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1 Introduction

Understanding the seismic properties of carbonate rocks are important in the explo-

ration both before and during production of hydrocarbons since more than half of the

world's hydrocarbon reservoirs are found in these rocks. Today, there are hydrocarbon

producing carbonate reservoirs in Canada, the North Sea, Russia, the Middle East and

Africa amongst others. Exploration of these reservoirs have high priority because the chal-

lenges with these rocks are huge with respect to recovery of hydrocarbons.

Carbonate reservoirs deviate from sandstone reservoirs in many ways. Siliciclastic rocks

are formed when sediments are transported, deposited and lithi�ed or compacted and ce-

mented to solid rocks. Most carbonates develop from biological sediments of coral reefs

or accumulation of dead organisms on the sea
oor. Fragments of carbonates are mostly

formed in situ or near by the deposition. When �rst deposited, carbonates are highly

porous and permeable and because they are less chemically stable than silica, carbonates

may undergo signi�cant changes under diagenesis. Diagenesis may start at the same time

as deposition. Processes such as cementation, dissolution, compaction and dolomitization

can dissolve grains and make new pores. Solutions of fracture boundary surfaces can build

vugs and caves or cementation of pores may lead to the complex pore structure of this

rock.

When an acoustic wave is propagating through a sedimentary rock, the wavelength is

much greater than the size of the pores and the grains in the rock. This implies that the

wave only can sense the average or e�ective properties of the rock. However, when probing

the rock for the underlying structure and 
uid content of the pores, the average properties

will of course depend on all this, and the aim of rock physics modelling is to couple these

average properties to the underlying microstructure of the rock. Obviously, the overall

elastic properties of the rock will depend on the distribution of the mineral constituents

1



2 1 INTRODUCTION

and the porosity. While elastic properties of the minerals are reasonably well understood,

the challenges of the rock physics models are to describe the porosity and the geometry of

the constituents in the rock. The geometry, shape and distribution of the pores and the

grains in the rock may give a large variability in the observable parameters of the acoustic

wave. If the microstructure in the rock has a preferred direction, the average response will

be anisotropic. Phenomena such as wave-induced 
uid 
ow, or squirt 
ow, can occur at

di�erent frequencies if the porosity consists of cracks or compliant pores. Also how the

cavities are connected and 
uid content will a�ect the acoustic properties.

For most rock physics models developed the total porosity and mineral compositions

of the rock are emphasized and generally, this is often proven to be enough when describ-

ing siliciclastic rocks. These models can be divided into three general classes: Heuristic,

empirical and theoretical (Avseth et al., 2005). The most used heuristic model is the time

average equation (Wyllie et al., 1956) which relates the P-wave velocity and porosity to

the rock. This relation can not be justi�ed theoretically, but it is often used to estimate

the seismic velocities or to estimate the porosity from seismic velocities when mineralogy

and pore 
uid is known. Also, empirical models (such as e.g. Castagna et al., 1993) have

proven to be a good tool for estimating the unknown parameters of measurements. The

approach is to assume a polynomial function and through regression analysis �nd the co-

e�cients to the trends of the rock under consideration. One of the most used theoretical

model for estimating the seismic velocities or 
uid contents in the rocks are the Gassmann

equation (Gassmann, 1951). This is a zero frequency model and can be extended to all

frequencies by the poroelastic model of Biot (1956a,b). As the frequency of the wave is

increasing, there are numerous theories which try to explain phenomena such as the wave-

induced 
uid 
ow or squirt 
ow. Often, the approximations of these theories are violated

for carbonate rocks and we have to be careful when using them.

From measurements of core plugs we can learn in more detail about the properties of
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the rock. By studying pressure dependent ultrasonic velocities data with di�erent 
uids, it

is possible to determine a model of the pore types, as compliant pores or cracks are closing

with raising pressure and sti�er the rock. By measuring velocities for di�erent angles the

anisotropy of the microstructure can be established and by measuring the velocities for

di�erent 
uid saturations the e�ects of 
uid can be found.

For carbonate rocks, studies have shown that the established rock physics models do

not always give satisfying predictions of the velocities (Adam et al., 2006; Anselmetti

and Ebreli, 1999; Assefa et al., 2003; Baechle et al., 2005; Rosseb� et al., 2005; Wang,

1997,2000). The high-frequency inclusion based model of Kuster and Toks�oz (1974), which

considers isolated pores, has reproduced laboratory measurements (Toks�oz et al., 1976;

Wang, 1997). However, when considering ultrasonic experiments where the squirt 
ow

mechanism can be prominent, we have to consider other models. The aim of this Ph.D.

study is to investigate the seismic properties of carbonate rocks which are known for the

complex pore structure and texture (Eberli et al., 2003), with use of recently developed for-

mulae for deformation of communicating and interacting cavities, the T-matrix approach

of Jakobsen et al. (2003a,b). In section 2 the geological aspects and in section 3, the

acoustic observations of carbonate rocks are discussed. In section 4, the parameters which

had most focus in this study are discussed. The four papers can be found in sections 5 to

8, followed by a short summary of the thesis in section 9.

In paper 1 we have studied the e�ect of how the cavities are connected with respect to


uid 
ow on the seismic properties of carbonate rocks. The study concerns a dual poros-

ity model where the cavities can exist on two scales and how the di�erent characteristic

pore types of carbonate rocks (Choquette and Pray, 1970) can be described in virtue of a

visco-elastic e�ective medium theory (Jakobsen et al., 2003a,b).

The concept of the dual porosity model was in paper 2 applied on pressure dependent

velocity and attenuation data of calcite core plugs. The cavities were on the same scale and
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in this study a method for �nding the model of the pore structure was developed. By using

a distribution of cracks and a dual porosity model, where the smaller pores and cracks in

the core plugs contained residual water, it was shown that this model could reproduce the

dry measured P- and S-wave velocities and attenuations caused by wave-induced 
uid 
ow.

In paper 3 fractures in a carbonate reservoirs were discussed. By using an expression

derived by Chapman (2003), which relates the relaxation time parameter for the fractures

to the relaxation time of the microstructure, combined with formulae for inclusions under-

going deformation (Jakobsen and Johansen, 2005), it was shown that the fractures may

cause wave-induced 
uid 
ow even at seismic frequencies when the e�ective pressure was

changing. The visco-elastic e�ective sti�ness tensor was then applied in a �nite di�er-

ence code to investigate the seismic signature of the reservoir as the e�ective pressure was

changing.

Paper 4 considers a 2-layer model consisting of a cap rock of shale and some of the

reservoir models from paper 1. When injecting a 
uid in a reservoir for maintaining the

pore pressure, the introduced 
uid may alter the connectivity of the pores and/or due to

capillary forces 
ood certain scales before others. The focus was on how the various pore

to pore connectivities and di�erent 
uids in the porosity systems of two scales a�ected

the Amplitudes Versus Angle parameters. The study indicated that it should be possible

to determine directly or indirectly from the re
ection coe�cients how the injected 
uid is

distributed in the pore systems of the reservoir or which scale the pore to pore connectivity

is altered.



2 The geology of carbonates

If carbonate sediments are formed at the time of deposition and not much modi�ed by

later diagnesis, the resulting pore system may closely resemble that of many well sorted

sandstones. However, this is unusual and much greater complexity in the pore space is

the general rule (Choquette and Pray, 1970). The diagenesis of carbonates involves many

di�erent processes and takes place in near-surface marine down into the deep burial envi-

ronments. It is the most important in occluding and generating porosity in the sediments

(Tucker, 2001). Carbonate rocks are sensitive to post-depositional diagnesis which involves

processes such as dissolution, cementation, compaction and dolomitization. The unstable

carbonate mineral aragonite can convert to more stable calcite which again can be dolomi-

tized. Just after carbonate sediments are deposited, the porosity is commonly of 40-70%,

while ancient carbonates with more than a few percent porosity are rare. The porosity is

lost through cementation and compaction and gained through dissolution, dolomitization

and fracturing. In carbonate sediments porosity can be divided into primary and secondary

porosity depending on how it originated. Primary porosity is porosity formed during �-

nal sedimentation and includes all pre-depositional and depositional porosity of a particle,

sediment or rock while secondary porosity is formed in sediment or rock subsequently to

�nal deposition (Choquette and Pray, 1970).

The most important and frequently observed pore types of primary origin are inter-

crystaline and interparticle porosity which denote porosity between crystals and particles,

respectively (Wang, 1997). These types can occasionally be of secondary origin. Interpar-

ticle porosity is the dominant type of porosity in most carbonate sediments (Choquette

and Pray, 1970) and such pores are usually irregular and angular in shape so they are easy

to deform (Wang, 1997). In terms of seismic velocities, carbonate rocks with these pore

types have relatively low velocities and they are strongly dependent on pressure. Intra-

5



6 2 THE GEOLOGY OF CARBONATES

particle porosity is also formed before deposition and is porosity within individual grains

and particles. It is abundant in carbonate sediments and can play an important part in the

preserved porosity of carbonate rocks (Choquette and Pray, 1970). Intraparticle porosity

origins from internal chambers or openings within skeletal organisms and secondary intra-

paticle porosity are formed from solution and borings. These pores are hard to deform

and carbonate rocks consisting of intraparticle pores generally gives high velocities and are

insensitive to pressure (Wang, 1997).

Secondary porosity such as moldic pores are normally formed by solution of individual

constituents such as shells, grains, salt or plant roots. They are regular in shape and hard

to deform. This implies in terms of seismic properties, high velocities and resistance to

pressure changes. Vugs have had the most widely de�nitions and usage (Choquette and

Pray, 1970). Most vugs are formed from solution enlargements and can vary from 1/16

mm to 256 mm in size (Choquette and Pray, 1970). Vugs are equant according to the de�-

nition of Choquette and Pray (1970) which gives generally high velocities and low pressure

dependency. If the pores are elongated or openings in the rock are irregular and elongated,

then they are de�ned as channel porosity (Choquette and Pray, 1970). Channel porosity

originates by solutions along fractures systems or enlargement of other types of pores and

is easy to deform. This gives low velocities and carbonates consisting of channel porosity

will be relatively sensitive to pressure. Finally, the pore type which might have the largest

impact on seismic velocities is fracture porosity. Fractures are formed through tectonic

pressure and through collapse and brecciation of carbonate rocks. The presence of frac-

tures may make the rock anisotropic and the velocities will depend on the direction of the

wave propagation relative to the directions of the fractures. If the fractures are randomly

oriented the rock will be isotropic. Fractures contribute little to the total porosity and

are easy to deform which will make the velocity very sensitive to pressure changes (Wang,

1997).
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Only the important and commonly observed pore types are listed here and these pore

types can coexist in carbonate rocks which contribute to the complexity of the pore space

of such rocks. Generally, the most compliant pores control the pressure dependency of the

velocities and the compressibility of the rock.



3 Seismic observations of carbonate rocks

The most controlling factor for seismic and sonic velocities is probably the porosity

and perhaps equally important for carbonate rocks, the pore types (Eberli et al. 2003).

P-wave velocity versus porosity from Eberli et al. (2003) is plotted for di�erent pore types

in Figure 1. As the �gure shows, there is a large scatter of P-wave velocities around the

exponential best �t curve with a di�erence of about of 2500 m/s between the extreme

values at 40% porosity. The study of limestones by Assefa et al. (2003) shows also this

Figure 1: P-wave velocity versus porosity for di�erent pore types of carbonates at 8 MPa
e�ective pressure (from Eberli et al., 2003).

scattering for both the P- and S-wave velocities for equal porosities. The di�erent pore

types in carbonate rocks are evident from measured pressure dependent velocities. As the

e�ective pressure, which is the di�erence between the con�ning pressure and pore 
uid

pressure, increases, the compliant pores and cracks will eventually close, causing the veloc-

ity to increase. Several carbonate core plug studies have shown great variation in how the

velocities increases with increasing e�ective pressure (Nur and Simmons, 1969; Anselmetti

and Eberli, 1999; Wang, 1997; Baechle et al., 2005; Adam et al., 2006).

8
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Another observation of carbonate rocks is the shear weakening and strengthening. Since

the S-wave is not very sensitive to the pore 
uid, it is often assumed that the shear mod-

ulus of the dry and 
uid saturated rock is equivalent. Shear weakening is de�ned as the

saturated shear modulus being lower than the dry shear modulus. Shear strengthening

is de�ned as the saturated shear modulus being larger than the dry shear modulus. In

several carbonate studies changes of 5% up to 20% in shear modulus have been observed

for brine or water saturated core plugs compared to the dry ones (Assefa et al., 2003;

Baechle et al., 2005; Rosseb� et al., 2005; Adam et al., 2006). The cause of this phenom-

ena is ambiguous. Adam et al. (2006) found that surface energy reductions and crack

growth will weaken the shear modulus, while modulus dispersion due to local or global


ow will strengthen the shear modulus. Baechle et al. (2005) associated carbonate core

plugs containing intercrystaline or interparticle pore types to have extremely high shear

modulus variations. Grainstones, which is de�ned as mud-free grain-supported carbonates

(Dunham, 1961), with lots of microscopic porosity have shown shear modulus weakening,

while recrystallized limestones with large grain to grain contact areas have shown shear

modulus strengthening (Baechle et al., 2005). Chemical interaction between the rock and

the pore 
uid is also a mechanism which can alter the properties of the rock. The pore


uid can either soften the rock or alter the porosity trough dissolution of the carbonate

minerals and cementations.

When comparing ultrasonic with seismic measurements, we have to consider modulus

dispersion. Especially for carbonates which often consist of cracks and compliant pores,

wave-induced 
uid 
ow (local 
ow or squirt 
ow) can alter the moduli at ultrasonic fre-

quencies. In paper 2 of this thesis it was observed that attenuations of the dried core plugs

were caused by the squirt 
ow mechanism. This indicated there was signi�cant residual


uid in the so-called dry core plugs and gave a modi�ed dry bulk and shear modulus for

the samples. If there were not measured any attenuations, the moduli found could be
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wrongly interpreted as the dry ones. So the wave-induced 
uid 
ow is maybe the most

important mechanism for carbonate rocks. Also, this mechanism can dominat at ultrasonic

frequencies whereas other mechanisms can arise at low frequency measurements. This is

observed in the study of Adam et al. (2006) where shear weakening is observed for 100

Hz measurements whereas the opposite was observed for 8 kHz measurements. Also when

the rock consists of fractures or very large compliant cracks or pores, wave-induced 
uid


ow can even occur at seismic frequencies. In the largely fractured carbonate reservoirs in

the Naith �eld in Oman, anisotropic and 
uid e�ects such as larger S-wave splitting and

lower S-wave velocities in areas which contained gas compared with areas which contained

oil are observed (Sayers, 2002).



4 Modelling carbonate rocks

From the observed seismic features of carbonate rocks, where complex pore structure

and e�ects such as wave-induced 
uid 
ow can be signi�cant, many assumptions of the

rock physics models commonly used today are violated. The equation of Gassmann (1951),

which assumes the rock to be macroscopically homogeneous, isotropic and that the pores

are well connected regarding to the pore structure, or heuristic relations such as the time

average equation (Wyllie et al., 1956), often mispredict the velocities for carbonates (Adam

et al., 2006; Anselmetti and Eberli, 1999; Assefa et al., 2003; Baechle et al., 2005; Rosseb�

et al., 2005; Wang, 1997,2000). The e�ective medium theory of Kuster and Toks�oz (1974)

has succeeded to reproduce laboratory measurements (Toks�oz et al. 1976; Wang, 1997),

but this model is restricted to isolated pores and must be regarded as a high-frequency

model when the pores are connected.

Since attenuation caused by wave-induced 
uid 
ow is important for explaining the

velocity dispersions observed for carbonate rocks, it is natural to consider frequency depen-

dent models when modelling such rocks. This e�ect can even occur at seismic frequencies

for low permeable carbonates and for high-permeable carbonates saturated with 
uids of

high viscosity (Batzle et al., 2006). Biot's model (1956a,b) for frequency dependent ve-

locities treats mechanisms for viscose interactions between pore 
uid and the mineral of

the rock, however it does not include the squirt 
ow e�ect. Chapman et al. (2002) have

developed a �rst order microstructural poroelastic model which considers compliant cracks

together with spherical pores. However, since the pore structures and the pore types seem

to be dominant factors for carbonate rocks (Eberli et al., 2003), this model may only be

appropriate for only a few cases of pore types. The visco-elastic e�ective medium theory

of Jakobsen et al. (2003a,b), allows higher crack densities than the model of Chapman

et al. (2002) and a wide range of shapes of pores and cracks. In addition, the T-matrix

11



12 4 MODELLING CARBONATE ROCKS

approach includes mechanical interaction between two inclusions and e�ects such as local

and global 
ow. All this appears to be important for explaining many of the observed

seismic properties of carbonate rocks. The pore types in an inclusion based model can

be considered as grain-boundary cracks (intercrystaline and interparticle porosity), porous

inclusions (intraparticle porosity) and rounded pores (vugs and fenestral porosity).

