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Summary

A fractured poroelastic body is considered where the opening of the fractures is
governed by a nonpenetration law, whereas slip is described by a Coulomb-type
friction law. This physical model results in a nonlinear variational inequality
problem. The variational inequality is rewritten as a complementary function,
and a semismooth Newton method is used to solve the system of equations. For
the discretization, we use a hybrid scheme where the displacements are given
in terms of degrees of freedom per element, and an additional Lagrange multi-
plier representing the traction is added on the fracture faces. The novelty of our
method comes from combining the Lagrange multiplier from the hybrid scheme
with a finite volume discretization of the poroelastic Biot equation, which allows
us to directly impose the inequality constraints on each subface. The conver-
gence of the method is studied for several challenging geometries in 2D and 3D,
showing that the convergence rates of the finite volume scheme do not deteri-
orate when it is coupled to the Lagrange multipliers. Our method is especially
attractive for the poroelastic problem because it allows for a straightforward cou-
pling between the matrix deformation, contact conditions, and fluid pressure.
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1 INTRODUCTION

Slip and opening of fractures due to fluid injection are of relevance to a number of subsurface engineering processes.
In hydraulic reservoir stimulation, the effect is deliberately induced, while in storage operations and wastewater dis-
posal, avoiding reactivation and opening of fractures is important for preserving cap rock integrity. In any circumstance,
triggering of larger slip events in the form of elevated levels of seismicity must be avoided. The mathematical model of frac-
ture resistance, slip, and opening results in a strongly coupled nonlinear variational inequality, which requires advanced
numerical schemes to solve. The purpose of this work is to describe and implement a numerical method to solve this
problem considering a poroelastic matrix. The fractures are a set of predefined surfaces in the domain, and the nucleation
or growth of fractures is not considered.

The flow and mechanics of poroelastic media and the contact mechanics of elastic bodies are well-developed research
fields. For a porous or poroelastic medium, we refer to the classical textbooks.1,2 There exists an extensive number of
discretizations for the elliptic equations describing fluid flow in a porous medium, and they all have different merits.
The most popular discretizations are the so-called locally conservative discretizations,3 which include mixed finite
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elements,4 control-volume finite elements,5 and finite volume methods.6 For the coupled poroelastic problem, without
considering fractures, it is known that a naive discretization of the coupling terms of the fluid pressure and the solid dis-
placement leads to stability issues for finite element schemes.7 Several different methods have been proposed to remove
these oscillations.8-10 Recently, a finite volume method called the multipoint stress approximation was introduced for
elastic deformations.11,12 This method has been extended to the poroelastic Biot equations and shown to be stable without
adding any artificial stabilization terms in the limit of incompressible fluids and small time steps.13

The contact mechanics problem, ie, contact between two elastic bodies, is also the topic of several textbooks.14,15 A
widely used solution strategy for the nonlinear variational inequalities resulting from the mathematical formulation is
the penalty method.16 The basic idea is to penalize a violation of the inequality by adding extra energy to the system. The
solution depends then, in a very sensitive way, on the choice of the penalty parameter. If the value of the parameter is too
small, the condition number of the algebraic system is extremely poor, and the nonlinear solver converges slowly. If the
value is too large, the accuracy of the solution is very poor, and unphysical approximations can be obtained. Therefore,
variationally consistent hybrid formulations have gained interest recently. The hybrid formulations are based on the dis-
cretization of additional unknown Lagrange multipliers added to the contact region. This method has been applied to,
among others, the Signorini problem,17 frictional contact,18 and large deformations19 (see the survey contribution20 and
the references therein).

For a poroelastic domain including fractures, different models for the contact problem are developed.21-24 Most of these
models, however, do not take into account the contact problem either by assuming the fractures stick together21 or that the
fluid pressure inside the fractures is so large that the fracture surfaces are never in contact.22,23 The full contact problem
for a fractured poroelastic domain is considered by Garipov et al,24 where they applied the penalty method to solve the
nonlinear variational inequalities resulting from the contact problem.

In this work, we present a different numerical solution approach for poroelastic media with contact mechanics. The
discretization is based on a finite volume method for poroelasticity13 combined with a variationally consistent hybrid
discretization.20,25 The hybrid formulation considered in this work can be regarded as a mortar formulation26 using match-
ing meshes with the displacement as the primal variable and the surface traction as the dual variable. The finite volume
scheme has previously been extended to fracture deformation by adding additional displacement unknowns on the frac-
ture faces.27 This formulation was successfully used to implement a fixed-point–type iteration to approximate the friction
bound28; however, this formulation suffers from the fact that a step length parameter needs to be tuned and that it might
require many iterations to converge.29 An advantage of the scheme used in this work, where the Lagrange multiplier of
the hybrid formulation is coupled with the surface traction obtained from the finite volume scheme, is that it gives a nat-
ural formulation of the contact condition per subface. This formulation allows us to rapidly solve the resulting nonlinear
inequality problem by applying a semismooth Newton method (see the work by Hüeber et al,25 among others20,30).

The remainder of this paper is structured as follows. First, we state the problem and give the governing equations.
Then, the discretization is presented, which is divided into two parts: (i) the finite volume discretization for the Biot
equations and (ii) the discrete hybrid formulation for the contact problem. We present four numerical examples. The first
two consider the dry case where the coupling between fluid pressure and deformation of the rock is disregarded. The last
two examples solve the poroelastic deformation of a 2D and 3D domain where the deformation of fractures is governed
by a Coulomb friction law. Finally, we give concluding remarks.

2 PROBLEM STATEMENT

Let Ω be a fractured deformable porous body. The boundaries of the domain 𝜕Ω are divided into three disjoint open sets,
ΓD,ΓN, and ΓC, as illustrated in Figure 1: for the first set, a Dirichlet boundary condition is assigned; for the second, a
Neumann boundary condition is assigned; and the last is the internal fracture boundary. We consider the Biot model for
a poroelastic medium31

−∇ · 𝜎 = f u in Ω,
 ∶ (∇u + (∇u)⊤)∕2 − 𝛼pI = 𝜎 in Ω,

c0
.p + 𝛼∇ · .u + ∇ · q = 𝑓p in Ω,

q = −∇p in Ω, (1)
u = gu,D on Γu,D,

𝜎 · n = gu,N on Γu,N ,

p = gp,D on Γp,D,

q · n = gp,N on Γp,N .
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FIGURE 1 A domain Ω where the external boundary is divided into two parts: ΓD and
ΓN . Included in the domain are two internal boundaries, or fractures, ΓC. The two sides of
the internal boundaries are labeled Γ+ and Γ−, as shown in the magnified circular region
of the domain. The function g(x), x ∈ Γ+ gives the initial gap between the two fracture
sides. The left fracture has an initial gap g > 0, whereas the top right fracture has an initial
gap g = 0 [Colour figure can be viewed at wileyonlinelibrary.com]

The variables .p and .u are the time derivatives of the pressure and displacement, respectively. Throughout this paper, we
apply a backward Euler time stepping, and .p and .u should be interpreted as the discrete derivatives

.p =
p − pi

Δt
,

.u = u − ui

Δt
(2)

for the previous time iterate i and time step lengthΔt. Note that we have dropped the index for the current time iterate, i+1.
All parameters are, in general, functions of space, eg,  = (x), x ∈ Ω; however, the explicit dependence is suppressed
to keep the notation simple. Parameters associated with the pressure p and displacement u are given a subscript with the
same symbol. The vector fu is a given body force, while fp is a given source term. The stiffness tensor is denoted , the Biot
coupling coefficient 𝛼, the storage coefficient c0, and the permeability . Indicated by subscripts, g represents Dirichlet
and Neumann boundary conditions for displacement and pressure, while n is the outwards pointing normal vector. In
this work, we use  ∶ (∇u + (∇u)⊤)∕2 = G(∇u + (∇u)⊤) + Λtr(∇u)I, where G and Λ are the Lamé parameters. Traction
can also be derived for other material laws.

