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Abstract 

Accurate and reliable quantification of brain metabolites measured in vivo using 
1
H magnetic 

resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the 

basic approach to quantification, the quantification of metabolite data acquired at different sites 

and on different platforms poses an additional methodological challenge. In this study, spectrally 

edited -aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified 

relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 

research sites were collected using GABA+ (GABA + co-edited macromolecules) and 

macromolecule-suppressed GABA editing. The unsuppressed water signal from the volume of 

interest was acquired for concentration referencing. Whole-brain T1-weighted structural images 

were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid 

voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-

dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation 

was 17% for the GABA+ data and 29% for the MM-suppressed GABA data. The mean within-

site coefficient of variation was 10% for the GABA+ data and 19% for the MM-suppressed 

GABA data. Vendor differences contributed 53% to the total variance in the GABA+ data, while 

the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the 

MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 

46% was attributed to participant differences. Results from an exploratory analysis suggested 

that the vendor differences were related to the unsuppressed water signal acquisition. 

Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit 

similar levels of variance to creatine-referenced GABA measurements. It is concluded that 

quantification using internal tissue water referencing is a viable and reliable method for the 

quantification of in vivo GABA levels. 

 

Keywords: Editing; GABA; MEGA-PRESS; MRS; Quantification; Tissue correction 
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1. Introduction 

In vivo 
1
H magnetic resonance spectroscopy (MRS) allows noninvasive measurement of 

brain metabolite concentrations, but it does so only in a relative manner. Measurements usually 

rely on an internal reference signal and assumptions about the concentration of the reference 

compound. Common reference signals include the CH3 singlets of the metabolites creatine (Cr) 

and N-acetylaspartate (NAA), or the unsuppressed brain tissue water signal from the same 

volume. Opinion in the field suggests that there is no reference signal that is optimal in all 

applications, and discussion is ongoing about the relative merits of each (Alger, 2010; Mullins et 

al., 2014). 

The theory and empirical feasibility of the absolute quantification of metabolites as 

measured by MRS is well established (Barker et al., 1993; Christiansen et al., 1993; Danielsen 

and Henriksen, 1994; Ernst et al., 1993; Hennig et al., 1992; Kreis et al., 1993a; Thulborn and 

Ackerman, 1983). Later work has further refined these approaches, particularly with respect to 

using brain tissue water as an internal concentration reference (Gasparovic et al., 2018, 2006; 

Gussew et al., 2012; Knight-Scott et al., 2003). The typical procedure for using tissue water as an 

internal reference is to acquire an unsuppressed water signal using the same MRS acquisition 

protocol as used for the water-suppressed metabolite acquisition in a voxel co-localized to the 

volume of interest. With proper assumptions about certain properties of the metabolite and water 

signals in the various tissue compartments in the volume of interest, one may infer absolute 

metabolite concentrations from the acquired metabolite and reference signals. This is supported 

by the well-characterized properties of MR-visible water in the brain and its high 

concentration/large signal. On the other hand, using an endogenous metabolite signal, such as Cr, 

as a reference to derive metabolite ratios avoids the need for a separate water acquisition and 

may reduce error propagation that arises during more involved signal scaling procedures, but 

possibly at the expense of lower signal quality. Additionally, Cr is confined to brain tissue, 

whereas water is in brain and cerebrospinal fluid (CSF), making accurate corrections for CSF 

when using water as a concentration reference particularly important. At present, while strong 

opinions exist on the matter, both metabolite and water referencing have advantages and 

disadvantages (Jansen et al., 2006), and either approach is defensible. Indeed, the reliability of 
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each approach has been shown to be similar (Bogner et al., 2010; Saleh et al., 2016), although in 

relatively small studies. 

It is important to note that the concentration and relaxation properties of water, Cr and 

NAA can change in disease (Grasso et al., 2002; Huang et al., 2001; Kantarci et al., 2000; Laule 

et al., 2004; Rackayova et al., 2017), aging (Marjańska et al., 2017; Neeb et al., 2006; Reyngoudt 

et al., 2012) and brain development (Kreis et al., 1993b; Tkáč et al., 2003). Phantom 

replacement, scanning a phantom of a reference compound of known concentration for 

comparison to in vivo measurements (Buchli and Boesiger, 1993; Duc et al., 1998; Michaelis et 

al., 1993; Soher et al., 1996), can – with careful attention to differences in B0/B1 

inhomogeneities, amplifier transmitter/receiver gains and RF coil loading factors – also be used 

to determine in vivo concentrations in absolute units. This method is technically challenging, 

involving additional experiments before or after the scan session, and is not commonly used 

given the difficulties of constructing a phantom with electric conductivity similar to human 

tissue and the extra time that is required for scanning the phantom (Jansen et al., 2006). An 

alternative approach is the ERETIC (electronic reference to access in vivo concentrations) 

method (Barantin et al., 1997; Zoelch et al., 2017), which relies on a synthetic RF reference 

signal. This approach is also challenging and requires specialized hardware. For all its 

limitations, internal concentration referencing remains the most practicable and widely used 

approach in in vivo 
1
H MRS. 

In addition to the nuances of different quantification methodologies, systematic 

differences in acquisition implementation and system hardware will have an impact on 

quantitative outcomes. This makes comparing MRS measurements collected across different 

sites and on different platforms non-trivial. If multi-site and multi-platform MRS studies are to 

be maximally useful, particularly in the era of “big data” (Bearden and Thompson, 2017; Miller 

et al., 2016; Van Essen et al., 2013), then the systematic effects on measurement variance must 

be assessed, understood and accounted for. This would then be followed by strategies for 

standardizing data acquisition, data processing and metabolite quantification methods. 