The e�ective sti�ness tensor of the T-matrix approach is derived in Appendix A and

the derivation of the t-matrix for a communicating cavity in Appendix C. In the following,

the parameters in the T-matrix approach which had the highest focus in this study, the

relaxation time constant (�), pore geometry and the concept of dual porosity, are discussed.

4.1 The relaxation time constant �

The relaxation time constant in the T-matrix approach is assumed to be determined

empirically for each rock and 
uid under consideration (Jakobsen et al., 2003b). If we

only consider cracks with same aspect ratios, the characteristic frequency of the squirt 
ow

mechanism associated with the peak of the attenuation is determined as

fc =
1


(n)�
; (1)

where


(n) = 1 + �f (K
(n)
d � S(0))uuvv: (2)

�f is the bulk modulus of the 
uid, K
(n)
d is the dry response of the cracks, S(0) is the

compliance tensor of the reference matrix and u and v represent a summation (u; v =

1,2,3). When there are pores and cracks with various aspect ratios in the porosity, the

characteristic frequency will be approximately equal to equation (1) for each pores or

cracks of equal family n.

As for all squirt 
ow models proposed over the years, the characteristic frequency
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depends on details of the grains and pore microgeometry (Mavko et al., 1998) as well

as the properties of the 
uid. O'Connell and Budiansky (1977) found the characteristic

frequency to be

fc =
��3

�
; (3)

where � is the bulk modulus of the frame matrix, � is the aspect ratio of the cracks and

� is the viscosity of the 
uid. Hudson et al. (1996) found an expression for the relaxation

time to be

� =
�m�l

2

�fKm
; (4)

where �m is the porosity and Km is the permeability of the uncracked rock and l is the

inter-crack spacing. Chapman et al. (2002) derived the expression for the relaxation time

as

� =
�cv(1 +

�c
�f
)

6k��c
; (5)

where cv is the volume of one crack, �c is de�ned as ���
2(1��)

, � is the shear modulus of the

frame rock, � is the Poisson's ratio, k is the permeability and � is the grain size.

The reason for the di�erent expressions of the relaxation time derived for squirt 
ow

are partly due to that the di�erent models consider di�erent pore spaces. Jakobsen and

Hudson (2003) have shown that the T-matrix approach can reproduce the Hudson model

(Hudson, 1996) and if we compare the � -parameter of the T-matrix approach to the one

found by Chapman et al. (2002), the analysis of Agersborg et al. (2007) suggest that


(n)�T�matrix = �chapman =
�cv(1 +

�c
�f
)

6k��c
: (6)

From this relation, we �nd that the � -parameter in the T-matrix approach can be expressed

as

� =
�cv(1 +

�c
�f
)

6k��c

1


(n)
=

�cv(1 +
�c
�f
)

6k��c

1

1 + �f (K
(n)
d � S(0))uuvv

; (7)
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when only considering cracks in the porosity. This expression for the � parameter suggest

that it will be dependent on pore geometry, size of the pores, the bulk modulus of the

reference matrix, permeability, viscosity and bulk modulus of the 
uid. Since some of

these quantities are di�cult to measure, the relaxation time constant in the T-matrix

approach should be determined empirical when frequency or, as done in paper 2, pressure

dependent velocity and attenuation data are available. If there is no pressure dependent

attenuation data, we have chosen the � -paramter to be proportional to the viscosity and

since the bulk modulus of the 
uid is considered by the 
-parameter, it can be written as

� = Cm�; (8)

where Cm is a constant of all the parameters independent of the 
uid. From this relation

it is possible to estimate all the other relaxation time constants for di�erent 
uids as done

in paper 1 when the relaxation time for one 
uid is known.

4.2 Finding the pore geometry

In real rocks, the pores and cracks will have a range of aspect ratios. Indeed, Scanning

Electron Microscope (SEM) image analysis studies of carbonate rocks such as Anselmetti et

al. (1998) and Rosseb� et al. (2005) shows this. When modelling rocks with inclusion based

models, it is impractical to have more than just a few inclusions with di�erent aspect ratios

and concentrations to varying when tuning the model to predict measurements. If there is

no pressure dependent measurements, a few inclusions characterizing the porosity may be

enough to get satisfying results. However, if there are pressure dependent measurements,

the pores and cracks with low aspect ratios will close as the pressure increases with resulting

increase in the velocity. If there are only a few inclusions describing the porosity, there will

be a stepwise increase in the velocity as the pressure raising or the model can not explain
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the high pressure measurements as the low aspect ratio cracks are closed. Therefore a

distribution of compliant pores and cracks are better to use for obtaining a more realistic

model of the porosity. How steep the increase in velocity is with increasing pressure depends

on how many inclusions (cracks) with low aspect ratio there are in the sample. In this

study we have chosen a generalized beta distribution similar to the one used by Tod (2001)

to characterize the distribution of cracks. With only four parameters, it is possible to

obtain almost any shape of the distribution (see Figure 2). The crack density distribution

Figure 2: The generalized Beta distribution function, with �� = 0:00837, �=0.703 and u=0.2
(solid line), u=0.5 (long dashes), and the Gamma distribution governed by the same values
of �� and � (medium dashes) to approximate the sum of the crack aspect ratio observations
of Hay et al. (1988) (bars) (from Tod, 2001).

can be written as (Tod, 2001):

� = �0F�(�); (9)
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where �0 is the total crack density and F�(�) is the generalized beta probability density

function, which can be written as

F�(�) =
1

u

�(p+ q)

�(p)�(q)
(1�

�

u
)q�1(

�

u
)p�1; (10)

with

p =
u� ��� ���2

u�2
; (11)

and

q =
u� ��

��
p: (12)

Here u and � are parameters for tuning the beta density probability function, �� denote

the average aspect ratio of the cracks and � is the gamma function. The shape of the

distribution are mainly determined from the average aspect ratio and the �-parameter.

This distribution can also be used with SEM imaging analysis to characterize the pore

structure of the rock. In Figure 3, SEM imaging analysis done by Rosseb� et al. (2005) are

shown where they have used a form factor de�ned as 4�(area=perimeter2) for evaluating

the shape of the pores and cracks.

In this Ph.D. study there was no SEM image available for the core samples, but the

crack distribution was used in paper 2 and 3, where good �t was achieved for the velocity

versus pressure measurements of carbonates.

4.3 Dual porosity

The concept of a dual porosity system is incorporated into the T-matrix approach to

model di�erent acoustic signatures observed for carbonates. Such acoustic observations

are: large scattering of velocities of equal porosity and lithology; attenuation for the dried

core plugs due to residual 
uids in the pore space; and anisotropy due to large fractures
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Figure 3: Pore form spectra found for di�erent core samples by using Scanning Electron
Microscope image analysis (from Rosseb� et al., 2005). The colour represent the dominant
porosity where red is intergranual (interparticle) porosity, green is intercrystallinge porosity
and blue is moldic porosity. The solid black line represent the pore form obtained from a
thin slice image.

or to the microscopic structure. The di�erent porosity systems can either be on the same

scale or on di�erent scales and are modelled as either two separated systems or as two

connected systems where scale is considered in terms of number of connections that each

pore has.

The large velocity scattering of carbonates with same porosity and lithology is explained

in paper 1 by dividing the pore space into two separate systems of di�erent scales. Then,

considering the pore types and whether these pores are connected on each scale, the model

was able to show how this velocity dispersion can be reproduced.
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In velocity and attenuation measurements for calcite core plugs in paper 2, attenuation

was observed for the dried core plugs caused by residual 
uid in the pore space. This


uid and the squirt 
ow e�ect can be modelled either as partially saturated pores or by

two separate pore systems where one is fully saturated and the other is dry. The model

of partially saturated cracks (saturated with two 
uids) can be done in a similar way as

Walsh (1965), Mavko and Nur (1979), and Hudson (1988), as discussed by Pointer et al.

(2000) and Jakobsen and Hudson (2003). Here the wave-induced 
uid 
ow takes place in

a single crack. However, this model is developed for isolated cracks and in order to have

a consistent model for both the dry and saturated core plug measurements, the model of

two separated pore systems on the same scale was chosen.

Finally, the last dual porosity model used in paper three was adopted from Chapman

(2003) in order to investigate the e�ect of fractures in a reservoir as the pore pressure was

changing. In this model, the idea was that the larger fractures, due to their size, were

connected to more nearby microscopic pores and cracks than the microscopic pores and

cracks were to each other. The e�ect of scale was modelled by assuming that the relaxation

time constant was dependent on the scale and each relaxation time constant of the scale

was related by the size of the fractures and the grains.
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ABSTRACT 

 

The many acoustic observations of carbonate rocks, such as large scattering of 

velocities with equal porosity and mineralogy, or shear modulus alteration under fluid 

substitution, can not be explained using traditional rock physics theories such as the 

Gassmann equation. The complex pore structure often seen in carbonate rocks is possibly the 

main reason for these variations. Attenuation caused by wave-induced fluid flow is often the 

source of the misprediction of porosity and pore fluid effects on the velocities with use of 

traditional rock physics models. For carbonates this effect can occur for all frequencies and 

when modelling these characteristics we assume that the porosity occur at two scales, one 

microscopic and one mesoscopic, combined with a visco-elastic effective medium theory. The 

characteristic pore types of the carbonate rocks are modelled as grain-boundary cracks 

(intercrystaline and interparticle porosity), porous inclusions (intraparticle porosity) and 

rounded pores (vugs and fenestral porosity). By studying various conditions of the 

connectivity of pores and cracks within the various pore systems and how the total porosity is 

distributed with respect to scale, we are able to model the often seen large variations of the P 

and S wave velocities and attenuations for equal total porosity. The shear modulus alteration 

is studied in virtue of wave-induced fluid flow and for a range of different fluids saturating 

various scale dependent porosities.  

 For porosities made up of pores of different scale, fluid substitution may lead to 

heterogeneous pore fluid distributions. We here also show how such effects can be estimated 

considering various pore systems and fluid saturations.    

 

Keywords: Dual porosity, pore structure, carbonates, two-scaled modelling, wave-induced 

fluid flow, T-matrix approach, fluid substitution.  
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INTRODUCTION 

 

Seismic velocities depend on the elastic moduli and the density of the rock, and they 

are mainly affected by the fluid content in the rock, mineralogy, porosity and pore types i.e. 

shapes and sizes. Especially, the concentration of compliant cavities such as cracks and flat 

pores, and the stiffer rounded pores will have a major impact on the acoustic velocities. 

However, other factors such as whether the cavities are isolated or connected with respect to 

fluid flow also need to be considered. If there is a large portion of isolated cavities, the 

velocity will be larger than if they are connected. When the pore space is saturated with a 

viscous fluid, velocity dispersion occurs and we have to be careful when comparing ultrasonic 

with seismic measurements for understanding fluid substitution effects.    

Unlike siliciclastics, where compositional variations are the main factor for the 

difference in the seismic velocities, various carbonate rocks often have very similar 

composition (Eberli et al. 2003).  The principal constituents of carbonate rocks are calcite 

(CaCO3), aragonite (CaCO3) and dolomite (CaMg(CO3)2). These minerals are easily soluble 

in acid water and can be deposited nearby, which in turn can give a complex microscopic 

texture. In overall, the seismic velocities of carbonate rocks will depend on all the factors 

mentioned above, but the pore structure and the texture appear to be the most dominant ones. 

The porosity in carbonate rocks have been described by different approaches (Archie 

1952; Dunham 1962; Choquette and Pray 1970; Lucia 1995). Archie (1952) and Dunham 

(1962) focused on carbonate textures, while Choquette and Pray (1970) and Lucia (1995) 

emphasized on pore types. Both Choquette and Pray (1970) and Lucia (1995) classification 

systems have divided the porosity of carbonates into three main pore sizes: i) The microscopic 

(micro) pores, with a cross section diameter less than 20 µ m (Lucia 1995) and 1/16 mm 

(Choquette and Pray 1970), ii) the mesoscopic (meso) pores with cross section diameter 20-

100 µ m (Lucia 1995) and 1/16-4 mm (Choquette and Pray 1970) , and iii) the mega pores 

with cross section diameter larger than 100 µ m (Lucia 1995) and 4 mm (Choquette and Pray 

1970). In the following we adopt definitions of pore sizes of Lucia (1995). 

 The most common pore types constituting the porosity of carbonate rocks are 

intercrystalline, interparticle, intraparticle, moldic, vug, fenestral porosity and fractures. Crude 

descriptions of the various types are: Intercrystalline or interparticle porosity are both 

irregular in shape, and intraparticle porosity occurs within individual particles or grains 

originating from internal chambers or other openings in skeletal organisms. Moldic porosity is 
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developed through solution of constituents of the sediment formed from organic materials and 

making up a so-called secondary porosity, while vugs of round shape are usually often formed 

by solution of moulds. Intraparticle, moldic and vugs are not easily deformed. Fenestral 

porosity is round, lenticular or more irregular in shape and is primary porosity formed in algal 

mats by evolution of gas. Fractures are formed from collapse of pore space opened by 

solutions, sudden pressure changes, or various kinds of tectonic deformations. A more 

thorough summary of each pore type can be found in Wang (1997) or Choquette and Pray 

(1970).       

 In addition to pore type, it is important to know if the pores are isolated or connected 

with respect to pore pressure relaxation for prediction of seismic velocities. For high porous 

carbonates there are for instance observed P-wave velocity differences of 2500 m/s at equal 

porosity (Eberli et al. 2003). Figure 1 shows P and S wave velocities versus porosity for data 

compiled from Anselmetti and Eberli (1993) and for 12 calcite samples taken at 2 km depth of 

a well. The calcite samples were studied for various effective pressures (Pe) but with constant 

pore fluid pressure (Pf) equal to 5 MPa.  The figure shows large variations in velocities and 

our dataset reveals differences up to 1000 m/s even for the low porous samples. These 

differences in P velocities are mainly caused by the alteration of the pore shapes (e.g. 

closing/opening of cracks) as Pe is changing. In the study of Anselmetti, Luthi and Eberli 

(1998), two extreme fluid pathways were found in the carbonate samples. First, fluid flow can 

occur through connected meso pores and, second, the fluid can flow through the micro pores. 

In their studies of carbonates with homogeneous texture, one of these two fluid pathways was 

the dominant one, but in a real reservoir they expected a mixing of such sort (pore types) and 

both fluid flow processes can occur.  

 The aim of this study is to show how large velocity variations for similar lithology, 

porosity and pore fluid of carbonate rocks can be modelled by using visco-elastic effective 

medium theory. We consider the so-called T-matrix approach of Jakobsen et al. (2003a,b) 

applied to the pore types of two classes; cracks (representing the compliant part of the 

porosity) and pores (representing the stiff part of the porosity). We also take into account 

scale and the various connection models of the various pore types.  Furthermore, a dual 

porosity system is used to include porosity of micro and meso scales, and to reveal how the 

different connection models of pores, pore shapes and fluid content may imply observed 

seismic properties of carbonates.   
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ROCK PHYSICS OF CARBONATES 

 

 In general we have to let go of the details of the geometrical descriptions of the 

porosity (with many pore classes) when we discuss carbonate rocks with mathematical 

models dealing with idealized shapes. The equation of Gassmann (1951) does not have any 

explicit assumptions of the pore structure (with respect to pore shape) other than that it must 

be connected to ensure the fluid in the rock to be in a relaxed state. Heuristic relations such as 

the time average equation (Wyllie, Gregory and Gardner 1956), often fail to predict the 

velocities for carbonate rocks when the porosity is made up of compliant pores and cracks 

(Adam, Batzle and Brevik 2006; Anselmetti and Eberli 1999; Assefa, McCann and Sothcott 

2003; Baechle et al. 2005; Rossebø et al. 2005; Wang 1997,2000). The effective medium 

theory of Kuster and Toksöz (1974) does manage to reproduce laboratory measurements 

(Toksöz, Cheng and Timur 1976; Wang 1997), but it is restricted to consider isolated pores, 

and it must be regarded as a high frequency model since no fluid flow occurs. Thus, inclusion 

based theories using pore shapes are appealing to use for carbonates since a dominant factor 

for the acoustic properties appears to be the pore structure (Eberli et al. 2003). The pore types 

can be considered as grain-boundary cracks (intercrystaline and interparticle porosity), porous 

inclusions (intraparticle porosity) and rounded pores (vugs and fenestral porosity). 