The fracture boundary, ΓC, is divided into a positive side Γ+ and a negative side Γ−. The choice of which side is positive
and which is negative is arbitrary and will only make a difference in the implementation. For the fracture segments,
a nonpenetration condition is enforced in the normal direction, meaning that the positive and negative sides cannot
penetrate each other. In the tangential direction, a Coulomb friction law divides the contact region into a sliding part and
a sticking part. To formulate these contact conditions, the normal vector for the contact region is defined as the normal
vector of the positive side n(x) = n+(x). Furthermore, let

R ∶ Γ+ → Γ− (3)

be a mapping that projects a point from the positive boundary onto the negative boundary as given by the normal vector.
The gap function, which will appear in the nonpenetration condition, is then defined as

g(x) = ||x − R(x)|| x ∈ Γ+,

where || · || is the Euclidean norm. Due to Newton's third law, the surface traction, T = 𝜎 · n, on the contact boundaries
must be equal up to the sign

T+(x) = −T−(R(x)) x ∈ Γ+, (4)

and we use the notation TC = T+. The surface traction is divided into a normal and tangential part by

Tn(x) = TC(x) · n(x), T𝜏(x) = TC(x) − Tn(x)n(x) x ∈ Γ+, (5)

and the displacement jump is defined as [u(x)] = u(x) − u(R(x)) for x ∈ Γ+. The normal and tangential displacement
jump is defined analogously to Equation (5)

[u(x)]n = [u(x)] · n(x), [u(x)]𝜏 = [u(x)] − [u(x)]nn(x) x ∈ Γ+.

http://wileyonlinelibrary.com
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FIGURE 2 Notation used to describe the mesh. For a cell K, face 𝜋, and vertex v of the mesh, we
associate a subcell (K, v) and subface (𝜋, v), as well as a cell center xK and continuity point xv

𝜋 . In
this figure, the cell is the full triangle, and the subcell is given by the gray area

The nonpenetration condition can now be formulated as

⎧⎪⎨⎪⎩
[u(x)]n − g(x) ≤ 0
Tn(x) ([u(x)]n − g(x)) = 0
Tn(x) ≤ 0

x ∈ Γ+, (6)

where the first condition ensures that the two sides of the fracture cannot penetrate, the second ensures that either the
normal traction is zero or the fracture sides are in contact, and the last enforces a negative normal component of the
surface traction.

The tangential part of the surface traction is governed by a Coulomb friction law:

⎧⎪⎨⎪⎩
‖T𝜏(x)‖ ≤ F(x)|Tn(x)|‖T𝜏(x)‖ < F(x)|Tn(x)| → [ .u(x)]𝜏 = 0‖T𝜏(x)‖ = F(x)|Tn(x)| → ∃𝜁 ∈ ℝ ∶ T𝜏(x) = −𝜁2[ .u(x)]𝜏

x ∈ Γ+, (7)

where F is the coefficient of friction, and .u is the displacement velocity approximated by the backward Euler scheme,
as given by Equation (2). The first equation gives the friction bound, the second ensures that if the friction bound is not
reached, then the surface is sticking, and the last equation ensures that if the friction bound is reached, then the tangential
sliding velocity is parallel to the tangential traction. In the static case, eg, for the purely mechanical problem when 𝛼 = 0,
the notion of a velocity does not exist. For these cases, it is common to replace the sliding velocity, [ .u]𝜏 , by the displacement
jump, [u]𝜏 , in Equation (7).20

For the fluid, the fractures are modeled as impermeable. This means that the fluid cannot flow in or across the fractures,
ie, q(x) ·n(x) = 0, x ∈ ΓC. To avoid excessive model complexity, we have chosen a model with impermeable fractures. For
possible methods to extend this work to include fracture flow, we refer the work by Dietrich et al,32 among others.24,33-35

3 DISCRETIZATION

We define the triplet ( , ,) as the cells, faces, and vertices of our mesh. It is assumed that the mesh conforms to the
fractures, that is, the positive and negative sides of the fractures are tessellated by a subset of the faces of the mesh. Before
the discretization is described, we need to define some notation, and we start by giving the relation between cells, faces,
and vertices using the standard notation for finite-volume methods.13,36

• For a cell K ∈  , we denote its faces by K and its vertices by K .
• For a face 𝜋 ∈  , we denote the neighboring cells as 𝜋 and its vertices as 𝜋 .
• For a vertex v ∈  , we denote the adjacent cells by v and the adjacent faces by v.

In addition to the mesh triplet ( , ,), we define the so-called subcells and subfaces illustrated in Figure 2.

• For a vertex v ∈ K , we define a subcell of K identified by (K, v) with a volume mv
K such that

∑
v∈K

mv
K = mK = ∫Kdx.

• For a vertex v ∈ 𝜋 , we associate a subface identified by (𝜋, v) with an area mv
𝜋 such that

∑
v∈𝜋mv

𝜋 = m𝜋 = ∫
𝜋

dx.

The subfaces cannot be chosen arbitrary but should correspond to faces of the subcells; for the triplet (v, 𝜋,K), the
intersection of the boundary of the subcell (K, v) and the face 𝜋 should equal the subface (𝜋, v) = 𝜕(K, v)∩𝜋. Furthermore,
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all subcells and subfaces are assumed to have a positive measure. Note that in an abuse of notation, we use K for both
indexing and the geometric object so that both K and ∫Kdx make sense. All subfaces (𝜋, v), 𝜋 ∈  , v ∈ 𝜋 are divided
into three disjoint sets  , , and , where  contains all subfaces located on the positive boundary Γ+,  contains all
subfaces located on the negative boundary Γ−, and  contains the remaining subfaces.

Finally, for each element K ∈  , a cell center xK ∈ K is defined, and for each subface (𝜋, v), we associate a continuity
point xv

𝜋 located at any point on the subface, (𝜋, v); however, the distance to the vertex v must be greater than zero. The
unit normal for each face is denoted by n𝜋 , which is equal to the subface normal of the face nv

𝜋 . When it is necessary to
distinguish the direction of the normal, it is defined as the outward pointing normal n𝜋K of a cell K ∈ 𝜋 . Note that for a
face 𝜋, we have 𝜋 = {K,L}, n𝜋K = −n𝜋L .

In the implementation used in the examples of this paper, the following construction is employed: The face and cell
centers are chosen as the centroid of the corresponding face and cell. In 2D, the subface (𝜋, v) is defined by the convex hull
of the vertex v and the face center x𝜋 . In 3D, the subface is in addition defined by the midpoints of the edges of the face 𝜋
that are connected to v. For simplices, this construction partition each face into a set of subfaces of equal area. The subcell
(K, v) is defined by the convex hull of the cell center xK and the subfaces (𝜋, v), 𝜋 ∈ v ∩ K . The continuity point, xv

𝜋 , is
taken to be one third the distance from the face center to the vertex, xv

𝜋 = x𝜋 −(x𝜋 − v)∕3. An example of this construction
is shown in Figure 2.

