately. Evidence that the finite bandwidth of 

the echo sounder system has significant influence on the experienced nonlinear 

attenuation, is not seen. Depending on how the echo sounder has been 

calibrated, however, the NAsim values shown in Table 5.9 do not necessarily 

correspond directly to absolute TS measurement errors due to nonlinear 

attenuation (cf. Chapter 7). 

Although the general sound pressure level in the radiated field is decreased by 

nonlinear attenuation, it can also be said to increase the width of the main lobe. 

The sampling volume for volume backscattering measurements (Section 2.1) is 

thus effectively enlarged. The excess attenuation integrated over the sound 

beam will be discussed in Chapter 7. 
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5.3.4. Comparison with earlier works 

Tichy et al.
234

 made measurements of the fundamental frequency component in 

the axial field of a 200 kHz EK60 echo sounder with power settings 100 W, 

1000 W, and 2000 W. They compared their experimental results with Bergen 

Code simulations.
29
 The results for the 1000 W power setting in Figure 5.11 

seem generally 0.3 dB lower (i.e., the attenuation seems stronger) than in the 

data presented by Tichy et al. Their definition of “nonlinear loss” is however 

not clearly stated, and it might be different from that used in the present work. 

Tichy et al. refer to the 1000 W power setting as 550 W acoustic output 

power.
234
 Simmonds and MacLennan

223
 point out that the waveforms presented 

by Tichy et al.
234

 seem uncharacteristic of finite-amplitude sound propagation. 

This is presumably due to the frequency dependence of the hydrophone 

sensitivity, which distorts the measured waveform. This distortion should not 

be of any importance to measurements of nonlinear attenuation at the 

fundamental frequency. 

Shooter et al.
221
 made measurements of nonlinear attenuation along the axis of 

a 454 kHz sound beam in fresh water. Bergen Code simulations with 

approximate parameters taken from their article (“Shooter 1” and “Shooter 2” 

in Table 5.8) seem to agree within 0.5 dB with their measurement results 

except for the two shortest ranges (Figure 5.13). At the 0.76 yd and 1.8 yd 

distances, agreement within 0.3 dB is seen for the difference between nonlinear 

sound propagation and linear theory, but the overall simulated sound pressure 

levels are approximately 1 dB higher in the simulations than what was 

measured by Shooter et al.
221
 

In Figures 5.14 and 5.15 Bergen Code simulations are compared with 

experimental results from Lockwood et al.
163
 (their Figures 1 and 2, 

corresponding respectively to the “Lockwood 1” and “Lockwood 2” parameter 

sets in Table 5.8). A similar comparison was made by Hamilton et al.
114
 with 

another set of measurements reported by Lockwood.
162
 As also reported by 

Hamilton et al., good qualitative agreement is seen between the simulated and 
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measured width of the main lobe and between the positions of the side lobes. 

The side lobe levels seem somewhat underestimated by the simulations. A 

narrow peak (“finger”
42
) in the level of the second harmonic component is seen 

between the main lobe and the first side lobe in Figure 5.15. This feature was 

first reported by Lockwood et al.
163
 and later described theoretically by 

Berntsen et al.
42
 Hamilton et al.

114
 reported some discrepancies between the 

measured and calculated sound pressure amplitude on the axis of the sound 

beam. This underlines the importance of combining experimental and 

theoretical results when attempting to predict nonlinear sound propagation 

accurately. 
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5.3.5. Figures 

200 kHz, H1 measurements 
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Figure 5.5. Measured (+) and simulated (—, - -) axial fields for the H1 measurement set (cf. Table 5.1). The 

sound pressure amplitude of the fundamental frequency component (left) has been multiplied with distance 

from the sound source. The plots on the right-hand side show the amplitude of the fundamental frequency 

component relative to that of the fundamental. a), b): 150 W, c), d): 1050 W, e), f): 1500 W. 
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Figure 5.6. Measured (+) and simulated (—, - -) directivity for the H1 measurement set (cf. Table 5.1). 

Results for both the fundamental and second harmonic frequency components are shown in each plot, the 

fundamental having the highest amplitude near the axis. The leftmost plots are taken 5.60 m from the sound 

source, while those on the right hand side are for 9.18 m distance. Figures a) and b) show results for the 

150 W power setting, c) and d) the 1050 W power setting, and e) and f) the 1500 W power setting. 
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200 kHz, H3 measurements 
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Figure 5.7. Measured (+) and simulated (—, - -) axial fields for the H3 measurement set (cf. Table 5.1). The 

sound pressure amplitude of the fundamental frequency component (left) has been multiplied with distance 

from the sound source. The plots on the right-hand side show the amplitude of the fundamental frequency 

component relative to that of the fundamental. a), b): 50 W, c), d): 150 W, e), f): 1000 W. 
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Figure 5.8. Measured (+) and simulated (—, - -) directivity for the H3 measurement set, for the 50 W (a), 

150 W (b), and 1000 W (c) power settings. The pressure amplitudes of both the fundamental and second 

harmonic frequency components are shown in each plot, the fundamental being the highest. The distance from 

the sound source is 8.65 m. 
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120 kHz, H2 measurements 
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Figure 5.9. Measured (+) and simulated (—, - -) axial fields for the H2 measurement set (ES120-7C 

transducer, cf. Table 5.1). The sound pressure amplitude of the fundamental frequency component (left) has 

been multiplied with distance from the sound source. The plots on the right-hand side show the amplitude of 

the fundamental frequency component relative to that of the fundamental. a), b): 100 W, c), d): 600 W, e), f): 

1000 W. 
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Figure 5.10. Measured (+) and simulated (—, - -) directivity for the H2 measurement set, with power settings 

100 W (a), 600 W (b), and 1000 W (c). The pressure amplitudes of both the fundamental and second 

harmonic frequency components are shown in each plot, the fundamental being the highest. The distance from 

the sound source is 9.50 m. 
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Nonlinear attenuation 
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Figure 5.11. Ratio between the simulated axial sound pressure level for the fundamental frequency 

component and a corresponding simulation result without accounting for nonlinear distortion. a) 

Results for 200 kHz fundamental frequency, covering the power settings used in the present work. b) 

Same as on the left, but including longer distances. Corresponding results from the 120 kHz 

simulations are shown in Figures c) and d). 
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Calibration sphere  measurements 
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Figure 5.12. Measured target strength and simulations for a 200 kHz echo sounder. a) Target strength 

along axis, power settings 45 W (upper curve and data points) and 1500 W (lower). b) Directivity in 

the along ship direction at 9.12 m distance. 150 W (upper curve and data points) and 1500 W (lower) 

power settings. 
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Comparison with Lockwood et al. and Shooter et al. 
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Figure 5.13. Comparison between measurement results obtained by Shooter et al.

221
(their Figure 6) 

(left) and corresponding simulations made with the Bergen Code program used in the present work 

(right). The leftmost plot is reprinted with permission from Shooter, Muir, and Blackstock, 

J. Acoust. Soc. Am. 55(1), 54-62 (1974). Copyright 1974, Acoustical Society of America. 

 



 166 

 

0 1 2 3 4 5 6

−40

−35

−30

−25

−20

−15

−10

−5

0

d
B

0 1 2 3 4 5 6

−40

−35

−30

−25

−20

−15

−10

−5

0

angle θ  [°]
0 1 2 3 4 5 6

−40

−35

−30

−25

−20

−15

−10

−5

0

 
Figure 5.14. Comparison between Figure 1 in the paper by Lockwood et al.

163
 (top) and 

simulation results using the set of parameters labelled "Lockwood 1" in Table 5.8 (bottom graph). 

The upper graph is reprinted with permission from Lockwood, Muir, and Blackstock, 

J. Acoust. Soc. Am. 53(4), 1148-1153 (1973). Copyright 1973, Acoustical Society of America. 
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Figure 5.15. Comparison between Figure 2 in the paper by Lockwood et al.

163
 (top) and 

simulation results using the set of parameters labelled "Lockwood 2" in Table 5.8 (bottom). The 

upper graph is reprinted with permission from Lockwood, Muir, and Blackstock, 

J. Acoust. Soc. Am. 53(4), 1148-1153 (1973). Copyright 1973, Acoustical Society of America. 
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Chapter 6. Sound propagation in 
seawater 

The acoustical properties that influence 

nonlinear effects are somewhat different 

in seawater and fresh water. The sound 

speed, nonlinearity coefficient, density, 

and absorption coefficient all depend on 

salinity. Acoustic methods for fisheries 

research are widely used in the sea. 

Empirical results for water with a range 

of relevant salinities and temperatures 

are needed to establish a basis for 

quantifying the nonlinear attenuation in seawater. Also of interest is 

measurements of nonlinear sound propagation over longer distances than could 

be obtained in the available indoor water tanks. 

Three series of sound propagation measurements are made in coastal waters 

near Bergen, Norway (Section 6.1). A hydrophone is used for measuring the 

amplitudes of the fundamental and second harmonic frequency components at 

distances up to approximately 10 m. Target strength measurements with 

calibration spheres as targets are also performed, in order to investigate the 

nonlinear attenuation at distances up to 50 m. Numerical simulations were 

made for comparison with each set of experimental data, with input parameters 

based on CTD measurements. The simulations are described in Section 6.2. 

The experimental and numerical results are presented and compared in 

Section 6.3. The agreement between measured and simulated sound pressure 

levels for the fundamental and second harmonic frequency components is 

assessed. Simulation results are used to predict the difference between 
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“apparent” target strength measured by the echo sounder with different power 

settings. These predictions are compared with the measurements of calibration 

sphere target strength. Values for the nonlinear attenuation along the sound 

beam axis are calculated from the simulation results, and its consequence for 

target strength measurements is discussed. 

6.1. Measurements in seawater 

Table 6.1 gives an overview of the measurements that have been made in 

seawater for the present work. The E1, E2, G1, and G3 measurement sets are 

treated in the present chapter, while the details of the G2 measurements are 

discussed in Chapter 7. 

6.1.1. Hydrophone measurements 

The E1 and E2b measurement sets are hydrophone measurements made at the 

Marine Biological Station Espegrend near Bergen, Norway. A floating stage 

moored close to the shore provides access to approximately 14 m deep, 

relatively calm water (Figures 6.1 and 6.2). The salinity is somewhat lower 

than in the open sea (Figure 6.7). This is often also the case on locations that 

are suitable for calibrating fisheries research echo sounders. 

Conductivity and temperature profiles were obtained once each day of 

measurements with a SAIV SD204 CTD probe. Results are shown in 

Figure 6.7, with calculated values for salinity,
94
 sound speed,

70
 density,

94
 

absorption at the fundamental frequency,
106
 and the nonlinearity coefficient.

79
 

On the day of the E1a measurements (Table 6.1), approximately 12 m visibility 

was measured by lowering a white Secci disc until it was invisible from above 

the sea surface. 
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Table 6.1. Overview of nonlinear sound propagation measurements in seawater. The number 

of axial field and beam pattern measurements performed in each measurement set, and the 

types of measurements, are indicated. 

measure-

ment set 
date frequency 

axial 

field 

beam 

pattern 

measurement 

method 

E1a 15.03.05 200 kHz 1 - hydrophone 

E1b 16.03.05 200 kHz 1 1 hydrophone 

E2a 08.03.05 120 kHz - 1 cal. sphere 

E2b 09.03.05 120 kHz 1 1 hydrophone 

G1a 19.10.04 200 kHz 1 1 cal. sphere 

G1b 20.10.04 120 kHz - 1 cal. sphere 

G2a 04.11.04 both - - sa (Chapter 7) 

G2b 05.11.04 both - - sa (Chapter 7) 

G3a 18.01.06 200 kHz 1 5 cal. sphere 

G3b 19.01.06 120 kHz 1 2 cal. sphere 

 

 

Figure 6.1. Floating stage used as a measurement platform at the Marine Biological Station 

Espegrend. 
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Figure 6.2. Floating stage used as a measurement platform at 

the Marine Biological Station Espegrend. 

A sketch of the measurement set-up is shown in Figure 6.3. Simrad EK60 echo 

sounders with the ES120-7C (s/n 230) and ES200-7C (s/n 120) transducers 

(Table 4.1) were used as sound sources. The transducers were mounted with 

their back to an aluminium plate, pointing downward (Figure 6.4). A thin fresh 

water layer at the surface was avoided by lowering the transducers to 1 m 

depth. Measured effective voltage amplitudes Ut across the transducer 

terminals upon transmission are shown in Tables 6.2 and 6.3 for different echo 

sounder power settings. The tables also show source levels, transmit voltage 

responses, and source condition pressure amplitudes used for simulations. 

These are calculated from the axial sound pressure amplitudes measured with 

low echo sounder power settings, the same way as described in Sections 3.2 

and 5.2. 

The Reson TC4034 hydrophone described in Section 5.1 was mounted in the 

steel tube shown in Figure 5.2. A suspension ring was placed 0.40 m behind the 

acoustic centre of the hydrophone, and a mass was attached to the rear end of 

the tube to keep the hydrophone vertical (Figure 6.5). Backscatter from the 

suspension ring did not reach the hydrophone in time to interfere with the 

measured direct signal from the echo sounder transducer. Three monofilament 

nylon lines were tied to the suspension ring, and the hydrophone was 
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positioned by means of electrical winches of a type that is commonly used for 

echo sounder calibration on fisheries research vessels (Figure 6.6). 

hydrophone

echo sounder

transducer

preamplifier oscilloscope

computertransceiver

 

Figure 6.3.  Experimental set-up for hydrophone measurements (E1, E2). 

 

    

Figure 6.4. Left: ES200-7C echo sounder transducer mounted for measurements at 

Espegrend. Right: Transducer lowered to 1 m depth. 

The orientation of the hydrophone assembly was not determined precisely 

(Figures 6.3 and 6.5). Care was taken to minimize the pull in the hydrophone 

cable. The three winches were positioned approximately at the corners of an 

equilateral triangle with the echo sounder transducer at its centre, in order to 

minimize the difference in tension between the suspension lines. The standard 

uncertainty in the angle between the hydrophone axis and the direction of the 
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incident sound wave was estimated to 5º. The directivity of the hydrophone is 

then assumed to contribute with 1.3 dB to the uncertainty in its sensitivity for 

the second harmonic frequency components.
11
 At the fundamental frequencies, 

the uncertainty contribution is estimated to 0.3 dB
9
 (Table 6.4). 

Table 6.2. Parameters for the sound transmission from the 200 kHz echo sounder. Transmit 

effective voltage across the transducer terminals, measured axial effective sound pressure at 

r = 1 m for the lowest power setting, calculated source condition amplitudes p0,rms, transmit 

voltage response, and linear equivalent source levels. 

EK60 

power 

setting 

[W] 

effective 

voltage Ut 

[V] 

sound 

pressure 

prms(1 m) 

[kPa] 

source condition 

sound pressure 

p0,rms 

[MPa] 

TVR 

[dB re 

1 µµµµPa/V] 

SL 

[dB re 1 µµµµPa 

@ 1 m] 

100 39.6 ± 0.2 72 ± 4 0.17±0.01 185.2 ± 0.5 217.1 ± 0.5 

200 57.0 ± 0.1 - 0.25±0.01 - 220.3 ± 0.5 

400 81.5 ± 0.4 - 0.35±0.02 - 223.4 ± 0.5 

500 91.4 ± 0.2 - 0.39±0.02 - 224.4 ± 0.5 

600 100.3 ± 0.2 - 0.43±0.03 - 225.2 ± 0.5 

800 116.0 ± 0.2 - 0.50±0.03 - 226.5 ± 0.5 

1000 129.8 ± 0.3 - 0.56±0.03 - 227.5 ± 0.5 

The echo sounder did not see the hydrophone, but interpreted the suspension 

ring (Figure 6.5) as a single target. Range and direction information from the 

echo sounder was used to determine the hydrophone’s position, subtracting the 

0.40 m distance between the suspension ring and the acoustic centre of the 

hydrophone from the measured depth. The average sound speed between 1 m 

and 11 m depths was entered in the echo sounder software and thus used for the 

distance measurement. At 5 m distance, the above-mentioned 5º uncertainty in 

the hydrophone orientation represents a 0.4º uncertainty for the hydrophone’s 

position in the sound beam. The uncertainty in the distance measurement is 

assumed approximately equal to 1%. With the hydrophone at small angles off 

the sound beam axis, its positioning uncertainty combined with the echo 
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sounder transducer directivity are estimated to yield a standard uncertainty 

contribution of 0.3 dB (Table 6.4). 

Table 6.3. Parameters for the sound transmission from the 120 kHz echo sounder. Transmit 

effective voltage across the transducer terminals, measured axial effective sound pressure at 

r = 1 m for the lowest power setting, calculated source condition amplitudes p0,rms, transmit 

voltage response, and linear equivalent source levels. 

EK60 

power 

setting 

[W] 

effective 

voltage Ut 

[V] 

sound 

pressure 

prms(1 m) 

[kPa] 

source condition 

sound pressure 

p0,rms 

[MPa] 

TVR 

[dB re 

1 µµµµPa/V] 

SL 

[dB re 1 µµµµPa 

@ 1 m] 

100 39.7 ± 0.5 62 ± 5 0.085±0.007 183.9 ± 0.8 215.8 ± 0.7 

200 57.2 ± 0.6 - 0.12±0.01 - 219.0 ± 0.8 

400 81.9 ± 0.9 - 0.18±0.02 - 222.1 ± 0.8 

500 92.4 ± 0.9 - 0.20±0.02 - 223.2 ± 0.8 

600 101 ± 1 - 0.22±0.02 - 224.0 ± 0.8 

800 117 ± 1 - 0.25±0.02 - 225.2 ± 0.8 

1000 131 ± 1 - 0.28±0.02 - 226.2 ± 0.8 

 

The hydrophone was calibrated at temperature
11
 (19.0±0.4)ºC (Appendix C), 

while the temperature during the seawater measurements was between 3.6ºC 

and 4.6ºC (Figure 6.7a). Measurements that have been made with a hydrophone 

of the same model suggest that the temperature difference should yield a 

change of 0.3 dB or less in the hydrophone sensitivity.
14
 This constitutes an 

additional uncertainty contribution that was insignificant for the fresh water 

measurements described in the previous chapter. Combined with the standard 

uncertainty in the hydrophone calibration (Table 5.3), the relative standard 

uncertainty for the axial hydrophone sensitivity becomes 0.5 dB for the 

fundamental frequency components and 0.8 dB for the second harmonics 

(Table 6.4). 
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Figure 6.5. Hydrophone assembly. 

 

Figure 6.6. Winch for positioning of hydrophone and calibration sphere. 
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A Reson VP1000 voltage preamplifier was used at the output terminals of the 

hydrophone’s integral 10 m cable. The load of its 100 MΩ, 2.5 pF input 

reduces the hydrophone sensitivity with approximately 0.01 dB.
214
 The 

preamplifier is set to 0 dB gain, and acts as a buffer between the hydrophone 

and a 15 m long RG-58 coaxial cable to a Tektronix TDS-220 digital sampling 

oscilloscope. Calibration measurements on the preamplifier with the coaxial 

cable indicate that the voltage across the hydrophone terminals is 1.98 ± 0.02 

times the voltage at the oscilloscope. The oscilloscope is coupled in parallel 

with a 50 Ω terminating resistance. The uncertainty in the amplification factor 

corresponds to a 0.09 dB relative standard uncertainty (Table 6.4). 

The oscilloscope was used for digitising the received signal and transferring the 

acquired waveforms to a personal computer that was also used to control the 

echo sounder (Figure 6.3). According to Equation (5.3), the signal-to-noise 

ratio SNRADC due to ideal 8-bit quantization is 49 dB for a signal that spans 

90% of the selected voltage range. For each hydrophone position and power 

setting, 10 individual waveforms were collected immediately after each other. 

The sound pressure amplitudes for the fundamental and second harmonic 

frequency components were extracted from stable regions of each acquired 

waveform. The signals were multiplied with a flat-top window and zero padded 

the same way as for the fresh water measurements (Section 5.1), to obtain 

16 000-point discrete Fourier transforms (Equation (4.4)). The calibration 

factors shown in Table 5.3 were used to obtain sound pressure amplitudes. 

To minimize noise and movements, the experiment was interrupted each time a 

boat was seen near the measurement site. The observed ambient noise was 

0.1 dB below the weakest measured echo sounder signal. The uncertainty 

contributions for the hydrophone measurements are summarized in Table 6.4. 

The combined relative standard uncertainty of the measurements is estimated to 

±0.7 dB for the fundamental and ±1.7 dB for the second harmonic frequency 

component. 



 177 

Table 6.4. Uncertainty budget for the hydrophone measurements in seawater. 