 The model of Kuster and Toksöz (1974) can be used for predicting the effective bulk 

modulus in the high frequency range and then when combined with Gassmann (1951) through 

the dry properties, it can be used for modelling the low frequency behaviour. However, 

neither of these models includes squirt flow effects, which often are present in both laboratory 

and seismic experiments (Batzle, Han and Hofmann 2006). Therefore inclusion based models 

which consider fluid flow (e.g. Chapman, Zatsepin and Crampin 2002 or Jakobsen et al. 

2003a,b) need to be considered when modelling rocks with potentially large fractions of 

crack-like pores. In the following, we shall use the approach of Jakobsen et al. (2003a,b) to 

describe velocity scattering caused by the pore structure. A brief review of the theory is 

outlined before the modelling results are presented.    

 

THE T-MATRIX APPROACH TO CARBONATE ROCK PHYSICS 

 

The effective stiffness tensor of the medium 

The visco-elastic effective medium theory of Jakobsen et al. (2003a,b) considers a 

model of a homogeneous matrix material embedded with inclusions of same scale which are 

24 Paper 1



 5 

divided into families having the same concentrations and shape/orientations, labelled by r = 

1,2,…,N. This can again be divided into cavities (r = 1,2,…,Nc) and inclusions of solids or 

porous materials (r = Nc+1,…,N).  The effective stiffness C* is given by (Jakobsen et al. 

2003a,b) 
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where C(0) is the fourth-rank stiffness tensor of the homogeneous matrix material, I4 is the 

identity for fourth-rank tensors, v(r) is the volume concentration for inclusion of type r, t(r) is 

the T-matrix, )(rs

dG is given by the strain Green’s functions integrated over a characteristic 

ellipsoid having the same symmetries as p(s|r)(x-x’) which, in turn, gives the probability 

density for finding an inclusion of type s at point x’ given there is an inclusion of type r at 

point x. The T-matrix of a single inclusion of type r is given by (Jakobsen et al. 2003a,b) 
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where C(r) is the stiffness tensor for the inclusion and G(r) is a fourth rank tensor depending 

only on the aspect ratio of the inclusion and C(0). If the inclusion represent a visco-elastic 

porous material, equation (4) will be dependent on the frequency.  

From the effective stiffness tensor of the isotropic reservoir found from Equation (1) 

the P- and S-wave velocity and corresponding attenuations can be expressed as (Jakobsen et 

al. 2003b) 
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Here *ρ is the effective density and VS is divided by 2 because of the stiffness tensor is in 

Kelvin notation.  
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The t-matrix for communicating cavities
 

A detailed derivation of the t-matrix equations where the effects of communicating 

cavities are incorporated can be found in Jakobsen et al. (2003b). In this paper we only list the 

important equations which concern the allowance of one fully saturated cavity to exchange 

fluid mass with other cavities. The t-matrix for a fully saturated cavity can be expressed by a 

dry t-matrix and a term which considers the fluid effects (Jakobsen et al. 2003a,b; Jakobsen 

and Hudson 2003) 
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Here ))))(((( r
dt is the t-matrix for the dry cavity of family r,  )0(S  = ( ) 1)0( −

C , ω  is the frequency, τ  is 

the relaxation time constant, fκ and fη are the bulk modulus and viscosity of the fluid, uk and 

vk are components of the wave number vector, uvΓ  is the permeability tensor of the rock and 

the subscription u and v represent summation over u and v, respectively (u,v = 1,2,3). 2Ι is a 

second rank tensor and ⊗ denotes a dyadic tensor product. 

 The relaxation time constant ( τ ) is assumed to be an empirical constant in Jakobsen et 

al. (2003b) and is suggested to be dependent on the scale of the pores and cracks, on the 

properties of the fluid and the mineral the cavities are embedded in. The constant must under 

these assumptions be determined for each fluid under consideration where attenuation due to 

wave induced fluid flow are significant. In order to discuss fluid effects in this study we will 

in the following assume that the τ -parameter can be expressed as  

ηCτ m= ,                                                                                                 (15) 
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where Cm is an empirical constant independent on the fluid under consideration. With this 

expression the characteristic frequency (
τγ

1
f

)r(c = ) of the squirt flow mechanism will be 

inverse proportional to the viscosity and proportional to the fluid bulk modulus. From 

equation (15) we can estimate the τ -parameter from the empirical determined τ -parameter 

from one fluid when substituting the fluid with another as   

1fluid

2fluid
1fluid2fluid

η

η
ττ = .                                                                                                                 (16) 

 

DUAL POROSITY MODELS 

 

 Pores within the oil column of reservoirs are either within the mineral particle size or 

significantly larger and connected through the interparticle porosity. They are oil saturated 

because of their relative large size and that the oil migrations into these pores are controlled 

by the interparticle pore size (Lucia 1995). The intraparticle micro porosity may, due to the 

small pore size implying high capillary forces, trap the water and lead to anomalously high 

water saturation within a productive interval (Lucia 1995). For the modelling of a porosity 

which also may contain two fluids with different wettability, we have chosen to divide the 

porosity into two separate pore spaces. The porosity system can be made up of pores on the 

same scale (see e.g. Agersborg et al. (2007b)) or on different scales. Here we focus on the 

effects of micro and meso porosity within the same rock. 

The dual porosity is modelled by first finding the effective properties of the micro 

porous constituent made up of aragonite, calcite or dolomite and with a specific 

porosity microφ . Similarly the elastic properties of the constituent, again made up of calcite, 

aragonite or dolomite, with meso porosity mesoφ is modelled. Finally, an effective composite is 

modelled with the constituents holding the meso porosity as a host medium embedding a 

volume fraction incφ  of spherical inclusions made up of the constituent with porosity microφ . 

The effective micro porosity will be microinc
*
micro φvφ = . With the meso porosity mesoφ , the total 

porosity is then *
micromesotot φφφ += .  

The effect of scale is modelled by embedding the pores and cracks as visco-elastic 

inclusions with micro porosity one scale smaller, or more, than for the meso porosity. Figure 

2 shows conceptual models were the micro and meso porosities are always isolated with 
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respect to each other. However, the pore systems can have different pore fluids and 

individually have connected or unconnected pores. For our modelling, we shall consider 

microφ , *
microφ and mesoφ to be held constant (if not otherwise stated). The different pore types 

are represented as spheroidal inclusions where cracks are defined with aspect ratio (α : ratio 

of the length of minor to major axis of an ellipsoid) less than 0.001. The relevant properties of 

the minerals and fluids used are listed in Tables 1 and 2, while the τ -parameter is chosen to 

be 10-7s for water saturated rocks and according to equation (16) for oil and gas saturations. In 

the following we consider four porosity models (see Figure 2), where model 1) has no cracks 

in both porosity systems, model 2) has cracks in *
microφ and no cracks in mesoφ , model 3) has 

no cracks in *
microφ  and cracks in mesoφ  and model 4) with cracks in both porosity systems. 

The aspect ratios and concentrations of the cracks and pores are listed in Table 3.   

 

Model 1 – No cracks 

In model 1, aragonite is chosen as host mineral for the micro porosity while calcite is 

host for the meso porosity. The concentration and aspect ratios of the micro and meso pores 

are listed in Table 3.  In Figure 3, low-frequency P and S wave velocities (VP and VS) for a 

water saturated rock are plotted as the various porosities are decreasing from the maximum 

total porosity ( totφ = 17%). At totφ = 11% and water as pore fluid , the difference between the 

extreme values for VP is about 300 m/s and 100 m/s for VS when the pores are individually 

connected. Modelling shows that the differences will be even larger if the porosity contains 

cracks and/or that the contrasts in the minerals properties are greater. Figure 4 shows VP and 

VS and the corresponding attenuations 1
PQ− and 1

SQ−  as function of frequency with various 

pore models (connectivity). The velocity differences between individually connected and 

isolated pore systems are large (650 m/s for the VP and 190 m/s for the VS). VP obtained from 

the generalized Gassmann model (Berryman and Milton 1991) and the formulations of Kuster 

and Toksöz (1974) are also shown in Figure 4a. Here the applied dry bulk modulus was 

modelled considering the pores fully connected on both scales. In the generalized Gassmann 

equation the two porous constituents mixed are of the same scale and the fluid can flow 

within and between both constituents (Berryman and Milton 1991). This is in contrast with 

the present model, where the porous within the porous inclusions are one scale-size smaller 

than the pores in the porous matrix. However, in absence of a better model to use we find the 

generalized Gassmann appropriate for our comparison. From Figure 4a, we see that the 
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frequency of the attenuation peak for connected micro pores and isolated meso pores are 

lower than when both the pore systems are individually connected. However, the opposite can 

be observed for the S-wave attenuation peak (Figure 4b).  

 To study the combined effects of mineralogy and pore fluid, we limit ourselves to 

fully individual connected micro and meso porosity. Figure 5 shows VP, VS, 1
PQ− and 1

SQ− using  

calcite, dolomite and aragonite mixed in 9 different ways and with water as pore fluid. 

Comparing the results where aragonite is in the micro scale and calcite in the meso scale, to 

where dolomite is in the micro scale and aragonite is in the meso scale, we see that their low-

frequency responses are equivalent, while their high-frequency responses differ. Also, there is 

a frequency shift of the attenuation peak compared to when only the micro pores or the meso 

pores are connected (Figure 4a). This occurs due to the different properties of the 

mineralogies used. Furthermore, the attenuation peak of the P-wave for pure calcite appears at 

higher frequency than for the pure aragonite, caused by the fact that aragonite is stiffer than 

the calcite. If the mineralogy is equivalent for both scales, we do not see this frequency effect 

for the various pore connection models. This is because the wavelength being much greater 

than the pores (the long wavelength approximation) and that pores with equal shape and τ -

parameter have equal response regardless of size. The S-wave shows almost no difference in 

the frequency shift of the attenuation peak for pure calcite or pure aragonite. 

 Figure 6 shows VP, VS, 1
PQ− and 1

SQ− for various combinations of pore fluids saturating 

the micro and meso pores. Here water, oil and methane with properties listed in Table 2 are 

combined in 9 ways. Equation (16) is used to evaluate the relaxation time for each fluid from 

the value of the water saturated model ( τ= 10-7s). To obtain the relaxation times we thus need 

to consider only one pore fluid within the pore system. We see three classes where the fluid in 

the meso porosity dominates the behaviour of the P-wave velocity for low frequencies. For 

ultrasonic frequencies, the picture is more complicated. In the squirt flow mechanism 

window, between the low- and high-frequency limits, VP for various combinations of pore 

fluids in the pore systems fluctuates. In the high-frequency limit, there are no longer distinct 

classes for the oil and water saturated meso porosity. The VS differences are caused by the 

different densities of the fluids. With methane in the meso porosity (which is almost equal to 

the dry rock) and water or oil in the micro porosity we see the dominant effect of the fluid 

saturating the micro cracks. The attenuation signature also indicates the presence of the fluid 

types in the compliant pores e.g. when they are gas saturated instead of oil or water saturated, 

the attenuation peak shift towards higher frequencies.   
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 Model 2 – Micro cracks 

Model 2 includes micro cracks as defined in Table 3. Calcite is used as host material 

for both micro and meso porosity, while the two pore systems may be differently saturated 

with water, oil or methane. The values used in the modelling are given in Tables 1 and 2. 

Figure 7 shows VP, VS, 1
PQ− and 1

SQ−  for various fluid combinations and different connection 

models. VP shows a similar trend as for model 1 due to fluid flow, but now there are two 

additional attenuation peaks appearing at lower frequencies due to the cracks defined in the 

micro porosity. Also when the cracks are within the micro porosity the frequency band 

yielding squirt flow is expanded toward lower frequencies compared to model 1. For gas 

saturation, the attenuation peaks due to the cracks interfere with the attenuation peak caused 

by the meso porosity. A similar picture can be seen for VS. The difference in velocities of 

connected and isolated porosity is for VP 1100 m/s and for VS 200 m/s.  

  

Model 3 – Meso cracks 

 In model 3 there are meso cracks as defined in Table 3. The micro porosity is as in 

model 1, while the mineral and fluids are as in model 2. The modelled VP, VS, 1
PQ−  and 1

SQ−  

are plotted in Figure 8. Note that even though the total crack density (
)r(

)r(
)r(

πα4

v3
ε = ) in models 

2 and 3 are identical, both VP and VS are here significantly lower. This is because in addition 

to the cracks in the meso porosity, the micro porous material with cracks has larger 

concentration of spherical pores, and thus, appears to be stiffer than in the case of no cracks 

(see Table 3). The differences in velocities between the connected and isolated pores in the 

systems are now about 1000 m/s for VP and about 250 m/s for VS. Also the differences for 

various fluids are greater compared to the previous modelling. The attenuation is increased 

with the inclusion of meso cracks compared to model 2. The choice of only one aspect ratio to 

characterize the cracks in the meso porosity is the cause of only one wage additional 

attenuation peak in this model.    

 

Model 4 – Micro and meso crack 

 Finally, model 4 includes cracks on both scales and the same micro porosity as in 

model 2 and meso porosity as in model 3. Calcite is still the host mineral for both porosities. 

The effects of the various connection models on velocities and attenuations are seen in Figure 

9. There are larger differences in the velocities between the connected and the isolated pores, 
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up to 1200 m/s for VP and 300 m/s for VS compared with previous results. Surprisingly, when 

having both micro and meso cracks, both VP and VS are larger for the case of isolated pores in 

both scales than for model 3. Again, this is because the micro porous material is stiffer when 

including micro cracks. 

  

DISCUSSION 

 

Effects of pore types  

The modelling related to the four models reveals several possible seismic signatures of 

carbonate rocks. The scattering of the velocities for equal total porosity may be explained in 

context of pore types, scale of the pores and cracks and whether they are isolated with respect 

to fluid flow or not. Figure 3 shows the importance of the scale of the porosity. Even though 

there were two mineral constituents in model 1, the effect of the scale is significant. When the 

total porosity is constant, the model which consists of the larger portion of the micro porosity 

gives higher velocities. In this case it is because the mineral containing the micro pores are 

stiffer than the mineral containing the meso pores.  Figure 4 shows the effects of connected 

and isolated pores and cracks. With same micro and meso porosity there is a difference in VP 

of 500 m/s between connected to isolated pores. In Figure 9a, where cracks are in both 

porosity systems there is a difference of about 1200 m/s for VP.  

In addition to pores, fractures have a great effect on fluid flow pathways. Fractures can 

be open or closed due to mineralization and they may have different resistance to fluid flow of 

fluids due to capillary forces. A partially mineralized fracture can provide a better 

hydrocarbon recovery because the mineral can act as a natural prop, thus keeping the fracture 

open during depletion. If the fracture is totally mineralized, the fracture could act as a 

permeability barrier (Dürrast and Siegesmund 1999). Open fractures can be modelled with the 

use of the T-matrix approach by considering the relaxation time constant (Equation (16)) to be 

scale dependent (Agersborg et al. 2007a). When the fractures are connected to the nearby and 

smaller cavities, the relaxation time for the fractures can be related to relaxation time of the 

micro porosity of similar shapes as (Chapman 2003; Agersborg et al. 2007a)  

porosity micro

grain

fracture
fracture τ

s

s
τ = ,                                                                                                      (17) 

where fractures and grains are the radii of the fracture and the grains, respectively.    

The models considered are isotropic. However, the modelling can include anisotropy 

as outlined in Agersborg et al. (2007b). Such pore models are of particular value when 

Paper 1 31



 12 

considering effects of pressure on seismic velocities. Also, in this modelling we have 

considered a discrete crack/pore model whereas in Agersborg et al (2007a,b) a distribution of 

cracks was considered. Formulation of continuous distributions implies a smooth change in 

seismic properties as pressure is altered instead of a step wise behaviour often seen using 

discrete pore models. The formula for the crack distribution depend on four parameters which 

can be determined from measured pressure dependent velocities and attenuations as shown in 

Agersborg et al. (2007b), or by analyses of scanning electron microscope images of thin 

sections as in the study of Rossebø et al. (2005) or Anselmetti et al. (1998).     