The authors recently acquired a large multi-vendor, multi-site dataset, the purpose of 

which was to study the sources of variance in -aminobutyric acid (GABA) measurements 

collected by edited MRS. In the first paper describing this dataset (Mikkelsen et al., 2017), 

quantification was performed relative to the total Cr signal in the edit-OFF spectrum. In the 
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current paper, GABA was quantified relative to brain tissue water, which additionally required 

accounting for individual differences in voxel tissue composition. In particular, this investigation 

aimed to determine whether quantification relative to water increases or decreases total variance 

(compared to Cr referencing) and discuss the impact of site- and vendor-related differences in 

structural image segmentation. 

2. Methods 

A fuller description of the acquisition and data processing methodology can be found in 

the original publication (Mikkelsen et al., 2017). Relevant details for this study, especially 

regarding quantification and tissue segmentation, are reported below. 

2.1. Data collection 

Data were acquired at 25 independent research sites, with each site contributing 5–12 

datasets collected from consenting adult volunteers (cohort total: 284). Participants at each site 

were 18–35 years old, ~50% female and had no known neurological or psychiatric illnesses. 

Site-by-site participant demographics are provided in Table 1 in Mikkelsen et al. (2017). 

Scanning was conducted in accordance with ethical standards set by the institutional review 

board (IRB) at each site, including the sharing of anonymized data. Anonymized data files were 

shared securely with and analyzed by the co-authors at the Johns Hopkins University School of 

Medicine with local IRB approval. 

2.2. Data acquisition 

GABA-edited MEGA-PRESS data (Mescher et al., 1998; Rothman et al., 1993) were 

collected at 3T at each site using a standard scan protocol. The MRI vendor breakdown was: 

eight GE; nine Philips; eight Siemens. Both GABA+-edited and macromolecule- (MM-) 

suppressed GABA-edited acquisitions were performed (Edden et al., 2012b; Henry et al., 2001). 

Complete details of the edited MRS acquisitions, including site-to-site idiosyncrasies, can be 

found in the earlier paper. Briefly, the GABA+ acquisition parameters were: TE = 68 ms; 

ON/OFF editing pulses = 1.9/7.46 ppm; editing pulse duration = 15 ms. The MM-suppressed 

GABA acquisition parameters were: TE = 68 ms (Siemens) or 80 ms (GE and Philips); ON/OFF 

editing pulses = 1.9/1.5 ppm; editing pulse duration = 20 ms. Common parameters were: TR = 

2000 ms; 320 averages; 30  30  30 mm
3 
medial parietal lobe voxel (Fig. 1A). Six outer-volume 
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saturation bands were applied in GE acquisitions (as is standard for GE PRESS-based sequences) 

but not in Philips or Siemens acquisitions (except for site S3, which used six saturation bands). 

Water suppression bandwidth scan parameters (not reported in Mikkelsen et al., 2017) were 140 

Hz for Philips, 50 Hz for Siemens and 150 Hz for GE. Although some degree of control over the 

slice-selective gradient polarity (and the assignment of the three slice-selective pulses to the 

three physical dimensions of the voxel) is possible on all three vendors, no attempt was made to 

standardize these across vendors, nor were sites explicitly instructed to standardize gradient 

polarities (this was left at the discretion of scanner operators). 

Unsuppressed water signal acquisitions were collected for internal tissue water 

referencing. For the GE and Philips MEGA-PRESS implementations, the water reference was 

automatically acquired as part of the water-suppressed metabolite scans. For GE, the reference 

was acquired at the end of the water-suppressed acquisitions; 16 water averages were acquired. 

For Philips, the reference was acquired in an interleaved manner as the water signal was also 

used for real-time center frequency correction (Edden et al., 2016); a single water average was 

acquired for every 40 water-suppressed acquisitions (8 averages in total). Acquiring a water 

reference on the Siemens platform requires running a separate scan with identical receiver and 

transmitter gains. For this, the Siemens MEGA-PRESS WIP was used, where the water 

suppression RF pulses were turned off but the water suppression gradients and editing pulses 

were left on (“Only RF off” option); 8 or 16 water averages (depending on acquisition 

parameters) were acquired. The TE/TR of these acquisitions were the same as the corresponding 

water-suppressed acquisitions. Water reference acquisitions were acquired with the transmitter 

frequency shifted to the water frequency (as opposed to 3.0 ppm for water-suppressed 

acquisitions) on Philips and Siemens. For GE, both reference and water-suppressed data were 

acquired with the transmitter at 2.68 ppm. 

Whole-brain 3D T1-weighted structural images were acquired for accurate voxel 

placement and partial volume tissue correction. Sequences used were fast spoiled gradient-echo 

imaging (FSPGR; GE) (Low et al., 1993) and magnetization-prepared rapid gradient-echo 

imaging (MPRAGE; Philips/Siemens) (Mugler and Brookeman, 1990) (see Table 1 for 

acquisition parameters). Site-standard structural imaging protocols were used, with less effort to 

standardize acquisitions than the MRS protocols. Imaging data were saved in DICOM (GE and 

some Siemens sites) or NIfTI format (Philips and some Siemens sites). DICOM files were 
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converted into NIfTI format for voxel segmentation and tissue segmentation purposes (see 

Section 2.4) using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 

2.3. Data processing 

MRS data were processed in Gannet (Edden et al., 2014) using the pipeline described in 

the earlier report (Mikkelsen et al., 2017). Unsuppressed water acquisitions were processed in the 

same manner as the water-suppressed acquisitions and averaged. Briefly, processing steps 

included: frequency-and-phase correction by spectral registration (Near et al., 2015) (water-

suppressed data only); 3-Hz exponential line broadening; zero-filling to yield a nominal spectral 

resolution of 0.061 Hz/point; and fast Fourier transformation into the frequency domain. Quality 

control and quality metrics were conducted and calculated as before. The linewidth of the water 

reference was measured as the full-width at half-maximum (FWHM) of the modeled water signal 

(see Section 2.5). As an independent measure of spectral linewidth, NAA FWHM linewidth was 

also measured from a Lorentzian-model fit of the NAA signal in the OFF spectrum. 