Fundamental frequency component 

source 

contrib. rel. 

standard 

uncertainty 

contribution to 

relative variance 

hydrophone directivity and angle 0.3 dB 1.2·10
-3 

hydrophone position uncertainty 0.3 dB 1.2·10
-3
 

hydrophone sensitivity 0.5 dB 3.5·10
-3
 

electrical loading of hydrophone 0.01 dB 1.3·10
-6
 

preamplifier gain 0.09 dB 1.1·10
-4
 

ambient noise 0.1 dB 1.3·10
-4
 

quantization and postprocessing 0.03 dB 1.3·10
-5 

sum of relative variances: 6.2·10
-3
 

relative combined standard uncertainty: 0.079 

relative combined standard uncertainty (dB): 0.7 dB 

relative expanded uncertainty (95% confidence level, dB): 1.3 dB 

Second harmonic frequency component 

source 

contrib. rel. 

standard 

uncertainty 

contribution to 

relative variance 

hydrophone directivity and angle 1.3 dB 2.6·10
-2 

hydrophone position uncertainty 0.3 dB 1.2·10
-3
 

hydrophone sensitivity 0.8 dB 9.3·10
-3
 

electrical loading of hydrophone 0.01 dB 1.3·10
-6
 

preamplifier gain 0.09 dB 1.1·10
-4
 

ambient noise 0.8 dB 9.3·10
-3
 

quantization and postprocessing 0.3 dB 1.2·10
-3
 

sum of relative variances: 0.047 

relative combined standard uncertainty: 0.22 

relative combined standard uncertainty (dB): 1.7 dB 

relative expanded uncertainty (95% confidence level, dB): 3.1 dB 
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6.1.2. Calibration sphere measurements 

Echo sounder measurements with a calibration sphere as a target were made at 

Espegrend and from the research vessel G. O. Sars (Figure 6.10). 38.1-mm-

diameter spheres made of tungsten carbide with 6% cobalt binder were used in 

both cases. The calibration sphere was hung under the echo sounder transducer 

with three monofilament nylon lines and positioned by means of electric 

winches. Split-beam echo sounders are used throughout the present work. 

Single echo detection data were used to determine the position of the 

calibration sphere relative to the transducer. 

The E2a measurements (Table 6.1) were performed under the same conditions 

as the hydrophone measurements described above. CTD data taken the same 

day as the E2a measurements are shown in Figure 6.7. 

The G1 and G3 measurements were made from the research vessel G. O. Sars 

(Figure 6.10) while anchored in a small, sheltered bay at Uggdalseid, south of 

Bergen, Norway. Results from CTD measurements are shown in Figures 6.8 

and 6.9. The echo sounder transducers were 9 m below the water surface. 

Average sound speed and temperature values between 9 m and 34 m depths 

were inserted in the ER60 echo sounder software as a basis for distance and 

angle calculations. 

The echo sounders were calibrated immediately prior to all the reported 

measurements. This was done to make the measured angular positions of the 

target relative to the sound beam axis as accurate as possible. 
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Figure 6.7. CTD data for the measurements made at the Marine Biological Station Espegrend. a) 

Temperature, b) salinity,
94
 c) sound speed,

70
 d) absorption coefficient, 200 kHz,

106
 e) absorption coefficient, 

120 kHz, f) nonlinearity coefficient.
79
 



 180 

9 10 11 12 13

0

20

40

60

80

100

120

temperature  [°C]

p
r
e

s
s
u

r
e

 
 
[
d

b
a

r
]

a)

G1

G2

30 31 32 33 34 35 36

0

20

40

60

80

100

120

salinity  [psu]

p
r
e
s
s
u
r
e
 
 
[
d
b
a
r
]

b)

G1

G2

1486 1488 1490 1492 1494 1496 1498 1500

0

20

40

60

80

100

120

sound speed  [m/s]

p
r
e
s
s
u
r
e
 
 
[
d
b
a
r
]

c)

G1

G2

52 54 56 58

0

20

40

60

80

100

120

absorption coefficient α  [dB/km]

p
r
e
s
s
u
r
e
 
 
[
d
b
a
r
]

d)

G1a

G2a

36 37 38 39 40

0

20

40

60

80

100

120

absorption coefficient α  [dB/km]

p
r
e

s
s
u

r
e

 
 
[
d

b
a

r
]

e)

G1b

G2b

3.56 3.57 3.58 3.59 3.6 3.61

0

20

40

60

80

100

120

nonlinearity coefficient β

p
r
e

s
s
u

r
e

 
 
[
d

b
a

r
]

f)

G1

G2

 

Figure 6.8. CTD data for the measurements made on RV G. O. Sars in 2004. a) Temperature, b) salinity,
94
 c) 

sound speed,
70
 d) absorption coefficient, 200 kHz,

106
 e) absorption coefficient, 120 kHz, f) nonlinearity 

coefficient.
79
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Figure 6.9. CTD data for the measurements made on RV G. O. Sars in Uggdalseid in 2006. a) Temperature, 

b) salinity,
94
 c) sound speed,

70
 d) absorption coefficient, 200 kHz,

106
 e) absorption coefficient, 120 kHz, f) 

nonlinearity coefficient.
79
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Figure 6.10. RV G. O. Sars. Photo: Hege Iren Svendsen / IMR 

6.2. Simulations for seawater 

6.2.1. Simulation parameters 

Bergen Code simulations are carried out for comparison with the measurements 

made in seawater. The parameters for the propagation medium are taken from 

the CTD data obtained in connection with each acoustic measurement series 

(Figures 6.7–6.9). 

Table 6.5 shows the operating frequencies and the medium parameters that are 

used for the simulations for seawater. The sound speed is based on Chen and 

Millero,
70
 while the absorption coefficient is calculated from the formula 

presented by Francois and Garrison.
106
 The nonlinearity coefficient and density 

are based on Cotaras and Morfey
79
 and Fofonoff and Millard,

94
 respectively. 

The parameter values are averaged over depth ranges as summarized in 

Table 6.6, depending on the depths over which the main part of the 

corresponding measurements have been made. 
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Table 6.5. Medium parameters used in simulations of nonlinear sound propagation in seawater. 

corresp. 

measur-

ement 

set 

frequency 

 

f 

[Hz] 

sound 

speed 

 

c0 

[m/s] 

absorption at 

fundamental 

frequency 

αααα 

[dB/km] 

absorption 

coefficient 

 

αααα2 

[Np/m/Hz
2
] 

nonlinearity 

coefficient 

 

ββββ    

density 

 

ρρρρ 

[kg/m
3
] 

E1 200 000 1462 41.5 1.19·10
-13 

3.48 1025.0 

E2 121 212 1462 28.7 2.25·10
-13
 3.48 1025.1 

G1a 200 000 1496 57.5 1.65·10
-13
 3.60 1024.6 

G1b 121 212 1496 40.0 3.13·10
-13
 3.60 1024.6 

G2 200 000 1491 54.4 1.57·10
-13
 3.59 1027.0 

G2 121 212 1491 39.0 3.06·10
-13
 3.59 1027.0 

G3a 200 000 1484 50.1 1.44·10
-13
 3.56 1026.0 

G3b 121 212 1486 36.9 2.89·10
-13
 3.57 1026.2 

Table 6.6. Depth intervals used for the average 

seawater parameters used in simulations. 

interval for averaging corresponding 

measurement 

set 

minimum 

depth 

maximum 

depth 

E1, E2 1 m 11 m 

G1, G3 9 m 60 m 

G2 9 m 120 m 

 

The simulations are initialised with source conditions that correspond to a 

baffled, uniform circular piston. The same Simrad ES200-7C  and ES120-7C 

echo sounder transducers were used at Espegrend (E1 and E2) as in 

measurement sets H2 and H3 in fresh water (Tables 4.1 and 5.7). The effective 

source radii in Table 5.7 are therefore used for the corresponding simulations. 

The echo sounder transducers used for the G1, G2, and G3 measurements are 

permanently mounted on the hull of RV G. O. Sars. Hydrophone measurements 
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of the -3 dB beam angle have not been conducted for these transducers in the 

present work, but they are of the same type as those used at Espegrend. Based 

on the results from Table 5.7, 32.0 mm and 52.8 mm piston radii are chosen for 

the simulations for 200 kHz and 120 kHz operating frequencies, respectively. 

The approach described in Section 5.2.1 was followed to obtain the source 

condition effective sound pressures p0,rms (Tables 6.2 and 6.3) from the axial 

fields measured with the hydrophone at Espegrend (measurement sets E1, 

E2b). 

The parameters that govern spectral truncation, damping of high harmonics, 

numerical grid width and resolution, and damping of Gibbs oscillations due to 

the source condition, are chosen equal to those used for fresh water in 

Section 5.2. Their values are listed in Tables 3.3 and 3.4 (“unperturbed” 

values). 

6.2.2. Absorption frequency dependence 

The KZK equation
271,151

 assumes square frequency power law attenuation.
56,228

 

The constant absorption coefficient α2 is defined such that the absorption at 

frequency f, measured in Nepers per metre, is α' = α2f
 2
. This applies well to 

pure water, but the frequency dependence of absorption in seawater is more 

complex.
105,106

 

Although the square power law is an inherent assumption in the KZK equation, 

several authors
117,277,249,261

 suggest that arbitrary absorption and dispersion may 

be introduced by substitution of a complex absorption coefficient α'(f) into the 

set of equations (2.67). Szabo
228
 has suggested alternative operators for the 

absorption term to account for a general power law with arbitrary real 

exponent, α' = α'0|ω|
γ
. Li and Zagzebski

158
 substituted the absorption term in 

the KZK equation with a temporal convolution between the incident pulse and 

a filter function. 
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Here, simulations to correspond to the measurements are carried out with 

square power-law attenuation. The absorption coefficient α2 is chosen such that 

the Francois-Garrison
106

 absorption is obtained for the fundamental frequency 

component. The absorption coefficients for the harmonics generated through 

nonlinear distortion thus become higher than under the experimental 

conditions. 
105,106

 

In addition, alternative simulations with modified absorption are run for the E1, 

E2, and G2 measurement sets. The absorption coefficient for the second 

harmonic frequency component is decreased to match the results of Francois 

and Garrison
106
 (Table 6.7). The absorption coefficients for the higher 

harmonic components are kept as before. 

Results of both simulation alternatives are shown for the axial field in Figures 

6.11 and 6.12, in terms of the effective sound pressures p1,sim for the 

fundamental and p2,sim for the second harmonic frequency component. A small 

change is found in the fundamental frequency component. 10 m from the sound 

source the modified absorption coefficient yields 0.1 dB and 0.03 dB 

reductions in the simulated 200 kHz and 120 kHz sound pressure levels, 

respectively. The corresponding ratios for r = 300 m are 0.7 dB and 0.6 dB. 

The modified absorption is more important for the second harmonic 

component. At r = 10 m, the simulations with the reduced absorption 

coefficient yield 0.9 dB and 0.8 dB higher second harmonic sound pressure 

levels, respectively, than for the square power law absorption. The simulations 

with modified absorption are used for comparison with the hydrophone 

measurements (Figures 6.13 and 6.14), as they yield improved agreement for 

the second harmonic frequency component.  

The target strength measurements do not contain information about the second 

harmonic. As the reduced absorption coefficient for the second harmonic 

component entails a violation of the conditions for the derivation of the model 
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equation,
56,228

 the simulations with α2 f
 2
 absorption are used to obtain the 

results shown in Figures 6.15–6.18, 6.21, and 6.22. 

 

 

Table 6.7. Absorption coefficients for the fundamental and second 

harmonic components,
106
 used in simulations with modified absorption 

for the second harmonic frequency component. 

corr. 

measure-

ment set 

frequency 

f [kHz] 

absorption 

fundamental 

αααα [dB/km] 

absorption 

second 

harmonic 

αααα [dB/km] 

E1 200.000 41.5 91.2 

E2 121.212 28.7 49.7 

G1a 200.000 57.5 97.6 

G1b 121.212 40.0 65.4 

G2 200.000 54.4 95.9 

G2 121.212 39.0 62.0 

G3a 200.000 50.1 92.7 

G3b 121.212 36.9 59.0 
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Figure 6.11. Simulated axial fields, 200 kHz (G2 parameters), 1000 W power setting. Comparison 

between square power law absorption and measured absorption (Francois-Garrison
106
) inserted for the 

second harmonic frequency component. 
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Figure 6.12. Simulated axial fields, 120 kHz (G2 parameters), 1000 W power setting. Comparison 

between square power law absorption and measured absorption (Francois-Garrison
106
) inserted for the 

second harmonic frequency component. 

6.2.3. Bubbles and inhomogeneities 

Seawater contains naturally produced gas bubbles in varying 

concentrations.
189,267,174

 The bubble density is greatest near the sea surface, 

where they are generated by breaking waves and biological activity. Several 

factors such as water depth, bubble depth, wind speed, rainfall, cloud cover, 

and temperature have influence on bubble production.
174
 Their presence can 

have a dramatic effect on sound attenuation and phase velocity,
189,77,66,153,104

 

and the consequences of such effects for echo sounder and sonar measurements 

have been investigated by several researchers.
173,82,61

 Solid particles in the 
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water may also influence the absorption significantly through viscous effects 

and scattering.
209,210

 

Gas bubbles oscillate nonlinearly and influence the nonlinear distortion of 

sound waves.
62
 A number of investigations of nonlinear effects in bubble layers 

have been made,
185,227,16,192

 primarily through measurements of the sum and 

difference frequency sound fields generated through the interaction of two 

harmonic primary waves. Simulations of nonlinear sound propagation in a 

bubbly liquid have been carried out by e.g. Leble and Sukhov.
156
 Some authors 

have explored the possibility of using the increased nonlinearity coefficient in 

water with high bubble contents to improve the efficiency of parametric sound 

sources.
270,260

 Similar use of microbubbles is found in contrast agents for 

medical ultrasound harmonic imaging.
64,164

. 

Nonlinear sound propagation through turbulence and inhomogeneities has also 

been the subject of several investigations.
136,58,205

 The contribution from each 

field point to the cumulative process of nonlinear distortion depends on the 

local sound pressure amplitude, diffraction effects, and medium parameters in 

that point. Accounting for the depth dependence of medium parameters may 

therefore yield somewhat different simulation results than if mean values are 

used for the whole field. Also, refraction due to a depth dependent sound speed 

may have a small effect on the width of the beam pattern.
235
 

Effects of bubbles and particles are disregarded in the simulations that are 

carried out in the present work. The propagation medium has been treated as 

uniform, with sound speed, density, absorption, and nonlinearity as listed in 

Table 6.5. 
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6.3. Measurement and simulation results for 
sound propagation in seawater 

6.3.1. Results from hydrophone measurements 

The measured fundamental and second harmonic sound pressure levels from 

measurement sets E1 and E2b are found in Figures 6.13 and 6.14, respectively 

(Table 6.1). Simulation results have been included with full-drawn curves. The 

simulations have been performed with the Francois-Garrison
106
 absorption 

coefficients for the fundamental and second harmonic frequency components 

(Section 6.2.2). The absorption coefficients for the higher harmonics follow the 

square frequency power law, with the coefficient α2 chosen such that it yields 

agreement at the fundamental frequency. 

The plotted measurement results (marked with + and ○) are average sound 

pressure amplitudes calculated from 10 recorded sound bursts. The error bars in 

the directivity plots (Figures 6.13 c, d, and e and Figures 6.14 c and d) indicate 

the standard deviation between the measured amplitudes for each point. 

200 kHz operating frequency 

Measurements along the sound beam axis for the 200 kHz echo sounder 

(Figure 6.13a and 6.13b) were made on two consecutive days (Table 6.1). An 

overlapping measurement point at r = 3.6 m indicates good agreement between 

the measurement sets, although the salinity near the surface changed somewhat 

between the two mornings (Figure 6.7). Figures 6.13a and 6.13b show results 

for the 100 W, 200 W, 500 W, and 1000 W transmit power settings on the 

EK60 echo sounder. Agreement within 0.5 dB is observed between the axial 

measurement and simulation results for the fundamental frequency component 

(Figure 6.13a). 

The level of the axial second harmonic component generated through nonlinear 

distortion is shown relative to the fundamental in Figure 6.13b, 
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10

1

( ,0,0)
plotted value 20 log

( ,0,0)

p r

p r
= ⋅ . (6.1) 

As seen for the fresh water measurements described in the previous chapter, the 

second harmonic frequency component grows towards -6 dB relative to the 

fundamental when the source level is high. Although the overall absorption is 

stronger and the source levels are lower than for the fresh water measurements, 

slightly higher relative levels are measured for the second harmonic in 

seawater. A possible reason is that the absorption for the second harmonic 

compared to the fundamental is lower in seawater than in fresh water. The 

agreement between measured and simulated relative levels as described by 

Equation (6.1) is within approximately 0.7 dB. 

The shape of the main lobe for the 200 kHz echo sounder transducer is 

investigated at r = 8.6 m distance. The 100 W, 500 W, and 1000 W power 

settings are used (Figure 6.13, c, d, and e, respectively). Sound pressure levels 

for the fundamental frequency component are shown in all three plots. The 

second harmonic is included in the two latter, as in these cases its level is high 

enough that both components can be shown in the same figure. The agreement 

between simulations and measurements for angles up to 4º off axis seems 

approximately as for the axial field. Both the fundamental and second harmonic 

main lobes become flatter as the amplitude is increased. The -3 dB beam angle 

(half-beamwidth) for the simulated fundamental frequency component with 

100 W power setting is 3.6º. For 1000 W nominal output power, the same angle 

becomes 4.3º (Figure 6.13e). One should note that the spacing between the 

ticks along the ordinate axis of Figure 6.13c is different from in Figures 6.13d 

and 6.13e. 

120 kHz operating frequency 

Figure 6.14 a shows measured and simulated fundamental sound pressure 

amplitudes along the axis of the 120 kHz sound beam. Also here results are 

shown for the 100 W, 200 W, 500 W, and 1000 W transmit power settings. 
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Good agreement between measurements and simulations is seen for the two 

lowest source levels. The agreement is slightly worse for the 500 W and 

1000 W power settings, in which case the simulations indicate 0.5 dB higher 

sound pressure levels than the measurements. 

The axial sound pressure level of the second harmonic frequency component is 

shown in Figure 6.14b for the 500 W and 1000 W power settings. As also seen 

in the results for fresh water (Section 5.3), the simulations indicate significantly 

weaker second harmonic components than the measurements. The discrepancy 

is here approximately 3.7 dB, and slightly worse for the 500 W power setting 

than for 1000 W. The comparatively better agreement between experimental 

and theoretical results for the fundamental frequency component suggest that 

the measurement accuracy for the second harmonic might not be as good as 

expected based on the considerations in Section 6.1.1. 

Some hydrophone measurements off the sound beam axis were made at 

distance r = 4.6 m from the 120 kHz sound source. The sound pressure levels 

for the fundamental frequency component are shown in Figures 6.14c (100 W) 

and 6.14d (1000 W). Although the measured second harmonic component is – 

maybe inaccurately – close to 6 dB below the fundamental in the case of the 

1000 W power setting (cf. Figures 6.14 a and b), the observed flattening of the 

fundamental main lobe is much weaker than for the 200 kHz operating 

frequency. The simulated -3 dB beam angle increases with less than 0.1º 

between the 100 W and 1000 W power settings. 
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Figure 6.13. Hydrophone measurements in seawater, 200 kHz. a) Axial field, measured and simulated sound 

pressure level for the fundamental frequency component, b) axial field, level for the second harmonic 

frequency component relative to the fundamental (measured and simulated), c) sound pressure level for the 

fundamental frequency component at distance r = 8.6 m, 100 W power setting, d) 500 W, e) 1000 W. The 

sound pressure levels for the second harmonic frequency component is included in Figures d and e. 
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Figure 6.14. Hydrophone measurements in seawater, 120 kHz. a) Axial field, measured and simulated sound 

pressure level for the fundamental frequency component, b) axial field, sound pressure level for the second 

harmonic frequency component, c) sound pressure level for the fundamental frequency component at distance 

r = 4.6 m, 100 W power setting, d) 1000 W. 

6.3.2. Results from calibration sphere measurements 

The target strength measurements at Espegrend and Uggdalseid (E2a, G1 and 

G3, Table 6.1) were made with Simrad EK60 echo sounders by recording the 

backscattered signal from a 38.1-mm-diameter tungsten carbide calibration 

sphere with 6% cobalt binder. Distances and angles taken from the echo 

sounder single echo detection functionality are used for the sphere position. 