 

Effects of fluids 

Physical properties of some fluids are shown in Figure 6. The τ -parameter for each 

fluid should ideally be defined from the attenuation and/or the velocity measurements, but 

with use of equation (16) τ  can be evaluated. The attenuation peaks due to wave induced 

fluid flow is seen to decrease with frequency as the viscosity increases, as is in agreement 

with the observation of Batzle et al. (2006). With compliant cracks the squirt flow effects will 

occur in a broader frequency band. This is shown for various pore connection models and 

various pore fluids in Figure 7 (micro cracks), Figure 8 (meso cracks) and Figure 9 (both 

types of cracks).  

 Since fluids have no shear modulus it is often assumed that the saturated and dry shear 

moduli of the rock are equivalent. However, for many carbonate rocks either shear weakening 

or shear strengthening is observed (Adam et al. 2006; Assefa et al. 2003; Baechle et al. 2005). 

Adam et al. (2006) identified evidence of at least three mechanisms causing this. Weakening 

can occur due to surface-energy reduction or crack growth, while strengthening can occur due 

to shear modulus dispersion inferred from squirt or global flow in the pore space. They also 

observed weakening of the shear modulus at low frequencies and shear strengthening at high 

frequencies. This implies that more than one rock-fluid mechanism is active. Also, since 

carbonate minerals are easily soluble mineral dissolution may also cause altered pore space 

and thereby an altered shear modulus.  

The modelling study discussed can not explicitly account for the chemical interaction 

or dissolution of the minerals, but many of the mechanism causing the alteration of the shear 

modulus can be explained. Agersborg et al. (2007b) showed that if residual fluid exists in 

undrained cracks of a dried sample, this may stiffen or weaken the frame of the rock with 

respect to shear forces, since this may control the opening or closing of compliant pores. 

Since the T-matrix approach accounts for both global and squirt flow mechanisms, it may also 
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apply for describing the mechanism behind shear modulus strengthening. In model 1 in Figure 

4b, with an effective dry density of 2273.6 kg/m3 and an effective water saturated density of 

2450.5 kg/m3, the saturated and dry shear modulus is 16.6 GPa and 14.3 GPa, respectively. 

This gives a shear strengthening of about 16% when the pores are isolated with respect to 

fluid flow on both pore systems. In the case where all the pores are connected, the saturated 

and dry shear modulus is equal.   

 

CONCLUDING REMARKS 

 

 The use of a visco-elastic effective medium theory for modelling the stiffness tensor of 

complex porous materials as carbonate rocks has been discussed. In this paper we have 

focused on the role of the scale of porosity on seismic parameters, i.e. when the pore systems 

contain micro and meso pores which are connected or isolated with respect to pore fluid flow. 

Both P and S wave velocities, attenuations and dispersion effects are modelled for various 

systems of pore fluids and porosity scenarios.  

The pore types characterized for carbonates can be modelled by their shapes and sizes. 

The modelling showed that we can obtain a spectrum of velocity and attenuation signatures 

with the same mineralogy and porosity, by varying the pore types, the connectivity between 

them and the pore fluid distribution. Shear modulus strengthening can occur due to squirt flow 

effects, and alteration of the pore to pore connection can occur due to chemical interaction 

between fluid and rock minerals.   

Different scales of pores influence on the draining properties, i.e. a fluid substitution 

processes may cause different pore fluids in the micro and meso porosity. Our modelling also 

points to possible acoustic signatures of such heterogeneous pore fluid saturation scenarios. In 

essence, our results point to the necessity of realistic modelling to assist in quantitative 

seismic interpretation of fluid substitution and 4D effects. The present work may help to 

develop more such realistic models.  
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APPENDIX A 
The generalized Gassmann equation for composite porous media with two constituents 

can be written as (Berryman and Milton 1991)  

,CαKK **
dry

*
sat +=                                                                                                                  (A-1) 
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where the average porosity can be found from  
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Here index 1 and 2 refers to the two phases and f is the concentration such that .1ff )2()1( =+  
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The shear modulus, the effective density and the P- and S-wave velocity of the saturated 

medium can be expressed as  
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FIGURES 

 
 
Figure 1: Observed velocity variations with porosity.  

a) Water saturated aragonite, calcite and dolomite samples compiled from Anselmetti and Eberli (1993). 

(Pf=2 MPa and Pe=10 MPa)   

b)Own data (also see Agersborg et al. 2007b) obtained from 12 brine saturated calcite samples at various 

pressures. (Pf=5 MPa and Pe= 5, 10, 20, 30, 40, 50, 60 MPa. Estimated alteration in porosity with pressure 

is included). 
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Figure 2: Conceptual sketches of the models where the pores exist both on micro and meso scale and with 

different connections. (a) The pores are isolated in both porosity scales; (b) The micro pores are connected 

and meso pores are isolated; (c) The micro pores are isolated and the meso pores are connected; (d) The 

pores in both the scales are connected. The porosity systems are isolated with respect to each other in all 

the models.  
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Figure 3: VP and VS as function of porosity. Case 1: The micro porosity varies (dashed-dotted line); Case 

2: meso porosity varies (dashed line); Case 3: Both the micro and the meso porosity varies (dotted line); 

Case 4: The concentration of the visco-elastic inclusions varies (dense solid line); Case 5: Both the visco-

elastic inclusion and the meso porosity varies (solid line).  
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Figure 4a: VP and 
-1
PQ  as functions of frequency. Case 1: connected pores in the micro and meso porosity, 

but isolated with respect to each other (blue). Case 2: connected pores in the micro porosity and isolated 

pores in the meso porosity (magenta). Case 3: connected pores in the meso porosity and isolated pores in 

the micro porosity (black). Case 4: isolated pores in both the micro and meso porosity (red). Dry (green) 

and generalized Gassmann calculated VP (cyan). Case 2 is equivalent to Vp calculated by the formulations 

of Kuster and Tolsöz (1974).   
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Figure 4b: VS and 

-1
SQ  as functions of frequency. Case 1: connected pores in the micro and meso porosity, 

but isolated with respect to each other (blue). Case 2: connected pores in the micro porosity and isolated 

pores in the meso porosity (magenta). Case 3: connected pores in the meso porosity and isolated pores in 

the micro porosity (black). Case 4: isolated pores in both micro and meso porosity (red). Dry (green).   

Paper 1 45



 26 

 

10
0

10
2

10
4

10
6

10
8

3500

4000

4500

5000

5500

V
P
 (

m
/s

)

Frequency (Hz)

10
0

10
2

10
4

10
6

10
8

0

0.05

0.1

0.15

0.2

Q
−

1

P

Frequency (Hz)

 
Figure 5a: VP and 

-1
PQ  as functions of frequency and different mineralogy. Calcite (C), Dolomite (D) and 

Aragonite (A). The first letter corresponds to inclusion and the second to the matrix mineral. CC (black); 

CD (green); CA (red); DC (magenta); DD (yellow); DA (cyan); AC (brown); AD (pink) and AA (blue). 
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Figure 5b: VS and 

-1
SQ  as functions of frequency with different mineralogy. Calcite (C), Dolomite (D) and 

Aragonite (A). The first letter corresponds to inclusion and the second to the matrix mineral. CC (black); 

CD (green); CA (red); DC (magenta); DD (yellow); DA (cyan); AC (brown); AD (pink) and AA (blue). 
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Figure 6a: VP and 

-1
PQ  as functions of frequency and different fluids. Water (W), Oil (O) and Methane 

(M). The first letter corresponds to fluid in the micro porosity and the second letter to the meso porosity.  

WW (black); WO (green); WM (red); OW (magenta); OO (yellow); OM (cyan); MW (brown); MO 

(purple) and MM (blue). 
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Figure 6b: VS and 
-1
SQ  as function of frequency and different fluids. Water (W), Oil (O) and Methane 

(M). The first letter corresponds to fluid in the micro porosity and the second letter to the meso porosity.  

WW (black); WO (green); WM (red); OW (magenta); OO (yellow); OM (cyan); MW (brown); MO 

(purple) and MM (blue). 
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Figure 7a: VP and 

-1
PQ  as functions of frequency with micro cracks saturated with different fluids: gas 

(dashed line), oil (solid line) and water (dotted line), and different connections: both micro  and meso 

porosity connected (black), connected micro porosity and isolated meso porosity (red), connected meso 

porosity and isolated micro porosity (blue), both micro and meso porosity isolated (green).  
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Figure 7b: VS and 

-1
SQ as functions of frequency with micro cracks saturated with different fluids: gas 

(dashed line), oil (solid line) and water (dotted line), and different connections: both micro and meso 

porosity connected (black), connected micro porosity and isolated meso porosity (red), connected meso 

porosity and isolated micro porosity (blue), both micro and meso porosity isolated (green).  
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Figure 8a: VP and 

-1
PQ  as functions of frequency with macro cracks saturated with different fluids: gas 

(dashed line), oil (solid line) and water (dotted line), and different connections: both micro- and macro 

porosity connected (black), connected micro porosity and isolated macro porosity (red), connected macro 

porosity and isolated micro porosity (blue), both micro- and macro-porosity isolated (green).  
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Figure 8b: VS and 

-1
SQ as functions of frequency with mesoscopic cracks saturated with different fluids: 

gas (dashed line), oil (solid line) and water (dotted line), and different connections: both micro and meso 

porosity connected (black), connected micro porosity and isolated meso porosity (red), connected meso 

porosity and isolated micro porosity (blue), both micro and meso porosity isolated (green).  
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Figure 9a: VP and 

-1
PQ  as functions of frequency with both micro and meso cracks saturated with 

different fluids: gas (dashed line), oil (solid line) and water (dotted line), and different connections: both 

micro and meso porosity connected (black), connected micro porosity and isolated meso porosity (red), 

connected meso porosity and isolated micro porosity (blue), both micro and meso porosity isolated 

(green).  
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Figure 9b: VS and 
-1
SQ as functions of frequency with both micro and meso cracks saturated with different 

fluids: gas (dashed line), oil (solid line) and water (dotted line), and different connections: both micro and 

meso porosity connected (black), connected micro porosity and isolated meso porosity (red), connected 

meso porosity and isolated micro porosity (blue), both micro and meso porosity isolated (green).  
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Tables 
 
 Calcite Dolomite Aragonite 
Bulk modulus (GPa) 76.8 94.9 44.8 
Shear Modulus (GPa)  32.0 45.0 38.8 
Density (kg/m3) 2710 2870 2920 
Table 2: Properties of the minerals used in the calculations (compiled from Mavko, Mukerji and Dvorkin 

1998). 
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 Water Oil Methane 
VP (m/s) 1554 1424.3 688.7 
Density (kg/m3) 989.1 854.2 206.5 
Viscosity (cP) 1 6.4 0.029 
Table 2: Properties of the fluids (compiled from Batzle and Wang 1992) used in the calculations. The 

temperature is 80
0
C and the pore pressure is 40 MPa. 
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Microscopic porosity: 23.0φmicro =  Mesoscopic porosity: 11.0φmeso =   

Without cracks : Without cracks:  
α  c α  c 
1 0.1 1 0.3I)   

0.5 0.1 1 0.1 
0.1 0.01 0.01 0.01 
0.05 0.01   
0.01 0.01   

Including cracks: Including cracks: 
α  c α  c 
1 0.21II 1 0.3I 

0.1 0.01 1 0.099II 
0.001 0.1III 0.01 0.01 
0.0005 0.1III 0.001 0.1III 
0.0001 0.1III   

Table 3: Aspect ratio ( α ) and concentration (c) of the micro and meso porosity for the examples. I) The 

micro porosity is incorporated in meso scale as spherical inclusions with relative concentrations. II) The 

concentration was determined so the total porosity with cracks was equal to the total porosity without 

cracks. III) Crack density. totalφ   = 0.17. 
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EFFECTS OF FLUIDS AND DUAL PORE SYSTEMS ON VELOCITIES AND 
ATTENUATIONS OF CARBONATES 

 
Remy Agersborg1, Tor Arne Johansen1, Morten Jakobsen1, Jeremy Sothcott2 and Angus Best2  

 

ABSTRACT 

 In 4D seismic studies, the ability to differentiate between fluid and pressure effects is 

essential. The effects of fluid substitution on P- and S-wave velocities in carbonates of 

complex texture are still not fully understood. The often used Gassmann’s equation has shown 

to give ambiguous results when compared with ultrasonic velocity data. We discuss 

theoretical modelling of velocity and attenuation measurements obtained for 6 carbonate 

samples, mainly made up of calcite, saturated with air, brine and one additionally with 

kerosene. Although both the porosities (2 – 14%) and permeabilities (0 - 74 mD) are 

relatively low, the velocity variations are large. S-wave velocities were measured for two 

orthogonal polarizations and some anisotropy was revealed. For some samples, the Gassmann 

model under-predicts the fluid substitution effects. Moreover, when dried they also show 

decreasing attenuation, with increasing confining pressure. To model this behaviour, we 

examine a pore model made up of two pore systems: one constituting the main and drainable 

porosity, and one made up of un-drained crack-like pores. Also, these dried rock samples 

were modelled to contain a fluid-filled pore system of crack-like pores potentially giving rise 

to local fluid flow and attenuation. For the theoretical modelling we use an inclusion model 

based on the T-matrix approach, which also considers the effects of texture, pore geometry, 

pore fluid and local fluid flow. By using a dual pore system, we succeeded in establishing a 

realistic physical model consistently describing the measured data. 
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INTRODUCTION 

The complex nature of carbonate rocks can lead to ambiguous conclusions when 

interpreting seismic data for reservoir characterisation. For example, the seismic properties of 

carbonate rocks are affected by many parameters such as pore type and shape, porosity and 

pore fluid (Wang, 1997) making it difficult to attribute changes in seismic expression to any 

one parameter. Also, the debate is ongoing on the validity of using Gassmann’s equation 

(Gassmann, 1951) for studying the seismic effects of various pore fluids. Adam et al. (2006) 

show that fluid effect predictions using Gassmann (1951) are consistent within the 

uncertainties of the measured data for some of their carbonate samples. Baechle et al. (2005), 

Rossebø et al. (2005) and Assefa et al. (2003) observed an alteration in the shear modulus 

with fluid substitution, violating one assumption of the Gassmann model. In the study of 

Wang (2000), measurements and Gassmann predictions of the P-wave velocity deviate 

significantly at low effective pressures, although they converge with increasing effective 

pressure. This convergence is caused by the closing of compliant, crack-like pores with 

increasing effective pressure, making the remaining pore system better connected and in 

closer agreement with the Gassmann assumptions. 

The velocity dispersion of fluid-filled rocks is mainly due to viscous pore fluid flow. 

The fluid flow relaxation time is the time needed for the pore pressure to equilibrate 

throughout the pore volume, when a fluid-filled porous material is strained. For dynamic 

strains, a low-frequency response is produced when the fluid flow relaxation time is a 

magnitude less than the period of the strain impulse. A high frequency response is produced 

when the relaxation time is a magnitude larger, while an intermediate response results when 

the two quantities are comparable in magnitude. Whether we can expect a low-, intermediate- 

or high-frequency response when performing an ultrasonic wave propagation experiment will 

depend on the fluid mobility, which is the ratio of permeability of the rock to the viscosity of 

the pore fluid. Moreover, the fluid mobility determines the pore-pressure distribution as a 

passing seismic wave yields a small deformation in the rock (Batzle et al., 2006). 

The main wave attenuation mechanisms at ultrasonic frequencies are scattering from 

pores and grains, and pore fluid flow. While scattering attenuation increases with frequency, 

attenuation due to pore fluid flow reaches a maximum for frequencies lying in between the 

low- and high-frequency responses (Biot, 1956a,b). At intermediate frequencies, the pore 

fluid is in non-equilibrium state, and several assumptions of the Gassmann model are 

violated. In such cases visco-elastic models need to be considered. This is especially true for 

carbonate rocks where the porosity and texture are the primary controlling factors for velocity 
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(Eberli et al., 1997). Frequency dependent inclusion models are good candidates for 

describing carbonate rocks.  

 In this paper we focus on rock physics modelling of measured P- and S-wave 

velocities and attenuations of 6 calcite rock samples. For the theoretical modelling we use the 

results of Jakobsen et al. (2003a,b) and Jakobsen and Johansen (2005), while the velocity and 

attenuation data were obtained using the ultrasonic P- and S-wave pulse-echo technique 

described by McCann and Sothcott (1992) and Best et al. (1994). We start by briefly 

describing the rock samples, the measurements and some observations, before the formalism 

and procedure for the theoretical modelling are outlined. We then discuss the idea of using a 

dual pore system to describe some of the observations where the Gassmann model appears to 

fail.   

