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to Mumford–Shah Image Segmentation
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Abstract—In this paper, we propose a PDE-based level set
method. Traditionally, interfaces are represented by the zero level
set of continuous level set functions. Instead, we let the interfaces
be represented by discontinuities of piecewise constant level set
functions. Each level set function can at convergence only take
two values, i.e., it can only be 1 or 1; thus, our method is related
to phase-field methods. Some of the properties of standard level
set methods are preserved in the proposed method, while others
are not. Using this new method for interface problems, we need
to minimize a smooth convex functional under a quadratic con-
straint. The level set functions are discontinuous at convergence,
but the minimization functional is smooth. We show numerical
results using the method for segmentation of digital images.

Index Terms—Image processing, image segmentation, level set,
PDE, piecewise constant level set functions, variational.

I. INTRODUCTION

THE LEVEL set method proposed by Osher and Sethian [1]
is a versatile tool for tracing interfaces separating a domain

into subdomains. Interfaces are treated as the zero level set of
some functions. Moving the interfaces can be done by evolving
the level set functions instead of directly moving the interfaces.
This idea is now used on a broad spectrum of problems, in-
cluding image analysis, reservoir simulation, inverse problems,
computer vision, and optimal shape design [2]–[8]. For a recent
survey on the level set methods, see [9]–[12]. Newton-type fast
methods have been successfully used for these level set formu-
lations in [7]. In this paper, we propose a variant of the level
set method. This variant extends the level set models proposed
in [13] and [14], but it is also closely related to the phase-field
methods [15]–[20]. The proposed method can be used for var-
ious inverse problems, but in this paper we restrict ourselves
to segmentation of digital images. For a given digital image

, the aim is to separate into a set of subdo-
mains such that and is nearly a constant
in each . The essential contribution of this paper is to propose
a mathematical mechanism for applying the idea for image seg-
mentation and related inverse problems. The new idea we pro-
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pose is to use a binary level set function to represent piecewise
constant (or polynomial) functions. The way we measure the
length and area of the subdomains seems to be new. Moreover,
using a constrained minimization approach to find the regions
also seems to be different from other approaches, cf. [13]–[17].
We especially mention that the method proposed here is truly
variational. In order to study the fundamental properties of the
proposed models, we have chosen to use the most stable method,
i.e., the steepest decent method, in the numerical experiments
shown at the end of this paper. One general image segmentation
model was proposed by Mumford and Shah in [21]. Numerical
approximations are thoroughly treated in [22]–[25]. Using this
model, the image is decomposed into , where
is a curve separating the different domains. Inside each is
approximated by a smooth function. The optimal partition of
is found by minimizing the Mumford–Shah functional (8). This
is explained in the next section. Following the Mumford–Shah
formulation for image segmentation, Chan and Vese [2], [26]
solved the minimization problem using level set methods. The
interface is traced by the level set functions. Motivated by
the Chan–Vese (CV) approach, in this paper, we will solve the
segmentation problem in a different way, i.e., by introducing a
piecewise constant level set function. Instead of using the zero
level of a function for representing the interfaces between sub-
domains, we implicitly represent the interface by a discontinuity
in the level set function. A two-phase segmentation is accom-
plished by requiring the level set function to take the value 1
in one of the regions and 1 in the other region, by enforcing
to satisfy . In order to divide the domain into several sub-
domains, we use a set of functions satisfying . Using

level set functions, we can identify phases. See, also, a
recent work [27], where we have developed a technique where
one discontinuous level set function represents multiple phases.
Other related techniques are considered in [18] and [28].

The rest of this paper is structured as follows. In Section II,
we give a brief review of traditional level set methods and
phase-field methods. Our model is formulated in Section III. In
Section IV, we apply this model for image segmentation. The
segmentation problem is formulated as a minimization problem
with a smooth cost functional under a quadratic constraint.
Our constraint is analogous to the potential used in phase-field
methods [18], [19]. The minimization functional is essentially
the Mumford–Shah functional associated with the proposed
level set model. We propose two algorithms for solving the seg-
mentation problem. In Section V, we show numerical examples,
before we conclude the paper in Section VI.