An unexplained increase with distance is found in the measured target strength 

for low power settings. The product α·r of the absorption coefficient and the 
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distance from the sound source has been subtracted from all the measurement 

results for target strength presented below. This almost removes the apparent 

TS distance dependence when the lowest power settings are used. No physical 

justification of the chosen compensation is made, but it facilitates the 

comparison between measurement and simulation results in Figures 6.15–6.18 

considerably. As the α·r compensation grows slowly with distance and is 

applied equally to all the measurement results, it has negligible effect on the 

shape of the main lobes and also on the difference in measured TS between 

different power settings. These are the features of greatest interest to the 

present investigation. 

The term “apparent TS” (TSmeas) is used for the target strength reported by the 

echo sounder with α·r subtracted. For the directivity measurements, the 

“Uncompensated TS” values from the echo sounder software are presented, to 

which the beam compensation function has not been applied (Section 2.1). 

Simulation results for the apparent TS were prepared the same way as in 

Section 5.3.3 (Equation (5.13)). The values for the constant C were chosen to 

obtain approximate agreement with the target strengths measured with the 

lowest power settings. The values are shown in Table 6.8. The simulations for 

comparison with calibration sphere measurements are described in 

Section 5.2.1. 

Target strength along the sound beam axis 

Results for the axial fields are shown in Figures 6.15 and 6.16 for the 200 kHz 

and 120 kHz operating frequencies, respectively. Only detected echoes from 

angles less than θ = 0.20º off the sound beam axis have been accepted. 

Simulated apparent target strengths are shown with full-drawn curves. 

The measured target strength decreases with the power of the transmitted 

signal. The simulated difference between apparent target strengths using 

different power settings seems to agree reasonably well for the case of the 
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200 kHz echo sounder (Figure 6.15). With the calibration sphere at 40 m 

distance from the sound source, the simulated apparent TS is approximately 

3.4 dB lower for the 1000 W power setting than for the 50 W and 100 W power 

settings. The difference between measurement results from using the 50 W and 

100 W power settings is smaller than the variation in measurement results for 

each power setting. The simulations predict a difference of approximately 

0.2 dB at r = 40 m. 

 

Table 6.8. Values chosen for the constant C in Equation (5.13). 

Measurement set 10 log10 C 

Axial field 

G3b (120 kHz) -37.8 

G3a (200 kHz) -33.0 

G1a (200 kHz) -33.0 

Measurements off axis 

E2a (120 kHz) -37.7 

G1b (120 kHz) -37.4 

G3a (200 kHz) -33.0 

G1a (200 kHz) -33.0 

 

The target strength measurements with the 120 kHz echo sounder are shown in 

Figure 6.16. The agreement between measurements and simulations is not as 

close as for 200 kHz. Approximately 2 dB nonlinear attenuation is measured 

with the target at 30 m distance from the transducer, while the simulations 

predict 0.9 dB. A clear difference between the TS measurements using the 

100 W and 250 W power settings is not seen. The simulations indicate 

approximately 0.1 dB difference at 30 m distance. 



 197 

a
p
p
a
r
e
n
t
 
T

S
 
 
[
d
B

]

distance r  [m]

a)

0 10 20 30 40

−46

−44

−42

−40

G1a, 50 W

100 W

1000 W

simulations

a
p
p
a
r
e
n
t
 
T

S
 
 
[
d
B

]

distance r  [m]

b)

0 10 20 30 40 50

−46

−44

−42

−40

G3a, 50 W

100 W

1000 W

simulations

 

Figure 6.15. Target strength measurements with the calibration sphere on the sound beam 

axis of a 200 kHz echo sounder. The measurements have been made on RV G. O. Sars at two 

different times (G1 and G3, see Table 6.1). 
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Figure 6.16. Target strength measurements with the calibration sphere on the sound beam 

axis of a 120 kHz echo sounder (measurement set G3b, see Table 6.1). 

Target strength measurements off axis 

Several directivity measurements have been made within the main lobe by 

means of calibration spheres. As the echo sounder beam compensation function 

has not been applied to the results, correct TS measurements are expected only 

on the sound beam axis (Section 2.1). Measurement and simulation results are 

found in Figures 6.17 and 6.18 as function of the off-axis angle θ, for the 
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200 kHz and 120 kHz operating frequency, respectively. The simulation results 

are shown with full-drawn curves. 

Figures 6.19 and 6.20 indicate where in the sound beams the measurements 

have been made. The vertical axis corresponds to the alongship direction, 

forward angles being above the horizontal axis. The port side angles are to the 

left, while the starboard side is to the right. 

The distance between the transducer and the calibration sphere was kept as 

constant as possible during each directivity measurement. The intended 

distances and maximum measured deviations from them are shown in 

Table 6.9. The echo sounder’s “40 log r” time varying gain function was 

applied to each individual target strength measurement according to the 

particular measured distance. 

Table 6.9. Distances to the calibration sphere and maximum deviations from them 

during the directivity measurements in seawater. 

measurement figure distance r 
max. distance 

deviation 

G3a 6.17a 5.0 m 0.3 m 

G3a 6.17b 10.0 m 0.3 m 

G3a 6.17c 20.0 m 0.4 m 

G3a 6.17d 35.0 m 0.4 m 

G3a 6.17e 50 m 1 m 

G1a 6.17f 41.0 m 0.5 m 

E2a 6.18a 10.0 m 0.1 m 

G3b 6.18b–6.18d 10.0 m, 20.0 m 0.2 m 

G3b 6.18e 45.0 m 0.3 m 

Target strength measurement and simulation results for the 200 kHz echo 

sounder are shown in Figure 6.17. The distances between the echo sounder 

transducer and the reference target range from 5 m to 50 m. Results are shown 

for 50 W (all figures), 100 W (Figures e and f), 150 W (Figures a–d), and 
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1000 W (all figures) EK60 power settings. The simulations seem to predict the 

difference between measurement results obtained with different power settings 

to within approximately 0.5 dB in general, although the spread between target 

strength measurements is somewhat greater when the sphere is at the farthest 

positions from the transducer. 

Measurement results for two 120 kHz echo sounders are shown in Figure 6.18. 

Figure 6.18a shows measurements made at Espegrend with the ES120-7C 

(s/n 230) transducer. The power settings used are 100 W and 1000 W, and the 

distance between the echo sounder transducer and the calibration sphere is 

10 m. The rest of the plots in Figure 6.18 show results from Uggdalseid, where 

the EK60 echo sounder on RV G. O. Sars has been used with power settings 

100 W, 250 W, and 1000 W. Measurements have been made with the 

calibration sphere at 10 m, 20 m, and 45 m distance from the transducer. As 

seen earlier, the simulations tend to underestimate the nonlinear attenuation for 

the 120 kHz operating frequency. A reason for this has not been found in the 

present work. The discrepancy between measured and simulated nonlinear 

attenuation is approximately 0.9 dB near the sound beam axis. Figure 6.18d is a 

close-up of the axial measurement results in Figure 6.18c. The difference 

between the measurements using 100 W and 250 W power settings is not 

distinguishable in the figure. 

For both operating frequencies, the simulations overestimate the apparent TS 

somewhat at great angles off the sound beam axis (θ approximately greater 

than 3º, depending on distance from the transducer). The flattening of the main 

lobe that occurs due to nonlinear attenuation is seen well in Figures 6.17 and 

6.18. The attenuation is strongest near the sound beam axis, where sound 

pressure levels are high, and weakens with the angle off axis. 
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Figure 6.17. Target strength measurements for 200 kHz echo sounders using a calibration sphere. 

The beam compensation function has not been applied to the results. a) Measurement set G3a, 

r = 5 m distance from the transducer, 50 W, 150 W, and 1000 W power settings. b) Same as a), 

r = 10 m, c) r = 20 m, d) r = 35 m, e) r = 50 m. f) Measurement set G1a, r = 41 m, 50 W, 100 W, 

and 1000 W power settings. 
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Figure 6.18. Measured and simulated uncompensated target strength for 120 kHz echo sounders using a 

calibration sphere. Figures a) and b) show measurements taken at distance r = 10 m, at Espegrend and 

Uggdalseid, respectively (measurement sets E2a and G3b). Results from the G3b measurement set for 

distances r = 20 m and r = 45 m are seen in Figures c), d) and e). Figures c) and d) are for the same 

measurement, Figure d) being a close-up of the measurement results near the sound beam axis. 
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Figure 6.19. Measured positions of the calibration sphere in the sound beam for 

measurements with 200 kHz echo sounders. The marked points correspond to the TS 

measurements shown in Figure 6.17. 
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Figure 6.20. Measured positions of the calibration sphere in the sound beam for 

measurements with 120 kHz echo sounders. The marked points correspond to the TS 

measurements shown in Figure 6.18. 

6.3.3. Nonlinear attenuation along the sound beam axis 

By comparing cases with and without accounting for nonlinear effects, but with 

otherwise the same parameters, simulation results are used to isolate the excess 

attenuation due to nonlinear effects. Sound pressure amplitudes from the 

simulations presented in Sections 6.3.1 and 6.3.2 are normalized to the source 

condition pressure amplitudes p0 and compared to corresponding simulation 

results with p0 = 1 Pa (negligible nonlinear effects). The simulated nonlinear 

attenuation is defined as in Section 5.3.2 (Equation (5.10)). In principle, NAsim 

could be used as an indicator of the error due to nonlinear attenuation in target 
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strength measurements along the sound beam axis. However, an additional 

compensation must be made to account for nonlinear effects during the echo 

sounder calibration that was made prior to the measurement in question 

(Chapter 7). 

Results from simulations with different medium parameters for seawater 

(Table 6.5) are shown in Figure 6.21 for the 200 kHz operating frequency and 

Figure 6.22 for 120 kHz. Some values for NAsim along the sound beam axis are 

also listed in Table 6.10. The widening of the main lobe that accompanies this 

axial loss is discussed in Chapter 7. Comparison with Table 5.9 shows that 

stronger nonlinear attenuation was experienced in the fresh water 

measurements than in seawater. This is attributed to the difference in 

absorption coefficients (Tables 5.6 and 6.5). At 9 m distance from the sound 

source, the simulated nonlinear attenuation is approximately 3 dB and 0.7 dB 

for the 200 kHz and 120 kHz operating frequencies, respectively. The 

simulations predict approximately 4 dB and 1.3 dB attenuations, respectively, 

at 300 m distance. 

There is some discrepancy between measured and simulated sound pressure 

levels (Section 6.3.1), although the agreement is generally within 0.5 dB. This 

should be taken into account when reading the simulation results in 

Figures 6.21–6.22 and Table 6.10. Quadratic frequency power law attenuation 

has been used in the simulations shown in Figures 6.21 and 6.22. The α2 

absorption coefficient has been chosen such that the Francois-Garrison
106
 

absorption is obtained for the fundamental frequency component. As shown in 

Figures 6.11 and 6.12, modifying the absorption for the second harmonic 

component to match the properties of seawater
106
 causes an increase in NAsim. 

At r = 10 m with the 1000 W power setting, the differences are 0.1 dB and 

0.03 dB for the 200 kHz and 120 kHz operating frequencies, respectively. The 

corresponding differences at 300 m distance are 0.7 dB and 0.6 dB 

(Section 6.2.2). With the modified absorption coefficient, the simulated 

nonlinear attenuation for r = 300 m and 1000 W power setting become close to 
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5 dB at 200 kHz and 2 dB for the 120 kHz operating frequency. Some results 

from such simulations are shown in Figure 6.23. The actual nonlinear 

attenuation might be even stronger. 

Table 6.10. Simulated axial nonlinear attenuation (Equation (5.10)) in seawater for 

some distances r from the sound source. 

 r = 5.6 m r = 9 m r = 50 m r = 100 m r = 300 m 

200 kHz      

50 W 0.1 dB 0.1 dB 0.2 dB 0.3 dB 0.3 dB 

100 W 0.2 dB 0.3 dB 0.5 dB 0.6 dB 0.6 dB 

150 W 0.3 dB 0.4 dB 0.7 dB 0.8 dB 0.8 dB 

200 W 0.5 dB 0.7 dB - - - 

500 W 1.3 dB 1.6 dB - - - 

1000 W (E1) 2.5 dB 3.0 dB - - - 

1000 W (G) 2.4 dB 2.8 dB 3.9 dB 4.1 dB 4.1 dB 

120 kHz      

45 W 0.02 dB 0.03 dB - - - 

100 W 0.04 dB 0.06 dB 0.1 dB 0.1 dB 0.1 dB 

250 W 0.1 dB 0.1 dB 0.3 dB 0.3 dB 0.3 dB 

500 W (E2) 0.3 dB 0.3 dB - - - 

1000 W (E2) 0.5 dB 0.7 dB - - - 

1000 W (G) 0.5 dB 0.6 dB 1.1 dB 1.2 dB 1.3 dB 

During recent fisheries research surveys made by the Institute of Marine 

Research, 120 W and 250 W power settings have been used for the 200 kHz 

and 120 kHz echo sounders, respectively.
143,144

 Simrad recommends maximum 

power settings of 100 W for the 200 kHz operating frequency and 500 W for 

120 kHz.
13
 According to the simulation results, the power settings used by IMR 

keep the nonlinear axial attenuation less than 0.5 dB for both operating 

frequencies (Figures 6.21 and 6.22). The Simrad recommendation yields 

somewhat stronger nonlinear attenuation at 120 kHz. It should be noted that 

higher nonlinear attenuation can occur due to air bubbles or other factors that 
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are not accounted for here. Also, the measurements indicate somewhat stronger 

nonlinear attenuation than the simulations. The power settings should thus be 

set at least as low as those used by IMR if nonlinear attenuation less than 

0.5 dB along the sound beam axis is to be avoided. The consequences of 

nonlinear attenuation to measurements of the volume scattering coefficients is 

treated in Chapter 7. 

Based on the work of Shooter et al.,
221
 Simmonds and MacLennan

223
 suggest 

source level limits of 222 dB for the 200 kHz operating frequency and 226 dB 

for 120 kHz. In terms of the linear-equivalent source levels shown in Tables 

6.3 and 6.2, their suggestions correspond approximately to 300 W and 1000 W 

EK60 power settings, respectively. Somewhat more than 1 dB nonlinear 

attenuation is predicted for both operating frequencies within 300 m distance 

(Figures 6.21 and 6.22). 
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Figure 6.21. Simulated nonlinear attenuation for the 200 kHz echo sounders. a) Close-up of the distances 

for which hydrophone measurements have been made, b) simulation results for distances up to 300 m. 
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Figure 6.22. Simulated nonlinear attenuation for the 120 kHz echo sounders. a) Close-up of the distances 

for which hydrophone measurements have been made, b) simulation results for distances up to 300 m. 
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Figure 6.23. Simulated nonlinear attenuation with the absorption coefficients 

for the second harmonic component changed to comply with tabulated values 

for seawater.
106
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Chapter 7. Volume scattering 

The importance of nonlinear effects for the 

measurement of backscattered acoustic 

energy from a distribution of small targets 

is of special interest in connection with 

biomass estimation and discrimination 

between species of fish and plankton at sea. A 

method is proposed in which simulation results are 

used to compensate the volume backscattering 

coefficient for the simulated nonlinear attenuation (Section 7.1). Possible 

correction factors based on simulations made in the present work are 

calculated. The importance of the echo sounder calibration made prior to the 

acoustic measurements is discussed. In Section 7.2 experimental results for the 

area backscattering coefficient obtained by measurements on fish schools are 

presented. The results from measurements with different power settings are 

compared with the theoretical results from Section 7.1. 

7.1. Compensation of volume backscattering 
measurements 

A way to compensate volume backscattering coefficients for nonlinear 

attenuation is suggested in this section. Given the measured water parameters 

of the G1 and G2 measurement sets (Section 6.1), Bergen Code simulations are 

used to calculate compensation factors for three different special cases that 

correspond to different echo sounder calibrations. 
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7.1.1. Compensated volume backscattering coefficient 

The volume backscattering coefficient sv is defined as backscattering cross-

section per unit volume (Section 2.1). In the following, the symbol sv will be 

used for the coefficient measured by the echo sounder, i.e., calculated from the 

backscattered signal intensity under the assumption of linear sound 

propagation. By replacing 2

0G  with G0G'0, in Equation (2.35), one obtains 

2
2 2 10

r TVG20

2

0 0 0 0 0

32 10
<constant>

r

r
v

t Z

P fP r
s

G G P c F G G

α

π
ψ λ τ ψ

⋅⋅
= = ⋅

′ ′
, (7.1) 

where 

( ) ( )
0 0 4

1
, ,G G d

G G π

ψ θ ϕ θ ϕ′= Ω
′ ∫ . (7.2) 

Here the two-way transducer gain G
2
(θ,ϕ) (Section 2.1) has been split into a 

transmit transducer gain function G(θ,ϕ) and a receive transducer gain function 

( , )G θ ϕ′ . G0 and G'0 are the axial transmit and receive transducer gains, 

respectively. 

Further, it is here suggested that the reduction in acoustic intensity due to 

nonlinear attenuation be expressed as a correction to the transmit gain function 

G(θ,ϕ). As the transducer gain refers to intensity, G is proportional to the 

square of the transmitted sound pressure amplitude in the far field. As the 

nonlinear attenuation depends on propagation distance, so does the 

“nonlinearity compensated” transmit transducer gain Gn(r,θ,ϕ). Calculated 

from numerical simulation results, it becomes 

2

1,sim

n

lin

( , , )
( , , ) ( , )

( , , )

p r
G r G

p r

θ ϕ
θ ϕ θ ϕ

θ ϕ
 

= ⋅ 
 

. (7.3) 

1,sim ( , , )p r θ ϕ  is the simulated effective (rms) sound pressure for the 

fundamental frequency component, normalized to the source condition 
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amplitude p0,rms. lin ( , , )p r θ ϕ  is the corresponding simulated sound pressure 

calculated with p0,rms = 1 Pa / 2 , i.e., with negligible nonlinear effects 

(Equation (5.9)). As in Sections 5.3.3 and 6.3.2, the backscattered sound wave 

is taken to propagate linearly. A nonlinearity compensated two-way equivalent 

beam angle ψn, which also becomes range dependent, can be defined as 

( ) ( )n n n

0,n 0 4

1
( ) , , ,

( )
r G r G d

G r G π

ψ ψ θ ϕ θ ϕ′= = Ω
′⋅ ∫ , (7.4) 

where G0,n(r) = Gn(r,0,0). 

It is first assumed that the echo sounder has been calibrated with sufficiently 

low power setting to disregard nonlinear effects. If this assumption does not 

hold, an additional factor should be included in Equation (7.1) (cf. 

Section 7.1.2). Volume backscattering coefficients measured with higher power 

settings can be compensated for nonlinear attenuation by replacing G0 with G0,n 

and ψ with ψn in Equation (7.1), 

0 4
,n

0,n n n
4

( , ) ( , )
( ) ( ) ( )

( ) ( ) ( , , ) ( , )
v v v

G G dG
s r s r s r

G r r G r G d

π

π

θ ϕ θ ϕψ
ψ θ ϕ θ ϕ

′ Ω
= ⋅ = ⋅

′ Ω

∫
∫

. (7.5) 

sv,n is the volume backscattering coefficient compensated for nonlinear 

attenuation. 

7.1.2. Nonlinear effects in echo sounder calibration 

The sv corrections above apply when nonlinear effects during echo sounder 

calibration can be disregarded. This is not necessarily the case. 

The two-way axial transducer gain G0G'0 and the beam compensation function 

for target strength measurement (not used in volume backscattering 

measurements, cf. Section 2.1) are adjusted and monitored through regular 

echo sounder calibrations. The value of the equivalent two-way beam angle ψ 

is supplied individually with each transducer from the manufacturer. 
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Measurements of ψ can be made on hull-mounted transducers,
191,208

 but this is 

not part of the regular calibration routine. The two-way axial transducer gain 

used for sv measurements is measured with the calibration sphere close to the 

sound beam axis. 

Calibration measurements are performed with the reference target at an 

approximately fixed distance rcal from the echo sounder transducer. Calibration 

distances of 10 m–12 m are common. Norwegian research vessels calibrating at 

Uggdalseid south of Bergen often use 20 m–25 m calibration distances. The 

simulated effective sound pressure for the fundamental frequency component 

(accounting for nonlinear propagation) at the position of the calibration sphere 

is p1,cal(rcal,0,0). When nonlinear attenuation occurs during calibration, the two-

way transducer gain appears lower than if the sound propagation were linear, 

2

1,cal cal

0,cal 0 0 0

lin,cal cal

( ,0,0)

( ,0,0)

p r
G G G G

p r

 
′ ′= ⋅   

 
. (7.6) 

plin,cal(r,θ,ϕ) is the effective sound pressure simulated without accounting for 

nonlinear effects. As before, this has been done by setting the peak source 

condition amplitude equal to 1 Pa. 0,cal 0G G′  is the apparent two-way axial 

transducer gain. As in Equation (7.3), the bars in Equation (7.6) denote 

normalization to the source condition amplitude. By replacing G0 with G0,cal in 

Equation (7.5), one obtains for the compensated sv,n, 

2

,n 0,cal 1,cal cal4

0,n n lin,cal caln
4
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( ) ( ) ( ) ( ,0,0)( , , ) ( , )

v

v

G G ds r G p r

s r G r r p rG r G d

π

π

θ ϕ θ ϕψ
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∫
∫

. (7.7) 

Equation (7.7) is used in the following to calculate values of sv,n/sv from 

simulation results. 
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7.1.3. Compensation factors from simulations 

Calculations 

A set of Bergen Code simulations is run to calculate the ratio of volume 

scattering coefficients sv,n/sv (Equation (7.7)) for comparison with measurement 

results. Source conditions, numerical calculation parameters, and seawater 

parameters are chosen as for measurement set G2 in Section 6.2. 1 Pa peak 

source condition amplitude is used to calculate plin(r,θ,ϕ). 