EXPERIMENTS AND OBSERVATIONS 

The set of rock samples were collected from a well bore taken in a limestone 

formation at approximately 2 km depth. From a set of 26 samples, 6 core plugs of diameter 5 

cm and length 2-3 cm were carefully selected to give a representative spread of lithological 

variations, porosity (2 to 14%) and permeability (0 to 74 mD). Before the porosities and 

permeabilities were measured, the samples were vacuum dried but not cleaned. Some details 

of the six samples are given in Table 1. 

Velocities and attenuations were measured for various confining pressures at constant 

pore pressure by using an ultrasonic pulse-echo technique described by McCann and Sothcott 

(1992) on dried samples, which were saturated subsequently with brine (all samples) and 

kerosene (sample 6 only). For both the P and S waves a frequency of 750 kHz was applied. 

The pulse-echo system was installed inside an ITR Triaxial Hoek high pressure cell (Assefa, 

1994) and the confining pressure was starting at 5 or 10 MPa, rising in steps of 10 MPa up to 

60 MPa. For each pressure level, two-way travel times of the P and S waves were measured 

after 30 minutes had elapsed to allow pressure equilibration. The S-wave transducer was 

rotated for each step and minimum and maximum travel times were assigned 00 and 900 

relative to the lamination directions at cylinder ends, as illustrated in Figure 1. The core plugs 

were cleaned between each fluid substitution, and for the saturated samples the pore fluid 

pressure was maintained at 5 MPa. The velocity was calculated by  

,
t

L2
V

av

=                                                                                                                                  (1) 
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where avt is the average two-way travel time and L is the length of the rock sample. The 

quality factor was derived from  

,
αV

fπ
8.686Q =                                                                                                                           (2) 

where f is the frequency of the wave. The attenuation coefficient α is found from  
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Here A1 and A2 are the amplitudes of the first and second reflection, respectively, and 12R is 

the reflection coefficient at the buffer rod/sample interface.  

For all velocity measurements (shown in Figure 2), a general trend found is that the 

velocities are increasing with increasing confining pressure, which mainly is due to closing of 

cracks.  Sample 1 has the largest differences between highest and lowest velocities for both 

dried and brine saturated samples. For P waves they are 615 m/s (brine) and 896 m/s (dried), 

and for S waves they are 318 m/s (brine) and 323 m/s (dried). Sample 3 showed the smallest 

differences, where for P waves they are 30 m/s (brine) and 125 m/s (dried), and for S waves 

they are 30 m/s (brine) and 45 m/s (dried). Sample 4 shows an almost linear increase in 

velocity with increasing pressure. This may be because the sample consists of cracks with a 

large distribution of aspect ratios (crack-like pores) or that the sample has a relative small 

amount of high aspect ratio (near spherical) pores. For sample 5, the velocities show a rapid 

increase with pressure for then to level out with further increasing pressure.  This suggests 

that there may be cracks with a narrow distribution of small aspect ratios, which all close at a 

certain pressure.   

Since mainly the cracks (which accounts only for a small fraction of the total porosity) 

are closing as the pressure increases, the component of elasticity due to scattering should not 

change significantly as the pressure changes. The attenuation measurements (shown in Figure 

3), however, show a significant change as the effective pressure increases. We interpret this 

observation through the effects of wave induced fluid flow. Only sample 2 does not show any 

change in attenuation with pressure. Even though there is pressure dependent attenuation, we 

cannot be certain whether there is an extra overall attenuation component due to the inelastic 

properties of the matrix material. Furthermore, the attenuations become close to constant 

when the effective pressure exceeds 30 MPa.  This also indicates an overall inelastic term 

embedded in the effective properties of the samples.   
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We made no assumptions about elastic symmetry planes within the core plugs prior to 

the measurements. Thus, the S-wave velocities were measured by rotating the receivers for 00 

and 900 relative to bedding at cylinder ends. Supported later by the modelling where S-wave 

splitting was detected, we have assumed a horizontal transverse isotropy, with a symmetry 

axis orthogonal to the direction of the fastest S-wave, as indicated in Figure 1. From the 

velocity plots in Figures 4 - 11, some anisotropy can be observed. Sample 1 revealed some 

pressure dependent anisotropy: the anisotropy decreases with increasing effective pressure, 

and vanishes above 20 MPa pressure. Sample 3 did not show any anisotropic behaviour.  

The perhaps most interesting observation is that several of the dried samples (1, 3, 4, 5 

and 6) show a similar qualitative behaviour with respect to attenuation as when they are brine 

saturated. Since the attenuation decreases with increasing pressure, we consider this also as an 

effect caused by the closing of cracks. The closing of cracks will reduce both the amount of 

wave scatterers, but we may also associate this reduction in attenuation with the closing of a 

network of un-drained low-aspect ratio pores. This latter assumption is later to be supported 

by the theoretical modelling results. The measured attenuation also indicates that the 

measurements correspond to an intermediate or high frequency fluid response because of the 

pressure dependency. Furthermore, a preliminary test, using Gassmann (1951) to compute dry 

rock P-velocity from the brine saturated rock P-velocity, measured porosity and elastic 

properties of the calcite, gives a fluid effect that is too small at lower pressures. Thus, the 

measured P velocities of the brine saturated samples seem to be increased by local fluid flow 

phenomena in the crack-like pores.   

 

THEORY AND PROCEDURE BEHIND MODELLING 

Here, we apply the visco-elastic effective medium theory of Jakobsen et al. (2003a,b) 

to the data. A homogeneous matrix material is embedded with inclusions of the same scale, 

which are divided into families having the same concentrations and shape/orientations, 

labelled by r = 1,2,…,N.  Where cavities are labelled by r = 1,2,…,Nc  and solid inclusions by 

r = Nc+1,…,N. The effective stiffness C* is given by (Jakobsen et al., 2003a,b) 
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where C
(0) is the fourth-rank stiffness tensor of the homogeneous matrix material, I4 is the 

identity for fourth-rank tensors, v(r) is the volume concentration for inclusion of type r, t(r) is 

the t-matrix, )(rs

dG is given by the strain Green’s functions integrated over a characteristic 

ellipsoid having the same symmetries as p(s|r)(x-x’) which, in turn, gives the probability 

density for finding an inclusion of type s at point x’ given there is an inclusion of type r at 

point x. The t-matrix of a single inclusion of type r is given by (Jakobsen et al., 2003a,b) 

10rr
4

0rr −−−−))))(((())))(((())))(((())))(((())))(((())))(((( )])])])]−−−−((((−−−−)[)[)[)[−−−−((((==== CCGICCt   ,                                                                          (7) 

where C(r) is the stiffness tensor for the inclusion and G(r) is a fourth rank tensor depending 

only on the aspect ratio of the inclusion and C(0). 
 

T-matrix/communicating cavities
 

We will only list the important t-matrix equations where these effects are incorporated 

and used in this paper. A detailed derivation can be found in Jakobsen et al. (2003b). 

For a single communicating cavity (fully fluid saturated), which is allowed to 

exchange fluid mass with other cavities, the t-matrix can be expressed as a dry t-matrix and a 

term which take into account the fluid effects (Jakobsen et al., 2003a,b) 
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Here ))))(((( r
dt is the t-matrix for the dry cavity of family r,  ))))((((0S  = (((( )))) 10 −−−−))))((((C , ω  is the frequency, τ  is 

the relaxation time constant, fκ and fη are the bulk modulus and viscosity of the fluid, uk and 

vk are components of the wave number vector, uvΓ  is the permeability tensor of the rock and 

the subscription u and v represent summation over u and v, respectively (u,v = 1,2,3). 2Ι is a 

second rank tensor and ⊗⊗⊗⊗ denotes a dyadic tensor product. 
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Effect of pressure 

Two assumptions were made to capture the features of the microstructure under 

evolution when subjected to a finite deformation. First, the applied effective stress is triaxial 

with axes coinciding with the symmetry axes of the medium, then the inclusions which are 

ellipsoidal in shape and will deform into ellipsoids when they are subjected to uniform 

drained loading conditions.  

The change in volume )(v r∂  and aspect ratio )(rα∂ of cavity of type r due to a small 

increment in the effective strain εεεε  is given by Jakobsen et al. (2005)  
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Here k,p,q represent summation (k,p,q = 1,2,3), ))))((((

∗∗∗∗

r
dK  is the effective dry K-tensor and is given 

by (Jakobsen and Johansen, 2005)  
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where the fourth-rank tensors (((( )))) 1*
d

*
d

−−−−
==== CS , d1C and d2C  can be found from equation (4) – (6) 

by using the t-matrix formulation (equation (4)) for dry inclusions.  The apparent stress, 

))))((((>>>><<<<∂∂∂∂
r

aσ ,  is given as (Jakobsen and Johansen, 2005)  

,,,,++++>>>><<<<∂∂∂∂====>>>><<<<∂∂∂∂
))))(((( (r)

f
r

a p ςδσσ                                                                                                   (19) 

where >>>><<<<∂∂∂∂ σ  is the effective stress and the second-rank tensor of apparent stress 

coefficients is  
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SINGLE AND DUAL PORE SYSTEMS 

If the dried samples still contain some fluid in a fully or partly un-drained network of 

cracks, the modelling of the effective properties must include the effects of this fluid. 

Essentially there are three possible ways the pore fluid can be distributed within the porosity. 
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It can, either be partially saturating the pores and cracks, or completely saturating parts of the 

porosity, or a combination of 1 and 2. In the further modelling we shall assume that the 

porosity is divided into two separate pore systems which are isolated with respect to each 

other. One pore space contains a variety of pore aspect ratios, and the pores constitute close to 

all the open porosity, i.e. the pore space is possible to drain and re-fill with another pore fluid. 

The other pore space is a network of crack-like pores (low aspect ratios) which is not drained 

through the fluid substitution processes. Similar geometrical models for two-fluid 

distributions were also discussed by Johansen et al. (2002). 

We now associate the remaining fluid in the dried samples with the closed (un-

drainable) porosity. This can be found from the densities of the brine saturated sample ρbrine-

sat, calcite mineral ρmineral, and the grain ρgrain according to Mavko et al. (1998). Here the grain 

density means the density of the mineral including the closed or remaining porosity φR. The 

measured porosity is denoted φM, and the relevant relations read  

,ρφρ)φ1(ρ brineMgrainMsatbrine +−=−                                                                                          (21)    

.ρφρ)φ1(ρ brineRmineralRgrain +−=                                                                                              (22) 

From equation (22), we find the remaining porosity of the core plug to be 

 .
ρρ

ρρ
φ

mineralbrine

mineralgrain
R

−

−
=                                                                                                    (23)                                                            

Combining equations (21) and (22) gives the total porosity  

.φφφφφ RMRMtot −+=                                                                                                           (24) 

Here, the last term may be considered as a correction term for the difference between the 

grain density and the mineral density.  

 

MODELLING APPROACH 

An ideal approach for predicting the acoustic responses of the core plugs, using the T-

matrix formalism, is first to invert for the distribution of pores and cracks of the dry sample, 

and then to estimate the relaxation time constant τ (see eqs. (8) and (10)) for the saturated 

sample. Since we still assume that there may be some fluid left in most of the dried samples 

and also that the distribution of the fluid in the cavities is unknown, we have used a three step 

procedure in the further modelling.  In the following, we use the analysis of sample 1 data as a 

tutorial for this approach.   

 Step 1. By using the total porosity derived from equation (24) and a distribution of the 

cracks according to equation A-1 (and Figure 4a) together with some additional pores (of 
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aspect ratio 0.23) we first obtain a model for the saturated sample. In this model the porosity 

is fully connected and randomly oriented as illustrated in Figure 4b. Figure 4c shows a good 

fit for the brine saturated P-wave velocity, while when substituting brine with air the fit is 

strongly pressure dependent: for low pressures, the measured dry rock velocities are larger 

than the predicted, while with increasing pressure (above 25 MPa) and reducing amount of 

cracks, the fit becomes much better. The reduction of crack-like pores reduces the local fluid 

flow effects and makes the overall pore fluid response to be of low-frequency type, 

corresponding with the Gassmann model. If we believe that the established pore system used 

for describing the saturated sample is correct, this is another indication that the dried rock 

contains a portion of fluid-filled cracks which stiffen the (dry) rock and contribute to the 

observed attenuation. The increasing correspondence between observation and modelling of 

the dried and saturated rock at high pressures is in accordance with previous observations 

(Wang, 2000).  

For the S-wave, which is less influenced by fluid, the velocity trend of the modelling 

is about 100 m/s off the measured (Figure 4d). The S-wave attenuation for the brine saturated 

model of sample 1 is shown in Figure 4e.  

 Step 2. Failing to describe the P-wave velocity for the dried case at low pressures, and 

the fact that the porosity may contain about 1.6% brine according to equation (24), we now 

divide the porosity into two individually connected pore systems which are considered 

isolated with respect to each other for fluid flow associated with seismic waves (Figure 5b). 

The crack distribution is the same as the original one, but because the P-wave velocity of the 

dried sample matches the data above 25 MPa quite well (Figure 4c), we define the un-drained 

pore system (with a porosity of 1.6%) to be made up of the lowest aspect ratio pores as 

illustrated in Figure 5c. As the confining pressure slowly increases (near static limit) and the 

fluid-filled cracks close, the pore fluid is now drained into the dry pore system in order to 

maintain mass balance. However, we do not consider this to affect the behaviour of the dry 

pore system, since the effective bulk modulus of the fluid of vacuum with a small fraction of 

brine is very close to zero. The theoretical modelling now succeeds also to match both the 

dried and saturated sample, except for a bend at about 20 MPa pressure at which the un-

drained pore system completely closes. Figure 5d shows that the dual pore system imposes 

almost no effect on the S-wave velocity, while in Figure 5e we see some attenuation even for 

the dried sample. 

 Step 3. In order to remove the artificial bend caused by the abrupt closing of fluid-

filled cracks (see Fig. 5c), we redistribute the saturated part of the crack distribution so that 
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there is a gradual fractional decrease of un-drained cracks with increasing aspect ratio, as 

shown in Figure 6a and 6b. Also, since the S-wave velocities are about 100 m/s off the 

measured velocities, and since they are relative insensitive to the fluid, we reduce the S-wave 

velocity of the mineral by this value. As Figure 6c shows, that using this new un-drained pore 

system, the dried and brine saturated P-wave velocity of sample 1 can be reproduced quite 

accurately. In Figure 6d S-wave velocities are plotted, while Figure 6e shows the 

corresponding attenuations of both P and S waves.    

 In the further modelling of the core plugs, the following model parameters were 

allowed to be slightly adjusted to obtain a best fit between the modelling and data: P- and S-

wave velocities of the mineral (calcite) by ±±±± 100 m/s due to possible heterogeneity effects, the 

porosity according to equation (24), and the τ -parameter controlling the characteristic 

frequency due to squirt flow.   

 For comparison, we have calculated the P velocities of the dried core plugs using the 

Gassmann equation (appendix B) from velocities obtained at saturated state. Since no off-axis 

velocities were measured, we did not use the anisotropic version of Gassmann’s equation for 

the samples where anisotropy was measured. The deviation from the calculated and measured 

values is given as  

%.100
V

VV
 Deviation 

)P(measured

)P(measured(Gassmann) P −
=   

RESULTS 

 
  In the following, we describe the measurements and analyses of the six samples. The 

modelling procedures were outlined in the previous section, with the analyses of sample 1 as a 

tutorial.  Tables 1 to 4 summarize the parameters found to give an adequate fit between the 

measured and modelled data. Table 2 reveals for each sample the effective calcite properties, 

total and dry porosity, permeability, and the deviation of our modelling using a dual pore 

system compared to results obtained from the Gassmann model considering either dry or 

saturated samples. Table 3 provides the values of the τ-parameter, related to the fluid-to-solid 

coupling, and the pore system: Here 0ε  denotes the total crack density, α  is the mean aspect 

ratio of the crack distribution, δ  is a parameter which dictates the spread of the crack 

distribution and u is the upper aspect ratio of the crack distribution. α* denotes the aspect 

ratio of the pores which are either dry or fluid-filled, while the distribution function with 

parameters pi, i=0,…,n defined as a

ii epp
−

−= 1 for cpi >−1  and b

ii epp
−

−= 1 for cpi ≤−1 . 
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The results of sample 1 of porosity 13.35% is given in Figure 6. Figure 7 reveals the 

results of sample 2 of porosity 9.07%. The P-wave attenuation (Fig. 7d) is seen to be close to 

constant with pressure. Furthermore, the P-wave velocity (Fig. 7b) difference between low 

and high effective pressures is much greater for dry pores compared to the brine saturated 

case. This should indicate that the sample is completely dry, or, at least, that the volume 

fraction of the remaining fluid is very small. The S-velocity (Fig. 7c) for brine saturation is 

greater than for dried sample for effective pressures up to about 20 MPa, while at higher 

pressures the situation is opposite. This again points to a possible existence of a tiny portion 

of very thin cracks which due to wave induced fluid increases the shear modulus for lower 

pressures. The effect vanish as these pores close with increasing pressure, and the S-velocity 

differences between dry and brine saturation will be due to changes in the effective density. 