3.1 Finite volume discretization
We use a finite volume discretization13 to discretize the Biot equation (1). This is based on two discrete variables, uK and
pK, which are the cell-centered displacement and pressure, respectively. Within each subcell (K, v), K ∈  , v ∈ K , it
is assumed that the displacements and pressures are linear. The discrete gradients are constant over each subcell, and
are denoted by (∇̄u)v

K and (∇̄p)v
K , where the bar over the gradient operator is added to distinguish it from the continuous

gradients. For the mechanical stress, we adapt the notion of weak symmetry12; given the volume weighted average

⟨Ξ⟩v =
1∑

K∈v
mv

K

∑
K∈v

mv
KΞ

v
K ,

associated with a vertex v, the discrete weakly symmetric mechanical stress is given by

𝜽v
K = K ∶ (∇̄u)v

K −
⟨ ∶ (∇̄u)⟩v − ⟨ ∶ (∇̄u)⟩⊤v

2
. (8)

This is referred to as weak symmetry because ⟨𝜽 − 𝜽⊤⟩v = 0.
To simplify notation, the tensor v is referred to as the stress tensor, which acts to weakly symmetrize the stress

𝜽v
K = Cv

K ∶ (∇̄u)v
K .

The expression Cv
K ∶ (∇̄u)v

K should not be interpreted as a single tensor vector product but as a weighted sum of products
given by Equation (8).

Using the weak symmetry, the flux and traction over each subface given by the discrete variables can be stated as

qv
K,𝜋 = −mv

𝜋K(∇̄p)v
K · n𝜋K , (9)

Tv
K,𝜋 = mv

𝜋

(v ∶ (∇̄u)v
K − 𝛼pKI

)
· n𝜋K . (10)

For a spatially varying permeability and stress tensor, we use the cell-centered value to evaluate the parameters K =
(xK) for each cell.

The finite-volume scheme will be constructed such that the gradient unknowns can be eliminated by performing a local
static condensation. The following presentation on how we obtain the numerical gradients is designed to reflect the com-
puter implementation. This presentation is different from most classical papers on the used finite-volume discretization6;
however, it is mathematically equivalent. After the numerical gradients are expressed in terms of the cell-centered
unknowns, the finite volume structure of the discretization is obtained by enforcing mass/momentum conservation for



BERGE ET AL. 649

each cell. The final scheme will be locally conservative and given by the cell-centered displacement and pressure. A detail
that will be important when we introduce the hybrid discretization is the possibility of exactly reconstructing the discrete
gradients, and thus also the flux and traction, from the cell-centered variables u and p.

The discrete fluid flux given in Equation (9) does not contain any dependence on the displacement, and it is identi-
cal to the fluid flux for the uncoupled fluid pressure, ie, 𝛼 = 0. To discretize the flux, we use the MPFA-O scheme for
simplices.37,38 Each subcell gradient (∇̄p)v

K is associated with a fluid flux as given in (9). Conservation of mass is enforced
for each internal subface. This requires the fluid flux for the two cells (K,L) ∈ 𝜋 sharing a face 𝜋 to be equal and opposite
over each of their shared subfaces, that is,

−mv
𝜋K(∇̄p)v

K · n𝜋K = mv
𝜋L(∇̄p)v

L · n𝜋L . (11)

The pressure is not required to be continuous across the whole subface. Instead, pressure continuity is enforced at the
continuity points, xv

𝜋 , that is,
pK + (∇̄p)v

K ·
(

xv
𝜋 − xK

)
= pL + (∇̄p)v

L ·
(

xv
𝜋 − xL

)
. (12)

Here, we have made use of the assumption that the pressure is linear in each subcell to write the pressure at the continuity
point xv

𝜋 as a function of the cell center pressure pK and gradient (∇̄p)v
K . If a subface is on the Neumann boundary, 𝜋 ⊂ Γp,N,

the flux over the subface is given by evaluating the boundary condition at the continuity point and multiply the value
with the subface area

−mv
𝜋K(∇̄p)v

K · n𝜋K = mv
𝜋gp,N

(
xv
𝜋

)
. (13)

If a subface is on the Dirichlet boundary, 𝜋 ⊂ Γp,D, the pressure on the subface is given by

pK + (∇̄p)v
K ·

(
xv
𝜋 − xK

)
= gp,D

(
xv
𝜋

)
. (14)

Faces on the fracture boundary, (𝜋, v) ⊂ Γ+ ∪ Γ−, are given a zero Neumann boundary condition as we have assumed
impermeable fractures.

Around each vertex v, we can now form a local linear system of equations from which the gradients (∇̄p)v
K , K ∈ v can

be eliminated

(𝛁̄p)v =
[

Qp
Dp,G

]−1 ([ gp,N
gp,D

]
−
[

0
Dp

]
p
)
. (15)

The first block Qp(𝛁̄p)v = gp,N in this linear system is the collection of all flux balance Equations (11) and (13) for the vertex
v. The next block Dp,G(𝛁̄p)v = gp,D − Dpp collects all the pressure continuity Equations (12) and (14). Thus, (𝛁̄p)v is the
vector of the subcell gradients (∇̄p)v

K , the matrix Qp represents products of the form mv
𝜋n𝜋KK , the matrix Dp,G represents

the distances xv
𝜋−xK , the vectors gp,N and gp,D are possible boundary conditions, and Dp has entries 1 for pv

K and −1 for pv
L.

The elimination of the displacement gradients (∇̄u)v
K is similar to the elimination of the pressure gradients ∇̄pv

K . First,
the continuity of traction gives us for each internal subface

mv
𝜋

(v
K ∶ (∇̄u)v

K − 𝛼pKI
)
· n𝜋K = −mv

𝜋

(v
L ∶ (∇̄u)v

L − 𝛼pLI
)
· n𝜋L . (16)

It is worth pointing out that, for internal faces, the averaging part of the operator v
K ∶ (∇̄u)v

K is the same on the right- and
left-hand sides. Thus, the balance of traction can be written as

mv
𝜋

(K ∶ (∇̄u)v
K − 𝛼pKI

)
· n𝜋K = −mv

𝜋

(L ∶ (∇̄u)v
L − 𝛼pLI

)
· n𝜋L .

However, for boundary faces, the complete Equation (16) must be used. Unlike the fluid fluxes in (9), the traction is
different from the uncoupled system due to the term 𝛼pKI. It is important to include the Biot stress in the local systems
to obtain the correct force balance in our method.13 We will see later that this approach also gives a higher-order term in
the mass balance for the fluid, which acts analogously to the stabilization terms in other colocated schemes. As for the
fluid pressure, displacement continuity is enforced at the continuity points xv

𝜋

uK + (∇̄u)v
K
(

xv
𝜋 − xK

)
= uL + (∇̄u)v

L
(

xv
𝜋 − xL

)
. (17)
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For a subface on the Neumann boundary, (𝜋, v) ⊂ Γu,N, the boundary condition is evaluated at the continuity point and
multiplied with the subface area

mv
𝜋

(v
K ∶ (∇̄u)v

K − 𝛼pKI
)
· n𝜋K = mv

𝜋gu,N
(

xv
𝜋

)
. (18)

For a subface on the Dirichlet boundary (𝜋, v) ⊂ Γu,D the displacement vector at the continuity point is given

uK + (∇̄u)v
K
(

xv
𝜋 − xK

)
= gu,D

(
xv
𝜋

)
. (19)

Subfaces on the fracture boundary is given a Neumann condition defined by the Lagrange multiplier

mv
𝜋

(v
K ∶ (∇̄u)v

K − 𝛼pKI
)
· n𝜋K = mv

𝜋𝝀
v
𝜋 (𝜋, v) ∈  ,

mv
𝜋

(v
K ∶ (∇̄u)v

K − 𝛼pKI
)
· n𝜋K = −mv

𝜋𝝀
(

R−1 (xv
𝜋

))
(𝜋, v) ∈  .