The linear transmit and receive transducer gain functions G(θ,ϕ) and G'(θ,ϕ) 

refer to intensity and are thus proportional to the square of the simulated linear 

beam pattern. The simulated effective sound pressures plin for linear and p1,sim 

for nonlinear sound propagation are normalized to their corresponding source 

condition amplitudes and combined to (Equation (7.7)) 

4 2
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 (7.8) 

As the simulated sound field is axisymmetric, the sound pressure amplitude 

does not depend on the azimuth angle ϕ. The substitution dΩ = sin θ dθ dϕ and 

integration with respect to ϕ yields 

4 2
lin,n 1,cal cal0

2
2 2

lin,cal cal
lin 1,sim

0

( , ) sin ( ,0)

( ,0)( , ) ( , )sin

v
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p r ds p r

s p rp r p r d

π

π

θ θ θ

θ θ θ θ

⋅
= ⋅

⋅

∫
∫

. (7.9) 

Although side lobe levels are typically below -25 dB relative to the main lobe 

for the transducers in question,
6,7
 they contribute by a small amount to the 

equivalent two-way beam angle. As discussed in Section 3.1, the KZK equation 

is not valid at great angles off the sound beam axis. So far in the present work, 
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only simulation results within θ = 6º have been used for comparison with 

measurements. The results show that nonlinear attenuation is strongest close to 

the sound beam axis and weakens rapidly with increasing θ. This gives good 

reason to assume that the simulation results for θ ≤ 6º is sufficient for 

determining the ratio of volume backscattering coefficients sv,n/sv. The 

simulated linear value for the equivalent beam angle when only the results 

within 6º are included, 

6

4

lin 10 lin4

lin 0

1
10 log ( , )sin

( ,0)
p r d

p r
θ θ θ

 
Ψ = ⋅  

  
∫
�

�

, (7.10) 

becomes -21.05 dB re 1 steradian (sr) for both the 120 kHz and the 200 kHz 

sound field. Ψ = -21 dB is stated as a typical equivalent beam angle in the 

transducer data sheets.
6,7
 During the G2 measurements, -20.5 dB and -21.0 dB 

were used for the 200 kHz and 120 kHz transducers, respectively. Increasing 

the upper integration limit from 6º to 12º in Equation (7.10) yields a 0.02 dB 

increase in Ψlin. The integrals of Equation (7.9) are thus truncated, 

6
4 2
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26
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∫

∫

�

�
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. (7.11) 

Simulation results are inserted for the integrands, and the integrations are 

performed with the trapezoidal rule. 

The ratio sv,n/sv is calculated for three cases (Table 7.1). In the first, the echo 

sounder calibration has been performed with sufficiently low source level so 

that nonlinear attenuation can be disregarded. 1,calp  and lin,calp  are thus equal. 

For the second and third case, it is assumed that calibration was performed with 

the 1000 W EK60 power setting and with the calibration sphere at distances 

rcal = 12 m and rcal = 25 m, respectively. The seawater parameters for the G1 
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measurement set (Table 6.5) are used to calculate the calibration correction 

factor 2 2

1,cal cal lin,cal cal( ,0) ( ,0)p r p r . 

Table 7.1. Parameters for sv,n/sv calculations based on simulations. 

 
calibration 

distance 
10 1,cal lin,cal

20 log ( / )p p⋅⋅⋅⋅  

 

calibration 

EK60 power 

setting rcal 200 kHz 120 kHz 

figure 

number 

Case 1 low - 0 dB 0 dB 7.2 

Case 2 1000 W 12 m -3.0 dB -0.7 dB 7.3a 

Case 3 1000 W 25 m -3.5 dB -0.9 dB 7.3b 

Simulation results 

Figure 7.1 shows simulation results for the -3 dB beam angle θ-3 dB(r) and the 

two-way equivalent beam angle. The simulated equivalent beam angle for the 

1000 W power setting (Figure 7.1b) increases with approximately 1 dB due to 

nonlinear effects. 
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Figure 7.1. a) Simulated -3 dB beam angle as function of distance r from the sound source. b) Simulated 

effective two-way beam angle ψn(r) as function of axial distance from the sound source. 

The increase in ψ and the weakening of the axial sound field due to nonlinear 

attenuation (Figures 6.21 and 6.22) have opposite effects on sv measurement 
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results. Simulation values for sv,n/sv calculated without accounting for nonlinear 

effects during calibration (Case 1 in Table 7.1) are shown in Figure 7.2. In this 

case, nonlinear attenuation causes the echo sounder to underestimate sv at all 

distances. For the 1000 W power setting and 200 kHz operating frequency, 

10 log10(sv,n/sv) approaches 3 dB. In the 120 kHz case, the corresponding result 

is approximately equal to 0.8 dB at 300 m distance from the echo sounder 

transducer. 
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Figure 7.2. Simulated values for sv,n/ sv when nonlinear effects during 

echo sounder calibration are negligible. 

The still commonly used Simrad EK500 echo sounder uses 1000 W as the 

standard electrical transmit power setting for transducers with 7º opening angle 

at both the 120 kHz and 200 kHz operating frequencies. If the echo sounder 

calibrations prior to the sv measurements are performed with the 1000 W power 

setting for both operating frequencies, the transducer gain appears lower than in 

Case 1. As shown in Figure 7.3, this acts upon measurement results for sv in the 

opposite direction of nonlinear attenuation during the sv measurements 

themselves. Figure 7.3a shows the simulation results for sv,n/sv in Case 2 

(Table 7.1). Here, calibration has been performed with the 1000 W power 

setting and the calibration sphere at distance rcal = 12 m from the echo sounder 

transducer. For the 200 kHz operating frequency, 10 log10(sv,n/sv) is decreased 

with 3 dB (Figure 7.3a). Although the resulting sv compensation is reduced, the 



 216 

change in the sampling volume ensonified by the echo sounder is the same as 

in Case 1 (Figure 7.1). The simulation results for Case 3 are shown in 

Figure 7.3b. The 1000 W calibration with rcal = 25 m yields yet lower values 

for 10 log10(sv,n/sv). In this case, the plotted decibel value is negative for both 

operating frequencies and all propagation distances up to 300 m. 
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Figure 7.3. Simulated values of sv,n/ sv in seawater (G2) for an EK60 echo sounder with ES120-7C and 

ES200-7C transducers. The echo sounder has been calibrated with the 1000 W power setting and the 

calibration sphere at distance a) rcal = 12 m and b) rcal = 25 m. The power used for the sv measurements is also 

1000 W. 

Figure 7.4 shows simulation results similar to those shown in Figure 7.3, but 

for other calibration distances rcal. As for the cases listed in Table 7.1, the 

1000 W power setting has been assumed used for both calibration and sv 

measurements. As above, the seawater medium parameters for the G2 

measurement set have been used to simulate the sv measurements, while the 

corrections due to nonlinear effects during calibration have been calculated 

with the G1 medium parameters (Table 6.5). The simulation results shown in 

Figures 7.3 and 7.4 refer to the EK60 echo sounder with ES120-7C and 

ES200-7C transducers. 
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Figure 7.4. Simulated values of sv,n/ sv in seawater (G2) for an EK60 echo sounder set to 

1000 W output power, with ES120-7C and ES200-7C transducers. The echo sounder has 

been calibrated with the 1000 W power setting and the calibration sphere at distances 10.0 m, 

12.5 m, 15.0 m, 17.5 m, 20.0 m, 22.5 m, 25.0 m, 27.5 m, and 30.0 m. a) 120 kHz operating 

frequency. b) 200 kHz operating frequency. 
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The several assumptions and possible errors in the simulation results pointed 

out in Chapter 3 and Section 6.3 also apply to the results presented here. The 

simulations are performed without the modification to the absorption 

coefficient described in Section 6.2.2. The reduced absorption for the second 

harmonic frequency component would yield slightly increased nonlinear 

attenuation. Also, some discrepancy is reported between measurement and 

simulation results for the nonlinear attenuation (Section 6.3). It is important to 

note that several parameters may influence the simulated value for sv,n/sv, as 

well as the echo sounder measurement result sv. For example, the influence of 

gas bubbles in the water has not been accounted for here. The results reported 

here apply only to the described special cases. 

A measured volume scattering coefficient sv may be compensated for nonlinear 

attenuation by means of a factor such as sv,n/sv. However, in addition to 

changing the value of the measured sv, the flattening of the main also changes 

the sampling volume that the measurement refers to. The ensonified volume is 

larger than predicted by a linear sound propagation model (Figure 7.1). As for 

target strength measurements close to the sound beam axis, the power limits 

used by IMR
143
 (Section 6.3) or lower are recommended for minimizing errors 

due to nonlinear attenuation. Even lower power settings might be necessary to 

keep the error in 200 kHz measurements below 0.5 dB. 

7.2. Experiment 

Some measurements of area backscattering coefficients of mackerel schools are 

presented in the following. High and low power settings are used for the 

120 kHz and 200 kHz operating frequencies. The experimentally obtained 

backscattering coefficients are compared, and the results are held together with 

the theoretical results from Section 7.1.3. 
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7.2.1. Measurement of area backscattering coefficient 

Echo sounder measurements on mackerel were performed from RV G. O. Sars 

during a survey in the North Sea in November 2004. A Simrad EK60 echo 

sounder operated simultaneously with transceivers and transducers for 18 kHz, 

38 kHz, 70 kHz, 120 kHz, 200 kHz and 364 kHz frequencies. The six 

transducers are mounted closely together for optimal overlap between their 

sound beams.
141
 The vessel crossed back and forth over an area with several 

fish schools while the power settings for the 120 kHz and 200 kHz were 

alternated between low and high for each crossing. The “low” power settings 

are 250 W and 120 W, respectively, while the “high” setting is 1000 W for 

both frequencies. Measurements were made over a few hours on two 

consecutive days. Most of the fish schools extended from approximately 25 m 

to 75 m–100 m. Example echograms are shown in Figure 7.6. 39 passes over 

mackerel schools were recorded (Table 7.2). The measurements are referred to 

as measurement set G2 in Table 6.1. 

The echo sounders were calibrated using the low power settings immediately 

before the survey cruise. This was during the same stay at Uggdalseid as when 

the G1 measurements were made as part of the present work (Chapter 6). CTD 

data for the G1 and G2 measurement sets are shown in Figure 6.8. 

The nautical area scattering coefficient sA is measured in m
2
/nmi

2
 (nmi is 

nautical mile) and defined as (2.37) 

sA = 4π(1852)
2
sa. 

Mean sA for each school are calculated with the Simrad BI60 post processing 

software. The results are shown in Table 7.2. The values obtained at 120 kHz 

with the 250 W power setting, range from 450 m
2
/nmi

2
 to 10500 m

2
/nmi

2
. The 

average is 3235 m
2
/nmi

2
, and the standard deviation is 2900 m

2
/nmi

2
. 
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The relative frequency response r(f) is defined as the volume backscattering 

coefficient measured with the operating frequency f, divided by that measured 

simultaneously in the same volume at 38 kHz,
142,141

 

( )
( )

(38 kHz)

v

v

s f
r f

s
≡ . (7.12) 

For the purpose of the present investigation, the relative area backscatter 

frequency response ra(f) is here defined correspondingly, 

( ) ( )
( )

(38 kHz) (38 kHz)

a A
a

a A

s f s f
r f

s s
≡ = . (7.13) 

Table 7.2 shows the measurement results for the 39 passes that were made over 

fish schools. The entries have been sorted after which combination of echo 

sounder power settings has been used. The results are plotted in terms of 

Ra(f) = 10 log10 ra(f)  in Figure 7.5. The measurement results indicate a clear 

difference between Ra(f) measured with high and low power settings. For the 

200 kHz operating frequency, increasing the power setting from 120 W to 

1000 W yields an approximate decrease of 3 dB in Ra(200 kHz). When the 

120 kHz output power setting is switched from 250 W to 1000 W, Ra(120 kHz) 

decreases with approximately 1 dB. 

The 3 data points in each of Figures 7.5a and 7.5b that deviate the most 

strongly from the general trend are due to measurements 8, 26, and 38 

(Table 7.2). sA(38 kHz) is less than 150 in all three measurements. Stable ra(f) 

measurements are not expected for such small sA, possibly indicating that e.g. 

backscatter from only the periphery of a fish school has been measured.
145
 

The power dependence of the echo sounder measurement results is ascribed to 

nonlinear attenuation in the water. Using too high output powers can clearly 

yield errors in volume and area backscattering coefficients measured at 

120 kHz and 200 kHz operating frequencies. The 200 kHz frequency is the 

most sensitive to the power setting of the two. Stronger nonlinear attenuation is 
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expected for higher operating frequencies such as 364 kHz and 400 kHz. 

Because of the integration over the sound beam, the nonlinear attenuation has 

somewhat less effect on volume scattering measurements than on target 

strength measurements along the sound beam axis. 

Table 7.2. Nautical area scattering coefficients sA obtained through post processing of the G2 

measurement set, using the BI60 software. The unit for sA is m
2
/nmi

2
. 

measurement 

number 

sA(38 kHz) 

(2000 W) 

sA(120 kHz) 

250 W 

sA(120 kHz) 

1000 W 

sA(200 kHz) 

120 W 

sA(200 kHz) 

1000 W 

1 3616 6105 - 10082 - 

2 2749 4931 - 7864 - 

3 1568 3146 - 4887 - 

4 2116 3636 - 6333 - 

5 377 735 - 1206 - 

6 1250 2374 - 3797 - 

7 2194 3807 -  - 

8 105 518 - 651 - 

9 4141 8318 - 13184 - 

10 5707 10484 - 18865 - 

11 4146 7559 - 12842 - 

12 5271 8996 - 15512 - 

13 886 1628 - 3221 - 

14 339 671 - 1173 - 

15 1976 3600 - 6833 - 

16 758 1441 - 2457 - 

17 672 - - 2156 - 

18 521 1104 - 1895 - 

19 1093 1983 - 3621 - 

20 808 1706 - 3620 - 

21 1495 3000 - 5865 - 

22 831 1699 - 2900 - 
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23 484 1040 - - - 

24 229 449 - - - 

25 659 1288 - - 1220 

26 134 664 - - 525 

27 2113 - 3062 - 2942 

28 1075 - 1377 - 1671 

29 1623 - 2183 - 2723 

30 1365 - 1921 - 2275 

31 847 - 1027 - 1252 

32 2755 - 3560 - 4218 

33 851 - 1361 - 1553 

34 3841 - 5377 - 6311 

35 5241 - 5879 - 6672 

36 755 - 1201 - 1287 

37 591 - 929 1709 - 

38 132 - 510 830 - 

39 995 - 1994 3228 - 

7.2.2. Comparison with simulation results 

Measured values for the area backscattering coefficient sa (Equation (2.36)) can 

be compensated for nonlinear attenuation by replacing sv with sv,n, 

2

1

,n ,n

z

a v

z

s s dz= ∫ . (7.14) 

If uniform backscatter is assumed in the depth layer [z1, z2], so that sv,n is 

constant within this interval, one can write 

2

2

1

2

1

1

1

,n
,n

2 1 ,n
,n
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1

z
z

v
za v

z
va vz

v
z
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s dzs s
dz
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∫
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 223 

sa,n/sa should thus be similar to the average sv,n/sv across a narrow depth layer. 

The integrand sv/sv,n is substituted from Equation (7.5). 

The differences between Ra(f) values from measurements using different output 

powers are compared with the differences between corresponding simulation 

results for 10 log10(sv,n/sv) (Figure 7.2). The measurement results yield 

approximately 3 dB loss for the 200 kHz operating frequency and 1 dB for the 

120 kHz operating frequency. The corresponding simulation results for 

10 log10(sv,n/sv) at distances between 50 m and 100 m are 2.4 dB and 0.6 dB for 

the two operating frequencies, respectively (Figure 7.2). The discrepancies 

between simulation and measurement results are thus approximately 0.6 dB 

and 0.4 dB for the two frequencies. It is likely that more accurate simulation 

results can be obtained by accounting more correctly for absorption in seawater 

(cf. Section 6.2.2). 
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Figure 7.5. Measured area backscatter relative frequency response from measurement set G2. 

a) ra(200 kHz) from sA measurements with 120 W and 1000 W power settings. b) ra(120 kHz) from sA 

measurements with 250 W and 1000 W power settings. 
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Figure 7.6. Example fish schools from the G2 measurement set. The displayed echograms 

are screen shots from the Simrad BI60 post processing software. The frequencies and EK60 

power settings are 200 kHz, 1000 W (top) and 120 kHz, 250 W (bottom). 
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Chapter 8. Conclusion 

A summary of the presented work and its conclusions is given in Section 8.1. 

In Section 8.2, suggestions are made for future investigations. 

8.1. Summary 

Tichy et al.
234

 presented measurement and simulation results for the axial field 

of a 200 kHz fisheries research echo sounder in fresh water. The results 

indicate a potential error in target strength measurements caused by excess 

attenuation due to nonlinear effects. Tichy et al. suggested that an adjustment 

should be made to measured target strengths to account for nonlinear 

attenuation. They also recommended that low transmitted power should be 

used in order to minimize the nonlinear effects.
234
 The results obtained by 

Tichy et al. raised questions regarding the nonlinear attenuation in sea water 

under the various conditions encountered in fisheries research. The nonlinear 

attenuation on and off the sound beam axis and at relevant distances from the 

sound source are of interest. In addition to the consequences for target strength 

measurements, it is also necessary to determine how nonlinear attenuation 

affects measurements of the volume backscattering coefficient. 

Nonlinear sound propagation effects depend on several factors such as 

properties of the sound source, operating frequency, sound intensity, 

temperature, salinity, pressure (depth), propagation distance, absorption, and 

gas bubbles and other particles in the water. In the present work, measurements 

and simulations have been made for 120 kHz and 200 kHz echo sounders in 

fresh water and seawater with a few different salinities and water temperatures. 

The axial fields and radiation patterns have been investigated experimentally 

with a calibrated hydrophone, by target strength measurements using a 
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reference target, and by echo sounder measurements on fish schools. The 

measurement results have been compared with numerical simulations based on 

the Khokhlov-Zabolotskaya-Kuznetsov
151,271

 second order parabolic wave 

equation. A goal for the work has been to provide a basis for reducing or 

correcting for measurement errors in fisheries research due to nonlinear 

attenuation. Measurements of both target strength and the volume 

backscattering coefficient have been investigated. 

A version of the Bergen Code
44,45,254

 was used for simulating nonlinear sound 

propagation. The relative standard uncertainty of the simulation results was 

estimated for some relevant special cases to ±0.3 dB for the fundamental 

frequency component and ±0.6 dB for the second harmonic. Only the radiated 

field 6º or less off the sound beam axis was considered. Uncertainty 

contributions related to the employed model (KZK equation
151,271

), the 

numerical algorithm, and the input parameters were considered separately. 

Some important factors were not accounted for in the uncertainty estimates. In 

particular, the sound source was taken to be a uniformly vibrating, plane 

circular piston in an infinitely stiff baffle. This idealization deviates from the 

vibration pattern of the sound sources used in the experiments. Moreover, the 

absorption was assumed to increase quadratically with frequency, which can be 

a poor approximation for sea water within some frequency bands.
106
 The 

incorrect absorption is an important contributor to the simulation error for 

sound propagation in seawater. The possible importance of gas bubbles in the 

water has not been addressed in the present work. 

Near field measurements were made to characterize three echo sounder 

transducers as sound sources, and axisymmetric source conditions for use with 

the Bergen Code were obtained from the results. Simulations were carried out 

with the measured source conditions and with uniform piston source 

conditions. The results were compared with each other and with measurement 

results for the radiated sound field in fresh water. The source conditions based 

on near field measurements give improved agreement between the simulations 
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and some of the measurements, in particular off the sound beam axis. The 

uniform piston source condition was however judged the generally best suited 

for prediction of nonlinear attenuation and the amplitude of the generated 

second harmonic component. Quantitative studies for fresh water and seawater 

were therefore based on simulations using the uniform plane piston source 

conditions. 