2.4. Voxel co-registration and tissue segmentation 

MRS voxels were co-registered to each volunteer’s structural image using the 

GannetCoRegister module in Gannet (Harris et al., 2015), which produces binary voxel masks in 

individual structural space. Structural images were segmented into gray matter (GM), white 

matter (WM) and CSF probabilistic partial volume maps using the unified tissue segmentation 

algorithm in SPM12 (Ashburner and Friston, 2005), executed through the GannetSegment 

module (Harris et al., 2015). GM, WM and CSF voxel volume fractions were calculated by 

multiplying the whole-brain partial volume maps for each tissue type by the corresponding 

binary voxel mask, summing over the partial volume estimates within each tissue-segmented 

voxel and then dividing these totals by the total over all three tissue-segmented voxels. 

2.5. Quantification 

The 3.0 ppm edited GABA signal was modeled as described previously (Mikkelsen et al., 

2017). The water spectrum was modeled between 3.8 and 5.6 ppm with a Gaussian-Lorentzian 

function with phase and linear baseline parameters using nonlinear least-squares fitting. GABA 

measurements were quantified in pseudo-absolute molality units (approximating moles of GABA 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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per kg of solute water) and corrected for partial volume effects (Gasparovic et al., 2006) based 

on the following equation: 
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where CG is the GABA concentration in institutional units (i.u.) and CW is the assumed molal 

concentration of MR-visible solute water (55.51 mol/kg); IG and IW are the GABA and water 

signal integrals, respectively; HW and HG are the number of 
1
H protons that give rise to the water 

and 3.0 ppm GABA signals (both 2), respectively; MM is a correction factor for the contribution 

of the co-edited macromolecule signal in the GABA+ signal, assumed to be 0.45 for GABA+ 

acquisitions and 1 for the MM-suppressed acquisitions; and  is the editing efficiency, assumed 

to be 0.5. TEG, TEW, TRG and TRW are the echo and repetition times of the GABA-edited and 

water acquisitions, respectively. T1W,i is the longitudinal relaxation time of water in GM 

(assumed to be 1331 ms), WM (assumed to be 832 ms) (Wansapura et al., 1999) or CSF 

(assumed to be 3817 ms) (Lu et al., 2005); T2W,i is the transverse relaxation time of water in GM 

(assumed to be 110 ms), WM (assumed to be 79.2 ms) (Wansapura et al., 1999) or CSF 

(assumed to be 503 ms) (Piechnik et al., 2009). T1G and T2G are the longitudinal and transverse 

relaxation times of GABA, assumed to be 1310 and 88 ms, respectively (Edden et al., 2012a; 

Puts et al., 2013). The tissue-dependent water contents i (as defined in Ernst et al., 1993) are 

assumed to be 0.78, 0.65 and 0.97 for grey matter, white matter and CSF, respectively. fi,vol is the 

volume fraction of GM, WM or CSF in the MRS voxel. Note that this equation equates to the 

molality equation in Gasparovic et al. (2006), with additional terms to account for MM fraction 

and editing efficiency that are particular to edited MRS of GABA. 

Fit quality for the water peak model (the fit error) was assessed by normalizing the 

standard deviation (SD) of the model fit residuals to the amplitude of the modeled signal (Edden 

et al., 2014). This metric, the degree to which the measured signal cannot accurately be modeled 

as a Gaussian-Lorentzian, captures eddy current artifacts and some aspects of sub-optimal 

shimming. 

To examine whether systematic effects on the variance of the GABA+ and MM-

suppressed GABA data were attributed to the water acquisition, water-referenced Cr 

measurements were also quantified. The 3.0 ppm Cr signal in the OFF spectrum was modeled as 

described in the original publication. The longitudinal and transverse relaxation times of Cr were 
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assumed to be 1350 and 154 ms, respectively (Mlynárik et al., 2001). MM and  were not 

applied. Finally, the degree of association between participants’ water-referenced, tissue-

corrected GABA values and their previously quantified GABA/Cr values as reported in 

Mikkelsen et al. (2017) was examined. It should be noted that these measurements are not 

independent (the GABA integral being a common factor) and, therefore, a strong correlation was 

expected. 

2.6. Exploratory analysis 

The results revealed systematically higher water-referenced GABA+ measurements from 

the Siemens sites as compared to the GE and Philips measurements (see Section 3). This level of 

variation was not apparent in the Cr-referenced GABA+ measurements that were previously 

reported (Mikkelsen et al., 2017). To reconcile this, an unplanned exploratory analysis was 

conducted in which the Siemens GABA measurements were referenced to a water signal 

acquired by a separate unsuppressed short-TE PRESS acquisition. These separate data were 

collected alongside the MEGA-PRESS data for the purpose of studying conventional MRS data 

acquired across the sites. The water reference data from this dataset enabled the unplanned 

exploratory analysis reported here. This acquisition was acquired at TE/TR = 35/2000 ms from a 

voxel in the same location as the MEGA-PRESS acquisition. Concentrations were quantified 

according to Eq. (1) without additional correction for any amplifier gain differences as it was 

assumed that the gain would not have changed between the PRESS and MEGA-PRESS 

acquisitions. 