(20)

The contribution to the negative side −𝝀(R−1(xv
𝜋)) is just the mapping onto the Lagrange multiplier on the corresponding

positive subface as given by Equation (3).
A local elimination of the displacement gradients (∇̄u)v

K can now be done around each vertex to express them in terms
of the cell-centered displacement and pressure

(𝛁̄u)v =
[

Qu
Du,G

]−1
([

gu,N
gu,D

]
−
[

P 0 −M±
0 DU 0

][ p
u
𝝀

])
. (21)

The variable (𝛁̄u)v is the vector of the displacement gradients, (∇̄u)v
K , around the vertex v, the matrix Qu represents prod-

ucts of the form mv
𝜋n⊤v

K , the matrix Du,G represents the same distance vectors as in (15), the vectors gu,N and gu,D are
possible boundary conditions, and Du is a matrix with entries ±1. The term P is the only difference between the cou-
pled and uncoupled system and contains products of the form mv

𝜋𝛼Inv
𝜋 . The matrix M± contains the positive areas mv

𝜋

for the positive subfaces and the negative areas −mv
𝜋 for the negative subfaces and represents the Lagrange multiplier

contribution to the traction balance in Equation (20).
The finite-volume discretization of fluid flow is then obtained by expressing the fluid mass conservation over each cell K

in terms of the discrete variables∑
𝜋∈K

∑
v∈𝜋

−mv
𝜋K(∇̄p)v

K · n𝜋K +
∑

v∈K

[
mv

K𝛼
(
∇̄ · .u

)v
K + c0mv

K
.pK

]
= ∫

K

𝑓pdx. (22)

The pressure gradient (∇̄p)v
K and displacement divergence (∇̄ · u)v

K = tr(∇̄u)v
K are obtained as linear functions of the

cell-centered pressures and displacements and Lagrange multipliers from the local systems given in (15) and (21). The
appearance of the pressure in the discrete displacement divergence is essential for the consistency of the method and is
similar to the artificially introduced stability terms in other methods (see, eg, the work of Gaspar et al39).

For the mechanics, momentum is conserved for all cells K

−
∑
𝜋∈K

∑
v∈𝜋

mv
𝜋v

K ∶ (∇̄u)v
K · n𝜋K = ∫

K

f dV . (23)

Note that the term 𝛼pKI from the Biot stress in (10) sums to zero over a cell due to Gauss's theorem; however, the pres-
sure dependence on the subcell gradients gives the correct fluid pressure contribution to the mechanics. Similarly, the
dependence of the Lagrange multiplier on the subcell gradients gives the correct force contribution to the momentum
balance.

To summarize, the finite volume scheme is constructed by defining a set of discrete pressure and displacement gradients
for each subcell. Flux and pressure continuity is enforced over each subface for the fluid, and traction and displacement
continuity is enforced for each subface for the solid. This defines a small local system around each node from which
the pressure and displacement gradients can be expressed as a linear combination of the cell-centered pressure and dis-
placement, and Lagrange multiplier and then eliminated. A stable coupling between the fluid and solid is achieved by
considering the Biot stress, ie,  ∶ (∇u + (∇u)⊤)∕2 − 𝛼pI, for traction balance of the local systems.
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3.2 Hybrid formulation
To solve the contact conditions (6) and (7), we apply the active-set strategy, which is equivalent to a semismooth Newton
method described by Hüeber et al.25 See also the paper by Wohlmuth.20 We recapitulate the solution strategy in this section
for the completeness of this paper. The main difference in our approach is how the Lagrange multipliers, which represent
the surface traction, are coupled to the displacement unknowns in the surrounding domain. In our finite volume scheme,
the Lagrange multipliers enter into the local equations for the displacement gradients.

A set of Lagrange multipliers is defined on the positive subface boundaries

𝝀v
𝜋 = 𝜎v

𝜋 · nv
𝜋, (𝜋, v) ∈  .

The normal 𝜆v
𝜋n and tangential 𝝀v

𝜋𝜏 components of the Lagrange multiplier are defined analogously to (5). The displace-
ment on the subfaces, uv

𝜋 , is obtained as in Equation (19) for local systems.
The discrete formulation of the nonpenetration condition (6) can for each subface be written as

⎧⎪⎨⎪⎩
[
uv
𝜋

]
n − gv

𝜋 ≤ 0
𝜆v
𝜋n
(
[u𝜋]v

n − gv
𝜋

)
= 0

𝜆v
𝜋n ≤ 0

(𝜋, v) ∈  , (24)

and the static Coulomb friction (7) as

⎧⎪⎨⎪⎩
‖‖𝝀v

𝜋𝜏
‖‖ ≤ Fv

𝜋
||𝜆v
𝜋n
||‖‖𝝀v

𝜋𝜏
‖‖ < Fv

𝜋
||𝜆v
𝜋n
|| → [ .uv

𝜋

]
𝜏
= 0‖‖𝝀v

𝜋𝜏
‖‖ = Fv

𝜋
||𝜆v
𝜋n
|| → ∃𝜁 ∈ ℝ ∶ 𝝀v

𝜋𝜏 = −𝜁2[ .uv
𝜋

]
𝜏

(𝜋, v) ∈  . (25)

Recall that, for the static case, the sliding velocity is replaced by the displacement jump, [uv
𝜋]𝜏 . We define bv,k

𝜋 = Fv
𝜋(−𝜆

v,k
𝜋n +

c([uv,k
𝜋 ]n −gv

𝜋)), which can be interpreted as the friction bound. The nonpenetration condition can now be rewritten as the
nonlinear complementary function

Cn
([

uv
𝜋

]
n, 𝜆

v
𝜋n
)
= −𝜆v

𝜋n − 1
Fv
𝜋

max
{

0, bv,k
𝜋

}
, (26)

where c > 0 is a given numerical parameter and max{·, ·} is the maximum function. Similarly, we can now rewrite the
Coulomb friction as the complementary function

C𝜏

([ .uv
𝜋

]
,𝝀v

𝜋𝜏

)
= max

{
bv,k
𝜋 ,

‖‖‖−𝝀v
𝜋𝜏 + c

[
uv
𝜋

]
𝜏

‖‖‖} (
−𝝀v

𝜋𝜏

)
− max

{
0, bv,k

𝜋

}(
−𝝀v

𝜋𝜏 + c
[ .uv

𝜋

]
𝜏

)
. (27)

The solution pair (uv
𝜋,𝝀

v
𝜋) satisfies the nonpenetrating condition (24) and Coulomb law (25) if and only if Cn([uv

𝜋]n, 𝜆
v
𝜋n) = 0

and C𝜏([
.uv
𝜋],𝝀v

𝜋) = 0. We apply a semismooth Newton method to this problem, which results in an active set method.
Given the solution (uk,𝝀k) from the previous Newton iteration, we divide the contact subfaces into three disjoint sets

k+1
n =

{
(𝜋, v) ∈  ∶ bv,k

𝜋 ≤ 0
}

k+1
𝜏 =

{
(𝜋, v) ∈  ∶

‖‖‖‖−𝝀v,k
𝜋𝜏 + c

[ .uv,k
𝜋

]
𝜏

‖‖‖‖ − bv,k
𝜋 < 0

}
k+1 =

{
(𝜋, v) ∈  ∶

‖‖‖‖−𝝀v,k
𝜋𝜏 + c

[ .uv,k
𝜋

]
𝜏

‖‖‖‖ ≥ bv,k
𝜋 > 0

}
.