1057-7149/$20.00 © 2006 IEEE
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II. SOME EXISTING METHODS

The main idea behind the level set formulation is to represent
an interface bounding a possibly multiply connected region
in by a Lipschitz continuous function , changing sign at the
interface, i.e.,

(1)

In numerical implementations, often regularity is imposed on
to prevent the level set function to be too steep or flat near the
interface. This is normally done by requiring to be the signed
distance function to the interface

(2)

where denotes Euclidian distance between and
. We emphasize that requiring (2) is a technicality to

prevent instabilities in numerical implementations. Having
defined the level set function as in (2), there is an one to one
correspondence between the curve and the function . The
distance function obeys the Eikonal equation

(3)

The solution of (3) is not unique in the distributional sense.
Finding the unique vanishing viscosity solution of (3) can be
done by solving the following initial value problem to steady
state

(4)

(5)

In the above, may not be a distance function. When the steady
state of (4) is reached, will be a distance function having the
same zero level curve as . This is commonly known as the
reinitialization procedure. For numerical computations this pro-
cedure is crucial, and many numerical finite difference schemes
exists. See [3], [9], [10], and [29] for some details. Alternatively,
the problem (3) can efficiently be solved using fast marching
methods [30]–[32].

The interface is implicitly moved according to the non-
linear PDE

(6)

where is a given velocity field. This vector field can depend
on geometry, position, time and internal or external physics. The
tangential velocity of the curve does not influence the motion of
the curve, thus is moved according to the modified equation

(7)

where is the velocity normal to the curve.

A. Level Set Methods and Image Segmentation

The active contour (snake) model evolves a curve in
order to detect objects in an image [33]. The curve is moved
from an initial position in the direction normal to the curve,
subject to constraints in the image. An edge detector function

indicates when is situated at the boundary of an
object. One limitation of the original snake model is the ex-
plicit representation of the curve, thus topological changes like
merging and breaking of the curve may be hard to handle. To ad-
dress this problem, a level set formulation of the active contour
model was introduced in [34]. Later, Chan and Vese introduced
a level set model for active contour segmentation, with the very
important property that the stopping criteria is independent of

[2]. The evolvement of the curve is based on the general
Mumford–Shah formulation of image segmentation, by mini-
mization of

(8)

In the above, is the length of . A minimizer of this
functional is smooth in . The piecewise constant Mum-
ford–Shah formulation of image segmentation is to find a
partition of such that in equals a constant , and

. The two last terms in (8) are regularizers
measuring curve-length of the curves bounding the phases,
and smoothness of in . and control the amount of
regularization and smoothness. Based on (8), Chan and Vese [2]
proposed the following minimization problem for a two-phase
segmentation

(9)

Here, is the level set function satisfying (1), is the Heav-
iside function: if and if , and

is the Dirac-delta function which by definition only col-
lects the zero level set of . Since is a singular function, a
regularized approximation must be used in computations
[2]. Finding a minimum of (9) is done by introducing an artifi-
cial time variable, and moving in the steepest descent direction
to steady state

(10)

The recovered image is a piecewise constant approximation to
. This level set framework was later generalized to multiple

phase segmentation using multiple level set functions [26].
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In this paper, we solve the piecewise constant Mumford–Shah
segmentation using a slightly different approach. We separate
the connection between the level set function and the distance
function. This means that we get rid of the reinitialization pro-
cedure. In our approach, we impose a quadratic constraint on
the level set functions, i.e., . Our approach is truly varia-
tional, i.e., the equations we need to solve are coming from the
Euler-Lagrange equations for some smooth convex functions.

B. Phase-Field Methods and Image Segmentation

The phase field methods (Van der Waals–Cahn–Hilliard
methods) can be used for determining stable configurations of
dynamical systems, for example for a fluid where the energy

is a function of its density distribution . The stable config-
uration can be found by searching for from

(11)

where is constrained by , the total mass of the
fluid. is a nonnegative function having the same
number of minima as phases in the fluid, with at each
minimum. is supposed to grow at least linearly at infinity.
This model was adapted to image segmentation in [18], [19]. In
that work, the functional

(12)

is minimized, and the solution to the image segmentation
problem is given by . In the above,
is a function that is not necessarily convex. The first term is a
fidelity term, ensuring that the recovered image is close to
the original image . The second term is a restoration term. If

, the restoration is Laplacian and thus linear. Other,
especially nonconvex choices give better restoration properties,
but then (12) is ill-posed, even though discrete implementations
may exist [18]. The last term of (12) is a classification term
making sure every pixel is correctly labeled, and thus classified
into a specific phase . Each phase is characterized by a
Gaussian distribution . Thus, some basic knowledge
of the mean and variance of each of the phases is required.
The potential is nonnegative and it only equals zero when

. The scalar parameters and are weighting the amount
of restoration and classification. As demonstrated in [18] and
[19], the phase-field method is a quick method for supervised
segmentation. In our approach, we identify the values and
the level set functions separately. We use a different mecha-
nism to guarantee that the level set function approaches some
pre-set fixed values, by constrained (Lagrangian) minimization
methods instead of simple penalty methods.