2.7. Statistical analysis 

Linear mixed-effects models were fit to the water-referenced GABA data in R (version 

3.5.2; R Core Team, 2018) using the lme4 package (Bates et al., 2015) and maximum likelihood 

for parameter estimation. An unconditional model (Eq. (1) in Mikkelsen et al., 2017) was fit to 

calculate variance partition coefficients (VPCs) to estimate the proportion of total variance 

attributed to vendor-, site- and participant-related effects. Secondary, conditional linear mixed-

effects models (Eq. (5) in Mikkelsen et al., 2017) were also fit to the data to assess the impact of 

NAA linewidth, fGM,vol, age and sex, and to test the association with GABA/Cr measurements. 

Goodness-of-fit was calculated as a log-likelihood statistic. Significance testing was performed 

using chi-square likelihood ratio tests, which were bootstrapped 2,000 times using parametric 



13 

 

bootstrapping (Halekoh and Højsgaard, 2014). Effects were tested in the following order: vendor 

and site; NAA linewidth and fGM,vol; age and sex. If an effect was significant, the relevant 

variable was retained in the next model; if not, it was removed. Unconditional linear mixed-

effects models were also fit to the voxel tissue fractions to test for site and vendor effects. Post-

hoc pairwise comparisons were corrected for multiple comparisons using the Holm-Bonferroni 

method (Holm, 1979). A p-value less than 0.05 was considered significant. 

3. Results 

GABA+ data from seven volunteers and MM-suppressed GABA data from 19 volunteers 

were removed from further analysis following quality control of the MRS data (largely due to 

excessive lipid contamination). All MM-suppressed GABA data from site G3 were excluded as 

consistent, excessive center frequency offsets (approximately –0.1 ppm on average) resulted in 

extremely small or absent GABA signals. One further dataset was removed because the 

unusually small water reference signal indicated an acquisition error. Vendor-mean GABA-

edited difference spectra are shown in Fig. 1B. 

Fig. 2A shows the GABA+ values arranged by site and by vendor. Mean  1 SD 

(standard error of the mean, SEM) GABA+ measurements were 3.32  0.42 (0.04) i.u. for GE, 

3.32  0.36 (0.04) i.u. for Philips and 4.29  0.49 (0.05) i.u. for Siemens. Siemens values were 

on average 29% higher than the GE (pholm < 0.001) and Philips (pholm < 0.001) values. The 

cohort-wide average was 3.61  0.61 (0.04) i.u. Coefficients of variation (CVs) were 12.7%, 

10.8% and 11.3% for GE, Philips and Siemens, and 16.9% across all sites and vendors. The 

mean within-site CV was 9.5%. Fig. 2B shows the MM-suppressed GABA values arranged by 

site and by vendor. Mean  1 SD MM-suppressed GABA measurements were 3.22  1.02 (0.12) 

i.u. for GE, 3.52  1.20 (0.12) i.u. for Philips and 3.60  0.59 (0.07) i.u. for Siemens. Siemens 

MM-suppressed values were on average 12% higher than the GE (pholm > 0.9) and only 2% 

higher than Philips (pholm > 0.9) values. The cohort-wide average was 3.46  1.00 (0.06) i.u. CVs 

were 31.7%, 34.0% and 16.4% for GE, Philips and Siemens, and 28.8% across all sites and 

vendors. The mean within-site CV was 18.7%. GM, WM and CSF fractions are displayed in Fig. 

3. Across the cohort, the average (and CV of) fGM,vol, fWM,vol and fCSF,vol was 0.59  0.04 (6.9%), 
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0.28  0.04 (14.0%) and 0.13  0.05 (36.7%), respectively. Values of GABA+, fGM,vol, fWM,vol and 

fCSF,vol for each site are listed in Table 2. 

Water fit errors and linewidths and Cr measurements (for TE = 68 ms data) are displayed 

in Fig. 4, with site- and vendor-averaged values given in Table 2. On average, fit errors were 

small, and lower for Siemens (0.38%) compared to GE (0.56%) and Philips (0.56%). Water 

linewidths were similar across the vendors, with Philips (9.01  0.62 Hz) and Siemens (9.04  

0.57 Hz) showing slightly smaller linewidths compared to GE (9.37  0.84 Hz). Average water-

referenced Cr measurements were 14.6  1.2 i.u. for GE, 16.2  1.6 i.u. for Philips and 20.0  1.6 

i.u. for Siemens, based on TE = 68 ms data. The Siemens MM-suppressed acquisition, also 

acquired at TE = 68 ms, gave an average Cr measurement of 21.7  2.1 i.u. Cr measurements 

from MM-suppressed acquisitions acquired at TE = 80 ms were 16.9  1.2 i.u. for GE and 18.1  

1.7 i.u. for Philips, 14% higher on average. 

3.1. Linear mixed-effects analyses 

A summary of the linear mixed-effects analyses on the GABA+ measurements is given in 

Table S1. The unconditional linear mixed-effects model showed that vendor and site effects 

contributed significantly to the total amount of variance in the data: 
2
(1) = 28.36, pboot = 0.001 

and 
2
(1) = 28.89, pboot < 0.001, respectively. Based on the calculated VPCs, 53.6% of the 

variance was accounted for by vendor-level differences, while 10.7% was accounted for by site-

level differences. The remaining proportion of variance (35.7%) was attributed to individual 

differences in participants (see Table 3). The same model applied to MM-suppressed GABA 

showed that site effects contributed significantly to the total variance: 
2
(1) = 131.53, pboot = 

0.001, but vendor did not: 
2
(1) < 0.1, pboot = 0.65 (see Table S2). The corresponding VPCs were 

53.6% (site level) and 46.4% (participant level) (see Table 3). 

The voxel tissue fractions exhibited significant site-related effects for fGM,vol [
2
(1) = 

56.33, pboot = 0.001], fWM,vol [
2
(1) = 46.77, pboot < 0.001] and fCSF,vol [

2
(1) = 47.22, pboot < 

0.001], but only fWM,vol showed an additional vendor-related effect [
2
(1) = 4.08, pboot = 0.01]. 