(28)

The first set contains the subfaces not in contact. The second set contains the subfaces in contact whose friction bound is
not reached, ie, they are sticking. The third set contains the subfaces in contact where the friction bound is reached, ie,
they are sliding. The new iterates ([uv,k+1

𝜋 ]𝜏 ,𝝀v,k+1
𝜋𝜏 ) in the semismooth Newton scheme are then calculated depending on
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which set the subface belongs to. The update is found by calculating the derivative of the complementary functions Cn
and C𝜏 for each of the three sets. For the subfaces not in contact, zero traction is enforced

𝝀
v,k+1
𝜋 = 0 (𝜋, v) ∈ k+1

n . (29)

For the subfaces in contact and sticking, we enforce

[
uv,k+1
𝜋n

]
= gv

𝜋,

[ .uv,k+1
𝜋

]
𝜏
+

Fv
𝜋

[ .uv,k
𝜋

]
𝜏

bv,k
𝜋

𝜆
v,k+1
𝜋n =

[ .uv,k
𝜋

]
𝜏

(𝜋, v) ∈ k+1
𝜏 . (30)

In the normal direction, this enforces the condition that the negative and positive subfaces must be in contact in the next
iteration k+1. In tangential direction, the enforced condition is dependent on the previous Newton iteration. If the subface
sliding velocity was zero in the previous iteration, [ .uv,k

𝜋 ] = 0, Equation (30) enforces the condition that the tangential
velocity is zero in the next iteration, [ .uv,k+1

𝜋 ] = 0. If the subface sliding velocity was different from zero in the previous
iteration, the Newton update does not immediately enforce zero sliding velocity; however, as the algorithm converges,
we have Fv

𝜋𝜆
v,k+1
𝜋n = bv,k

𝜋 , and the sliding velocity, [ .uk
𝜋], for the sticking subfaces is set to zero. For subfaces in contact and

sliding, we enforce [
uv,k+1
𝜋

]
n
= gv

𝜋,

𝝀
v,k+1
𝜋𝜏 + Lv,k

𝜋

[ .uv,k+1
𝜋

]
𝜏
+ Fv

𝜋vv,k
𝜋 𝜆

v,k+1
𝜋n = rv,k

𝜋 + bv,k
𝜋 vk

𝑓
,

(𝜋, v) ∈ k+1. (31)

Again, this enforces the condition that the negative and positive subfaces be in contact at the next iteration k + 1. In the
tangential direction, the condition approximates the sliding direction and distance. The matrices and vectors are

Lv,k
𝜋 = c

((
Id−1 − Mv,k

𝜋

)−1
− Id−1

)

vv,k
𝜋 =

(
Id−1 − Mv,k

𝜋

)−1 −𝝀v,k
𝜋𝜏 + c

[ .uv,k
𝜋

]
𝜏‖‖‖‖−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

‖‖‖‖
rv,k
𝜋 = −

(
Id−1 − Mv,k

𝜋

)−1
ev,k
𝜋 Qv,k

𝜋

(
−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

)
,

(32)

where Id−1 is the (d − 1 × d − 1) identity matrix and Mv,k
𝜋 = ev,k

𝜋 (Id−1 − Qv,k
𝜋 ) with

Qv,k
𝜋 =

−𝝀v,k
𝜋𝜏

(
−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

)⊤
bv,k
𝜋

‖‖‖‖−𝝀v,k
𝜋𝜏 + c

[ .uv,k
𝜋

]
𝜏

‖‖‖‖
, ev,k

𝜋 =
bv,k
𝜋‖‖‖‖−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

‖‖‖‖
.

3.2.1 Regularization
For the subfaces in the inactive setk+1

n , ie, the subfaces not in contact, the Newton update gives a homogeneous Neumann
boundary condition. For the subfaces in the contact sets k+1

𝜏 and k+1, the Newton update gives a Dirichlet condition
in the normal direction and a Robin boundary condition in the tangential direction. This Robin condition guarantees
positive definiteness of the system only if Lv,k

𝜋 , defined by Equation (32), is positive definite. In the converged limit, the
matrix Lv,k

𝜋 is a positive definite matrix.25 However, during the iterations, there is no guarantee that this will hold. We
therefore add a regularization to the Robin conditions by replacing Qv,k

𝜋 by

Q̃v,k
𝜋 =

−𝝀v,k
𝜋𝜏

(
−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

)⊤
max

(
bv,k
𝜋 ,

‖‖‖𝝀v,k
𝜋𝜏
‖‖‖) ‖‖‖‖−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

‖‖‖‖
,
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which is only different from Qv,k
𝜋 when the inequalities in Equation (25) are violated. Furthermore, we define

𝛼
v,k
𝜋 =

(
−𝝀v,k

𝜋𝜏

)⊤ (
−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

)
‖‖‖𝝀v,k

𝜋𝜏
‖‖‖ ‖‖‖‖−𝝀v,k

𝜋𝜏 + c
[ .uv,k

𝜋

]
𝜏

‖‖‖‖
, 𝛿

v,k
𝜋 = min

⎛⎜⎜⎝
‖‖‖𝝀v,k

𝜋𝜏
‖‖‖

𝜆
v,k
𝜋n

, 1
⎞⎟⎟⎠ ,

and

𝛽
v,k
𝜋 =

{ 1
1−𝛼v,k

𝜋 𝛿
v,k
𝜋

, if 𝛼v,k
𝜋 < 0

1, otherwise.

Using the notation that tilde (·̃) denotes the regularization, we have M̃v,k
𝜋 = ev,k

𝜋 (Id−1 − Q̃v,k
𝜋 ) and replace the matrix Lv,k

𝜋

from Equation (32) by
L̃v,k
𝜋 = c

((
Id−1 − 𝛽v,k

𝜋 M̃v,k
𝜋

)
− Id−1

)
,

which guarantees its positive definiteness.25 As the iterates (uk,𝝀k) converge to the solution, the regularization Q̃v,k
𝜋 → Qv,k

𝜋 ,
L̃v,k
𝜋 → Lv,k

𝜋 , and 𝛽v,k
𝜋 → 1, we obtain the original system of equations.

3.3 Discrete system of equations
We end Section 3 with a summary of the discrete system of equations that is solved at each Newton iteration, and we state
the discrete linearized version of Equations (1)-(7) as

Au + Bp + C𝝀 = bu,

Du + Ep + F𝝀 = bp,

Gu + Hp + J𝝀 = r.
(33)

The first line is the discrete momentum balance, and the matrices A, B, C, and the vector bu are obtained by considering
Equation (23) for all cells and assembling the coefficients in the global matrices. Similarly, the second row corresponds to
the discrete flux balance, and the equation is obtained by considering Equation (22) over all cells and assembling the coef-
ficients in the global matrices. The matrix F appears due to the dependence on 𝝀 in the local systems for the displacement
gradients, as given by Equation (21). It is worth pointing out that the matrices A, B, D, and E are the same matrices as
are obtained by the finite-volume scheme in a poroelastic domain without any fractures.13 The last row of Equation (33)
corresponds to the linearization of the complementary functions (26) and (27), and the matrices are obtained by assem-
bling Equations (29)-(31) for each subface on the fracture. The dependence of the pressure in the contact law, given by
the matrix H, is due to the pressure dependence on the poroelastic stress (see second row of Equation (1)) as well as the
pressure dependence on the displacement gradients given by Equation (21).