III. OUR APPROACH

To introduce our main idea, let us first assume that the inter-
face is enclosing . By standard level set methods the
interior of is represented by points , and the ex-
terior of is represented by points , as in (1). We
instead use a discontinuous level set function , with
if is an interior point of and if is an exterior
point of , i.e.,

(13)

Thus is implicitly defined as the discontinuity of . This rep-
resentation can be used for various applications where subdo-
mains need to be identified. In order to use this idea for image
segmentation, we use (13). Let us assume that is an image
consisting of two distinct regions and , and that we want
to construct a piecewise constant approximation to . Let

in , and in . If in , and
in can be written as the sum

(14)

The formula (14) can be generalized to represent functions with
more than two constant values by using multiple functions
following the essential ideas of the level set formulation used in
[4], [26]. A function having four constant values can be asso-
ciated with two level set functions satisfying .
More precisely, the function given by

(15)

is a piecewise constant function of the form

Introducing basis functions as in the following:

(16)

we see that can be written as

(17)

For more general cases, we can use level set functions to
represent phases. To simplify notation, we define the vec-
tors and . For
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, let be the binary rep-
resentation of , where . Furthermore, set

(18)

and write as the product

(19)

Then, a function having constant values can be written as
the weighted sum

(20)

If the level set functions satisfy and are defined
as in (16) or (19), then , in , and

when . This ensures nonover-
lapping phases, and, in addition, , which pre-
vents vacuums. is the characteristic function of the set .

If the level set functions satisfy , then we can use the
basis functions to calculate the length of the boundary of
and the area inside , i.e.,

and (21)

The first equality of (21) shows that the length of the boundary
of equals the total variation of . See [35] for more expla-
nations about the total variation of functions that might have
discontinuities. In numerical computations, we use the approx-
imation

(22)

for a small and the derivatives are approximated by finite dif-
ferences.

In fact, measuring the length of boundaries by this represen-
tation is more accurate than using which is
done in [2] and [26]. This is due to the fact that their regular-
izer does not treat all edges equally, by measuring some edges
once and other edges twice, i.e., some edges are treated as more
important than other edges, as pointed out by Chan and Vese
[26]. Our method on the contrary counts every edge twice, and
thus all the edges are treated equally. A simple example illus-
trating the difference between the two regularizers is shown in
Fig. 1. Using as the regularizer, the length of
the dashed lines in Fig. 1(b) are counted once while the thick
line is counted twice. Using our approach, the length of all the
lines are counted twice.

Before we explain our model in more detail, we mention two
related works. Song and Chan solved the segmentation problem
in a very elegant way in [14]. They minimize the functional (9)
by a discrete algorithm—by using the fact that only the sign

Fig. 1. (a) Simple image consisting of three phases. (b) If �(� )jr� jdx
is used as a regularizer, the different edges are not treated in a similar fashion.
The edge with the (thick) dashed line is measured once and the other (thick)
edges are measured twice. Moreover, in general, it is impossible to determine
how each edge is supposed to be measured. (c) Using our representation, all
edges are measured two times.

of the function is needed in (9) and not itself. The result
is a very quick algorithm, but it is not variational. Gibou and
Fedkiw [13] proposed to link -means clustering methods with
level set methods and, thus, managed to construct an algorithm
with the speed of clustering methods and the robustness of level
set methods.

IV. MINIMIZATION PROBLEM

We have now introduced a way to represent a piecewise con-
stant function by using the binary level set functions. Based
on this, we propose to minimize the following functional to find
a segmentation of a given image

(23)

In (23), is a nonnegative parameter controlling the regulariza-
tion, and is a piecewise constant function depending on and
, as in (20). The first term of (23) is a least-square functional,

measuring how well the piecewise constant image approxi-
mates . The second term is a regularizer measuring the length
of the edges in the image . Considering the constraints im-
posed on the level set functions, we find that the segmentation
problem is the following constrained minimization problem

subject to (24)

Recall that is a vector having elements . For notational
simplicity, we introduce a vector of the same dimension
as with . It is easy to see that

(25)

This leads to two related iterative algorithms for image segmen-
tation, presented in the next section.