A calibrated hydrophone was used to measure the sound pressure in the 

radiated fields of Simrad EK60 echo sounders with 120 kHz and 200 kHz 

operating frequencies. In addition, experimental target strength measurements 

were carried out using a calibration sphere as a reference target. Different 

transmit power settings were used in order to investigate the influence of 

transmitted power on nonlinear attenuation and measured target strength. 

Practical considerations limited the hydrophone measurements to distances 

shorter than 10 metres from the sound source both in fresh water and in 

seawater. Target strength measurements were performed with the calibration 

sphere at distances up to approximately 11 metres in fresh water and 50 metres 

in seawater. 

Simulations were compared with the measurements and used to evaluate the 

excess attenuation due to nonlinear effects. The strongest nonlinear effects 

were observed in an indoor fresh water tank. On the sound beam axis at 9 m 

distance from the sound source, the simulated excess attenuations were 0.8 dB 

and 3.3 dB for the 120 kHz and 200 kHz operating frequencies, respectively, 

with the 1000 W power setting. The simulations predict 2.1 dB and 5.5 dB 

nonlinear attenuation for the two frequencies at 100 m distance with the same 

water properties and power setting. The -3 dB beam angle was measured to 3.4º 

for both frequencies with low transmitted power. In fresh water, with the 

1000 W power setting and approximately 9 m from the sound source, the 

measured beam angles were increased to 3.7º and 4.3º, respectively. 

The results from hydrophone measurements in seawater indicate somewhat less 



 228 

nonlinear attenuation than in the room-tempered fresh water. This is ascribed to 

the stronger absorption in seawater. The simulated nonlinear attenuation on the 

sound beam axis at 9 m distance from the source is 0.6 dB and 3.0 dB for the 

120 kHz and 200 kHz operating frequencies, respectively, using the 1000 W 

power setting. At 100 m distance, the simulated nonlinear attenuation becomes 

1.2 dB and 4.1 dB, respectively. Although there is some flattening of the 

second harmonic main lobe due to energy transfer to higher harmonics, it is 

narrower than the main lobe for the fundamental frequency component. 

A second harmonic frequency component is generated through nonlinear 

distortion. For 1000 W and 1500 W power settings most of the measurement 

results for its axial sound pressure level approach -6 dB relative to that of the 

fundamental frequency component. The simulation results tend to indicate 

significantly weaker growth for the second harmonic component. 

For distances shorter than 10 m, the agreement between simulated and 

measured axial sound pressure levels for the fundamental frequency component 

is within approximately 0.5 dB for the fundamental frequency component. The 

simulated difference between target strength results using high and low 

transmitted power seems to agree with the calibration sphere measurements to 

within 0.5 dB for the 200 kHz operating frequency and within 0.9 dB for the 

120 kHz frequency. 

The volume backscattering coefficient for a distribution of small targets is an 

important measurement result in fisheries acoustics. A set of experimental 

measurements on mackerel schools between 25 m and 100 m depths is 

reported. When the 120 kHz power setting was changed from 250 W to 

1000 W, the measured area backscattering coefficient was reduced with 

approximately 1 dB. Similarly, a change from 120 W to 1000 W in the power 

setting for the 200 kHz operating frequency yielded an approximate 3 dB 

reduction in the measured area backscattering coefficient. The measurement 

results and predictions based on Bergen Code simulations seem to agree to 
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within approximately 0.6 dB for volume backscattering measurements. 

The choice of transmitted power is an important factor for the degree of 

nonlinear distortion. It can easily be manipulated both in experiments and in 

practical fisheries research applications. 1000 W is a common upper limit to 

the allowed power settings in both 120 kHz and 200 kHz Simrad EK60 echo 

sounders. It is also the standard transmit power for the same operating 

frequencies in the commonly used echo sounder Simrad EK500. In order to 

avoid nonlinear attenuation, IMR have chosen to limit the power settings to 

250 W for their 120 kHz echo sounders and 120 W for the 200 kHz operating 

frequency.
143

 The current power limits recommended by Simrad
13 2002

 are 

500 W and 100 W, respectively. The simulations carried out in the present 

work indicate less than 0.5 dB nonlinear attenuation with the power settings 

used by IMR for propagation distances less than 300 m. Somewhat stronger 

attenuation is indicated for the 120 kHz operating frequency when the Simrad 

recommendations are used. One should be aware that there is a certain 

discrepancy between measurements and simulations for the 120 kHz operating 

frequency. The simulated nonlinear attenuation is somewhat weaker than 

indicated by the measurement results. The IMR power limits seem preferable to 

those suggested by Simrad.
13 2002

 

The present work provides increased knowledge of the possible errors in target 

strength and volume backscattering measurements due to nonlinear attenuation. 

Measurement results have been presented both for the axial field and for the 

shape of the main lobe, in both fresh water and seawater. Experimental target 

strength measurements have been made with the target at distances up to 50 m 

from the echo sounder transducer, and volume backscattering measurements 

have been made on fish schools under relevant conditions for fisheries 

research. Both 120 kHz and 200 kHz echo sounders have been used. In earlier 

works published in connection with fisheries research, the experimental results 

have been limited to 200 kHz echo sounders in fresh water and 12 m maximum 
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propagation distance.
233,234,193

 Simulations have been made for longer 

distances.
30
 

The utility of the Bergen Code as a tool for predicting nonlinear attenuation 

within the paraxial region has been established up to a certain level, and some 

important uncertainty contributors have been identified. The region of validity 

of the KZK equation seems sufficient for the purpose of compensating for 

nonlinear attenuation in the cases that have been investigated. A method for 

compensating for nonlinear attenuation in volume backscattering 

measurements by means of numerical simulations has been proposed. The 

important contribution of nonlinear attenuation during calibration has been 

taken into account in the compensation. 

The results reported here apply to the described special cases. Generalizations 

should be made with caution. The several assumptions and simplifications that 

have been made in the calculations must be taken into account, as well as the 

level of agreement between the simulation and measurement results. 

8.2. Suggestions for further work 

The degree of nonlinear distortion through sound propagation depends on 

several parameters, such as transmitted power and frequency, the vibration 

pattern of the sound source, propagation distance, temperature, pressure 

(depth), density, salinity, and bubble and particle contents of the water. The 

experimental basis obtained here for compensating for nonlinear effects in echo 

sounder measurements can be improved by collecting measurement data for a 

wider range of relevant salinities and temperatures. The importance of bubble 

layers should be investigated theoretically and experimentally. It is important 

to obtain knowledge of the variability of nonlinear distortion due to such 

factors. 

Quantification of the nonlinear attenuation at higher frequencies than those 
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used in the present work are of interest.
145
 In addition, one could explore the 

possibilities for exploiting nonlinear sound propagation effects in fisheries 

research. Utilizing the generated second harmonic frequency component may 

be one possibility; low-frequency sound generation by means of a parametric 

array could be another. 

The sound propagation distances covered in the present work were 

predominantly 50 m or shorter. Measurements should also be made for longer 

propagation distances of relevance to fisheries acoustics. Sites for hydrophone 

measurements in seawater with 100 m–200 m horizontal propagation distances 

were sought as part of the investigation presented here. Experimental 

measurements were made using floating platforms in a sheltered bay in Os, 

Norway, but results of any value to the present work were not achieved. The 

most important problems were the sound speed profiles and the positioning and 

orientation of the transducers. Target strength measurements with calibration 

spheres were used as an alternative to hydrophone measurements at distances 

between 10 m and 50 m. Further pursuit of this approach should be the most 

effective for investigating the excess attenuation due to nonlinear effects. 

Calibration sphere measurements are normally performed with a research 

vessel or other platform anchored in sheltered coastal waters. Alternatives for 

nonlinearity measurements at sea could be considered. Volume backscattering 

measurements on schools of fish have been tried in the present work. The 

obtained results show promising agreement with theory, and the described 

method can be used during normal survey cruises, i.e., under the same 

conditions as the measurements that are made for fish abundance estimation. A 

great number of repetitions are necessary to obtain sufficient accuracy in 

measurements on fish schools. This is time consuming and somewhat resource 

demanding. 

The numerical algorithm used here may have a potential for predicting the far 

fields more accurately through optimised sound source descriptions. Improved 
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source characteristics can be obtained through further acoustical or optical 

measurements,
125

 and by simulating the behaviour of the echo sounder 

transducers numerically. Measurements for a number of similar transducers 

could give useful information about the variation between vibration patterns. 

Generic source conditions for each transducer type or operating frequency 

could thus be obtained. 

Further investigation of the assumptions and limitations of the theoretical 

model could be advantageous. In the simulations in the present work, constant 

values have been set for the parameters of the water. It could be useful to 

investigate the importance of depth dependent temperature and salinity. Bubble 

layers might also be included in the numerical simulations. The frequency 

dependence of absorption in sea water should be properly accounted for, 

including a correct dispersion relation. 
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Appendix A: List of symbols 

 a uniform piston source radius 

 af radius of transducer face 

 b isothermal sound speed 

 C constant in the calculation of TSlin and TSmeas 

 c0 small-signal sound speed 

 CL capacitance of receiver circuit 

 cP specific heat, constant pressure 

 cV specific heat, constant volume 

 D(θ,ϕ) directivity function 

 dmax distance from hydrophone to farthest point on transducer face 

EL echo level 

E(psim) simulation relative standard uncertainty 

E(qm) relative standard uncertainty in the parameter qm 

Econt model relative standard uncertainty contribution due to the 

assumption of a continuous wave 

Efd numerical relative standard uncertainty contribution due to the 
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finite differences 

Egeom relative standard uncertainty contribution due to a difference in 

beam pattern conventions 

Egrid numerical relative standard uncertainty contribution due to the 

resolution of the numerical grid 

Eharm numerical relative standard uncertainty contribution due to 

spectral truncation 

Eimp numerical relative standard uncertainty contribution due to the 

number and length of initial implicit calculation steps 

Emisc simulation relative standard uncertainty contributions due to 

factors that have not been identified in the present work 

Emodel simulation relative standard uncertainty contribution due to the 

theoretical model 

Enp numerical relative standard uncertainty contributions due to the 

parameters that govern the calculation process 

Enum simulation relative standard uncertainty contribution due to the 

numerical algorithm 

Eorder model relative standard uncertainty contribution due to the 

KZK equation being of second order 

Epar model relative standard uncertainty contribution due to the 

parabolic approximation inherent in the KZK equation 

Eparam relative standard simulation uncertainty contribution due to 

uncertainties in input parameters 

Ernd numerical relative standard uncertainty contribution due to 

rounding or truncation of numeric values 

Es numerical relative standard uncertainty contribution used for 

the extrapolation of Enum from low amplitudes to high 

amplitudes 

Esource model relative standard uncertainty contribution due to the 

description of the sound source 

Esymm model relative standard uncertainty contribution due to the 

assumption of axisymmetry 
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Ewidth numerical relative standard uncertainty contribution due to 

finite with of the numerical grid 

Eα model relative standard uncertainty contribution due to the 

assumption of a quadratic absorption power law 

Em simulation relative standard uncertainty contribution due to the 

parameter qm 

 f frequency 

 fs(ξ) source condition 

 fTVG20 time varying gain function for volume backscattering 

measurement 

 fTVG40 time varying gain function for target strength measurement 

 FZ impedance matching factor 

 G(θ,ϕ) transducer gain function 

 G’(θ,ϕ) receive transducer gain function 

 G0 axial transducer gain 

 G’0 axial receive transducer gain 

 G0,cal apparent axial transmit transducer gain (calibration result) 

 gn Fourier coefficient for simulation result 

 hn Fourier coefficient for simulation result 

 H(θ,ϕ) directional factor 

 i electrical current amplitude (complex) 

 Ibs intensity of backscattered sound at reference distance 0r′  

 Iref reference acoustic intensity,  Iref = 1 W/m
2 

 It intensity of transmitted sound wave 

 It,sph acoustic intensity due to point source 

 IL intensity level 
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 Ia,1, Ia,2, 

 Ib,1, Ib,2 

indicator values for sensitivity analyses, fundamental 

frequency component 

 I’a,1, I’a,2, 

 I’b,1, I’b,2 

indicator values for sensitivity analyses, second harmonic 

frequency component 

  j imaginary unit 

 J1 first order Bessel function of first kind 

 Js spherical reciprocity parameter (complex) 

 k wave number,  k = 2πf/c0 

 lD plane wave shock formation distance 

 lmount dimension on hydrophone mounting arrangement 

 limp length of implicit steps in simulation algorithm 

 lσ length of steps in simulation algorithm 

L  Lagrangian density 

 m index 

 M hydrophone sensitivity (complex) 

 ML end-of-cable loaded hydrophone sensitivity 

 n index (harmonic number) 

 N Fourier transform length 

 Nd number of damped harmonics in simulation algorithm 

 Nh number of harmonics in simulation algorithm 

 Nimp number of implicit steps in simulation algorithm 

 Nu number of numerical grid points in transverse direction 

 NA nonlinear attenuation 

 NAsim simulated nonlinear attenuation 

 p sound pressure amplitude (complex) 
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 prms effective sound pressure 

 pref reference effective sound pressure,  pref = 1 µPa 

 pn sound pressure amplitude for the nth harmonic component 

(complex) 

np′′  sound pressure amplitude for the nth harmonic component after 

damping to reduce spectral truncation artefacts (complex) 

 P pressure 

 P0 equilibrium pressure 

 p’ sound pressure,  p’ = P – P0 

 pinc sound pressure amplitude of incident wave (complex) 

 pn near field sound pressure amplitude (complex) 

 ps source condition sound pressure amplitude (complex) 

 p0 peak sound pressure amplitude of uniform piston source 

condition (real) 

 p0,rms effective sound pressure for uniform piston source condition 

 p1,rms effective sound pressure, fundamental frequency component 

 p2,rms effective sound pressure, second harmonic frequency 

component 

 psim simulated effective sound pressure 

 p1,sim simulated effective sound pressure, fundamental frequency 

component 

 p2,sim simulated effective sound pressure, second harmonic frequency 

component 

 p1,cal simulated effective sound pressure during calibration 

 plin simulated effective sound pressure, linear sound propagation 

 plin,cal simulated effective sound pressure during calibration, linear 

sound propagation 

p  normalized sound pressure,  0 0 0/p p c vρ′=  
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1,simp  normalized simulated sound pressure amplitude, fundamental 

frequency component,  1,sim 1,sim 0,rms/p p p=  

2,simp  normalized simulated sound pressure amplitude, second 

harmonic frequency component,  2,sim 2,sim 0,rms/p p p=  

linp  normalized simulated sound pressure amplitude, linear sound 

propagation,  lin lin 0,rms/p p p=  

 plt sound pressure amplitude from linear theory (complex) 

 ppar sound pressure amplitude from analytical solution of the 

linearized parabolic equation (complex) 

 Pr0 power frequency response of echo sounder system 

 Pt electric transmit power 

 qm physical parameter for simulations 

 r distance from sound source 

 r0 reference distance for sound source,  r0 = 1 m 

0r′  reference distance for backscattering,  0 1 mr′ =  

 rcal distance to calibration sphere during echo sounder calibration 

(calibration distance) 

 rn distance from transducer symmetry axis,  rn = (x
2
+y

2
)
1/2 

 R0 Rayleigh distance,  R0 = ka
2
/2 

 r(f) relative frequency response,  r(f) = sv(f) / sv(38 kHz) 

 ra(f) relative area backscattering frequency response,  

ra(f) = sa(f) / sa(38 kHz) 

 Ra(f) relative area backscattering frequency response in decibels, 

Ra = 10 log10 ra(f) 

 RL receiver circuit resistance 

 RT electric transducer input resistance 

TR′  electric transducer output resistance 
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 S current source sensitivity (complex) 

 SV voltage source sensitivity 

 s entropy,  s = s0 + s’ 

 s’ entropy perturbation 

 s0 entropy at equilibrium 

 sa area backscattering coefficient  [m
2
/m

2
] 

 sA nautical area scattering coefficient (NASC)  [m
2
/nmi

2
] 

 sa,n area backscattering coefficient compensated for linear 

attenuation 

 sv volume backscattering coefficient  [m
2
/m

3
] 

 sv,n volume backscattering coefficient compensated for linear 

attenuation 

 SL source level 

 SPL sound pressure level 

 s(qm) relative sensitivity coefficient due to the parameter qm 

 t time 

 t’ retarded time 

 t0 start time for near field measurement time window 

 t0,axis start time for near field measurement time window, rn = 0 

 tend end time for near field measurement time window 

 ∆t sample interval 

 T temperature 

 T' transformed beam equation pressure variable,  (1 )T pσ′ = +  

 TL transmission loss 

 TS target strength 
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 TSlin apparent target strength, nonlinear attenuation absent 

 TSmeas apparent target strength, nonlinear attenuation present 

 TSunc uncompensated target strength (beam compensation function 

not applied) 

 TVR transmit voltage response 

 U voltage amplitude (complex) 

 U0 open circuit voltage amplitude (complex) 

 U(t) electric voltage 

ˆ ( )U f  Fourier transform of voltage signal 

 Ut effective transmit voltage (rms) 

 u transformed transverse coordinate,  u = ξξξξ/(1 + σ) 

 u transformed distance from the sound beam axis,  u = |u| 

 umax width of numerical grid 

 u(psim) standard uncertainty 

 V volume 

 V0 volume 

 v = (v1,v2,v3) particle velocity 

 v particle speed,  v = |v| 

 v0 particle speed peak amplitude for uniform piston source 

condition (real) 

 W EK60 power setting 

 (x,y,z) Cartesian coordinates, z axis coincides with the sound beam 

axis 

 x = (x1,x2,x3) Cartesian coordinates (KZK equation), x3 axis coincides with 

the sound beam axis 

1 2 3( , , )x x x′ ′ ′  slow scale coordinates 
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 XL receiver circuit reactance 

 XT electric transducer input reactance 

TX ′  electric transducer output reactance 

 ZH electric hydrophone output impedance 

 ZL receiver circuit impedance 

 ZT electric transducer input impedance 

TZ ′  electric transducer output impedance 

 

α absorption coefficient  [dB/m] 

α’ absorption coefficient,  α’ = α2f
 2
   [Np/m] 

α2 absorption coefficient  [Np/m/Hz
2
] 

α’0 absorption coefficient  [Np/m/Hz
γ
] 

β nonlinearity coefficient 

δ sound diffusivity 

ε acoustic Mach number 

ε�  ordering parameter 

φn phase of pn (near field measurements) 

φs phase of ps (near field measurements) 

ϕ azimuth angle 

γ real exponent in absorption power law 

η electroacoustic efficiency (transducer description) 

η Stokes’ number (nonlinear sound propagation) 

κ heat conductance 
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λσ step length parameter 

µ shear viscosity 

µB bulk viscosity 

θ polar angle 

θx along ship angle 

θy athwart ship angle 

θ-3 dB -3 dB beam angle 

θ-3 dB,x along ship -3 dB beam width 

θ-3 dB,y athwart ship -3 dB beam width 

∆θx along ship angle offset 

∆θy athwart ship angle offset 

ρ density,  ρ = ρ0 + ρ’ [kg/m
3
] 

ρ’ density perturbation 

ρ0 equilibrium density 

σbs backscattering cross-section 

σbs,eff effective backscattering cross-section 

σsp spherical scattering cross-section 

τ sound burst duration 

τ’ dimensionless retarded time 

τp transformed retarded time 

Ω solid angle 

ω angular frequency,  ω = 2πf 
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(ξ1,ξ2,σ) dimensionless coordinates,  (ξ1,ξ2,σ) = (x1/a, x2/a, x3/R0) 

ξξξξ    dimensionless transverse coordinates,  ξξξξ = ξ1e1 + ξ2e2 

ξ dimensionless distance from the sound beam axis, ξ = |ξξξξ| 

ξmax(σ) dimensionless width of the numerical grid 

∆ξ dimensionless distance between numerical grid points in the 

transverse direction 

ψ two-way effective beam angle 

Ψ two-way effective beam angle,  Ψ = 10·log10 (ψ / 1 steradian) 

ψn compensated two-way effective beam angle 

Ψlin simulated two-way effective beam angle, linear propagation 

2

⊥∇  transverse Laplacian operator 

2

⊥∇  dimensionless transverse Laplacian operator 

2∇
u
 transformed dimensionless transverse Laplacian operator 

 