From a computational point of view, it is worth noting that, during the Newton iteration, only the matrices G, H, and J
and the vector r will change. This means that updating the discretization is inexpensive as it is only a local update for the
subcells bordering the fractures.

4 NUMERICAL EXAMPLES

Four numerical examples are given. For the first two, we neglect the fluid contribution to the mechanical stress to inves-
tigate the performance of the numerical approach for the purely mechanical contact problem, ie, we set 𝛼 = 0. In all of
the examples, Young's modulus is E0 = 4 GPa, the Poisson ratio is 𝜈 = 0.2, and the initial gap of the fractures is g = 0. In
our experience, the algorithm is quite robust with respect to the numerical parameter c, and in the examples, it is fixed to
c = 100 GPa/m.

We assign a space varying coefficient of friction so that the slip of the fractures will arrest before it reaches the fracture
tips. This choice of the friction coefficient is done to obtain a solution with high enough regularity to study the convergence
in stress. If the slip of the fractures reaches the fracture tips, the solution will contain singularities in the stress, which
reduces the regularity of our solution. Note that our method is not restricted to the regularized solution, as discussed more
thoroughly in the Appendix.
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The discrete solution is denoted uh, which is interpreted as the piecewise constant function over each cell K ∋ x
such that uh(x) = uK. The discrete solution 𝝀h for the Lagrange multiplier is defined as piecewise constant on each
face 𝜋 on Γ+ and is equal to the area weighted sum of the subface values, 𝝀h(x)m𝜋 =

∑
v∈𝜋mv

𝜋𝜆
v
𝜋 , x ∈ 𝜋. Likewise, the

displacement jump is defined as the piecewise constant on each face, 𝜋, on Γ+ corresponding to the subface average,
[uh(x)] = 1|𝜋 |∑v∈𝜋 [u

v
𝜋], x ∈ 𝜋, where |𝜋| is the number of subfaces of the face, 𝜋, which is equal to three if 𝜋 is a triangle.

The continuous solution is denoted by the pair (u,𝝀).
We define the relative error of a discrete variable 𝜉h in a domain 𝛾 as

𝜀𝛾 (𝜉h, 𝜉) =
||𝝃h − 𝝃||𝛾||𝝃||𝛾 , (34)

where 𝜉 is a reference solution and || · ||𝛾 is the L2-norm over the domain 𝛾 . The Newton iteration is terminated when the
change in the solution is below a given stopping criterion

𝜀Ω
(

uk+1
h ,uk

h

)
< 𝛿, (35)

where k is the Newton iteration index.
To solve the linear system of equations at each Newton iteration, a direct solver is used if the number of degrees of

freedom is less than 10 000, else, an iterative solver is used. The iterative solver uses a preconditioned GMRES iteration
that is based on a Schur complement strategy, where the mechanics-fluid subsystem is approximated by a single fixed
stress iteration (see the works of Kim et al40 and Both et al41 for details). Within the fixed stress iteration, the mechanics
problem is solved by one AMG iteration, as implemented in the work of Olson and Schroder,42 while a direct solver is
applied to the flow problem. In the simpler case of a pure mechanics problem, the fixed stress iteration is replaced with
an AMG iteration on the mechanics subproblem.

The computer code has been implemented in the open source Python toolbox PorePy,43 which has an interface for
meshing in Gmsh.44 The run scripts for the examples are open source.45 ParaView46 was used to make Figures 3 and 7.

4.1 Example 1
The first example is a domain 2× 1 m with six fractures, as depicted in Figure 3. This example includes difficult cases
such as a fracture with a kink and a fracture reaching the boundary. An advantage of our finite volume method is that no
special treatment is needed to handle these cases because the degrees of freedom are located in the cell and subface centers
and not on the nodes. In this example, we do not consider any fluid and solve only for the linear elasticity in Equation (1)
coupled to the contact conditions given in Equations (6) and (7). The bottom boundary is fixed, the two vertical boundaries
are free, and at the top boundary a Dirichlet condition gu,D = [0.005,−0.002]⊤ m is assigned. The initial guess in the
Newton iteration is u = 0 m, 𝜆n = −100 Pa and 𝝀𝜏 = 0 Pa, ie, zero displacement and all fractures in contact and sticking.
The coefficient of friction is for each fracture i = 1,… ,6 set to Fi(x) = 0.5(1+ exp(−Di(x)2∕0.005m2), x ∈ Γ+

i , where Di(x)
is the distance from x to the tips of fracture i. Note that the bend in Fracture 1 and the right end of Fracture 5 are not
considered tips for the distance function D, and thus, the coefficient of friction at these points is F ≈ 0.5.

Slip

Stick

Open

1

2
3

4 5

6
0.2

0.8

1.4

2.0

2.6
3.2
3.8
4.4

FIGURE 3 The fractured domain from Example 1. Left: The black box corresponds to the domain boundaries, while the fractures, labeled
by a number, are represented by lines. The fractures are colored in three colors: segments that slip are red, segments that stick are green, and
segments that open are blue. Right: Contour plot of the x-component of the displacement u. The labels on the contours are given in
millimeters. The red lines represent the fractures
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A contour plot of the solution is shown in Figure 3 where the discontinuous displacement over the sliding or opening
fractures can clearly be seen. To better visualize the different behaviors of the fractures, the fracture regions that are
slipping, sticking, and opening are plotted in different colors in Figure 3. For Fracture 1, the top boundary is sliding to the
right, while the bottom boundary is sliding to the left. This situation causes the fracture to open in a small segment after
the bend. Figure 4 shows the shear component of the Lagrange multiplier as well as the friction bound and displacement
jump. At the bend of Fracture 1, there is a singularity in the stress that causes the sharp increase in the Lagrange multiplier.
For Fracture 2, we observe a change in the shear and normal component of the Lagrange multiplier at approximately the
midpoint that is caused by the opening of Fracture 6. In the vicinity of the fracture tips, there is a sharp increase in the
shear component of the Lagrange multiplier as the fractures change behavior from sliding to sticking.
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FIGURE 4 Results from Example 1 showing 𝝀h and [uh] for the reference solution that has an average of 103 faces along each fracture.
The shear component of the Lagrange multiplier 𝝀h𝜏 (green), friction bound ±F𝜆hn (red dashes), tangential displacement jump [uh]𝜏 (blue),
and normal displacement jump [uh]n (black) for all fractures. The x-axis shows the distance 𝜓 from the leftmost end of the fracture. The
subplots are arranged from top left to bottom right according to the fracture number given in Figure 3
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As a reference solution (u,𝝀), we use the solution calculated for a fine mesh using 1.7 million degrees of freedom. The
second finest mesh has 270 000 degrees of freedom and is the mesh used for the results in Figures 4 and 3. In Figure 5,
the relative errors 𝜀Γ+

i
([uh], [u]) and 𝜀Γ+

i
(𝝀h,𝝀), given by Equation (34), are plotted for each fracture i = 1, … , 6. For the

displacement jump, the convergence is of first-order for all fractures except Fracture 4, which is correctly predicted to be
sticking (and thus, the error is zero). For the Lagrange multiplier 𝝀h, we observe first-order convergence for Fractures 4
and 5, while the error for Fracture 6 is zero. The convergence rates for traction is typically observed to be of first-order in
the L2-norm and second-order in the 2-norm for the finite-volume scheme,12,13 but the Lagrange multiplier for Fractures
1, 2, and 3 shows somewhat lower convergence rates than first-order. However, this is not surprising due to the low
regularity of the Lagrange multipliers. Figure 6 shows first-order convergence of the error for the discrete displacement
uh in the 2D domain Ω. Finally, Table 2 shows that the number of Newton iterations do not grow significantly when the
mesh is refined.