We see that the functional (24) is related to the functional (12)
used in phase-field segmentation [18], [19]. Both functionals
have the same fidelity term. The potential of (12) is anal-
ogous to our constraint , and both methods have a regulariza-
tion term. We use two related methods to solve the minimization
problem (24), a projection Lagrangian approach, and an aug-
mented Lagrangian approach. If we set in (12), we
see that this is very similar to our regularization term.



LIE et al.: BINARY LEVEL SET MODEL 1175

A. Projection Lagrangian Algorithm

The Lagrangian functional involves both and the constraint

(26)

Here, is a vector of functions of the same dimen-
sion as , called the Lagrange multipliers. Note that, when the
constraint is fulfilled, the Lagrangian term vanishes, and .
We search for a saddle point of (26), which, in turn, will give a
minimizer of (24). At a saddle point of , we must have

and (27)

The saddle point is sought by minimizing with respect to
and , and maximizing with respect to . By maximizing ,
the constraint must be fulfilled at convergence; otherwise, the
Lagrangian term of (26) will not vanish. From the definition of

, we see that

(28)

Using (14), (15), and (19), it is easy to get . If we
replace the total variation norm of by an approximation as
in (22), then the term should be replaced by

. We take in the numerical
implementations.

Since , and only the first term of depends on
, the derivative with respect to becomes

(29)

The derivative of with respect to essentially recovers the
constraint

(30)

All the derivatives (28)–(30) must equal zero at a saddle point
of . To find the saddle point, we use an iterative algorithm.
From initial guesses and , we iterate toward better ap-
proximations and . Since we want the three deriva-
tives (28)–(30) to equal zero, we increase until none of ,
or changes anymore. Then, we have arrived at a saddle point.
Using this approach, we need to choose three different schemes
to get , and from and .

First, consider the minimization w.r.t. , which is done by
introducing an artificial time variable and finding a steady-state
solution to the PDE

(31)

Note here that we have no theoretical foundation regarding exis-
tence and uniqueness of a solution of (31), but numerical exper-
iments at least indicate existence of solutions. At steady state,

, which means . This is exactly what
is needed for a saddle point of . We discretize the time deriva-
tive using a forward Euler scheme

(32)

Here, is a small positive time step. Combining (31) with (32),
and rearranging the terms gives an updating scheme for

(33)

Observe that is moved in the steepest descent direction, so
this is essentially the gradient method. We use a fixed time
step determined by trial and error. The curvature term in

is the most restrictive term to the size of . After a fixed
number of iterations we let . If an infinite number of
iterations were done, i.e., , we would end up with the
exact minimizer of w.r.t. with and .

Second, we consider the minimization of w.r.t. , which
is done by using (20). is a linear combination of the basis
functions; thus, is quadratic in . This means the minimization
w.r.t. can be done by solving the linear system
, where , and

(34)

Last, an updating scheme for is constructed by combining (27)
with (28) and (30). A saddle point of must satisfy

(35)

By multiplying this equation with , and noting that at a saddle
point of the constraint gives , we can set this into (35)
to get

(36)

This is used as an updating scheme for

(37)

Now, the three updating formulas (33), (34), and (37) are com-
bined to construct an algorithm using the Lagrangian approach.
This scheme is essentially a projection Lagrangian algorithm of
Uzawa type [36].



1176 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 5, MAY 2006

Algorithm 1 (A Projection Lagrangian Method.)
Initialize
1) Update by (33), to approximately solve

.
2) Update by (34), to solve

3) Update the multiplier by
.

4) Test convergence. If necessary, , repeat.