Appendix B: Bergen Code program listing 

      PROGRAM BEAM 
      IMPLICIT NONE 
      INTEGER IXMAX,NHARM,NUMBE,NH,NCOEFFWRI,DMPWIDTH,DMPSWITCH,I,IMPSTP 
      INTEGER HARM_DMPWIDTH, HARM_DMPSWITCH 
      PARAMETER (IXMAX=16000,NHARM=50,NUMBE=6,NCOEFFWRI=2) 
      DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2),WINDWX,START,STOP, 
     +                 WBEAM(NUMBE),COEFFWRI_POS(NCOEFFWRI), 
     +                 COLD(NHARM),CNEW(NHARM) 
      DOUBLE PRECISION KHALF(NHARM),NONLI(0:IXMAX,NHARM,2), 
     +                 A(2,2, - 1:1,0:IXMAX),W(2,0:IXMAX), 
     +                 F(2,0:IXMAX),WORK(12*IXMAX+12),IMP_STL 
      DOUBLE PRECISION FREQ,RADIUS,SSPEED,ALPHA2,BETA,MACH,PI, 
     +                 R0,RD,K,RHO,P0,SOURCE_TP,SOURCE_TA, 
     +                 COEFFPOS(NCOEFFWRI),UPPER_ENERGY,OUTER_ENERGY 
      DOUBLE PRECISION PABSOR,PNONLI,ISSTEP 
      INTEGER SCOUNT,ECOUNT 
      REAL TIME,DTIME,TARRAY(2) 
      REAL DWAX,DWTR 
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      EXTERNAL COEFF,NONLIN,STEPP,BEWRI,BEWRI2,COEFFWRI 
      COMMON /PARAM/PABSOR,PNONLI 
      COMMON /AXSTEP/ISSTEP 
      COMMON /OUTPUT/RADIUS,R0,DWTR,NH 
      COMMON /BRD_DMP/DMPWIDTH,DMPSWITCH 
      COMMON /HARM_DMP/HARM_DMPWIDTH 
      COMMON /WARNINGS/UPPER_ENERGY,OUTER_ENERGY,SCOUNT,ECOUNT 
 
      OPEN (UNIT=10,FILE='tr_amp.bc',STATUS='unknown') 
      OPEN (UNIT=11,FILE='ax_amp.bc',STATUS='unknown') 
      OPEN (UNIT=12,FILE='waveform.bc',STATUS='unknown') 
      OPEN (UNIT=13,FILE='tr_phase.bc',STATUS='unknown') 
      OPEN (UNIT=14,FILE='ax_phase.bc',STATUS='unknown') 
      OPEN (UNIT=15,FILE='settings.log',STATUS='unknown') 
 
      PI = 4*ATAN(1.0D0) 
C 
C 
C     PHYSICAL PARAMETERS 
C     Frequency [Hz] 
      FREQ = 121.212D3 
C     Amplitude at the sound source [Pa] 
      P0 = 396.D3 
C     Source radius [m] (X = x/RADIUS) 
      RADIUS = 52.8D-3 
C 
C     Sound speed [m/s] 
      SSPEED = 1462.D0 
C     Convergence tests: 1500 m/s 
C 
C     Absorption constant [Np/m/Hz^2] 
      ALPHA2 = 2.25D-13 
C     Coefficient of nonlinearity 
      BETA = 3.48 
C 
C     Density [kg/m^3] 
      RHO = 1025.1D0 
C 
C     Wave number 
      K = 2*PI*FREQ/SSPEED 
C     Rayleigh distance [m] (sigma = z/r0) 
      R0 = RADIUS**2*K/2 
C     Shock distance [m] 
C      mach = p/rho/sspeed**2 
C      rd = 1/(beta*mach*k) 
      RD = RHO*SSPEED**2/BETA/K/P0 
 
      PABSOR = ALPHA2*FREQ**2*R0 
      PNONLI = R0/RD 
C 
C     CALCULATION GRID 
C     Number of fully implicit steps 
      IMPSTP = 10 
C     Step length when the fully implicit method is used 
      IMP_STL = 5.5D-3 
C     Factor for calculating the step sizes when using the 
C     Richtmeyer procedure (see STEPP) 
      ISSTEP = 2.D-4 
C     Width of the calculation area (source radii at z=0) 
      WINDWX = 10. 
C 
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C     DAMPING AT THE BORDER OF THE CALCULATION AREA 
C     Number of points submitted to damping 
      DMPWIDTH = 2000 
C     Choice of damping method at the border of the calculation area; 
C     0:No damping, 1:Linear damping, 2:Sine curve damping, 
C     3:Newtonian friction flow relaxation scheme (Ystad, Berntsen) 
      DMPSWITCH = 0 
C 
C     DAMPING OF THE HIGHEST HARMONIC COMPONENTS 
C     Number of harmonics to be affected by the damping scheme 
      HARM_DMPWIDTH = 20 
C     Turn damping of the highest harmonic components on or off 
C     0:No damping, 1:Parabolic damping (analog to the FRS above) 
      HARM_DMPSWITCH = 0 
C 
C     TAPERING OF THE SOURCE 
C     Radius for the inner area of the source with amplitude 1 
C     [Outer source radii (RADIUS)] 
      SOURCE_TP = 1.D0 
C     Amplitude of the outer ring, 
C     "SOURCE_TA = 1." means no tapering. 
      SOURCE_TA = 1.D0 
C 
C     Initialise warning parameters 
      UPPER_ENERGY = 0.D0 
      OUTER_ENERGY = 0.D0 
      SCOUNT = 0.D0 
      ECOUNT = 0.D0 
C 
C     OUTPUT 
C     Number of harmonics written to file. 
C     (It may be necessary to edit the FORMAT statements in bewri.f 
C     when this parameter is changed.) 
      NH = 5 
C     Distance between written data points along the beam axis 
C      DWAX = 1.D-2/R0 
      DWAX = 0. 
C     Distance between written data points in the transverse direction 
      DWTR = 0. 
C 
C     Positions on the z-axis for recording the solution in the 
C     transverse direction. Also determines z_max (STOP). 
      WBEAM(1) = 5.0D0/R0 
      WBEAM(2) = 10.0D0/R0 
      WBEAM(3) = 20.0D0/R0 
      WBEAM(4) = 35.0D0/R0 
      WBEAM(5) = 50.0D0/R0 
      WBEAM(6) = 100.0D0/R0 
C     Positions on the z-axis for recording all the coefficients 
      COEFFWRI_POS(1) = 10.D0/R0 
      COEFFWRI_POS(2) = 50.D0/R0 
C 
C     Write settings to log file 
C 
      WRITE(15,*) '*** Log file ***' 
      WRITE(15,*) 
      WRITE(15,*) 
      WRITE(15,*) '--- Input parameters ---' 
      WRITE(15,*) 
      WRITE(15,*) 'FREQ:    ',SNGL(FREQ) 
      WRITE(15,*) 'P0:      ',SNGL(P0) 
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      WRITE(15,*) 'RADIUS:  ',SNGL(RADIUS) 
      WRITE(15,*) 'SSPEED:  ',SNGL(SSPEED) 
      WRITE(15,*) 'ALPHA2:  ',SNGL(ALPHA2) 
      WRITE(15,*) 'BETA:    ',SNGL(BETA) 
      WRITE(15,*) 'RHO:     ',SNGL(RHO) 
      WRITE(15,*) 
      WRITE(15,*) 
      WRITE(15,*) 'IXMAX:   ',IXMAX 
      WRITE(15,*) 'NHARM:   ',NHARM 
      WRITE(15,*) 'IMPSTP:  ',IMPSTP 
      WRITE(15,*) 'IMP_STL: ',SNGL(IMP_STL) 
      WRITE(15,*) 'ISSTEP:  ',SNGL(ISSTEP) 
      WRITE(15,*) 'WINDWX:  ',SNGL(WINDWX) 
      WRITE(15,*) 
      WRITE(15,*) 'Damping of the solution near the outer border' 
      WRITE(15,*) 'of the calculation region' 
      WRITE(15,*) 'DMPSWITCH: ',DMPSWITCH 
      WRITE(15,*) 'DMPWIDTH:  ',DMPWIDTH 
      WRITE(15,*) 
      WRITE(15,*) 'Damping of the upper harmonics' 
      WRITE(15,*) 'HARM_DMPSWITCH: ',HARM_DMPSWITCH 
      WRITE(15,*) 'HARM_DMPWIDTH:  ',HARM_DMPWIDTH 
      WRITE(15,*) 
      WRITE(15,*) 'Tapering of the sound source' 
      WRITE(15,*) 'SOURCE_TP: ',SNGL(SOURCE_TP) 
      WRITE(15,*) 'SOURCE_TA: ',SNGL(SOURCE_TA) 
      WRITE(15,*) 
      WRITE(15,*) '--- Calculated parameters ---' 
      WRITE(15,*) 
      WRITE(15,*) 'k: ',SNGL(K) 
      WRITE(15,*) 'ka: ',SNGL(K*RADIUS) 
      WRITE(15,*) 'r0: ',SNGL(R0) 
      WRITE(15,*) 'rd: ',SNGL(RD) 
      WRITE(15,*) 
      WRITE(15,*) 'PABSOR: ',SNGL(PABSOR) 
      WRITE(15,*) 'PNONLI: ',SNGL(PNONLI) 
      WRITE(15,*) 
      WRITE(15,*) '--- Output ---' 
      WRITE(15,*) 'NH: ',NH 
      WRITE(15,*) 'DWAX: ',SNGL(DWAX) 
      WRITE(15,*) 'DWTR: ',SNGL(DWTR) 
      WRITE(15,*) 'NUMBE: ',NUMBE 
      WRITE(15,*) 'WBEAM: ',(SNGL(WBEAM(I)),I=1,NUMBE) 
      WRITE(15,*) 'NCOEFFWRI: ',NCOEFFWRI 
      WRITE(15,*) 'COEFFWRI_POS: ',(SNGL(COEFFWRI_POS(I)),I=1,NCOEFFWRI) 
C 
C     Write headers in data output files 
C 
      WRITE(10,20) IXMAX,NH,NUMBE 
      WRITE(13,20) IXMAX,NH,NUMBE 
      WRITE(12,25) NHARM,NCOEFFWRI,FREQ,P0 
20    FORMAT(i5,1x,i5,1x,i5) 
25    FORMAT(i5,1x,i5,1x,e16.10,1x,e16.10) 
C 
C 
C    Initialise the Fourier coefficients 
C 
C     Uniform piston or simple amplitude shading 
      CALL INIT(WINDWX,OMEGA,IXMAX,NHARM,SOURCE_TP,SOURCE_TA) 
C 
cC     Read source condition from file 
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c      CALL INIT2(WINDWX,OMEGA,IXMAX,NHARM) 
C 
C 
C     Integrate the differential equations. 
C 
      START = 0. 
      STOP = MAX(WBEAM(NUMBE),COEFFWRI_POS(NCOEFFWRI)) 
      TIME = DTIME(TARRAY) 
      CALL KZKCYL(OMEGA,IXMAX,NHARM,WINDWX,START,STOP,WBEAM,NUMBE, 
     +            COEFFWRI_POS,NCOEFFWRI, 
     +            IMPSTP,COEFF,NONLIN,STEPP,BEWRI,COLD,CNEW,KHALF,NONLI, 
     +            A,W,F,WORK,DWAX,IMP_STL,HARM_DMPSWITCH) 
      TIME = DTIME(TARRAY) 
      WRITE(15,*) 
      WRITE(15,*) '--- Performance ---' 
      WRITE(15,*) 
      WRITE(15,*) 'Time: ',TIME 
      WRITE(15,*) 
      WRITE(15,*) '--- Warnings ---' 
      WRITE(15,*) 
      WRITE(15,*) 'Square sums of the omega values close to' 
      WRITE(15,*) 'the boundaries of the calculation region' 
      WRITE(15,*) 
      WRITE(15,*) 'UPPER_ENERGY: ',SNGL(UPPER_ENERGY) 
      WRITE(15,*) 'OUTER_ENERGY: ',SNGL(OUTER_ENERGY) 
      WRITE(15,*) 
      WRITE(15,*) 'Step count:   ',SCOUNT 
      WRITE(15,*) 'Wrong ratios: ',ECOUNT 
      CLOSE(10) 
      CLOSE(11) 
      CLOSE(12) 
      CLOSE(13) 
      CLOSE(14) 
      CLOSE(15) 
      STOP 
      END 

 

      SUBROUTINE KZKCYL(OMEGA,IXMAX,NHARM,WINDWX,START,STOP,WBEAM,NUMBE, 
     +                  COEFFWRI_POS,NCOEFFWRI, 
     +                  IMPSTP,COEFF,NONLIN,STEPP,BEWRI,COLD,CNEW,KHALF, 
     +                  NONLI,A,W,F,WORK,DWAX,IMP_STL,HARM_DMPSWITCH) 
C 
C***BEGIN PROLOGUE KZKCYL 
C***AUTHOR Jarle Berntsen, University of Bergen, 
C          EDB-senteret, Herman Fossgt 6, 5007 Bergen, NORWAY. 
C***PURPOSE KZKCYL computes approximations to the Khokhlov- 
C           Zabolotzkaya-Kuznetsov equation,see [1,2]. 
C           After a Fourier-series expansion of the pressure, 
C           we may compute approximations to the KZK equation by 
C           solving a system of nonlinear parabolic equations of 
C           the form: 
C 
C        dg(n)/dsigma = -c(n,sigma)g(n) + k(n,sigma)Laplacian(h(n)) + 
C                         il1(n,sigma,g,h) 
C 
C        dh(n)/dsigma = -c(n,sigma)h(n) - k(n,sigma)Laplacian(g(n)) + 
C                         il2(n,sigma,g,h) 
C 
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C 
C   g(n) and h(n) are interchanged with respect to 
C   Aanonsen et al. (1984) 
C 
C           The terms on the right hand side of the equality sign are 
C           due to (from left to right) absorbtion, diffraction and 
C           nonlinearity. 
C           In KZKCYL the Laplacian is cylindrical coordinates. 
C 
C***DESCRIPTION Two numerical techniques are applied in KZKCYL in order 
C               to compute approximations to the system of equations 
C               given above. 
C               For uniform sources which are of particular interest, 
C               Gibbs oscillations appear in the numerical solution. 
C               In order to damp these we first take a few steps with 
C               a fully implicit method. 
C               In order to control the damping 
C               the S first harmonics of the Fourier expansion 
C               of the initial values are kept to 99.9 per cent of 
C               their full strength. 
C               S is set as a parameter in KZKCYL. 
C 
C               After having removed the Gibbs oscillations we continue 
C               with the Trapezoidal rule (or Crank-Nicolson method or 
C               on this particular problem, Richtmyers procedure) 
C               which has 2'nd order accuracy and is unconditionally 
C               stable. 
C 
C               The linear systems of equations that have to be solved 
C               in each step are solved with the routine TRIDIA. 
C 
C   ON ENTRY 
C 
C     OMEGA  Real array of dimension (0:IXMAX,NHARM,2). 
C            Contains in each step approximative values to g(n) and 
C            h(n). 
C            The first index defines the values of x for which g(n) 
C            and h(n) are approximated. 
C            The second index defines the harmonic number. 
C            If the last index is 1, approximations to g(n) are given. 
C            If the last index is 2, approximations to h(n) are given. 
C            On entry OMEGA must specify the initial values of g(n) 
C            and h(n). 
C 
C     IXMAX  Integer. 
C            Defines the number of interior grid points. 
C 
C     NHARM  Integer. 
C            Defines the number of harmonics retained in the numerical 
C            solution. 
C 
C     WINDWX Real. 
C            WINDWX is the upper limit of x. 
C 
C     START  Real. 
C            The starting value of sigma. 
C 
C     STOP   Real. 
C            The final value of sigma. 
C 
C     WBEAM  Real array of dimension NUMBE. 
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C            Specifies the values of sigma where we want print out 
C            of OMEGA. 
C 
C     NUMBE  Integer. 
C            The length of the array WBEAM. 
C 
C     COEFF  Subroutine, supplied by the user. 
C            COEFF must be declared as external in the calling program. 
C            COEFF is called by KZKCYL to compute the coefficients 
C            c(n,sigma) and k(n,sigma). 
C 
C            Its specification is: 
C            SUBROUTINE COEFF(SIGC,SIGK,C,K,NHARM) 
C            INTEGER NHARM 
C            DOUBLE PRECISION SIGC,SIGK,C(NHARM),K(NHARM) 
C 
C            SIGC defines on entry the value of sigma for which 
C            you want to compute the coefficients c(n,sigma). 
C 
C            SIGK defines on entry the value of sigma for which 
C            you want to compute the coefficients k(n,sigma). 
C 
C            C contains on exit the 
C            values of c(n,SIGC), n=1,...,NHARM. 
C 
C            K contains on exit the 
C            values of k(n,SIGK), n=1,...,NHARM. 
C 
C     NONLIN Subroutine, supplied by the user. 
C            NONLIN must be declared as external in the calling program. 
C            NONLIN is called by KZKCYL to compute the nonlinear terms 
C            il1(n,sigma,g,h) and il2(n,sigma,g,h). 
C 
C            Its specification is: 
C            SUBROUTINE NONLIN(SIGMA,OMEGA,IXMAX,NHARM,NONLI) 
C            INTEGER IXMAX,NHARM 
C            DOUBLE PRECISION SIGMA 
C            DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2) 
C            DOUBLE PRECISION NONLI(0:IXMAX,NHARM,2) 
C 
C            SIGMA defines on entry the value of sigma for which 
C            you want to compute the nonlinear terms. 
C 
C            OMEGA defines on entry the computed approximations to 
C            g(n) and h(n). 
C 
C            NONLI must on exit contain the nonlinear terms. 
C            If the last index is 1, approx. to il1 is indicated. 
C            If the last index is 2, approx. to il2 is indicated. 
C 
C     STEPP  Real function, supplied by the user. 
C            STEPP must be declared as external in the calling program. 
C            STEPP defines the step size in sigma direction. 
C 
C 
C            Its specification is: 
C            DOUBLE PRECISION FUNCTION STEPP(SIGMA) 
C            DOUBLE PRECISION SIGMA 
C 
C     BEWRI  Subroutine, supplied by the user. 
C            BEWRI must be declared as external in the calling program. 
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C            BEWRI is called by KZKCYL to write information in OMEGA to 
C            file(s). 
C 
C            Its specification is: 
C            SUBROUTINE BEWRI(WINDWX,SIGMA,OMEGA,IXMAX,NHARM) 
C            INTEGER IXMAX,NHARM 
C            DOUBLE PRECISION WINDWX,SIGMA 
C            DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2) 
C 
C  ON RETURN 
C 
C     OMEGA  contains the approximations to g(n) and h(n) at sigma=STOP. 
C 
C     COLD   Real work array of dimension NHARM. 
C 
C     CNEW   Real work array of dimension NHARM. 
C 
C     KHALF  Real work array of dimension NHARM. 
C 
C     NONLI  Real work array of dimension (0:IXMAX,NHARM,2). 
C 
C     A      Real work array of dimension (2,2,-1:1,0:IXMAX). 
C 
C     W      Real work array of dimension (2,0:IXMAX). 
C 
C     F      Real work array of dimension (2,0:IXMAX). 
C 
C     WORK   Real work array of dimension (12*IXMAX+12). 
C 
C***REFERENCES 
C     [1]Zabolotskaya,E.A. and Khokhlov,V.Pa, 
C        Quasi-plane waves in the nonlinear acoustics of confined beams, 
C        Sov.Phys.Acoust.,15,1969,pp.35-40. 
C     [2]Kuznetsov,V.P.,Equations of nonlinear acoustics, 
C        Sov.Phys.Acoust.,16,1971,pp.467-470. 
C     [3]Hamilton,M.F. and Naze Tjotta,J. and Tjotta.S, 
C        Nonlinear effects in the farfield of a directive sound source, 
C        J.Acoust.Soc.Am.,78,1985,pp.202-216. 
C     [4]Berntsen,J.,The numerical calculation of the Khokhlov- 
C        Zabolotskaya-Kuznetsov equation for piston sources, 
C        Unpublished paper,1988. 
C***ROUTINES CALLED COEFF,NONLIN,STEPP,BEWRI,TRIDIA 
C***END PROLOGUE KZKCYL 
C 
C   Global variables. 
C 
 IMPLICIT NONE 
     INTEGER IXMAX,NHARM,NUMBE,NCOEFFWRI,IMPSTP,HARM_DMPSWITCH 
     DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2),WINDWX,START,STOP, 
    +                 WBEAM(NUMBE),STEPP,COLD(NHARM),CNEW(NHARM), 
    +                 KHALF(NHARM),NONLI(0:IXMAX,NHARM,2),IMP_STL, 
    +                 A(2,2, - 1:1,0:IXMAX),W(2,0:IXMAX),F(2,0:IXMAX), 
    +                 WORK(12*IXMAX+12),COEFFWRI_POS(NCOEFFWRI) 
     DOUBLE PRECISION UPPER_ENERGY,OUTER_ENERGY 
     INTEGER ECOUNT,SCOUNT 
     DOUBLE PRECISION PREVHARM,THISHARM 
     REAL DWAX 
     EXTERNAL COEFF,NONLIN,STEPP,BEWRI,BEWRI2,COEFFWRI 
     COMMON /WARNINGS/UPPER_ENERGY,OUTER_ENERGY,SCOUNT,ECOUNT 
C 
C   Local variables. 
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C 
     INTEGER L,I,BCOUNT,CCOUNT,S,IS,I1,I2,STEPS,WARNING_FLAG 
     DOUBLE PRECISION STEP,SIG,OLDSIG,SIGMA,R,DIAG,OFFDIA,PI,XSTEP 
     DOUBLE PRECISION SIGC,SIGK,FAKT1,FAKT2 
     REAL WAX 
C 
C   IMPSTP is the number of initial fully implicit steps. 
C   The strength of the S first harmonics in the Fourier expansion of 
C   the initial values must not be damped more than 0.1 percent when 
C   taking the IMPSTP initial steps. 
C 
     PARAMETER (S=20) 
C 
C***FIRST EXECUTABLE STATEMENT KZKCYL 
C 
C     Calculation of the number of steps that is needed, 
C     in order to make an estimate of the progress. 
C 
     STEPS = IMPSTP - 1 
     SIGMA = START 
5    CONTINUE 
     SIGMA = SIGMA + STEPP(SIGMA) 
     STEPS = STEPS + 1 
     IF(SIGMA.LT.STOP) THEN 
        GO TO 5 
     END IF 
C 
C     Start of the calculation 
C 
     WRITE(*,*) 'Starting the calculations.' 
     PI = 4*ATAN(1.D0) 
     BCOUNT = 1 
     CCOUNT = 1 
     SIGMA = START 
     WAX = START 
     WARNING_FLAG = 0 
C 
C   By setting START = STOP, we may print out the initial values. 
C 
     IF (START.EQ.STOP) THEN 
        CALL BEWRI(WINDWX,SIGMA,OMEGA,IXMAX,NHARM) 
        GO TO 999 
     END IF 
     XSTEP = ABS(WINDWX)/DBLE(IXMAX+1) 
     SIGC = SIGMA 
     SIGK = SIGMA 
     CALL COEFF(SIGC,SIGK,COLD,KHALF,NHARM) 
C 
C   Go IMPSTP steps with the fully implicit method. 
C 
     DO 100 IS = 1,IMPSTP 
C 
C   Choose the step size such that the S first eigenvectors are 
C   kept to 99.9 per cent of their initial strength after IMPSTP 
C   steps. 
C         STEP = SQRT(2./ (50000.*IMPSTP))* (2*WINDWX)**2/ 
C    +           (ABS(KHALF(1))*S**2*PI**2) 
         STEP = IMP_STL 
         SIG = SIGMA + STEP 
         OLDSIG = SIGMA 
         IF (BCOUNT.LE.NUMBE) THEN 
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             SIGMA = MIN(SIG,WBEAM(BCOUNT),STOP) 
         ELSE 
             SIGMA = STOP 
         END IF 
         STEP = SIGMA - OLDSIG 
C 
C   Compute the coefficients and the nonlinear 
C   contributions. 
C 
     SIGC = SIGMA 
     SIGK = SIGMA 
     CALL COEFF(SIGC,SIGK,CNEW,KHALF,NHARM) 
     CALL NONLIN(SIGMA,OMEGA,IXMAX,NHARM,NONLI) 
     R = STEP/XSTEP**2 
C 
C   Loop for each harmonic L. 
C 
     DO 50 L = 1,NHARM 
C 
C   Set up the appropriate systems of equations in the 
C   way required for TRIDIA. 
C 
     DIAG = 1 + STEP*CNEW(L) 
     OFFDIA = 2*R*KHALF(L) 
C 
C   First the diagonal 2*2 sub-matrices. 
C 
              A(1,1,0,0) = DIAG 
              A(1,2,0,0) = 2*OFFDIA 
              A(2,1,0,0) = - A(1,2,0,0) 
              A(2,2,0,0) = DIAG 
              DO 10 I = 1,IXMAX 
                  A(1,1,0,I) = DIAG 
                  A(1,2,0,I) = OFFDIA 
                  A(2,1,0,I) = - OFFDIA 
                  A(2,2,0,I) = DIAG 
10            CONTINUE 
C 
C   Then the sub-matrices above the diagonal. 
C 
              A(1,2,1,0) = - 2*OFFDIA 
              A(2,1,1,0) = - A(1,2,1,0) 
              DO 20 I = 1,IXMAX - 1 
                  A(1,2,1,I) = - OFFDIA* (1+1/DBLE(2*I))/2 
                  A(2,1,1,I) = - A(1,2,1,I) 
20            CONTINUE 
C 
C   and the sub-matrices below the diagonal. 
C 
              DO 30 I = 1,IXMAX 
                  A(1,2, - 1,I) = - OFFDIA* (1-1/DBLE(2*I))/2 
                  A(2,1, - 1,I) = - A(1,2, - 1,I) 
30            CONTINUE 
C 
C   Define the right hand side. 
C 
              DO 40 I = 0,IXMAX 
                  F(1,I) = OMEGA(I,L,1) + STEP*NONLI(I,L,1) 
                  F(2,I) = OMEGA(I,L,2) + STEP*NONLI(I,L,2) 
40            CONTINUE 
C 