Also the crack distribution (Fig. 7a) for the fitted model of sample 2 becomes practically zero 

for aspect ratios larger than 0.003. In this case the porosity is fully connected and completely 

dry, while 30% of the crack distribution up to aspect ratio 0.0056 is defined vertically aligned. 

Figure 8 shows the results obtained for sample 3 of porosity 2.76%. Here there are 

little changes in the measured P- and S-wave velocities (Figs 8b and c) as the effective 

pressure increases. The measured attenuations (Fig. 8d) show almost no changes for the 

saturated sample, but when dried the attenuation decreases rapidly with lowered effective 

pressure before levelling out. Again, for the modelling this imposed some remaining fluid in 

the cracks with very low aspect ratios closing at pressures above 20 MPa. Pores with aspect 

ratio 0.25 of concentration of 0.02 were added, while divided into a dry (with concentration of 

0.0058) and a saturated fraction. In addition pores with aspect ratio 0.95 were included such 

that the total porosity reached 2.76%. No S-wave splitting was seen for this sample, and thus, 

a random distribution of the crack-like pores was used. 

Figure 9 shows the results of sample 4 of porosity 4.91%. There is a small P-velocity 

difference (Fig. 9b) between the dried and brine saturated samples as the effective pressure 

increases. This indicates a high concentration of the stiffer pores (and cracks). Also a greater 

S-wave splitting is observed for the dried compared with the saturated sample (Fig. 9c). This 

may be due to either that the shear modulus is altered with pore content, or that the pore 

system has been modified through the pressure cycle, or a combination of both. In this case, 

10% of the crack distribution for aspect ratios up to 0.0028 was defined vertical aligned. The 

pores with aspect ratio 0.4 and concentration 0.02 were added, while divided into a dry (with 

concentration of 0.0015) and a saturated fraction. Furthermore, pores with aspect ratio 0.9 

were further added to obtain a total porosity of 4.91%.  
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The data for sample 5 are given in Figure 10. In this case the measured porosity of 

13.97% was by eq. (21-24) adjusted to 16.02%. The measured dried and brine saturated P 

velocities (Fig. 10b) level out when the effective pressure reaches above 20 MPa. The steep 

increase in P-velocity of the dried sample indicates a narrow distribution of aspect ratios 

describing the cracks, which all close when the effective pressure reaches about 20 MPa. The 

similar picture is seen for the S-wave data (Fig. 10c), where the dried and saturated samples 

have close to equal S velocities for low effective pressures, while a constant difference after 

the cracks are closed. The crack distribution was re-distributed into 80% dry and 20% 

saturated cracks (Fig. 10a). Also 5.5% of the crack distribution for aspect ratios up to 0.0028 

is vertically oriented. Here a portion of pores with aspect ratio 0.2 and concentration of 0.035 

was included, and divided into dry (with concentration 0.0205) and saturated pores. To obtain 

a total porosity of 16.02%, pores with aspect ratio 0.32 were added. 

Velocity and attenuation data for sample 6 were obtained both when dried, brine and 

kerosene saturated as shown in Figure 11. Both the P and S velocities (Figures 11b and c) 

increase gently as the effective pressure increases. However, this is not true for the S-velocity 

for the brine saturated sample for the 900 component. The estimated dry rock bulk modulus 

applying the Gassmann equation based on the P-velocity obtained from the brine-saturated 

sample, even turns out to be negative.  This unexpected observation may indicate an alteration 

in shear modulus.  To obtain the data fit, it was needed to define 20% of the crack distribution 

of aspect ratios up to 0.0048 vertically oriented. Here we chose first to fit the velocity data 

measured for kerosene, due to the deviating S-velocity data in case of brine saturation. Then 

the model was adjusted to fit the data of the dried sample, before the data of the brine 

saturated sample were predicted. The model is seen to fairly well describe the data obtained 

for dried and kerosene saturated samples, while the predictions for the brine saturated case are 

less successful. However, this is an effect of assuming the relaxation time constant to be 

independent of the fluid properties, which it is not.  Hence, a better match is obtainable by 

estimating a new τ -parameter for the brine saturated model.  

CONCLUSIONS 

 The aim of this study has been to investigate a physical model for predicting fluid 

effects on seismic properties of carbonate rocks with some fraction of hardly drainable cracks. 

The presence of cracks often implies high-frequency fluid flow response to seismic waves, 

and also that the Gassmann equation occurs less appropriate for understanding fluid effects.  

Measurement and theoretical modelling of velocities and attenuations of 6 carbonate core 
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plugs have been presented. Even though the porosity and permeability of the samples, mainly 

consisting of calcite, are relatively low, there is a large variation in the signatures of both 

velocity and attenuation. Pressure dependent attenuation of the dried samples is believed to be 

caused also by wave induced fluid flow from a small fraction of un-drained pores. Observed 

differences in velocities of S-waves with orthogonal polarization directions also reveal 

anisotropy and aligned pore structure properties.  

 We have used the so called T-matrix formalism to model both the velocity and 

attenuation data. To account for attenuation of dried samples, a dual pore model was applied. 

This includes one open pore system of connected and drainable pores, and one de-coupled 

and closed system which is not. While the open pore system includes the main fraction of the 

porosity which is made up of spherical and crack-like (low aspect ratio) pores, the closed 

system holds a minor fraction of the porosity constituted by crack-like pores only. To account 

for anisotropy a portion of the crack-like pores were defined to be aligned. The modelling 

succeeded in obtaining correlations of a microscopic description of the rock, also including 

various fluid properties, and a range of measured physical responses. The modelled fluid 

effects on velocity data were also compared to similar predictions using the Gassmann 

equation. Deviations between the two models varied from close to zero and up to 5 percent.  

 The modelling approach presented should be relevant for understanding the influence 

of the combined fluid-pore system on seismic properties of carbonates, which is crucial for 

using seismic data in reservoir monitoring of such rocks. 
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APPENDIX A – The crack distribution  

The crack distribution used in this paper is a generalized beta probability function 

multiplied with a total crack density. The crack density function can be written as (Tod, 2001) 

),),),),,,,,,,,,,,,,((((====))))(((( uF0 δααεαε β                                                                                                         (A-1) 

Where ε is the crack density, 0ε is the total crack density, α  is the aspect ratio, α  is the mean 

aspect ratio, δ is a parameter which controlling the shape together with α , u is where the 

distribution end  and the generalized beta probability function βF  can be written as (Tod, 

2001) 

Paper 2 73



 14 

,,,,















−−−−

))))(((())))((((

))))++++((((
====)))),,,,,,,,,,,,((((

1-p1-q

uu
1

qp

qp

u

1
uF

αα

ΓΓ

Γ
δααβ                                                                    (A-2) 

where  

2

2

u

 u
p

δ

δαα −−−−−−−−
====                                                                                                                   (A-3) 

and  

p.
 u

q
α

α−−−−
====                                                                                                                          (A-4) 

APPENDIX B – Gassmann’s equation 

The dry bulk modulus can be related to the saturated bulk modulus of the rock 

according to (Gassmann, 1951) 
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Or the dry bulk modulus related to the saturated bulk modulus as  
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Here the dry and saturated shear modulus,µ , is assumed to be the same. Ksat is the effective 

bulk modus of saturated rock, Kdry is the effective bulk modulus of the dry rock, φ is the 

porosity, Kfl is the effective bulk modulus of the fluid and K0 is the bulk modulus of the 

mineral.   

 The P-wave velocity can be calculated from  

ρ

µΚ ))))////((((++++
====

34
VP                                                                                                               (B-3) 

Where ρ is the effective density, K is the effective bulk modulus andµ  is the effective shear 

modulus ( satdry µµ = ). 
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line parallel to vertical cracks, solid line perpendicular to vertical cracks), brine 

saturated plug (blue square – blue dashed-dotted line parallel to vertical cracks, blue 

solid line perpendicular to vertical cracks), kerosene saturated plug (red square – red 

dashed-dotted line parallel to vertical cracks, red solid line perpendicular to vertical 

cracks), and S waves; dried plug (star - dashed line for 00, crosses and for dashed line 

for 900), saturated plug (blue stars – blue dashed line for 00, blue triangles – blue 

dashed line for 900) and kerosene saturated plug (red stars – red dashed line for 00, red 

triangles – red dashed line for 900)…………………………………………………...56 
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Figure 1: Model of the core plug where y-axis is parallel to the crack-plane and x-axis is perpendicular to 

the crack-plane.   
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Figure 2: Measured P- and S-wave velocities. Sample 1 (black), sample 2 (red), sample 3 (blue), sample 4 

(green), sample 5, (cyan) and sample 6 (gray). The equal coloured lines indicate measurements of same 

plug, but where the porosity is either dry or saturated with brine. A detailed description of each sample 

can be found in Figures 4 to 11.  

 

Paper 2 83



 24 

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Q
−

1

Effective Pressure (MPa)

Figure 3. Measured P- and S-wave attenuations. Sample 1 (black), sample 2 (red), sample 3 (blue), sample 

4 (green), sample 5, (cyan) and sample 6 (gray). The equal coloured lines indicate measurements of same 

plug, but where the porosity is either dry or saturated with brine.  A detailed description of each sample 

can be found in Figures 4 to 11.  
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Figure 4a: Sample 1 (1. Approach). Crack distribution at 0 MPa effective pressure used in the calculation 

where the porosity is fully connected.  

Paper 2 85



 26 

 

 
Figure 4b: (1. Approach). Sketch of the fully connected porosity. 

86 Paper 2



 27 

 

0 20 40 60
3900

4300

4700

5100

V
P
 (

m
/s

)

Effective Pressure (MPa)  
Figure 4c: Sample 1 (1. Approach). Measured and calculated P-wave velocities for dried (square, dashed 

line) and saturated sample (circle, solid line), respectively. 
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Figure 4d: Sample 1 (1. Approach). Measured and calculated S-wave velocities for dried (circle (900), 

square (0
0
) and dashed line) and brine saturated sample (dots (90

0
), stars (0

0
) and solid line), respectively. 
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Figure 4e: Sample 1 (1. Approach).  Calculated and measured attenuations for: a) Saturated plug; P-wave 

(solid line and squares), S-wave (dotted line and stars) b) Dried plug; P-wave (dashed line and circles), 

and the S-wave (dash-dot line and diamonds). 
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Figure 5a: Sample 1 (2. Approach). Crack distribution used in the calculation of sample 1. Solid line is the 

fluid-filled cracks and the dashed line is dry cracks in representing the dried core plug at 0 MPa effective 

pressure. For the saturated core plug, both these distributions represent fluid-filled cracks.   
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Figure 5b: Sketch of the model used in the 2. approach. The fluid filled cracks (represented as black 

ellipsoids) are fully connected with respect to each other, but isolated to the dry porosity.   
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Figure 5c: Sample 1 (2. approach). Measured and calculated P-wave velocities for dried plug (square, 

dashed line) and saturated plug (circle, solid line). 

  

92 Paper 2



 33 

 

0 20 40 60

2350

2450

2550

2650

2750

2850

V
S
 (

m
/s

)

Effective Pressure (MPa)  
Figure 5d: Sample 1 (2. approach). Measured and calculated S-wave velocities for dried plug (circle (90

0
), 

square (00) and dashed line) and brine saturated plug (dots (900), stars (00) and solid line). 
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Figure 5e: Sample 1 (2. approach).  Calculated and measured attenuations: a) Brine saturated core plug;  

P-wave (solid line and squares), S-wave (dotted line and stars). B) Dried core plug; P-wave (dashed line 

and circles), S-wave (dash-dot line and diamonds). 
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Figure 6a: Sample 1 (3. approach). Crack distribution used in the calculation. Solid line represents the 

fluid-filled cracks and the dashed line represents the dry cracks in the dried core plug at 0 MPa effective 

pressure. For the saturated core plug, both these distributions represent fluid-filled cracks.    
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Figure 6b: A sketch of the final model of sample 1. The black ellipsoids represent the fluid-filled porosity 

for the dried core plug.  The fluid-filled porosity and the dry porosity are considered as two systems which 

are individually connected but isolated relative to each other.  
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Figure 6c: Sample 1. Measured and calculated P-wave velocities for dried plug (square, dashed line) and 

saturated plug (circle, solid line). The stars are Gassmann calculated P-velocity using the properties 

measured from the saturated core plug.  
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Figure 6d: Sample 1. Measured and calculated S-wave velocities for dried plug (circle (90

0
), square (0

0
) 

and dashed line) and brine saturated plug (dots (900), stars (00) and solid line). 
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Figure 6e: Sample 1. Measured and calculated attenuations: a)  Brine saturated core plug;  P-wave 

(squares and solid line and), S-wave (stars and dotted line). b) Dried core plug; P-wave (circles and dashed 

line), S-wave (diamonds and dash-dot line). 
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Figure 7a: The crack distribution used in the calculation of sample 2.  
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Figure 7b: Sample 2. Measured and calculated P-wave velocities for dried plug (square, dashed and 

dotted line (parallel to vertical cracks) and dotted line (perpendicular to vertical cracks)) and saturated 

plug (circle, solid line (parallel to vertical oriented) and dashed line (perpenticular to the vertical cracks)). 

The stars are the Gassmann calculated P-velocity using the properties measured for the saturated plug.  
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Figure 7c: Sample 2. Measured and calculated S velocities for dried plug (circle  – dotted line for 0

0
, 

square – dashed-dotted line  for 900), and saturated plug (dot  – solid line for 00, star – dashed line for 900). 
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Figure 7d: Sample 2. Measured and modelled attenuations of  P waves; dried plug (squares - dashed line 

parallel to vertical cracks, solid line perpendicular to vertical cracks), saturated plug (stars), and S-waves; 

dried plug (diamonds - dashed-dotted line for both 00 and 900), saturated plug (circles).  
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Figure 8a: Sample 3. The crack distribution used in the calculation. Solid line is the saturated crack 

distribution and dashed line is the dry crack distribution.  
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Figure 8b: Sample 3. Measured and calculated P-wave velocities for the dried plug (squares and dashed 

line) and the saturated plug (circles and solid line). The stars are the Gassmann calculated P-velocity 

using the properties measured for the saturated core plug.  
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Figure 8c: Sample 3. Measured and calculated S-wave velocities for the dried plug (circles and dashed 

line) and the saturated plug (dots and solid line). 
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Figure 8d: Sample 3. Measured and modelled attenuations of  P waves; dried plug (squares - dashed line 

parallel to vertical cracks, solid line perpendicular to vertical cracks), saturated plug (stars), and S-waves; 

dried plug (diamonds - dashed-dotted line for both 0
0
 and 90

0
), saturated plug (circles).  
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Figure 9a: Sample 4. The crack distribution used in the calculation. Solid line is the saturated crack 

distribution and dashed line is the dry crack distribution.  
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Figure 9b: Sample 4. Measured and calculated P-wave velocities for dried plug (square, dashed and 

dotted line (parallel to vertical cracks) and dotted line (perpendicular to vertical cracks)) and saturated 

plug (circle, solid line (parallel to vertical oriented) and dashed line (perpenticular to the vertical cracks)). 