Remark 1: The minimization w.r.t. in step 3) should not be
done too early in the process, e.g., not before ; oth-
erwise, the matrix inversion in (34) becomes ill-conditioned.
Minor perturbations of the level set functions will result in large
errors of the -values. If is far from 1, then is far from
orthogonal to , and the inner product in (34) will give
contributions at points where it should not. This means that the
matrix inversion in (34) does not give a good approximation to

unless .
Remark 2: The time step used in the gradient iteration in

step 1) is influenced by the size of . This term
measures the curvature of the level curves , i.e., essentially
the second order derivatives of . If the curvature becomes big,
it might violate the CFL stability condition of the numerical
scheme, unless the value of is small. Thus, larger values
require smaller time steps and vice versa. Since our numerical
scheme is explicit, this behavior is to be expected. Using a semi-
implicit or implicit scheme would make it possible to use larger
time steps, but this is not in the scope of this paper.

Remark 3: The number of gradient iterations performed in
step 1) is usually set to a small number . This means that
a gradient iteration is performed times before the other steps
in the algorithm are done. The minimization w.r.t. is there-
fore not exact, but increasing would hopefully give an
exact minimizer. We have observed that using ten gradient it-
erations usually gives a sufficiently good approximation to the
exact minimizer before the other steps of the algorithm are per-
formed.

Remark 4: Upon convergence, the derivative be-
comes singular. The singularity will be inhereted by the mul-
tiplier by the update formula (36). Thus, it is not clear which
functional analytic setting the multiplier approach belongs to.
See also Remark 4 of the augmented Lagrangian algorithm.

B. Augmented Lagrangian Algorithm

We can also solve the minimization problem by the aug-
mented Lagrangian method. This is a combination of the
multiplier method and the penalization method. Define the
augmented Lagrangian functional as

(38)

Here, is a penalization parameter, and the last term of
(38) is called a penalization term. Similarly, as in the Lagrangian
approach, to minimize , we need to find a saddle point

of (38). Thus, we need updating schemes for and . Both
and are updated using the same techniques as in the La-

grangian approach. Hence, we only need a new scheme for up-
dating , in addition to a scheme for updating the penalization
parameter . These two schemes are interconnected.

The original idea of a penalty method is to iteratively force
the constraint to be fulfilled by increasing to . For the aug-
mented Lagrangian method, due to the Lagrangian multipliers,
the constraints are satisfied even if we use a fixed penalization
parameter . In practice, better convergence can be obtained if
we increase the value of the penalization parameter. Let de-
note at the th iteration. denotes the optimal multiplier. If
we are close to a solution, then is close to zero. Moti-
vated by [37] and [38], let

(39)

By rearranging (39) and letting approach a solution, i.e.,
, we get , and, thus,

is getting close to .
Having determined , we minimize w.r.t. by the

gradient method updating scheme

(40)

where

(41)

Like in the first algorithm, after a few iterations, we set
. The constraints are independent of the constant values

, and, thus, the updating for the values will still be the same.

Algorithm 2 (An Augmented Lagrangian Method.)
Initialize .

1) Update by (40), to approximately solve
.

2) Update by (34), to solve
.

3) Update the multiplier by
.

4) Test convergence. If necessary, , repeat.

The algorithm has a linear convergence and its convergence
has been analyzed by Kunisch and Tai in [39] under a slightly
different context. This algorithm has also been used by Chan
and Tai in [4] and [40] for level set methods for elliptic inverse
problems.

Remark 1: In most of our simulations, we have set to be
constant during the iterations. This is done to make the simula-
tions as stable as possible. Better convergence behavior can be
expected if is increased during the iterations, but be aware of
ill-conditioning if is increased too quickly. This is a common
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approach when using the augmented Lagrangian method. See
[37] and [38] for details concerning the general algorithm.

Remark 2: As in the first algorithm, should not be updated
too early in the process, to avoid ill-conditioning when inverting
the matrix . See Remark 1 of Algorithm 1.

Remark 3: In this algorithm, in the gradient iteration de-
pends on both and . A large or requires a small .
The constant can be looked at as a parameter controlling the
connectivities or oscillations of the different phases. A bigger

value will suppress oscillations, while a bigger makes the
level set functions converge to quicker. Choosing too
big will reduce the influence of the fitting term and thus
may increase the iteration number needed to converge to the true
solution. For practical problems, it is normally not too difficult
to find an approximate range for these two parameters.

Remark 4: As in the projection algorithm, it is not clear
which functional analytic setting this algorithm belongs to.
By numerical experiments, we have observed that even when
using this algorithm, singularities in occur. For the sake of
illustration, a simple example showing this is included in the
numerical experiments in the following section.