4.2 Example 2
In this example, Ω is a 3D domain (−200, 300) × (−200, 300) × (−300, 300) m with two circular fractures approximated by
polygons with 10 vertices. The location and geometry of the fractures are given in Table 1. As in the previous example, no
fluid is included. The bottom boundary is fixed, the four vertical boundaries are rolling, and, at the top boundary, a load
is applied downwards by enforcing a Neumann condition gu,N = [0, 0,−4.5]⊤ MPa. The coefficient of friction is for the
two fractures, i = 1, 2:

Fi(x) = 0.5 exp
(

10m
Ri − Di(x)

− 10m
Ri

)
,

where Ri is the radius of fracture i and Di(x) the distance from the center of the fracture to x.

FIGURE 5 Convergence rates
for the Lagrange multiplier 𝝀h

(left) and the displacement jump
[uh] (right) for each separate
fracture in Example 1. The error
is measured as the relative errors
𝜀Γ+

i
([uh], [u]) and 𝜀Γ+

i
(𝝀h,𝝀) for

each fracture Γ+
i . The line

numbering corresponds to the
fracture numbers given in
Figure 3 [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 6 Convergence rates for the cell-centered displacement in Example 1. The
error is the relative error 𝜀Ω(uh,u), as defined by Equation (34) [Colour figure can be
viewed at wileyonlinelibrary.com]
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TABLE 1 Fracture geometry in Examples 2 and 3. The strike angle is the rotation
from x-axis in the x-y-plane defining the strike line. The dip angle is rotation around
the strike line

Fracture 1 Fracture 2
Center −[10, 30, 80]⊤ m [15, 60, 80]⊤ m
Radius 150 m 150 m
Strike angle 81.8◦ 78.3◦

Dip angle 43.9◦ 47.1◦

http://wileyonlinelibrary.com
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Figure 7 shows the displacement jump [uh]𝜏 and the shear component of the Lagrange multiplier 𝝀h𝜏 . The fractures are
in contact, ie, the normal displacement jump [uh]n = 0 is zero. Going from two dimensions to three adds an additional
challenge to the contact problem as we have to find not only the magnitude of the slip but also the direction. The advantage
of the hybrid formulation in combination with a semismooth Newton scheme is that the same computer code can be
used for any dimension, and as observed in the figure, the correct sliding direction (parallel to the Lagrange multiplier)
is found by the algorithm.

The errors are calculated by comparison to a reference solution that has 500 000 degrees of freedom. The relative errors
𝜀Γ+

i
([uh], [u]) and 𝜀Γ+

i
(𝝀h,𝝀) for the two fractures, i = 1, 2, are shown in Figure 8. We observe first-order convergence for

the displacement jump, while the Lagrange multiplier shows a somewhat reduced order of convergence. Finally, Table 2
shows the number of Newton iterations for each mesh, and we do not observe any significant increase in the number of
Newton iterations as the mesh is refined.

[ ] Contact and sticking
Contact and sliding

FIGURE 7 Results from Example 2 using approximately 250 000 degrees of freedom. Left: Displacement jump ||[uh]|| for the two fractures
indicated by the fracture number. Parts of the 3D mesh are cropped to reveal the fractures. Middle: The surface mesh of Γ+ of Fracture 1.
The red lines show the tangential part of the Lagrange multiplier 𝝀h𝜏 while the black lines show the scaled displacement jumps 400[uh]𝜏 .
Right: Zoomed view of middle figure
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FIGURE 8 Convergence rates for the two fractures in Example 2. The error is
measured as the relative errors, 𝜀Γ+

i
([uh], [u]) and 𝜀Γ+

i
(𝝀h,𝝀), for each fracture, Γ+

i ,
as given in Equation (34). The numbering of the lines correspond to the fracture
number [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 The number of Newton iterations used for the different mesh sizes in Example 1 and 2. The number of
fracture faces and number of cells are given in the table

Example 1 Example 2
No. of fracture faces No. of cells No. of iterations No. of fracture faces No. of cells No. of iterations

176 4538 5 126 449 3
346 17 482 4 450 1878 3
682 68 330 5 1884 11 825 3

1356 270 756 7 7728 160 417 4
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4.3 Example 3
In this example, we consider the same domain and material parameters as in Example 1, but add a fluid. The permeability
of the fluid is  = 10−8 m2Pa−1s−1, the storage coefficient is c0 = 1 ·10−10 Pa−1, and the Biot coefficient is 𝛼 = 1. The initial
displacement and pressure is set to zero, and the end time of the simulation is set to T = 5c0H2∕, where H = 1 m is the
height of the domain. For the fluid, we enforce homogeneous Neumann conditions on all sides except the left boundary,
where a zero pressure condition is given. For the mechanics, the left and the right boundaries are given a homogeneous
Neumann condition, and the bottom boundary is given a zero Dirichlet condition. The top boundary is given a time
varying boundary condition given by

gu,D(x, t) =

{
[0.005 m,−0.002 m]⊤2t∕T, t < T∕2
[0.005 m,−0.002 m]⊤, t ≥ T

x on top boundary.

This condition enforces a linear increase of the boundary condition values in the first half of the simulation, and after the
boundary condition reaches the same value as in Example 1, we keep it constant for the remainder of the simulation.

In the first half of the simulation, the domain is compressed and the fluid pressure in the domain increases. In Figure 9,
we plot the regions of the fractures that slip, stick, and open for the two times t = T∕2 and t = T. At the time
t = T∕2, the boundary condition for the mechanics is the same as in Example 1; however, we see considerable differ-
ences in the fracture displacement (compared to Figure 3) that are due to the introduction of the fluid. After t = T∕2,
the displacement boundary condition is fixed at [0.005,−0.002]⊤ m, and the fluid pressure decreases due to the zero
pressure condition on the left boundary. This causes further deformation of the fractures, and at the end of the simula-
tion, the pressure in the whole domain is relatively close to zero, and the solution is approximately equal the solution
in Example 1.

The number of Newton iterations for each time step is shown in Figure 10. For most iterations, the Newton solver
converges in three iterations. The increase in the number of iterations needed at time t∕T = 0.65 is believed to be related
to Fracture 6 changing behavior from sliding to opening. At the end of the simulation the system is close to steady state,
and the Newton solver converges in one iteration.

4.4 Example 4
In this example, the same setup as in Example 2 is used, but a fluid is included. The domain is sealed for the fluid, ie,
homogeneous Neumann conditions, for all sides except the top boundary, which is given a Dirichlet condition gp,D = 0 Pa.
The permeability is  = 10−8 m2Pa−1s−1, the storage coefficient c0 = 1 · 10−10Pa−1, and the Biot coefficient 𝛼 = 1. The
initial displacement and pressure is set to zero.