Corresponding VPCs for fGM,vol were: vendor < 0.1%; site = 31.4%; participant = 68.6%. For 

fWM,vol these were: vendor = 12.8%; site = 24.9%; participant = 62.3%. For fCSF,vol these were: 

vendor = 1.8%; site = 28.5%; participant = 69.7%. Pairwise comparisons showed that, at the 
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vendor level, the Siemens fWM,vol values were significantly higher than the GE (pholm = 0.001) and 

Philips (pholm = 0.003) values. 

Based on the conditional linear mixed-effects analyses, neither GABA+ nor MM-

suppressed GABA levels were significantly impacted by the effects of NAA linewidth [
2
(5) = 

4.65, pboot = 0.21; 
2
(3) = 1.19, pboot = 0.61]. GABA+ levels did, however, show a relationship 

with fGM,vol [
2
(5) = 10.28, pboot = 0.02], whereas MM-suppressed GABA levels did not [

2
(3) = 

5.50, pboot = 0.08]. There were no significant effects of age [
2
(5) = 1.19, pboot = 0.75; 

2
(3) = 

0.85, pboot = 0.69] or sex [
2
(5) = 1.56, pboot = 0.67; 

2
(3) = 2.34, pboot = 0.35] on the GABA+ or 

MM-suppressed data, respectively. As shown in Fig. 5, the water-referenced and Cr-referenced 

measurements were strongly related, for both GABA+ and MM-suppressed acquisitions [
2
(5) = 

257.2, pboot < 0.001; 
2
(3) = 495.7, pboot < 0.001] as expected.  

3.2. Exploratory analysis 

Using the Siemens short-TE water reference brought down the Siemens GABA+ values 

to an average of 3.65  0.44 i.u. (an 18% reduction), reducing the discrepancy with the other 

vendors to 10% (boxplots plotted in Fig. S1). Corresponding VPCs were: vendor = 12.0%; site = 

24.2%; participant = 63.8%, with vendor and site effects remaining significant: 
2
(1) = 3.92, pboot 

= 0.01 and 
2
(1) = 32.77, pboot < 0.001, respectively. The short-TE-referenced Siemens Cr 

measurements were also reduced on average (by 18%, to 17.1  2.1 i.u.) compared to the initial 

analysis, again closer to the GE and Philips Cr measurements (Fig. S2).  

4. Discussion 

In this second paper describing a large multi-vendor, multi-site GABA-edited MRS 

dataset, it has been shown that water-referenced GABA measurements, including tissue 

correction based on variously acquired T1-weighted structural images, can be applied across sites 

and vendors with relatively low levels of variance. Water-referenced quantification shows very 

similar levels of performance to Cr referencing, as reported previously (Mikkelsen et al., 2017), 

with the notable exception of an additional vendor-related effect. 

4.1. Water vs. Cr referencing 
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One objective of this study was to compare quantitative outcomes of water and Cr 

referencing. Within site, water- and Cr-referenced GABA+ measurements both show variance of 

9.5%. Levels of site-related variance are also similar (mean within-vendor CV: 11.6% vs. 11.3%, 

respectively). The major difference between the water- and Cr-referenced results was the 

systematic effect of vendor in the water-referenced data.  

It is not clear why the water-referenced GABA+ values from the Siemens data were 

larger than the estimates from the other two vendors. This substantial vendor-related difference 

was not observed in the Cr-referenced data reported previously (Mikkelsen et al., 2017). Higher 

GABA+ values suggest a lower-than-expected water signal. Referencing to a short-TE PRESS 

water acquisition attenuated the discrepancy somewhat, suggesting that the Siemens MEGA-

PRESS WIP water reference signal is most likely at issue. It is notable that the water fit errors 

were lower in the Siemens data, suggesting that the water signal is closer to a Gaussian-

Lorentzian lineshape than the other vendors, and that the data undergo differing degrees of 

preprocessing (e.g., downsampling from the analog-to-digital converter sampling rate to the 

specified acquisition rate), with potentially different dynamic range performance – the water 

reference signal is ~10,000 times larger than the GABA signal and acquired with the same 

receiver gains. MM-suppressed data on Siemens were acquired with TE = 68 ms, compared to 

TE = 80 ms on the other vendors, a decision made in response to the TE-independent timing of 

editing pulses in that sequence. This clear difference in acquisition approach (which can only 

really be avoided by further sequence standardization; see, e.g., Saleh et al., 2019) means the 

MM-suppressed data offer little insight on the vendor water signal scaling effect. At this stage, it 

has not been possible to isolate the cause of this discrepancy, and communication with Siemens 

experts has not yielded a conclusive explanation. 

Aside from this vendor effect, it was clear that the variation in the water-referenced 

GABA+ measurements was similar to the GABA+/Cr measurements. This suggests that the 

reliability of the two referencing strategies is comparable, consistent with previous smaller 

studies (Bogner et al., 2010; Saleh et al., 2016). This is perhaps surprising as several additional 

corrections were performed to obtain the water-referenced values, which introduces more 

sources of error into the quantification. 

4.2. Water referencing approach 
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Quantification in this study used a best-practice approach, whereby the water reference 

signal was corrected for partial volume effects and relaxation. It has been shown that failing to 

account for these effects will lead to quantification errors (Gasparovic et al., 2006, 2018). These 

errors can be particularly pronounced at longer TEs (Gasparovic et al., 2006) or when there is 

large variability in tissue compartment fractions across cohorts (Harris et al., 2015; Mato Abad et 

al., 2014; Mikkelsen et al., 2016; Tal et al., 2012). The relatively low level of variance in the 

present dataset suggests that incorporating image-based voxel segmentation into the 

quantification routine did not add significant variance into the data. 