V. NUMERICAL EXPERIMENTS

In this section, numerical results are presented. We compare
our method with the Chan–Vese (CV) model, qualitatively and
quantitatively. For comparability with other methods, most of
the images used in this section are standard images from articles
in the literature of image processing [2], [13], [26].

Essentially, the proposed model has two parameters, and
. For each numerical example, we report the specific values

used for and . In most of the simulations shown, we use
, i.e., there is no need to initialize the level set functions.

In examples where we compare with the CV model, the initial
zero level curves are circles with diameters equal to the size of
the images. Most of the images are imposed with noise, and we
assume the noise is additive, i.e.,

(42)

where is Gaussian distributed noise. For each of the examples
containing noise, we report the signal-to-noise ratio (SNR)

(43)

If the observation data is very noisy.
Even though the framework developed in this paper is appli-

cable for multiple level set functions, we only show numerical
results using one and two level set functions. When using two
functions, there is a need for an initial approximation of . This
is done by the following process. First, a median filter is applied
to the image to produce a smoothed temporary image , e.g.,

is taken to be the mean of a set of neighbor points
of . Afterward, a simple isodata approach is applied on

to find , an approximation to the optimal . We refer the
reader to [41] for a discussion of the isodata algorithm which is
based on a thresholding of the intensity values. When searching
for only two phases, the initial value for is not important, the
algorithm converges to the same solution even if we start with

Fig. 2. Segmentation of a satellite image using our proposed augmented
Lagrangian method. (a) The input image. (b) Processed image with
� = 7 � 10 . (c) Processed image with � = 3 � 10 . Note that the
topology of the resulting image depends on the choice of the regularization
parameter.

Fig. 3. Segmentation of the satellite image using the CV method. (a) The same
input image as in Fig. 2(a). (b) Processed image without reinitialization. (c)
Processed image with reinitialization every tenth iteration. Whether or not a
reinitialization is done affects the topology of the resulting image.

an initial value far from the true one. This is due to the uni-
form convex nature of the objective functional in the two-sub-
domain-case. In the general case, the functional is only locally
convex. All the examples shown are processed using the aug-
mented Lagrangian Algorithm. For some experiments using the
projection Lagrangian method, we refer to [42].

A. One Level Set Function

Example 1: We start with an example where one level set
function is used to detect two different subdomains. We want
to test our method on a really challenging image with scattered
data, i.e., a satellite image of Europe showing clusters of light.
At every point in the image, the level set function must con-
verge to . Which point the level set function should equal 1
and which point it should equal is influenced by the regular-
ization parameter . A big gives a “connected” result, while
a small gives a less “connected” result (see Fig. 2). No matter
what kind of value we choose for , the algorithms are able to
get the level set function to converge to . In Fig. 2, we show
results using our method, and, in Fig. 3, we show results using
the CV method on the same image. For the CV model, the initial
zero level of is a circle with centre in the middle of the image,
and diameter equal to the height of the image. Both methods are
terminated after 300 iterations on . Using a properly chosen

, both methods are able to produce visually pleasing results.
It was observed that the CV method produces different images
with different initial values for the level set function. It is also
true that the reinitialization process and how often doing the
reinitialization for the level set functions could alter the final
results of the CV method. However, this need not be the case,
see [43]. For a comparison with other results, we refer the reader
to [2], [10], [13], and [27].

Example 2: In this example, we introduce a technique which
can be used for accelerating the convergence of our algorithms.
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Fig. 4. Image of a galaxy is processed using the modified (quicker) version
of the augmented Lagrangian algorithm. (a) The original image u . (b) A
piecewise constant approximation to u after 20 iterations with � = 1 � 10 .
(c) Another piecewise constant approximation with � = 3 � 10 . We compare
with the result using CV in (d), using 300 iterations.

In some sense this is related to what was done in [14]. At con-
vergence, the level set function should equal . After a few
gradient iterations, the level set function could already have the
correct sign, but it might take many iterations to get exactly to

. This is a common behavior of the steepest descent method,
due to its slow convergence rate. To accelerate the convergence,
we start the algorithm and perform a few iterations. Then, we
take the sign of the obtained function as an initial value and
start the algorithm again. In each iteration, the step size is
chosen using a line search algorithm. We show the results for
a specific image in Fig. 4. Again, we observe that the topolog-
ical properties of the segmented image are related to the chosen
value of . We compare the result with the CV-method. See also
the results in [13] and [26].