The stars are the Gassmann calculated P-velocity using the properties measured for the saturated plug.  
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Figure 9c: Sample 4. Measured and calculated S velocities for dried plug (circle  – dotted line for 00, 

square – dashed-dotted line  for 90
0
), and saturated plug (dot  – solid line for 0

0
, star – dashed line for 90

0
). 
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Figure 9d: Sample 4. Measured and modelled attenuations of P waves; dried plug (circles – dashed-dotted 

line parallel to vertical cracks, solid line perpendicular to vertical cracks), saturated plug (stars – blue 

dashed-dotted line parallel to vertical cracks, blue solid line perpendicular to vertical cracks), and S 

waves; dried plug (diamonds - dashed line for 00, crosses and for 900), saturated plug (blue stars – blue 

dashed line for 0
0
, blue triangles – blue dashed line for 90

0
). 
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Figure 10a: Sample 5. The crack distribution used in the calculation. Solid line is the saturated crack 

distribution and dashed line is the dry crack distribution.  
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Figure 10b: Sample 5. Measured and calculated P-wave velocities for dried plug (square, dashed and 

dotted line (parallel to vertical cracks) and dotted line (perpendicular to vertical cracks)) and saturated 

plug (circle, solid line (parallel to vertical oriented) and dashed line (perpenticular to the vertical cracks)). 

The stars are the Gassmann calculated P-velocity using the properties measured for the saturated plug.  

Paper 2 113



 54 

 

0 20 40 60
2300

2500

2700

2900

V
S
 (

m
/s

)

Effective Pressure (MPa)

Dry (90
°
)

Dry (0
°
)

Sat (90
°
)

Sat (0
°
)

 
Figure 10c: Sample 5. Measured and calculated S velocities for dried plug (circle  – dotted line for 0

0
, 

square – dashed-dotted line  for 900), and saturated plug (dot  – solid line for 00, star – dashed line for 900). 
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Figure 10d: Sample 5. Measured and modelled attenuations of P waves; dried plug (circles – dashed-

dotted line parallel to vertical cracks, solid line perpendicular to vertical cracks), saturated plug (stars – 

blue dashed-dotted line parallel to vertical cracks, blue solid line perpendicular to vertical cracks), and S 

waves; dried plug (diamonds - dashed line for 0
0
, crosses and for 90

0
), saturated plug (blue stars – blue 

dashed line for 0
0
, blue triangles – blue dashed line for 90

0
). 
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Figure 11a: Sample 6. The crack distribution used in the calculation. Solid line is the saturated crack 

distribution and dashed line is the dry crack distribution. 

116 Paper 2



 57 

 

0 20 40 60
4600

4800

5000

5200

5400

5600

5800

6000

V
P
 (

m
/s

)

Effective Pressure (MPa)  
Figure 11b: Sample 6. Measured and calculated P-wave velocities for dried plug (black squares, black 

solid and dashed line); brine saturated plug (blue circles, blue solid  and dashed line); kerosene saturated 

plug (red crosses, red solid  and dashed line). The solid line represents P-velocity parallel to the vertical 

cracks and the dashed line is the P-velocity normal to the vertical cracks. The stars are Gassmann 

calculated P-velocity from measured properties of dried plug with brine as fluid. 
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Figure 11c:  Sample 6. Measured and calculated S-wave velocities for dried sample (squares – solid line 

for 0
0
 , circles – dashed line for 90

0
), brine saturated sample (blue stars – blue solid line for 0

0
, blue dots – 

blue dashed line for 900) and kerosene saturated sample (red stars - red solid line for 00, red dots – red 

dashed line for 90
0
). 
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Figure 11d: Sample 6. Measured and modelled attenuations of P waves; dried plug (square – dashed-

dotted line parallel to vertical cracks, solid line perpendicular to vertical cracks), brine saturated plug 

(blue square – blue dashed-dotted line parallel to vertical cracks, blue solid line perpendicular to vertical 

cracks), kerosene saturated plug (red square – red dashed-dotted line parallel to vertical cracks, red solid 

line perpendicular to vertical cracks), and S waves; dried plug (star - dashed line for 0
0
, crosses and for 

dashed line for 90
0
), saturated plug (blue stars – blue dashed line for 0

0
, blue triangles – blue dashed line 

for 900) and kerosene saturated plug (red stars – red dashed line for 00, red triangles – red dashed line for 

900). 
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Sample Porosity (%) Permeability (mD) 
1 11.77 2.463 
2 9.07 11.761 
3 2.18 0 
4 3.76 0.075 
5 13.97 74.442 
6 3.4 0.013 

Table 1: Measured properties of the calcite samples. 
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Sample VP  

(m/s) 
VS 

(m/s) 
ρ (kg/m3) φtot 

(%) 
φdry 

(%) 
φsat 

(%) 
DevGassmann 

(%) 
1 6260 3140 2710 13.35 11.75 1.6 2.4 
2 6260 3180 2710 9.07 9.07 0 4.4 
3 6530 3360 2710 2.76 2.75 0.01 0.7 
4 6260 3330 2710 4.91 3.76 1.15 0.2 
5 6260 3150 2710 16.02 13.97 2.05 4.9 
6 6360 3240 2710 3.98 3.38 0.6 4.5 

Table 2: Effective mineral properties, total, dry and saturated porosities used for calculating the P- and S-

wave velocities and the corresponding attenuations. Last column shows the deviation of our modelling to 

the Gassmann predicted P-wave velocity for each sample.  

Paper 2 121



 62 

 
 
Sample τ 

0ε  α  δ  u p0 a b c 

1 0.11 810−⋅  0.3 0.0015 0.91 0.02 0.7 0.004 0.03 0.5 

2 0.1 910−⋅  0.11 0.0004 0.95 0.01 - - - - 

3 0.5 810−⋅  0.04 0.001 0.95 0.02 0.7 0.00001 0.03 0.5 

4 1.6 810−⋅  0.23 0.0014 0.8 0.01 0.8 0.00001 - - 

5 0.2 810−⋅  0.3 0.0003 0.9 0.014 - - - - 

6 0.3 810−⋅  0.15 0.0011 0.55 0.006 0.2 0.00001 - - 
Table 3: Pore structure models used.  
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Fluid  VP (m/s) Density (kg/m3) Viscosity (cP) 
Brine  1557 1031 1 
Kerosene 1324 804 2.12 
Air 330 1.23 ≈0 
Table 4: Fluid properties used. 
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EFFECTS OF PORE FLUID PRESSURE ON THE SEISMIC RESPONSE 
OF A FRACTURED CARBONATE RESERVOIR 

 
Abstract only. Full-text not available due to publisher restrictions. 

 
Journal Studia Geophysica et Geodaetica 51(1), Agersborg, R.; Jakobsen, M.; Ruud, B.; Johansen, T., 
Effects of pore fluid pressure on the seismic response of a fractured carbonate reservoir, pp. 89-118(30). 
Copyright 2007 Springer Netherlands. http://dx.doi.org/10.1007/s11200-007-0005-8  
 
ABSTRACT 
An effective medium model for the stress-dependent seismic properties of fractured reservoirs is developed 
here on the basis of a combination of a general theory of viscoelastic waves in rock-like composites with 
recently published formulae for deformation of communicating and interacting cavities (interconnected 
pores/cracks and fractures at finite concentration) under drained loading. The inclusion-based model 
operates with spheroidal cavities at two different length scales; namely, the microscopic scale of the 
pores and (grain-boundary) cracks, and the mesoscopic scale of the fractures (controlling the flow of fluid). 
The different cavity types can in principle have any orientation and aspect ratio, but the microscopic 
pores/cracks and mesoscopic fractures were here assumed to be randomly and vertically oriented, 
respectively. By using three different aspect ratios for the relatively round pores (representing the stiff part 
of the pore space) and a distribution of aspect ratios for the relatively flat cracks (representing the 
compliant part of the pore space), we obtained a good fit between theoretical predictions and ultrasonic 
laboratory measurements on an unfractured rock sample under dry conditions. By using a single aspect ratio 
for the mesoscopic fractures, we arrived at a higher-order microstructural model of fractured porous media 
which represents  a generalization of the first-order model developed by Chapman et al. (2002,2003). The 
effect of cavity size was here modelled under the assumption that the characteristic time for wave-induced 
(squirt) flow at the scale of a particular cavity (pore/crack vs. fracture) is proportional with the relevant 
scale-size. In the modelling, we investigate the effect of a decreasing pore pressure with constant confining 
pressure (fixed depth), and hence, increasing effective pressure. The analysis shows that the attenuation-
peak due to the mesoscopic fractures in the reservoir will move downward in frequency as the effective 
pressure increases. In the range of seismic frequencies, our modelling indicates that the P-wave velocities 
may change by more than 20% perpendicular to the fractures and close to 10% parallel to the fractures. In 
comparison, the vertical S-wave velocities change by only about 5% for both polarization directions 
(perpendicular and parallel to the fractures) when the effective pressure increases from 0 to 15 MPa. This 
change is mainly due to the overall change in porosity with pressure. The weak pressure dependence is 
a consequence of the fact that the S waves will only sense if the fractures are open or not, and since all the 
fractures have the same aspect ratio, they will close at the same effective pressure (which is outside the 
analysed interval). Approximate reflection coefficients were computed for a model consisting of the 
fractured reservoir embedded as a layer in an isotropic shale and analysed with respect to variations in 
Amplitude Versus Offset and aZimuth (AVOZ) properties at seismic frequencies for increasing effective 
pressure. For the P-P reflections at the top of the reservoir, it is found that there is a significant dependence 
on effective pressure, but that the variations with azimuth and offset are small. The lack of azimuthal 
dependence may be explained from the approximate reflection coefficient formula as a result of cancellation 
of terms related to the S-wave velocity and the Thomson’s anisotropy parameter d. For the P-S reflection, 
the azimuthal dependence is larger, but the pressure dependence is weaker (due to a single aspect ratio for 
the fractures). Finally, using the effective stiffness tensor for the fractured reservoir model with a visco-
elastic finite-difference code, synthetic seismograms and hodograms were computed. From the 
seismograms, attenuation changes in the P wave reflected at the bottom of the reservoir can be observed as 
the effective pressure increases. S waves are not much affected by the fractures with respect to attenuation, 
but azimuthal dependence is stronger than for P waves, and S-wave splitting in the bottom reservoir P-S 
reflection is clearly seen both in the seismograms and hodograms. From the hodograms, some variation in 
the P-S reflection with effective pressure can also be observed. 
 