Nonetheless, subtle differences in quantification and tissue correction methodologies can 

have important consequences on reported results. For instance, the linear relationship between 

GABA+ levels and age, seen when applying a simple CSF tissue correction, can largely be 

attributed to the dependency of GABA+ levels on tissue composition (Maes et al., 2018; Porges 

et al., 2017). Additionally, the units of measurement of water-referenced metabolite 

concentrations, and the information content of the values, will depend on the quantification 

approach used. Metabolite concentrations have been reported in molar, molal and institutional 

units (Gasparovic et al., 2018; Jansen et al., 2006; Knight-Scott et al., 2003; Kreis et al., 1993a). 

Interpretation of stated concentrations, and particularly comparisons across studies, can be 

challenging. In this study, measurements were reported in institutional units of molality.  

Not every source of variance was captured in the statistical analysis. In the statistical 

model used here, participant-level variance not only accounts for true biological differences 

between individuals but also measurement error. One systematic site-level factor was the 

diversity of the T1-weighted structural imaging protocols, leading to heterogeneity in T1-

weighted contrast and image signal-to-noise ratio, which lead to small but significant site-to-site 

differences in voxel segmentation. There is an extensive literature on the successes and 

limitations of image segmentation (Clark et al., 2006; Eggert et al., 2012; Klauschen et al., 

2009), and while segmentation algorithms aim to be robust against the effects of imaging 

parameters, segmentation remains a challenging undertaking. The substantial tissue differences 

in water T2, particularly given the medium TE of the water acquisitions (68 ms), and in GABA 

and MR-visible water concentrations, suggest that accurate segmentation is important for 

reproducible water-referenced quantification. It should also be noted that the MRS voxel masks 

that are generated for tissue segmentation purposes correspond to the nominal excited volume, 
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which, because of acquisition parameters, voxel placement and chemical shift displacement 

errors, will not necessarily be centered on the excited signals of interest. In this study, the Philips 

and Siemens voxel masks were centered on the GABA and water reference signals, whereas the 

GE voxel masks centered on the 2.68 ppm signals (see Section 2.2). This variation will have 

introduced a degree of error in the water-referenced GABA measurements. 

4.3. Macromolecular contamination 

In quantifying the 3.0 ppm GABA+ signal in this work, a fixed signal fraction of co-

edited macromolecule contribution to the peak was assumed, an assumption that may not be 

valid for studies in neurological and psychiatric disorders. As presented previously (Mikkelsen et 

al., 2017) for Cr-referenced values, MM-suppressed measures showed greater relative variance 

than GABA+ measures. The degree of similarity between Cr-referenced and water-referenced 

measurements was similar for the macromolecule-suppressed and GABA+ datasets. 

4.4. Towards further standardization 

As highlighted in (Mikkelsen et al., 2017), it is likely that differences in acquisition 

sequence contribute to variance at the level of both vendor (e.g., factors inherited from vendor 

PRESS sequences) and site (e.g., differences in implementation of MEGA editing), which might 

be removed/attenuated by further standardization. In a parallel piece of work, we have 

implemented a cross-vendor standardized MEGA-PRESS sequence on GE, Philips, Siemens and 

Canon systems (Saleh et al., 2019), which addresses some of these issues. 

4.5. Conclusion 

In summary, GABA+ levels were quantified using brain tissue water as an internal 

concentration reference across 25 sites and low levels of within-site variance were observed. 

This level of variability is similar to that seen for GABA+ measurements quantified relative to 

Cr. Given the concern that observed effects might be driven by changes in the reference signal, it 

is often helpful to quantify both water- and metabolite-referenced measurements. Study-specific 

expectations of reference signal stability (e.g., between-group differences in clinical populations 

or known changes in water content and signal relaxation) might suggest one concentration 

reference a priori. That said, the present results do not show a clear reason to prefer one 



19 

 

reference signal for MRS quantification, and it can be concluded that water-referenced 

measurements of GABA+ are sufficiently reliable to be applied in multi-site studies. 

Appendix 

A subset of the data presented in this work has been made available on the NITRC portal 

in the “Big GABA” project repository (https://www.nitrc.org/projects/biggaba/) and is 

distributed freely under a non-commercial Creative Commons license. Community members are 

encouraged to make use of this resource for developing and optimizing new MRS methods. This 

data resource can also serve as a normative dataset against which clinical data may be compared 

or for quality assurance purposes. 

  

https://www.nitrc.org/projects/biggaba/
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Fig. 1. (A) Representative MRS voxel placement on a T1-weighted structural image and 

probabilistic partial volume voxel maps following tissue segmentation for one participant. 

Corresponding tissue fractions of gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF) are shown. (B) Vendor-mean GABA-edited difference spectra acquired by GABA+ and 

MM-suppressed GABA editing. The gray patches represent 1 standard deviation. The 

associated sample sizes are shown in parentheses. 

 

Fig. 2. (A) Water-referenced GABA+ and (B) MM-suppressed GABA measurements fully 

corrected for partial volume effects, displayed by site and by vendor. The boxes shaded with 

lighter colors represent ±1 standard deviation and the darker boxes represent the 95% confidence 

interval. The solid white lines denote the mean, while the dashed white lines denote the median. 

Sites are colored by vendor (GE sites in green, Philips sites in orange, Siemens sites in blue). 

 

Fig. 3. Gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) voxel tissue 

fractions, displayed by site and by vendor. GM = gray fill; WM = white fill; CSF = black fill. 

The red lines denote the mean. Sites are colored by vendor (GE sites with a green background, 

Philips sites with an orange background, Siemens sites with a blue background). 