 275 

C   Solve the system of equations. 
C 
              I1 = 1 
              I2 = I1 + 8*IXMAX + 8 
              CALL TRIDIA(A,IXMAX+1,W,F,WORK(I1),WORK(I2)) 
C 
C   Insert the solution in OMEGA. 
C 
              DO 45 I = 0,IXMAX 
                  OMEGA(I,L,1) = W(1,I) 
                  OMEGA(I,L,2) = W(2,I) 
45            CONTINUE 
C 
C   Add square sums to the warning variables 
C 
         DO 47 I = IXMAX-2,IXMAX 
    OUTER_ENERGY = OUTER_ENERGY 
     +       + W(1,I)**2 + W(2,I)**2 
47   CONTINUE 
   IF (L.GE.(NHARM-2)) THEN 
     DO 48 I = 0,IXMAX 
    UPPER_ENERGY = UPPER_ENERGY 
     +       + W(1,I)**2 + W(2,I)**2 
48     CONTINUE 
   ENDIF 
C 
C Count how many times the Lth harmonic has higher 
C amplitude than the (L-1)th 
C 
   THISHARM = W(1,0)**2 + W(2,0)**2 
   IF (L.GT.1) THEN 
    IF (PREVHARM.LT.THISHARM) THEN 
     ECOUNT = ECOUNT + 1.D0 
     WARNING_FLAG = 1 
    ENDIF 
   ENDIF 
   PREVHARM = THISHARM 
C 
C End loop for each harmonic. 
C 
              COLD(L) = CNEW(L) 
50        CONTINUE 
C 
C Stepcount/warning 
C 
 SCOUNT = SCOUNT + 1.D0 
 IF (WARNING_FLAG.EQ.1) THEN 
  WRITE(6,*) 'Warning: Harmonic higher than its parent' 
  WARNING_FLAG = 0 
 ENDIF 
 
C 
C  Perform damping of the solution near the border of the calculation area 
C 
          CALL BRDDMP(OMEGA,IXMAX,NHARM) 
C 
C Perform damping of the solution's IMP_DMPWIDTH highest harmonic components 
C 
          IF (HARM_DMPSWITCH.EQ.1) THEN 
            CALL HARMDMP(OMEGA,IXMAX,NHARM) 
     END IF 
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C 
C    Save results 
C 
          IF (SIGMA.GE.WAX) THEN 
   CALL BEWRI2(SIGMA,OMEGA,IXMAX,NHARM) 
   WAX = WAX + DWAX 
C 
C             Show progress on screen 
      WRITE(6,60) REAL(SCOUNT)/REAL(STEPS)*100 
          END IF 
60        FORMAT('Progress: ',F5.1,' %') 
 
          IF (BCOUNT.LE.NUMBE) THEN 
              IF (WBEAM(BCOUNT).LE.SIGMA) THEN 
                  CALL BEWRI(WINDWX,SIGMA,OMEGA,IXMAX,NHARM) 
                  BCOUNT = BCOUNT + 1 
              END IF 
          END IF 
     IF (CCOUNT.LE.NCOEFFWRI) THEN 
       IF (COEFFWRI_POS(CCOUNT).LE.SIGMA) THEN 
         CALL COEFFWRI(SIGMA,OMEGA,IXMAX,NHARM) 
         CCOUNT = CCOUNT + 1 
       END IF 
     END IF 
 
          IF (SIGMA.GE.STOP) THEN 
              GO TO 999 
          END IF 
C 
C   End fully implicit loop. 
C 
100   CONTINUE 
 WRITE(*,*) 'Implicit steps complete.' 
C 
C   Continue with the Richtmyer procedure 
C 
105   CONTINUE 
      STEP = STEPP(SIGMA) 
      SIG = SIGMA + STEP 
      OLDSIG = SIGMA 
      IF (BCOUNT.LE.NUMBE) THEN 
          SIGMA = MIN(SIG,WBEAM(BCOUNT),STOP) 
      ELSE 
          SIGMA = STOP 
      END IF 
      STEP = SIGMA - OLDSIG 
C 
C   Compute the coefficients and the nonlinear 
C   contributions. 
C 
      SIGC = SIGMA 
      SIGK = OLDSIG + STEP/2 
      CALL COEFF(SIGC,SIGK,CNEW,KHALF,NHARM) 
      CALL NONLIN(SIGMA,OMEGA,IXMAX,NHARM,NONLI) 
      R = STEP/XSTEP**2 
C 
C   Loop for each harmonic L. 
C 
      DO 150 L = 1,NHARM 
C 
C   Set up the appropriate systems of equations in the 
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C   way required for TRIDIA. 
C 
          DIAG = 1 + STEP*CNEW(L)/2 
          OFFDIA = R*KHALF(L) 
C 
C   First the diagonal 2*2 sub-matrices. 
C 
          A(1,1,0,0) = DIAG 
          A(1,2,0,0) = 2*OFFDIA 
          A(2,1,0,0) = - A(1,2,0,0) 
          A(2,2,0,0) = DIAG 
          DO 110 I = 1,IXMAX 
              A(1,1,0,I) = DIAG 
              A(1,2,0,I) = OFFDIA 
              A(2,1,0,I) = - OFFDIA 
              A(2,2,0,I) = DIAG 
110       CONTINUE 
C 
C   Then the sub-matrices above the diagonal. 
C 
          A(1,2,1,0) = - 2*OFFDIA 
          A(2,1,1,0) = - A(1,2,1,0) 
          DO 120 I = 1,IXMAX - 1 
              A(1,2,1,I) = - OFFDIA* (1+1/DBLE(2*I))/2 
              A(2,1,1,I) = - A(1,2,1,I) 
120       CONTINUE 
C 
C   and the sub-matrices below the diagonal. 
C 
          DO 130 I = 1,IXMAX 
              A(1,2, - 1,I) = - OFFDIA* (1-1/DBLE(2*I))/2 
              A(2,1, - 1,I) = - A(1,2, - 1,I) 
130       CONTINUE 
C 
C   Set up the right hand side. 
C 
          DIAG = 1 - STEP*COLD(L)/2 
          OFFDIA = R*KHALF(L) 
          F(1,0) = DIAG*OMEGA(0,L,1) + 2*OFFDIA* 
     +             (OMEGA(1,L,2)-OMEGA(0,L,2)) + STEP*NONLI(0,L,1) 
          F(2,0) = DIAG*OMEGA(0,L,2) - 2*OFFDIA* 
     +             (OMEGA(1,L,1)-OMEGA(0,L,1)) + STEP*NONLI(0,L,2) 
          DO 140 I = 1,IXMAX - 1 
              FAKT1 = 1 + 1/DBLE(2*I) 
              FAKT2 = 1 - 1/DBLE(2*I) 
              F(1,I) = DIAG*OMEGA(I,L,1) + 
     +                 OFFDIA* (FAKT1*OMEGA(I+1,L,2)-2*OMEGA(I,L,2)+ 
     +                 FAKT2*OMEGA(I-1,L,2))/2 + STEP*NONLI(I,L,1) 
              F(2,I) = DIAG*OMEGA(I,L,2) - 
     +                 OFFDIA* (FAKT1*OMEGA(I+1,L,1)-2*OMEGA(I,L,1)+ 
     +                 FAKT2*OMEGA(I-1,L,1))/2 + STEP*NONLI(I,L,2) 
140       CONTINUE 
          FAKT2 = 1 - 1/DBLE(2*IXMAX) 
          F(1,IXMAX) = DIAG*OMEGA(IXMAX,L,1) + 
     +                 OFFDIA* (FAKT2*OMEGA(IXMAX-1,L,2)- 
     +                 2*OMEGA(IXMAX,L,2))/2 + STEP*NONLI(IXMAX,L,1) 
          F(2,IXMAX) = DIAG*OMEGA(IXMAX,L,2) - 
     +                 OFFDIA* (FAKT2*OMEGA(IXMAX-1,L,1)- 
     +                 2*OMEGA(IXMAX,L,1))/2 + STEP*NONLI(IXMAX,L,2) 
C 
C   Solve the system of equations. 
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C 
          I1 = 1 
          I2 = I1 + 8*IXMAX + 8 
          CALL TRIDIA(A,IXMAX+1,W,F,WORK(I1),WORK(I2)) 
C 
C   Insert the solution in OMEGA. 
C 
          DO 145 I = 0,IXMAX 
              OMEGA(I,L,1) = W(1,I) 
              OMEGA(I,L,2) = W(2,I) 
145       CONTINUE 
C 
C   Add square sums to the warning parameters 
C 
     DO 147 I = IXMAX-2,IXMAX 
   OUTER_ENERGY = OUTER_ENERGY 
     +      + W(1,I)**2 + W(2,I)**2 
147  CONTINUE 
  IF (L.GE.(NHARM-2)) THEN 
   DO 148 I = 0,IXMAX 
    UPPER_ENERGY = UPPER_ENERGY 
     +       + W(1,I)**2 + W(2,I)**2 
148   CONTINUE 
  ENDIF 
C 
C Count how many times the Lth harmonic has higher 
C amplitude than the (L-1)th 
C 
  THISHARM = W(1,0)**2 + W(2,0)**2 
  IF (L.GT.1) THEN 
   IF (PREVHARM.LT.THISHARM) THEN 
    ECOUNT = ECOUNT + 1.D0 
    WARNING_FLAG = 1 
   ENDIF 
  ENDIF 
  PREVHARM = THISHARM 
C 
C   End loop for each harmonic. 
C 
          COLD(L) = CNEW(L) 
150   CONTINUE 
C 
C Step count/warning 
C 
 SCOUNT = SCOUNT + 1.D0 
 IF (WARNING_FLAG.EQ.1) THEN 
  WRITE(6,*) 'Warning: Harmonic higher than its parent' 
  WARNING_FLAG = 0 
 ENDIF 
C 
C   Perform damping of the solution near the border of the calculation area 
C 
          CALL BRDDMP(OMEGA,IXMAX,NHARM) 
C 
C Perform damping of the solution's IMP_DMPWIDTH highest harmonic components 
C 
          IF (HARM_DMPSWITCH.EQ.1) THEN 
            CALL HARMDMP(OMEGA,IXMAX,NHARM) 
     END IF 
C 
C    Save results 
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C 
 
          IF (SIGMA.GE.WAX) THEN 
              CALL BEWRI2(SIGMA,OMEGA,IXMAX,NHARM) 
              WAX = WAX + DWAX 
C 
C             Show progress on screen 
   WRITE(6,60) REAL(SCOUNT)/REAL(STEPS)*100 
          END IF 
          IF (BCOUNT.LE.NUMBE) THEN 
            IF (WBEAM(BCOUNT).LE.SIGMA) THEN 
              CALL BEWRI(WINDWX,SIGMA,OMEGA,IXMAX,NHARM) 
              BCOUNT = BCOUNT + 1 
            END IF 
          END IF 
          IF (CCOUNT.LE.NCOEFFWRI) THEN 
            IF (COEFFWRI_POS(CCOUNT).LE.SIGMA) THEN 
              CALL COEFFWRI(SIGMA,OMEGA,IXMAX,NHARM) 
              CCOUNT = CCOUNT + 1 
            END IF 
          END IF 
          IF (SIGMA.GE.STOP) THEN 
            GO TO 999 
          END IF 
C 
C   End Richtmyer loop. 
C 
      GO TO 105 
C 
C***END KZKCYL 
C 
999   RETURN 
      END 
 