As observed in this example, the number of iterations is dra-
matically decreased when the modified algorithm is used. In
the case of two phase segmentation, the functional is
convex w.r.t. and . For multiple phases, is only lo-
cally convex w.r.t. and . The above technique can accelerate
the convergence in the two-phase case. However, more careful
tests are needed to draw some solid conclusions concerning the
class of problems where the speedup-technique is applicable.
Another and better way to accelerate the convergence of the al-
gorithms would be using a Newton-type of iteration for .

From the two numerical tests above, we see that our method is
capable of computing segmentations of the same quality as the
CV method. Both our method and CV require the user to supply
an estimation of how much regularization to be performed. This
is related to the noise level and to which kind of objects to be
detected. In the above tests, we have set the parameter con-
trolling the approximation of the and functions to be 1 as
in [2, p. 272]. In addition, controlling the area in (9) is set to
0. We have kept in our model as a constant, . From
Fig. 3(b) and (c), we see that whether or not the reinitialization is
performed can influence the resulting segmentation. Using our

Fig. 5. Simple image consisting of two rectangles (a) is processed in order
to study the asymptotic behavior of �. In (b), a cross section of � is shown
at three different times, after 500 iterations (dashed), 3000 iterations (dotted)
and 20 000 iterations (line). The algorithm converged after 10 000 iterations.
This simple example illustrates that � asymptotically becomes a singular (yet
bounded) function.

method, this is not an issue. For simple two-phase images, it
is possible to fine-tune the parameter in such a way that our
method and the CV method yields identical solutions. For com-
plex and noisy images, it is in general not possible to construct
completely similar solutions. This is mainly due to the different
ways of handling the discontinuities in the two models. In the
CV-model, a numerical approximation to is used, while in
our model, the discontinuity is modeled by a discontinuity in .

Example 3: As mentioned in remark 4 of both algorithms 1
and 2, upon convergence, singularities occur in the multiplier .
To illustrate this, we process a very simple image consisting of
two rectangular regions in Fig. 5(a). There is no noise present,
thus at convergence, both the first and the last term of (41) disap-
pear. At the interface between the two rectangles, the curvature
term is nonzero. At convergence , thus

must be a singular function. In figure Fig. 5(b), a cross sec-
tion of the absolute value of the multiplier is plotted at interme-
diate states of the iterations and at convergence, at a logarithmic
scale. We observe that the multiplier becomes more and more
singular, in the sense that the multiplier has a decreasing sup-
port. To study the behavior of the multiplier in a careful sense
we used a relatively large regularization parameter ,
and constraint parameter . For all practical reasons, the
algorithm essentially converged already after about 1000 itera-
tions in the sense that at every point in the image.
After about 10000 iterations, a steady state of is reached. We
nevertheless did not stop the algorithm before 20 000 iterations
in order to study the asymptotic stability of the multiplier. As
observed in Fig. 5(b), reaches a steady state with 0.02 as a
maximum value. We here note that since no noise is present,
could have been chosen to 0. In that case, would not be sin-
gular. In all the other examples we have tested in this paper, the
images contain noise and the values are chosen to be small. It
is hard to notice any singularity of at the discontinuities, i.e.,
the value of at the discontinuities is at the same level as the
value in the other parts of the domain.

In the next section, we will show a few numerical results using
two functions and for detecting upto four different re-
gions.

B. Two Level Set Functions

Example 4: Using our method, we can start with continuous
functions for the level set functions. In fact, in all the numer-
ical experiments shown here, we initialize the level set functions
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Fig. 6. Two level set functions are utilized for detecting four regions having
distinct intensities. The values for the parameters are � = 1 � 10 and � =

1 � 10 .

as zero functions. At convergence, the level set functions are
discontinuous functions having values . In some sense, we
are not moving curves. For a given initial value for the level set
functions, our algorithms determines a correction direction, and
moves the level set function up or down according to this. This
makes it easy to capture objects with arbitrary topology. This
has also been observed in [8]. For other level set methods, there
is a need to start with curves inside the object, or like in [2], use
approximations to and functions having global support
to be able to identify inside “holes.” Alternatively, topological
derivatives can be used in order to identify complex geometries
in level set methods [8], [44]. To demonstrate the capability of
handling complicated geometry, we have tested the algorithms
using two level set functions on the image depicted in the upper
left corner of Fig. 6. The same image has been segmented using
other methods in [26] and [27], giving similar results. The image
contains convex and concave shapes and a “hole.” We have im-
posed the image with noise, . Our method is able
find all the objects with rather good accuracy even under the
moderate amount of noise. The sharp corners, concave shapes
and “hole” presents no problems.