 

Fig. 4. Quality metrics and water-referenced Cr measurements (from the TE = 68 ms data), 

displayed by site and by vendor. (A) water fit error; (B) water linewidth; (C) Cr measurements 

fully corrected for partial volume effects. The boxes shaded with lighter colors represent ±1 

standard deviation and the darker boxes represent the 95% confidence interval. The solid white 

lines denote the mean, while the dashed white lines denote the median. Sites are colored by 

vendor (GE sites in green, Philips sites in orange, Siemens sites in blue). 

 

Fig. 5. Scatterplots illustrating the relationship between (A) water-referenced GABA+ 

measurements and GABA+/Cr ratios and (B) water-referenced MM-suppressed GABA 

measurements and MM-suppressed GABA/Cr ratios. Individual measurements are color-coded 

by vendor (GE in green, Philips in orange, Siemens in blue). The black regression line shows the 

relationship between GABA+/Cr and water-referenced GABA+ over the entire dataset. 



30 

 

Additional color-coded regression lines are shown for each site. R
2 

values (i.e., the effect sizes) 

are also displayed.
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Table 1. Hardware and acquisition parameters used to collect 3D T1-weighted structural images at each site. 

Site ID Tx/Rx hardware Voxel resolution (mm
3
) TE/TI/TR (ms) Scan time (m:ss) Flip angle (deg) Slices FOV (mm

2
) Matrix size Acceleration (factor) 

G1 Body coil/32-ch head coil 0.94  0.94  1 2.68/600/7.42 4:07 10 226 256  256 256  256 ASSET (2) 

G2 Body coil/8-ch head coil 0.9  0.9  1 2.73/650/6.24 2:54 8 180 256  256 256  256 ARC (2) 

G3 Body coil/32-ch head coil 1  1  1 2.6/500/6.4 4:37 11 180 256  256 256  256 ASSET (2) 

G4 Body coil/8-ch head coil 1  1  1 2.98/450/6.89 9:35 12 192 256  256 256  256 None 

G5 Body coil/32-ch head coil 0.5  0.5  0.8 2.1/450/7.09 5:39 12 232 256  256 512  512 None 

G6 Body coil/8-ch head coil 1  1  2 2.66/400/6.24 6:22 12 124 240  240 240  240 None 

G7 Body coil/8-ch head coil 1  1  1 3.2/450/8.2 4:30 12 176 256  256 256  256 ARC (2) 

G8 Body coil/8-ch head coil 1  1  1 4.17/450/10.19 5:27 12 180 256  256 256  256 ARC (2) 

P1 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 204 256  256 256  256 SENSE (2) 

P2 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 204 256  256 256  256 SENSE (2) 

P3 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 204 256  256 256  256 SENSE (2) 

P4 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 204 256  256 256  256 SENSE (2) 

P5 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 170 256  256 256  256 SENSE (2) 

P6 Body coil/8-ch head coil 1  1  1 3.1/865/6.9 7:10 8 204 256  256 256  256 SENSE (2) 

P7 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 204 256  256 256  256 SENSE (2) 

P8 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 204 256  256 256  256 SENSE (2) 

P9 Body coil/32-ch head coil 1  1  1 3.1/865/6.9 7:10 8 176 256  256 256  256 SENSE (2) 

S1 Body coil/32-ch head coil 1  1  1 2.52/900/1900 4:18 9 176 250  250 256  256 GRAPPA (2) 

S2 Body coil/32-ch head coil 1  1  1 2.85/1050/1900 5:43 9 176 256  256 256  256 GRAPPA (2) 

S3 Body coil/20-ch head/neck coil 1  1  1 1.77/900/1900 4:05 8 160 256  256 128  256 GRAPPA (2) 

S4 Body coil/64-ch head coil 1  1  1 4.11/1000/2000 3:36 12 160 256  256 256  256 GRAPPA (2) 

S5 Body coil/12-ch head coil 1  1  1 4.6/900/1950 4:01 9 176 192  256 192  256 GRAPPA (2) 

S6 Body coil/32-ch head coil 1  1  1 2.26/900/1900 4:26 9 192 256  256 256  256 GRAPPA (2) 

S7 Body coil/32-ch head coil 1  1  1 3.03/900/2300 5:21 9 192 256  256 256  256 GRAPPA (2) 

S8 Body coil/64-ch head coil 1  1  1 3.02/900/1900 4:01 9 160 256  256 256  256 GRAPPA (2) 
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Table 2. Quantification, tissue fractions and (TE = 68 ms) water data quality metrics, displayed by site and by vendor (shown as mean  1 standard deviation (CV)). 

Site ID GABA+ (i.u.) MM-s GABA (i.u.) Cr (i.u.) fGM,vol fWM,vol fCSF,vol Water fit error (%) Water linewidth (Hz) 

G1 3.33  0.20 (6.1%) 4.40  0.61 (13.9%) 11.69  1.00 0.60  0.05 0.26  0.04 0.14  0.03 0.95  0.09 9.43  0.48 

G2 3.70  0.26 (7.1%) 4.04  0.78 (19.3%) 11.19  0.61 0.56  0.02 0.29  0.03 0.15  0.03 0.57  0.11 9.98  0.73 

G3 2.92  0.26 (9.0%) DE 10.16  0.69 0.60  0.03 0.29  0.02 0.11  0.03 0.43  0.09 9.46  0.76 

G4 3.31  0.39 (11.7%) 2.95  0.93 (31.6%) 10.54  0.52 0.60  0.03 0.28  0.02 0.12  0.04 0.42  0.06 9.34  0.40 

G5 2.96  0.20 (6.9%) 2.23  0.54 (24.1%) 10.33  0.41 0.65  0.05 0.26  0.01 0.09  0.04 0.55  0.11 9.79  0.63 

G6 3.22  0.59 (18.2%) DNA 9.65  0.76 0.54  0.04 0.32  0.02 0.15  0.04 0.65  0.07 9.80  0.92 

G7 3.44  0.38 (11.1%) 2.83  0.84 (29.7%) 11.28  0.55 0.57  0.05 0.23  0.02 0.19  0.06 0.47  0.11 8.72  0.88 

G8 3.46  0.41 (11.7%) 2.81  0.43 (15.2%) 11.10  0.49 0.57  0.03 0.23  0.05 0.21  0.05 0.41  0.09 8.40  0.42 

All GE 3.32  0.42 (12.7%) 3.22  1.02 (31.7%) 10.78  0.90 0.58  0.05 0.27  0.04 0.15  0.05 0.56  0.19 9.37  0.84 