 
      SUBROUTINE TRIDIA(A,IXMAX,W,F,L,U) 
C 
C***BEGIN PROLOGUE TRIDIA 
C***AUTHOR Jarle Berntsen, University of Bergen, 
C          EDB-senteret, Herman Fossgt 6, 5007 Bergen, NORWAY. 
C***DATE WRITTEN 880810 
C***PURPOSE 
C       BLOTRI SOLVES A BLOCK-THREE DIAGONAL SYSTEM OF EQUATIONS BY 
C       BLOCK GAUSSIAN ELIMINATION. 
C       40*IXMAX OPERATIONS ARE NEEDED. 
C 
C       THE BLOCKS ARE 2*2. 
C       THE 2*2 SUB-MATRICES BELOW AND ABOVE THE MAIN DIAGONAL OF A MUST 
C       HAVE ZEROS ON THEIR DIAGONALS. 
C 
C***DESCRIPTION 
C 
C       ON ENTRY 
C                A        DOUBLE PRECISION(2,2,-1:1,IXMAX). DEFINES THE 
C                         THREE-DIAGONAL MATRIX. 
C                         THE FIRST TWO INDEXES DEFINES THE POSITION OF 
C                         AN ELEMENT WITHIN A 2*2 SUB-MATRIX. 
C                         THE THIRD INDEX DEFINES THE DISTANCE OF THE 
C                         SUB-MATRIX FROM THE DIAGONAL. 
C                         THE LAST INDEX DEFINES THE ROW NUMBER OF THE 
C                         SUB-MATRIX. 
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C                         THIS INDEX CONVENTION IS ALSO USED FOR L 
C                         AND U. UNCHANGED ON EXIT. 
C 
C                IXMAX     INTEGER. THE NUMBER OF DIAGONAL SUB-MATRICES. 
C 
C                F        DOUBLE PRECISION(2,IXMAX). DEFINES THE 
C                         RIGHT-HAND SIDE. MODIFIED ON EXIT. 
C 
C                L        DOUBLE PRECISION(2,2,-1:0,IXMAX). 
C                         WORKING SPACE 
C                         USED FOR THE SUBMATRICES ON AND BELOW THE 
C                         DIAGONAL 
C                         OF THE L-MATRIX OF THE LU-DECOMPOSITION. 
C 
C                U        DOUBLE PRECISION(2,2,1:1,IXMAX). WORKING SPACE 
C                         USED FOR THE SUBMATRICES ABOVE THE DIAGONAL OF 
C                         THE U MATRIX OF THE LU-DECOMP. 
C                         THE DIAGONAL SUBMATRICES OF U ARE UNIT 2*2. 
C 
C       ON RETURN 
C 
C                W        DOUBLE PRECISION(2,IXMAX). 
C                         CONTAINS THE SOLUTION. 
C 
C***ROUTINES CALLED NONE 
C***END PROLOGUE TRIDIA 
C 
C   Global variables. 
C 
 IMPLICIT NONE 
      INTEGER IXMAX 
      DOUBLE PRECISION A(2,2, - 1:1,IXMAX) 
      DOUBLE PRECISION W(2,IXMAX),F(2,IXMAX),L(2,2, - 1:0,IXMAX) 
      DOUBLE PRECISION U(2,2,1:1,IXMAX) 
C 
C   Local variables. 
C 
      INTEGER I,J 
      DOUBLE PRECISION F1,F2,L21,U22 
C 
C       LU-DECOMPOSE. 
C 
C       FIRST STEP. (FIRST ROW) 
C 
C       L(0,1)=A(0,1) 
C 
C***FIRST EXECUTABLE STATEMENT TRIDIA 
C 
      DO 1 I = 1,2 
          DO 1 J = 1,2 
1     L(I,J,0,1) = A(I,J,0,1) 
C 
C       THE 2*2 SYSTEMS ARE SOLVED AS FOLLOWS:(AX=F) 
C       L21=A21/A11 
C       U22=A22-L21*A12 
C       F2=F2-L21*F1 
C       X2=F2/U22 
C       X1=(F1-A12*X2)/A11 
C 
C       L(0,1)*U(1,1)=A(1,1) 
C 
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      L21 = L(2,1,0,1)/L(1,1,0,1) 
      U22 = L(2,2,0,1) - L21*L(1,2,0,1) 
C       F2=A(2,1,1,1)-L21*A(1,1,1,1)(WE EXPLOIT ALL ZEROS) 
      F2 = A(2,1,1,1) 
      U(2,1,1,1) = F2/U22 
C       U(1,1,1,1)=(A(1,1,1,1)-L(1,2,0,1)*U(2,1,1,1))/L(1,1,0,1) 
      U(1,1,1,1) = - L(1,2,0,1)*U(2,1,1,1)/L(1,1,0,1) 
C 
      F1 = A(1,2,1,1) 
      F2 = - L21*F1 
      U(2,2,1,1) = F2/U22 
      U(1,2,1,1) = (F1-L(1,2,0,1)*U(2,2,1,1))/L(1,1,0,1) 
C 
C       SECOND AND GENERAL STEP. 
C 
      DO 10 I = 2,IXMAX - 1 
C 
C       L(-1,I)=A(-1,I) 
C 
C         L(1,1,-1,I)=0 
C         L(2,2,-1,I)=0 
          L(1,2, - 1,I) = A(1,2, - 1,I) 
          L(2,1, - 1,I) = A(2,1, - 1,I) 
C 
C       L(0,I)=A(0,I)-L(-1,I)*U(1,I-1) 
C 
          L(1,1,0,I) = A(1,1,0,I) - L(1,2, - 1,I)*U(2,1,1,I-1) 
          L(1,2,0,I) = A(1,2,0,I) - L(1,2, - 1,I)*U(2,2,1,I-1) 
          L(2,1,0,I) = A(2,1,0,I) - L(2,1, - 1,I)*U(1,1,1,I-1) 
          L(2,2,0,I) = A(2,2,0,I) - L(2,1, - 1,I)*U(1,2,1,I-1) 
C 
C       L(0,I)*U(1,I)=A(1,I) 
C 
          L21 = L(2,1,0,I)/L(1,1,0,I) 
          U22 = L(2,2,0,I) - L21*L(1,2,0,I) 
          F2 = A(2,1,1,I) 
          U(2,1,1,I) = F2/U22 
          U(1,1,1,I) = - L(1,2,0,I)*U(2,1,1,I)/L(1,1,0,I) 
          F1 = A(1,2,1,I) 
          F2 = - L21*F1 
          U(2,2,1,I) = F2/U22 
          U(1,2,1,I) = (F1-L(1,2,0,I)*U(2,2,1,I))/L(1,1,0,I) 
10    CONTINUE 
C 
C       END MAIN LOOP IN LU-DECOMP. 
C 
C       THIRD AND LAST STEP.(LAST ROW) 
C 
C       L(-1,IXMAX)=A(-1,IXMAX) 
C 
C       L(1,1,-1,IXMAX)=0 
C       L(2,2,-1,IXMAX)=0 
      L(1,2, - 1,IXMAX) = A(1,2, - 1,IXMAX) 
      L(2,1, - 1,IXMAX) = A(2,1, - 1,IXMAX) 
C 
C       L(0,IXMAX)=A(0,IXMAX)-L(-1,IXMAX)*U(1,IXMAX-1) 
C 
      L(1,1,0,IXMAX) = A(1,1,0,IXMAX) - 
     +                 L(1,2, - 1,IXMAX)*U(2,1,1,IXMAX-1) 
      L(1,2,0,IXMAX) = A(1,2,0,IXMAX) - 
     +                 L(1,2, - 1,IXMAX)*U(2,2,1,IXMAX-1) 
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      L(2,1,0,IXMAX) = A(2,1,0,IXMAX) - 
     +                 L(2,1, - 1,IXMAX)*U(1,1,1,IXMAX-1) 
      L(2,2,0,IXMAX) = A(2,2,0,IXMAX) - 
     +                 L(2,1, - 1,IXMAX)*U(1,2,1,IXMAX-1) 
C 
C       END LU FACTORISATION. 
C 
C       FORWARD SUBSTITUTION. 
C 
C       FIRST STEP. 
C 
      L21 = L(2,1,0,1)/L(1,1,0,1) 
      U22 = L(2,2,0,1) - L21*L(1,2,0,1) 
      F(2,1) = F(2,1) - L21*F(1,1) 
      F(2,1) = F(2,1)/U22 
      F(1,1) = (F(1,1)-L(1,2,0,1)*F(2,1))/L(1,1,0,1) 
C 
C       SECOND AND GENERAL STEP. 
C 
      DO 20 I = 2,IXMAX 
          L21 = L(2,1,0,I)/L(1,1,0,I) 
          U22 = L(2,2,0,I) - L21*L(1,2,0,I) 
          F1 = F(1,I) - L(1,2, - 1,I)*F(2,I-1) 
          F2 = F(2,I) - L(2,1, - 1,I)*F(1,I-1) 
          F2 = F2 - L21*F1 
          F(2,I) = F2/U22 
          F(1,I) = (F1-L(1,2,0,I)*F(2,I))/L(1,1,0,I) 
20    CONTINUE 
C 
C       END FORWARD SUBSTITUTION. 
C 
C       BACK SUBSTITUTION. 
C 
C       FIRST STEP. 
C 
      W(1,IXMAX) = F(1,IXMAX) 
      W(2,IXMAX) = F(2,IXMAX) 
C 
C       SECOND AND GENERAL STEP. 
C 
      DO 30 I = IXMAX - 1,1, - 1 
          W(1,I) = F(1,I) - U(1,1,1,I)*W(1,I+1) - U(1,2,1,I)*W(2,I+1) 
          W(2,I) = F(2,I) - U(2,1,1,I)*W(1,I+1) - U(2,2,1,I)*W(2,I+1) 
30    CONTINUE 
C 
C       END BACK SUBSTITUTION. 
C 
C***END TRIDIA 
C 
      RETURN 
      END 
 
 
      SUBROUTINE COEFF(SIGC,SIGK,C,K,NHARM) 
      IMPLICIT NONE 
      INTEGER NHARM,J 
      DOUBLE PRECISION SIGC,SIGK,C(NHARM),K(NHARM) 
      DOUBLE PRECISION PABSOR,PNONLI,SC,SK 
      COMMON /PARAM/PABSOR,PNONLI 
      SC = (1+SIGC) 
      SK = (1+SIGK) 
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      DO 10 J = 1,NHARM 
          C(J) = PABSOR* (J**2) 
          K(J) = - 1.0/ (4*J* (SK**2)) 
10    CONTINUE 
      RETURN 
      END 
      DOUBLE PRECISION FUNCTION STEPP(SIGMA) 
      IMPLICIT NONE 
      DOUBLE PRECISION SIGMA,ISSTEP 
      COMMON /AXSTEP/ISSTEP 
      STEPP = ISSTEP*(1 + SIGMA)**2 
      RETURN 
      END 

 

 

      SUBROUTINE NONLIN(SIGMA,OMEGA,IXMAX,NHARM,NONLI) 
      IMPLICIT NONE 
      INTEGER NHARM,IXMAX,I,J,N 
      DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2) 
      DOUBLE PRECISION NONLI(0:IXMAX,NHARM,2) 
      DOUBLE PRECISION SIGMA,FAKT,S,PABSOR,PNONLI 
      COMMON /PARAM/PABSOR,PNONLI 
      S = 1.D0 + SIGMA 
      DO 100 N = 1,NHARM 
          DO 29 I = 0,IXMAX 
              NONLI(I,N,1) = 0 
              NONLI(I,N,2) = 0 
29        CONTINUE 
          DO 50 I = 0,IXMAX 
              DO 30 J = 1,N - 1 
C    NB! Changed from the original file! 
                  NONLI(I,N,1) = NONLI(I,N,1) + 
     +         OMEGA(I,J,1)*OMEGA(I,N-J,2) + 
     +                           OMEGA(I,J,2)*OMEGA(I,N-J,1) 
                  NONLI(I,N,2) = NONLI(I,N,2) + 
     +                           OMEGA(I,J,2)*OMEGA(I,N-J,2) - 
     +                           OMEGA(I,J,1)*OMEGA(I,N-J,1) 
30            CONTINUE 
              NONLI(I,N,1) = 0.5*NONLI(I,N,1) 
              NONLI(I,N,2) = 0.5*NONLI(I,N,2) 
              DO 40 J = N + 1,NHARM 
                  NONLI(I,N,1) = NONLI(I,N,1) + 
     +                           OMEGA(I,J-N,1)*OMEGA(I,J,2) - 
     +                           OMEGA(I,J-N,2)*OMEGA(I,J,1) 
                  NONLI(I,N,2) = NONLI(I,N,2) - 
     +                           OMEGA(I,J-N,1)*OMEGA(I,J,1) - 
     +                           OMEGA(I,J-N,2)*OMEGA(I,J,2) 
40            CONTINUE 
50        CONTINUE 
          FAKT = PNONLI*N/ (2*S) 
          DO 60 I = 0,IXMAX 
              NONLI(I,N,1) = FAKT*NONLI(I,N,1) 
              NONLI(I,N,2) = FAKT*NONLI(I,N,2) 
60        CONTINUE 
100  CONTINUE 
     RETURN 
     END 
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 SUBROUTINE INIT(WINDWX,OMEGA,IXMAX,NHARM,TP,TA) 
 IMPLICIT NONE 
 INTEGER I,J,IXMAX,NHARM 
 DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2),WINDWX,TP,TA 
 DOUBLE PRECISION USTEP,TSTEP,FA,X 
 OPEN (UNIT=17,FILE='omega.cnd',STATUS='new') 
 DO 20 I = 0,IXMAX 
  IF (NHARM.GT.1) THEN 
   DO 10 J = 2,NHARM 
    OMEGA(I,J,1) = 0 
    OMEGA(I,J,2) = 0 
10   CONTINUE 
  END IF 
  X = I*WINDWX/DBLE(IXMAX) 
  OMEGA(I,1,1) = TSTEP(X,TP,TA)*SIN(FA(X)) !h 
  OMEGA(I,1,2) = TSTEP(X,TP,TA)*COS(FA(X)) !g 
  WRITE(17,30) OMEGA(I,1,1),OMEGA(I,1,2) 
20 CONTINUE 
30 FORMAT(E16.10, 1X, E16.10) 
 CLOSE(17) 
 RETURN 
 END 
 
 SUBROUTINE INIT2(WINDWX,OMEGA,IXMAX,NHARM) 
 IMPLICIT NONE 
 INTEGER I,J,IXMAX,NHARM 
 DOUBLE PRECISION X,OMEGA(0:IXMAX,NHARM,2),WINDWX,FA 
 DOUBLE PRECISION A(0:IXMAX),B(0:IXMAX) 
 OPEN (UNIT=16,FILE='source.cnd',STATUS='old') 
 OPEN (UNIT=17,FILE='omega.cnd',STATUS='new') 
 DO 20 I = 0,IXMAX 
  IF (NHARM.GT.1) THEN 
   DO 10 J = 2,NHARM 
    OMEGA(I,J,1) = 0 
    OMEGA(I,J,2) = 0 
10   CONTINUE 
  END IF 
  X = I*WINDWX/DBLE(IXMAX) 
  READ(16,30) A(I),B(I) 
  OMEGA(I,1,1) = A(I) 
  OMEGA(I,1,2) = B(I) 
  WRITE(17,30) OMEGA(I,1,1),OMEGA(I,1,2) 
20 CONTINUE 
30 FORMAT(E16.9, 1X, E16.9) 
 CLOSE(16) 
 CLOSE(17) 
 RETURN 
 END 
 
 DOUBLE PRECISION FUNCTION FA(U) 
 DOUBLE PRECISION U 
 FA = (ABS(U))**2 
 RETURN 
 END 
 
 DOUBLE PRECISION FUNCTION TSTEP(U,TP,TA) 
 DOUBLE PRECISION U,TP,TA 
 IF (ABS(U).LE.(1.D0)) THEN 
   IF (ABS(U).LE.TP) THEN 
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  TSTEP = 1 
   ELSE 
  TSTEP = TA 
   END IF 
 ELSE 
   TSTEP = 0 
 END IF 
 RETURN 
 END 
 
 
     SUBROUTINE BRDDMP(OMEGA,IXMAX,NHARM) 
 
C    Routine for damping of the solution when close to the 
C    border of the calculation area. 
C    This must sometimes be done to prevent the simulation 
C    from breaking down due to reflections for the border. 
C 
C  *** Global variables 
     IMPLICIT NONE 
     INTEGER IXMAX,NHARM,DMPWIDTH,DMPSWITCH 
     DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2) 
  
     COMMON /BRD_DMP/DMPWIDTH,DMPSWITCH 
C 
C  *** Local variables 
     INTEGER I,J,K 
     DOUBLE PRECISION ANGLE,FACTOR(DMPWIDTH),PI 
C 
C  *** Excecutable statements 
C 
C    Newtonian frictional force FRS 
C    (see Ystad and Berntsen 1995) 
     IF (DMPSWITCH.EQ.3) THEN 
       DO 5 I=1,DMPWIDTH 
          FACTOR(I) =1.D0 - (DBLE(I)/DBLE(DMPWIDTH))**2 
5      CONTINUE 
C 
C     Sine curve damping factors 
     ELSE IF (DMPSWITCH.EQ.2) THEN 
       PI = 4*ATAN(1.D0) 
       DO 10 I=1,DMPWIDTH 
          ANGLE = PI/2 - DBLE(I)*PI/DBLE(DMPWIDTH) 
          FACTOR(I) = 0.5D0 + 0.5D0*SIN(ANGLE) 
10     CONTINUE 
C 
C    Linear damping factors 
     ELSE IF (DMPSWITCH.EQ.1) THEN 
       DO 15 I=1,DMPWIDTH 
          FACTOR(I) = 1.D0 - DBLE(I)/DBLE(DMPWIDTH) 
15     CONTINUE 
 
C    No damping 
c    ELSE 
c      DO 20 I=1,DMPWIDTH 
c        FACTOR(I) = 1 
c20    CONTINUE 
     END IF 
C 
C     Perform damping of the solution 
C 
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     IF (DMPSWITCH.GT.0) THEN 
       DO 60 K=1,2 
       DO 50 J=1,NHARM 
          DO 40 I=1,DMPWIDTH 
                 OMEGA(IXMAX-I+1,J,K) = OMEGA(IXMAX-I+1,J,K) 
     +                                 *FACTOR(DMPWIDTH-I+1) 
40            CONTINUE 
50         CONTINUE 
60     CONTINUE 
     END IF 
 
     RETURN 
     END 
 
 
      SUBROUTINE HARMDMP(OMEGA,IXMAX,NHARM) 
C  *** Global variables 
      IMPLICIT NONE 
      INTEGER IXMAX,NHARM,HARM_DMPWIDTH 
      DOUBLE PRECISION OMEGA(0:IXMAX,NHARM,2) 
  COMMON /HARM_DMP/HARM_DMPWIDTH 
C 
C  *** Local variables 
      INTEGER I,J,K 
      DOUBLE PRECISION FACTOR(HARM_DMPWIDTH) 
C 
C  *** Excecutable statements 
C 
C     Newtonian frictional force FRS 
C     (see Ystad and Berntsen 1995) 
      DO 5 I=1,HARM_DMPWIDTH 
        FACTOR(I) =1.D0 - (DBLE(I)/DBLE(HARM_DMPWIDTH))**2 
5     CONTINUE 
      DO 60 K=1,2 
        DO 50 J=1,HARM_DMPWIDTH 
          DO 40 I=1,IXMAX 
            OMEGA(I,NHARM-J+1,K) = OMEGA(I,NHARM-J+1,K) 
     +                             *FACTOR(HARM_DMPWIDTH-J+1) 
40        CONTINUE 
50      CONTINUE 
60    CONTINUE 
 
      RETURN 
      END 
 
 
C 
C Save transverse data 
C 
      SUBROUTINE BEWRI(WINDWX,SIGMA,OMEGA,IXMAX,NHARM) 
      IMPLICIT NONE 
      INTEGER NHARM,IXMAX,J,I,NH 
      DOUBLE PRECISION SIGMA,OMEGA(0:IXMAX,NHARM,2),WINDWX 
      DOUBLE PRECISION S,X,XI,AMP(NH),PH(NH),AMPL,PHASE,DB,RADIUS,R0 
      REAL DWTR,WTR 
      COMMON /OUTPUT/RADIUS,R0,DWTR,NH 
      S = 1.D0 + SIGMA 
c      wtr = 0 
      WRITE(10,*) SNGL(SIGMA*R0) 
      WRITE(13,*) SNGL(SIGMA*R0) 
      DO 20 I = 0,IXMAX 
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            XI = I*WINDWX/DBLE(IXMAX)*S 
            X = XI*RADIUS 
c        if (X.ge.wtr) then 
          DO 10 J = 1,NH 
   AMP(J) = AMPL(OMEGA(I,J,1),OMEGA(I,J,2),S) 
   PH(J) = PHASE(OMEGA(I,J,1),OMEGA(I,J,2),S,XI) 
10  CONTINUE 
  WRITE (10,28) SNGL(X),(SNGL(AMP(J)),J=1,NH) 
  WRITE (13,28) SNGL(X),(SNGL(PH(J)),J=1,NH) 
c        end if 
20    CONTINUE 
28    FORMAT(6(E16.10,1X)) ! Must be set according to the value of NH 
      RETURN 
      END 
C 
C 
C     On the axis 
C 
      SUBROUTINE BEWRI2(SIGMA,OMEGA,IXMAX,NHARM) 
      IMPLICIT NONE 
      INTEGER NHARM,IXMAX,NH,I 
      DOUBLE PRECISION SIGMA,OMEGA(0:IXMAX,NHARM,2),AMP(NH), 
     +                 S,RADIUS,R0,Z,PH(NH),PHASE,AMPL 
      REAL DWTR 
      COMMON /OUTPUT/RADIUS,R0,DWTR,NH 
      S = 1.D0 + SIGMA 
      Z = SIGMA*R0 
      DO 25 I=1,NH 
  AMP(I) = AMPL(OMEGA(0,I,1),OMEGA(0,I,2),S) 
  PH(I) = PHASE(OMEGA(0,I,1),OMEGA(0,I,2),S,0) 
25    CONTINUE 
      WRITE(11,28) SNGL(Z),(SNGL(AMP(I)), I=1,NH) 
      WRITE(14,28) SNGL(Z),(SNGL(PH(I)), I=1,NH) 
28    FORMAT(6(E16.10,1X)) ! Must be set according to the value of NH 
      RETURN 
      END 
C 
C     Write all the coefficients (on axis) 
C 
      SUBROUTINE COEFFWRI(SIGMA,OMEGA,IXMAX,NHARM) 
      IMPLICIT NONE 
      INTEGER NHARM,IXMAX,NH,I 
      DOUBLE PRECISION RADIUS,R0,SIGMA,OMEGA(0:IXMAX,NHARM,2),S,Z 
      REAL DWTR 
      COMMON /OUTPUT/RADIUS,R0,DWTR,NH 
      S = 1.D0 + SIGMA 
      Z = SIGMA*R0 
      WRITE(12,5) SNGL(Z) 
      DO 2 I=1,NHARM 
2     WRITE(12,10) SNGL(OMEGA(0,I,1)/S), SNGL(OMEGA(0,I,2)/S) 
5     FORMAT(E16.10) 
10    FORMAT(E16.10,1X,E16.10) 
      RETURN 
      END 
 
 
      DOUBLE PRECISION FUNCTION AMPL(FA,FB,S) 
C 
C     Function that calculates amplitude 
C 
      IMPLICIT NONE 
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      DOUBLE PRECISION FA,FB,S,SD 

      SD = FA**2 + FB**2 

      IF (S.NE.0) THEN 

          AMPL = DSQRT(SD)/S 

      ELSE 

          AMPL = DSQRT(SD) 

      END IF 

      END 

 

 

      DOUBLE PRECISION FUNCTION PHASE(FA,FB,S,XI) 

C 

C     Function that calculates (slow) phase 

C 

      IMPLICIT NONE 

      DOUBLE PRECISION FA,FB,S,XI 

       

      IF (AND((FA.NE.0),(S.NE.0))) THEN 

          PHASE = ATAN(FB/FA) + XI**2/S 

      ELSE 

          PHASE = 0.D0 

      END IF 

      END 

 

 

 

Appendix C: Hydrophone calibration data 

Calibration data for the Reson TC4034 hydrophone used in the current work 

are reproduced below. 
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C.1 Reson – Calibration sheet supplied with the hydrophone 

(10 pages)
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C.2 National Physical Laboratory – Hydrophone sensitivity 

(4 pages) 
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C.3 National Physical Laboratory – Directivity at 400 kHz 

(5 pages) 
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