Example 5: As was pointed out in Section III, and illustrated
in Fig. 1, our regularization functional measures the length of
edges accurately. In some applications, it might be important
that all edges are treated in a similar fashion, independently of
other properties of the image, like the intensity-value. In this ex-
ample, we will illustrate a case where our regularizer treats all
edges accurately, while the regularizer of CV does not. To do so,
we chose the image so that the difference between the two
regularizers is clearly emphasized. An image containing long
and thin (only 1 pixel wide) regions, and , having two
distinct intensity values and in addition to the background

with intensity value are used for this purpose. We choose
, such that a misclassification of pixels between and

will not count much in the fidelity terms of the functionals
(23) and (9). Thus, the regularization will have a great impact

Fig. 7. With some special images containing long, thin (1 pixel wide)
structures our regularizer is better at handling edges than the regularizer used
in the CV model. A little amount of noise is added to the image (a) to produce
(b). This image is segmented using both CV and our method. In (c), we show
the result of CV and in (d) we show the result of our method. The image in
(e) is very well segmented using CV (f).

for the minimization problem. In this example, the exact inten-
sity values are assumed to be known prior to the segmentation.
With no noise and no regularizer, both methods gave a perfect
result. However, this is not the case if noise is present, and reg-
ularization is needed. The image in Fig. 7(b) is segmented
using both the CV method (c) and our method (d). As can be
observed in Fig. 7(c) and (d), our regularizer treats all edges
in a similar manner, while the regularizer of CV does not. The
boundaries and (measured once) in
Fig. 7(c) are more oscillatory than the boundary
(measured twice). We emphasize that in most cases there will be
little or no difference between the two regularizers. We are re-
porting a peculiar example in Fig. 7(a)–(d). As seen in Fig. 7(e)
and (f), where the intensity values are the same as in Fig. 7(c)
and (d), the areas covered by and are the same, but
the length of each phase is not the same. Both models manage
to do a perfect segmentation in this case. In Fig. 7(c) and (d),
we maximized the difference between our model and the CV
model by carefully choosing . If the intensity values and

are not as close as in this example, it is possible to find a
such that the regularizer in CV will produce the correct result.

Example 6: To conclude the numerical section we process
a slice of a medical MR-image. We have picked out an image
from the Brainweb database. This is an online database from
where synthetic MR-images of the human brain can be obtained,
[45], [46]. The input image in Fig. 8(a) contains 20% noise
and is 20% inhomogeneous. The image is difficult to segment
due to the fact that the interfaces between different tissues are
topologically complicated and the intensity values are not ho-
mogeneous inside each phase. Another difficulty is the present
noise, . The parameters used in this example are
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Fig. 8. In this example, the image (a) is segmented using our method, and the
resulting piecewise constant approximation is shown in (b).

. The algorithm was terminated
after 5000 iterations. The resulting piecewise constant approxi-
mation is shown in Fig. 8(b).

VI. CONCLUSION

In this paper, and also in [27], we have proposed piece-
wise constant level set methods for capturing interfaces. These
methods are related both to the phase-field methods and the level
set methods. Numerical experiments indicate that the methods
are able to trace interfaces with complicated geometries and
sharp corners. The level set functions are discontinuous at
convergence, but the minimization functionals are smooth and
at least locally convex. In this paper, we have only tested the
methods for image segmentation, and we have used simple gra-
dient methods for the iterative algorithms. Due to the fact that
the functionals are smooth and the method is truly variational,
it is possible to design fast iterative algorithms for solving the
minimization problems, i.e., by using Newton type of iterations
instead of gradient methods. The numerical results indicate that
our methods give as good results as methods using continuous
level set functions. The methods proposed in this paper and in
[27] are not superior, but are interesting alternatives to other
methods used for interface problems. Our methods are not
moving the interfaces during the iterative procedure, and thus
have some advantages in treating geometries, for example in
situations where inside “holes” need to be identified. Using
our approach, we have removed the reinitialization proce-
dure sometimes needed in traditional level set methods. We
have proposed and demonstrated the validity of an alternative
approach for interface identification, in particular for image
segmentation.
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