Without the fractures, this setup is equivalent to a consolidation problem, which can be found in standard textbooks.47

When the load is applied to the top surface at time t = 0, there is an instantaneous increase in the pore pressure in the
domain. The fluid will then drain slowly out from the top surface and finally relax back to the initial condition. As this
process occurs, the domain will continue to deform vertically increasing the mechanical load on the fractures, which
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Stick

Open

1

2
3

4 5

6

1

2
3

4 5

6

t T 2 t T

FIGURE 9 The fractured domain from Example 3. The black box corresponds to the domain boundaries, while the fractures, labeled by a
number, are represented by lines. The fractures are colored in three colors: segments that slip are red, segments that stick are green, and
segments that open are blue. The left figure shows the deformation half way through the simulation, whereas the right figure shows the
deformation at the end time of the simulation
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FIGURE 10 The number of Newton iterations at each time step for the simulation
in Example 3
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FIGURE 11 Results from Example 4. The length scale H=600 m is the height of the domain. Left: Slip distance as a function of time.
Right: Convergence of the Newton solver. Each time step is represented by a rectangle, and the y-axis shows the number of Newton iterations
needed until the convergence tolerance is reached [Colour figure can be viewed at wileyonlinelibrary.com]

causes them to slip. Twenty time steps are taken, and the simulation is stopped after 625 minutes, at which time, for
practical purposes, equilibrium is reached.

The slip over time is plotted in Figure 11. Initially, the pore pressure carries most of the applied load, and the fractures
are not sliding. As the fluid drains and the domain deforms, the tangential part of the Lagrange multiplier on the fractures
increases, and after approximately 150 minutes, the fractures start to slide. The sliding then gradually slows down and
qualitatively reaches the solution of the drained medium, ie, the solution from Example 2. There are small differences
between the solution from this example at the final time and the solution of Example 2, which are caused by the use of a
dynamic friction model in this example and a static friction model in Example 2.

The number of iterations needed for convergence of the Newton solver at each time step is shown in Figure 11. For
the first time step, six Newton iterations are needed, which is twice as many as for any of the other time steps. It is well
known that the Newton strategy is very sensitive to the initial guess. A naive choice generally results in an increase in the
required number of Newton iterations for smaller mesh sizes. However, either in a dynamic or a multilevel context, there
are good options to set the initial guess.20,25 In this case, the initial condition at t = 0 is (𝝀 = 0 and u = 0), which assigns
all subfaces to the noncontact set, n, while those at the first time step belong to the sticking set 𝜏 (see Equation (28)).
During the dynamic sliding, the initial guess (the solution from the previous time step) gives a good approximation of
the solution in the current time step, and thus, less iterations are needed. As the fractures start to slide at time step six, a
few Newton iterations are needed for convergence. However, when approaching steady state, the algorithm predicts the
correct slip in just one iteration.

http://wileyonlinelibrary.com
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5 CONCLUSION

In this paper, we present an approach for solving the poroelastic Biot equations in a fractured domain. A classical hybrid
formulation for contact mechanics is combined with a finite volume discretization for poroelasticity. The fractures are
modeled as internal contact boundaries and are governed by a nonpenetration condition in the normal direction and a
Coulomb friction law in the tangential direction. The inequalities in the contact conditions are handled by a semismooth
Newton method. The finite volume discretization has several advantages for these types of problems. The cell-centered
colocation of the discrete displacement and pressure variables gives a sparse linear system, efficient data structures,
and no need for staggered grids. Moreover, the contact conditions are obtained naturally in the discretization as a con-
dition per subface in the local systems. Thus, these conditions can be treated in an equivalent manner to boundary
conditions on the external boundary. Finally, there is no need for special treatment of the contact conditions in the poroe-
lastic case versus the purely elastic case, as the correct pressure contribution to the effective stress is obtained in the
local system.

We showed that the hybrid formulation coupled with the finite volume discretization handles a given spatially vary-
ing coefficient of friction. The formulation is also suitable for other friction models such as rate and state friction or
temperature-dependent coefficient of friction.

Four numerical examples illustrate the method's robustness and applicability to difficult cases. By comparison to a
reference solution, the discrete solution shows first-order convergence in displacements and slightly less than first-order
convergence for the Lagrange multipliers. We also show that the method handles singularity in the solution resulting
from a piecewise linear fracture with a kink. Finally, a 3D example is presented where we study the effect of the fluid
pressure on the solution.

The model presented in this work is limited to fluid flow in the matrix. A natural extension is to include fluid flow also
in the fractures. The fluid pressure in the fracture will then act as a force on the fracture sides, effectively reducing the
normal traction. Experiments have also shown that asperities along fracture surfaces can have a very important effect on
both the opening and sliding of fractures. These effects can be included by adding a nonlinear deformation model to the
fractures. The advantage of our framework is that any nonlinear extensions to the model can be included in the same
Newton iteration, which might be crucial for the convergence of the resulting scheme.
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APPENDIX

When a fracture slides or opens, the linear elastic stress will contain a singularity at the fracture tips,48 which causes
challenges for any numerical method. We illustrate this in Figure A1, where we plot the typical stress and displacement
profiles for a sliding fracture and a constant friction coefficient F = 0.5. We observe small oscillations in the Lagrange
multiplier around the tips of the fracture. The issue is that, as we approach the fracture tips, an infinitesimal change in
the displacement jump will induce an infinite change in the stress. These oscillations are reflected in the errors plotted
in Figure A2, where the error rate for the Lagrange multiplier deteriorates. Convergence is not seen in the Lagrange
multiplier. Because the face traction values away from the fracture tips are almost constant, the error in this region is
very small, and thus, the error in the Lagrange multiplier is completely dominated by the oscillations near the tips. Note
that the convergence rates for the displacement jump is of order 1, as expected. To study the convergence of the Lagrange
multiplier, we can regularize the solution by increasing the friction bound smoothly in a small region around the tips. In
this example, this is done by setting

F(x) = 0.5(1 + 10 exp(−800m−2D(x)2)) x ∈ Γ+,

where D(x) is the distance from x to the tips of the fracture. As seen in Figure A1, this arrests the fracture before the tip,
and the added regularity gives first-order convergence in both the Lagrange multiplier and displacements, as shown in
Figure A2.

FIGURE A1 The shear
component 𝝀𝜏 (green), friction
bound ±F𝜆n (red dashes), tangential
displacement jump [u]𝜏 (blue), and
normal displacement jump [u]n

(black) for the fracture. The dots
correspond to the face-centered
values. Left: Constant friction
coefficient. Right: Regularized
coefficient
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r FIGURE A2 Convergence rates for the

jump [uh] and Lagrange multiplier 𝝀h on
Γ+. The y-axis shows the relative error||vh − v||Γ+∕||v||Γ+ , v ∈ {[u],𝝀}. Left: The
convergence of the unregularized solution.
Right: The convergence of the regularized
solution [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE A3 Oscillations in the normal
component of the Lagrange multiplier.
Left: The negative normal component of
the Lagrange multiplier −𝝀 on the fracture.
Right: The negative normal component of
the Lagrange multiplier −𝝀, where the
x-axis is the radial distance from the
fracture center, ie, the center is at x = 0,
whereas the tip is at x ≈ 150 m [Colour
figure can be viewed at
wileyonlinelibrary.com]

The worst oscillations that we have encountered in 3D using our finite volume scheme coupled with the hybrid formu-
lation are shown in Figure A3. The setup in this example is the same as the setup in Section 4.2 but with only Fracture 1
and a constant coefficient of friction, F = 0.5. Thus, we have sliding reaching the tip of the fractures. The oscillations have
an amplitude of approximately 5% from the mean traction and grow larger as we approach the fracture tips. As in the 2D
case, the displacement jump [uh] is not effected significantly by these oscillations.

Note that the singularity at the fracture tips is a challenge for any numerical method. Similar oscillations for first- and
second-order Galerkin finite elements are reported, for example, in Figure 8 by Garipov et al,24 for a setup where they
study a single sliding fracture.
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