P1 3.30  0.37 (11.1%) 3.47  0.33 (9.6%) 11.46  0.78 0.60  0.03 0.27  0.04 0.13  0.04 0.47  0.07 8.78  0.53 

P2 3.18  0.25 (7.8%) 3.16  0.71 (22.4%) 11.55  0.71 0.56  0.03 0.29  0.02 0.15  0.04 0.43  0.07 8.74  0.40 

P3 3.29  0.26 (7.8%) 3.66  0.88 (24.1%) 11.24  0.94 0.58  0.02 0.29  0.03 0.13  0.03 0.84  0.11 9.02  0.43 

P4 3.48  0.58 (16.5%) 2.05  0.65 (31.7%) 11.86  0.56 0.59  0.02 0.26  0.02 0.15  0.03 0.32  0.06 8.78  0.38 

P5 3.03  0.25 (8.1%) 2.61  0.32 (12.3%) 11.32  0.75 0.63  0.03 0.27  0.02 0.11  0.03 0.75  0.08 9.06  0.24 

P6 3.56  0.27 (7.7%) 4.07  1.42 (34.9%) 13.19  1.19 0.57  0.02 0.25  0.03 0.18  0.05 0.67  0.17 8.71  0.53 

P7 3.10  0.22 (7.0%) 2.87  0.55 (19.3%) 11.88  0.47 0.63  0.03 0.27  0.03 0.10  0.03 0.69  0.11 10.21  0.62 

P8 3.59  0.33 (9.1%) 5.70  0.40 (7.1%) 13.84  0.54 0.61  0.04 0.28  0.03 0.11  0.04 0.40  0.04 9.03  0.29 

P9 3.31  0.22 (6.7%) 4.10  0.40 (9.6%) 11.13  0.93 0.59  0.02 0.28  0.04 0.12  0.03 0.50  0.06 8.77  0.31 

All Philips 3.32  0.36 (10.8%) 3.52  1.20 (34.0%) 11.95  1.17 0.59  0.04 0.27  0.03 0.13  0.04 0.56  0.19 9.01  0.62 

S1 4.17  0.23 (5.5%) 3.39  0.56 (16.5%) 14.76  0.84 0.57  0.03 0.30  0.03 0.12  0.05 0.39  0.08 9.40  0.72 

S2 4.74  0.39 (8.1%) 3.76  0.52 (13.7%) 17.24  0.28 0.55  0.02 0.33  0.02  0.12  0.03 0.38  0.03 9.22  0.36 

S3 3.87  0.41 (10.6%) 3.75  0.76 (20.1%) 14.86  0.98 0.56  0.03 0.33  0.04 0.11  0.04 0.30  0.06 8.63  0.39 

S4 4.28  0.48 (11.1%) 3.22  0.55 (17.1%) 14.05  0.57 0.61  0.03 0.29  0.02 0.10  0.04 0.33  0.05 8.81  0.31 

S5 4.46  0.72 (16.2%) 3.73  0.63 (17.0%) 14.45  1.60 0.59  0.05 0.31  0.04 0.10  0.07 0.42  0.11 9.45  0.92 

S6 4.08  0.17 (4.2%) 3.86  0.37 (9.5%) 14.57  0.42 0.59  0.04 0.30  0.03 0.11  0.03 0.44  0.08 9.12  0.28 

S7 4.43  0.34 (7.8%) 3.55  0.52 (14.7%) 13.88  0.96 0.58  0.03 0.28  0.03 0.14  0.04 0.46  0.08 8.98  0.39 

S8 4.50  0.50 (11.0%) 3.46  0.61 (17.6%) 15.52  0.61 0.58  0.03 0.29  0.03 0.13  0.02 0.33  0.07 8.84  0.36 

All Siemens 4.29  0.49 (11.3%) 3.60  0.59 (16.4%) 14.73  1.19 0.58  0.04 0.30  0.04 0.12  0.04 0.38  0.10 9.04  0.57 

Overall 3.61  0.61 (16.9%) 3.46  1.00 (28.8%) 12.42  1.94 0.59  0.04 0.28  0.04 0.13  0.05 0.51  0.19 9.14  0.70 

CV, coefficient of variation; DE, data excluded; DNA, data not acquired; MM-s, MM-suppressed. 
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Table 3. Summary of variance partition analyses. Cr-referenced values are reproduced from Mikkelsen et al., 2017. 

 GABA+ (i.u.) MM-suppressed GABA (i.u.) GABA+/Cr MM-suppressed GABA/Cr 

Vendor 53.6% – 8.2% – 

Site 10.7% 53.6% 19.7% 50.4% 

Participant 35.7% 46.4% 72.1% 49.6% 
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A subset of the data presented in this work has been made available on the NITRC portal in the 

“Big GABA” project repository (https://www.nitrc.org/projects/biggaba/) and is distributed 

freely under a non-commercial Creative Commons license. Community members are encouraged 

to make use of this resource for developing and optimizing new MRS methods. This data 

resource can also serve as a normative dataset against which clinical data may be compared or 

for quality assurance purposes. 
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