Keywords: fractures, cracks, anisotropy, fluid pressure, AVOZ, time-lapse 

http://dx.doi.org/10.1007/s11200-007-0005-8
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Modelling re
ection signatures of pore 
uidsand dual porosity in carbonate reservoirsRemy Agersborg1;2, Tor Arne Johansen1 and Bent Ole Ruud21 Department of Earth Science and 2 Centre for Integrated Petroleum Research,University of Bergen All�egt. 41, 5007 Bergen, Norway.AbstractThe motivation for this synthetic Amplitude Versus Angle (AVA) study of anisotropic carbonate reservoir consisting of a dual porosity on two scales is to iden-tify possible seismic signatures of carbonate rocks containing various 
uids and poreconnection models. The reservoir is modelled for four scenarios on the basis of ageneral theory for visco-elastic waves, where the inclusion-based model operates withspheroidal cavities on two scales. While the total porosity of the reservoir is consid-ered constant, the pores and cracks at the di�erent scales are designed to be eitherconnected or isolated. The pore systems are saturated with either gas, oil or water.Re
ection coeÆcients are computed for a 2-layer model consisting of a cap rock ofshale above the reservoir in order to analyze the e�ects of various pore to pore con-nection and pore 
uid models in the double porosity systems.The modelling shows how the AVA parameters change both due to varying poreto pore connection and various pore 
uid saturation scenarios. If we assume esti-mated AVA parameters with some uncertainties, the study indicates that it shouldbe possible to obtain measurable changes in the re
ectivity due to changes of thepore connectivity also when the introduced 
uid has almost equal acoustic proper-ties as the displaced one. Such modelling studies should be of particular relevancefor studying diagenetic e�ects on seismic signatures, as for instance, water and oilmay have similar acoustic properties, but di�erent impact on the pore system overtime.Keywords: Dual porosity, carbonate reservoir, AVA, 
uid substitution, pore struc-ture. 1
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IntroductionThe aim of seismic reservoir monitoring and time lapse studies is to follow how the 
uidsdisplace within the reservoir unit. It is essential to have the information about the poregeometry and how the pores are connected with respect to 
uid 
ow as accurate as possiblein order to di�erentiate between e�ects due to alterations in 
uid saturation and pressure.The variations in the seismic properties of carbonate rocks are mainly caused by theircomplex pore structure (Eberli et al., 2003) where pores and cracks can co-exist on manyscales, from microscopic pores/cracks to huge macroscopic fractures (Anselmetti et al.,1998; Wang, 1997). In the context of 
uid substitution, where the reservoir is water
ooded, the pore geometry and wettability of the rock can cause the water �rst to 
oode.g. the cracks and smaller pores or this may cause the oil to be trapped in the larger poreswhich again may leave a considerable amount of residual oil in the reservoirs (Chatzis etal., 1983). A study of the Eko�sk �eld (Sylte et al., 1999) showed that injection of waterin the calcite-reservoir caused compaction and porosity loss. They concluded that thesensitivity of the chalk to injected water most probably resulted from an intimate chemicalinteraction between the injected water and the calcite.For predicting the P-wave velocity and the seismic e�ects of 
uid substitution, it iscommon to use Gassmann's equation (Gassmann, 1951). However, for carbonate rocksthis relation is not always applicable (Adam et al., 2006; Anselmetti and Eberli, 1999;Assefa et al., 2003; Baechle et al., 2005; Rosseb� et al., 2005; Wang, 1997; 2000) and thiscan to a large extent be caused by the complex pore structure and chemical interactionbetween the 
uid and the carbonate minerals. Modelled velocity and attenuation e�ectscaused by a porosity system on di�erent scales have been discussed by Agersborg et al.(2007a). Here, the seismic properties were modelled using a visco-elastic rock physicstheory, referred to as the T-matrix formulation (Jakobsen et al., 2003a,b). This method was2
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also applied in Agersborg et al. (2007b) for modelling ultrasonic velocity and attenuationdata for calcite samples. Various characteristic pore types for carbonate rocks describedby Wang (1997) and Choquette and Pray (1970) are referred to as grain-boundary cracks(intercrystaline and interparticle porosity), porous inclusions (intraparticle porosity) androunded pores (vugs and fenestral porosity). The in
uence of complex pore structures onseismic velocities is often modelled by using inclusion based theories. Then cavities aremodelled as spheroids, where cracks have aspect ratios (�: ratio between minor and majoraxis) less than 0.001, and compliant pores to spherical pores have aspect ratio from 0.001to 1.In this study, we discuss how various pore 
uid distributions in a dual porosity systemof di�erent scales will in
uence the seismic signature, and in particular, on AmplitudeVersus Angle (AVA) attributes. Similar studies have been done for various microscopicand macroscopic 
uid distributions (Johansen et al., 2002), however, in their study thepores were regarded as isolated to 
uid 
ow. For AVA characterization we apply bothexact and approximate formulas for the re
ection coeÆcients of PP and PS waves.Elastic properties of the dual porosity reservoirConsider a reservoir modelled with the porosity distributed on mesoscopic (meso) and mi-croscopic (micro) scale. The pore systems may be individually connected or unconnected,but they are unconnected with respect to each other. Additionally, each pore system con-tains cracks. We consider four scenarios revealing various connectivity models: Model 1:Connected micro pores and connected meso pores; Model 2: Unconnected micro poresand unconnected meso pores; Model 3: Unconnected micro pores and connected mesopores; and �nally, Model 4: Connected micro pores and unconnected meso pores. Thefour models are conceptually de�ned in Figure 1. The pores and the cracks on each scale3
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are saturated with either gas (methane), oil or water with the properties given in Table 1.The aspect ratios of the pore model are de�ned in Table 2. The permeability was set to50 mD and the mineral matrix for each scale is calcite with properties as listed in Table 1.The e�ective sti�ness tensor for the reservoir is found from the T-matrix approach forr = 1; :::; Nc cavities and r = Nc + 1; :::; N visco-elastic inclusions according to Jakobsenet al. (2003a,b) C� = C(0) +C1(I4 +C�11 C2)�1; (1)C1 = NXr=1 v(r)t(r); (2)C2 = NXr=1 NXs=1 v(r)t(r)G(rs)d t(s)v (s); (3)where C(0) is the fourth-rank sti�ness tensor of the homogeneous matrix material, I4 is theidentity for fourth-rank tensor, v(r) is the volume concentration for inclusion of type r, t(r)is the T-matrix (de�ned below in terms of sti�ness 
uctuations),G(rs)d is given by the strainGreen's function integrated over a characteristic ellipsoid having the same symmetries asp(sjr)(x � x0) which, in turn, gives the probability density for �nding an inclusion of types at point x0 given there is an inclusion of type r at point x. The 1st order correction C1depends on the concentrations, shapes and orientations of the inclusions. The 2nd ordercorrection C2 also takes into account the mechanical interaction between pairs of di�erentinclusions.The T-matrix of a single isolated cavity of type r can be written as (Jakobsen et al,.2003b) t(r) = (C(r) �C(0))[I4 �G(r)(C(r) �C(0))]�1; (4)where G(r) is a fourth-rank tensor depending only on C(0) and the shape/orientation ofthe inclusion of type r and C(r) is the sti�ness tensor of the inclusion. If r represents a4
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fully 
uid saturated cavity that is isolated with respect to 
uid 
ow, C(r) is simply relatedto the bulk modulus of the 
uid. If r represents a dry cavity, C(r) is equal to zero. Theformulae for a single fully 
uid saturated communicating cavity can be found in AppendixA, and the P velocity (VP ), S velocity (VS) and attenuation parameters de�ned from thesti�ness tensor in Appendix B.To account for the two porosity scales we �rst model the visco-elastic properties ofthe micro porous material with porosity �micro. The micro porous material are used asspherical isolated visco-elastic inclusions with concentration vinc, which implies that thee�ective micro porosity is ��micro = �microvinc. Then the properties of the medium includingthe meso porosity �meso are calculated. The total porosity is thus �tot = ��micro + �meso.The cavities in the T-matrix approach are assumed to be of equal size (Jakobsen et al.,2003b) which implies that domains of the material with the micro pores and cracks areconsidered to be on the same size as meso pores and cracks. By treating the micro porousmaterial as isolated inclusions in calculating the mesoscopic e�ective sti�ness tensor, themicro cavities are thereby implicitly of much less size than the meso cavities.An empirical relaxation time constant � (Appendix A) describing pore 
uid 
ow, mustideally be determined for each pore 
uid and pore scale under consideration from velocityand attenuation measurements. However, here we have chosen to use � = 10�7s to representthe case of a porous rock saturated with water. Furthermore, we have assumed that � canbe related to 
uid viscosity (Agersborg et al., 2007c)� fluid1 = Cm�fluid1; (5)
5
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where Cm depends on the pore structure and is independent of the pore 
uids. From thisexpression we approximate � for other pore 
uids by (Agersborg et al., 2007c)� fluid2 = � fluid1 �fluid2�fluid1 : (6)
The porosities on each scale (see Table 3) are constant in all the models. The variouspore 
uid distribution models considered are summarized in Table 4. Some small attenu-ation just below 100 Hz is due to wave-induced 
uid 
ow caused by the cracks with thesmallest aspect ratios. Otherwise the parameters are close to constant and treated as inde-pendent of frequency. In Figure 2 density (�) versus VP is plotted for the various models.The VP varies from 2900 m/s (for model 1 with gas) to about 5000 m/s (model 2 withwater). Also seen, when ��micro contains water and �meso contains gas, the P velocities formodels 3 and 4 are very similar. The same is seen when ��micro is gas saturated and �mesois water saturated. From the VP versus VS plot in Figure 3 the various models and satu-rations are revealed. One cluster appears where �meso is gas saturated and three clustersappears where �meso is oil or water saturated. It is hard to discriminate between modelswhere the pore 
uids are various combinations of water and oil saturating ��micro and �mesoporosities. Because the S-velocity is not very sensitive to 
uids other than the changes ofthe 
uid densities, the changes in the S-velocity are mostly due to changes in the pore con-nection properties. The P-velocity is sensitive both to the connection properties and thesaturating 
uids. In Figures 2 and 3 there are indicated some general trends for the e�ectsof altering pore 
uid and the pore to pore connectivity. Decreasing connectivity leads toan increase in both P and S velocities, while the density remains unchanged. The pore
uid mainly a�ects the P-velocity and the density, but has a less e�ect on the S-velocity.However, the larger pore to pore connection the larger is the pore 
uid e�ects on velocities.6
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It is important to notice that the magnitude of velocity variations with altering pore 
uiddepend on the pore models.AVA signaturesFor the modelling of the re
ectivity and AVA properties, we consider a 2 layer model asgiven in Table 5. The P-P and P-S re
ection coeÆcients are calculated both using theZoeppritz equations (Aki and Richards, 1980) and approximate formulae valid for smallincidence angles and small impedance contrasts by (Johansen et al., 2004)RPP (�) � RP +GPP sin2(�); (7)RPS(�) � GPS sin(�) cos(�); (8)where the intercept RP and the gradients GPP and GPS are given byRP = 12 ��� + ��� !; (9)GPP = 12"��� � 4����2���� + 2��� �#; (10)GPS = �12"�1 + 2������ + 4����� #: (11)Here P-P and P-S re
ections are labelled PP and PS, respectively, and � is the incidenceangle of the P-wave. �� = �2 � �1 and � = 12(�1 + �2), where �1 and �2 denote theP-velocity above and below the interface. Similar relations apply to the S velocities byusing � and the densities by �.P-P and P-S re
ection coeÆcients for the four models are shown in Figures 4 - 7. It canbe seen that the approximate P-P and P-S re
ection coeÆcients start to deviate from theexact ones from incidence angles about 20Æ and 10Æ, respectively. From the �gures we can7
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observe that each P-P re
ection can distinguish between the considered properties of thevarious reservoir models. i.e. the P-P re
ections of models 1 and 4 are di�erent for all thesaturation distributions, while for models 2 and 3 there are almost no di�erence. We seethat the pore 
uid saturating �meso provides the largest e�ect. In this case �meso > ��microwhich makes a large volume e�ect for the 
uid in the meso pores. However, the 
uid withinthe cracks may sometimes give dominant overall velocity e�ects. The P-S re
ections showgentle variations for low incidence angles, while for large angles it is possible to di�erentiatebetween pore 
uids in ��micro and �meso for model 3.The intercepts of the four models are shown in Table 5. For models 1 and 3 the varia-tions are mainly caused by altered P velocities, while for models 2 and 4 the variation aremainly due to altered density inferred by the di�erent 
uid distributions. The P-P AVAgradients for all the models are also seen to vary along with their intercepts.P-P and P-S re
ection coeÆcients after substitution of oil with water for an initially oil�lled reservoir are shown in Figure 8. In this case the pores and cracks on both scales areinitially connected (model 1). If pores start to isolate due to geochemical reactions we needto also change from one model to another. Figure 8 reveals how the P-P and P-S re
ectionscoeÆcients resemble various transitions in both pore 
uid and connection properties. TheP-P re
ections enable us to discriminate between models 1, 2 and 3. Models 3 and 4 showsimilar intercepts and gradients, but di�er at large incidence angles and also for the P-Sgradients.VP=VS versus impedances both for P and S waves are shown in Figure 9. The impedancescorrelate to VP=VS for models 2 and 4 and in the case for the other models where �meso isgas saturated. Models which have oil or water in �meso appear in clusters. In the case ofgas in �meso the clusters are more di�use and when water also saturate ��micro it is almostimpossible to distinguish between models 2 and 3. A similar picture is revealed in Figure10 displaying the P-P and P-S AVA gradients versus intercept. Furthermore we see that8
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the P-S AVA plot resembles Figure 3.DiscussionThe objective of this paper is to discuss possible seismic signatures of various porosityand 
uid models. By imposing the dual porosity we try to mimic e�ects of heterogeneous
uid substitution, e.g. when only a fraction of the pore systems undergo 
uid substitution.Complex pore systems, both with respect to shapes and sizes, are often seen in carbonates.In the previous section various seismic signatures versus saturation and pore structurewere modelled. In practice, AVA and AVO analyses su�er from uncertainties related toseveral aspects such as the signal to noise ratio, the processing sequence and structuralcomplexity. Estimated intercepts and gradients are always uncertain to some degree. Ifwe assume an uncertainty of, say, 0.02 for the estimated re
ection coeÆcients, it is hardto di�erentiate between the various 
uid models within each of the connection models(Figures 4 to 7). Also the uncertainties will overlap in models 1 to 4 in those cases whereeither oil or water saturates the meso pores and one of them the micro pores. However,when the 
uid in the meso pores is substituted the re
ectivities di�er.For a situation where water is injected in order to maintain the pore pressure in anoil column with initially well connected pores (Figure 8), the re
ection signatures are dif-ferent for the various 
uid distributions. The �gure furthermore shows that the re
ectioncoeÆcients are only insensitive to the substitution process when water saturates the micropores and where micro and meso porosity are individually connected (model 1). However,if we know that water is injected into the reservoir, unaltered re
ections could indicatethat the water has displaced oil in the micro pores. Similar combinations of the re
ectioncoeÆcients for each model and 
uid saturation (Figure 4 to 7) can be made for reveal-ing the sensitivity of the seismic parameters in monitoring 
uid substitution processes incarbonates. 9
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ConclusionsIn this modelling study we have focused on possible seismic e�ects of 
uid substitutionsin reservoirs with dual porosities on di�erent scales. Furthermore, our modelling aimsto investigate e�ects of various 
uids in the porosity system and various connectivityproperties of the pores. Such models are relevant for understanding seismic e�ects ofcomplicated 
uid substitution processes, as for instance when water or gas are injectedinto the reservoir for maintaining the pore pressure. Geochemical reactions can result incompaction, and pores or cracks that originally were well connected can become isolatedwith respect to 
uid 
ow. Also when a 
uid is injected into the reservoir, pores of a certainscale can be 
ooded before others due to capillary forces.Our modelling indicates that the various connectivities and 
uids saturating poreson di�erent scale can reveal measurable di�erences in seismic parameters. Although pore
uids of similar acoustic properties may generally not give any signi�cant attainable seismicsignal, geochemical e�ects can alter the pore systems so the pore 
uids can over time revealdi�erent seismic expressions. This furthermore points to the necessity of understandingpore 
uid and mineral interactions, both in terms of visco-elasticity and geochemistry.They do for some materials relate over time.AcknowledgmentsR.A. gratefully acknowledges Hydro for �nancing his Ph.D. scholarship.
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A Single fully 
uid saturated communicating cavityFor a single fully 
uid saturated communicating cavity of type r, the T-matrix can beexpressed through a dry T-matrix with a term considering the e�ect of 
uid 
ow due tothe passing wave (Jakobsen et al., 2003b)t(r) = t(r)d + �Z(r) + i!��fX(r)1 + i!
(r)� ; (12)X(r) = t(r)d S(0)(I2 
 I2)S(0)t(r)d ; (13)Z(r) = t(r)d S(0)(I2 
 I2)S(0)� NcXn=1 v(n)t(n)d1 + i!
(n)� �; (14)� = �fn(1� �fS(0)uuvv)� NcXr=1 v(r)1 + i!
(r)� �+ �f� NcXr=1 v(r)(K(r)d )uuvv1 + i!
(r)� �� ikukv�uv�f�f! o�1: (15)Here ! is the angular frequency of the wave, �f is the bulk modulus for the 
uid, � is therelaxation time constant. S(0) is the fourth-rank compliance tensor of the matrix, I2 is theidentity for second-rank tensor, the symbol 
 denotes the dyadic tensor product, �f is theviscosity of the 
uid, ku and kv are components of the wave number vector. Subscripts uand v represent summation over u and v, respectively (u,v = 1,2,3), �uv is the permeabilitytensor of the reservoir, 
(r) = 1 + �f(K(r)d � S(0))uuvv; (16)and the K-tensor for the dry cavity is (Jakobsen et al., 2003b)K(r)d = (I4 +G(r)C(0))�1S(0): (17)
Equations (12) - (15) were derived under the assumption that the cavities are of the14
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same scale size and that the � -constant is independent of shape and orientation (Jakobsenet al., 2003b).B Velocities and attenuations of the reservoirThe velocity and attenuations can be found from the e�ective sti�ness tensor and densityof the isotropic reservoir as (Jakobsen et al., 2003b)VP = "Re�C�11�� �� 12 #�1; (18)VS = "Re�C�442���� 12 #�1; (19)QP = Re(C�11)Im(C�11) ; (20)QS = Re(C�44)Im(C�44) : (21)(22)
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Figure 1: Conceptual sketches of the four reservoir-models where the pores exist both onmicro (black inclusions) and meso scale with di�erent connection.
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Figure 2: a) Density versus P-wave velocity for the di�erent models. Model 1 (green);Model 2 (blue); Model 3 (black); and Model 4 (red). Gas - Gas (dot); Gas - Water (cirle);Water - Gas (x); Water - Water (cross); Water - Oil (star); Oil - Water (square); and Oil- Oil (diamond). First 
uid denotes 
uid saturating the micro porosity and second 
uidthe meso porosity. b) Schematics of pore 
uid substitution trends: Magnitudes of velocitydisplacements depend on pore model and 
uid properties.
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Figure 3: a) S-wave velocity versus P-wave velocity for the di�erent models. Model 1(green); Model 2 (blue); Model 3 (black); and Model 4 (red). Gas - Gas (dot); Gas - Water(cirle); Water - Gas (x); Water - Water (cross); Water - Oil (star); Oil - Water (square);and Oil - Oil (diamond). First 
uid denotes 
uid saturating the micro porosity and second
uid the meso porosity. b) Schematics of the 
uid substitution trends: Magnetudes ofvelocity displacements depend on pore model and 
uid properties.
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Figure 4: Re
ection coeÆcients of model 1. Solid lines represent the exact re
ectioncoeÆcients and dashed lines the approximate ones.
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Figure 5: Re
ection coeÆcients of model 2. Solid lines represent the exact re
ectioncoeÆcients and dashed lines the approximate ones.
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Figure 6: Re
ection coeÆcients of model 3. Solid lines represent the exact re
ectioncoeÆcients and dashed lines the approximate ones.
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Figure 7: Re
ection coeÆcients of model 4. Solid lines represent the exact re
ectioncoeÆcients and dashed lines the approximate ones.
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Figure 8: P-P and P-S re
ections for the models with either oil or water in the di�erentporosity systems as indicated in the �gure. First and second 
uid labels the 
uid in themicro porosity and meso porosity, respectively. Model 1: Pores in both micro and mesoscale are connected; Model 3: The micro pores are isolated and meso pores are connected;Model 4: Micro pores are connected and meso pores are isolated.
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Figure 9: Vp=Vs versus impedance of the P- and S-wave. Model 1 (green); Model 2 (blue);Model 3 (black); and Model 4 (red). Gas - Gas (dot); Gas - Water (cirle); Water - Gas (x);Water - Water (cross); Water - Oil (star); Oil - Water (square); and Oil - Oil (diamond).First 
uid denotes 
uid saturating the micro porosity and second 
uid the meso porosity.
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Figure 10: P-P and P-S AVA gradients versus intercept. Model 1 (green); Model 2 (blue);Model 3 (black); and Model 4 (red). Gas - Gas (dot); Gas - Water (cirle); Water - Gas (x);Water - Water (cross); Water - Oil (star); Oil - Water (square); and Oil - Oil (diamond).First 
uid denotes 
uid saturating the micro porosity and second 
uid the meso porosity.
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Calcite Water Oil Gas (Methane)VP (m/s) 6640 1554 1424.3 688.7VS (m/s) 3440Density (kg/m3) 2710 989.1 854.2 206.5Viscosity (cP) 1 6.4 0.029Table 1: Properties of the mineral (Mavko et al., 1998) and 
uid (Batzle and Wang, 1992)for temperature at 80ÆC and pressure at 40 MPa used in the calculations.
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Micro Porosity Meso Porosity� v �1 0.21(�) 0.5010.1 0.01(�) 0.02390.001 0.00042 0.1(�)0.0005 0.00021 0.1(�)0.0001 0.00004 0.1(�)
� v �1 0.3(�) 0.07161 0.099 (�) 0.02360.01 0.01 (�) 0.23870.001 0.00042 0.1(�)Table 2: Concentration (v), aspect ratio (�) and crack density (� = 3v4��) of the microand meso porosity.(�) The value used in the calculation (v or �). The micro porosity wasincorporated in the mesoscopic calculation as spherical inclusions with concentration equalto 0.3.
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�micro (%) vinc (%) ��micro (%) �meso (%) �tot (%) �micro(relative) (%)23 30 6.9 11 17.9 38.5Table 3: The porosities of the di�erent scales. ��micro = �microvinc and �micro(relative) =(��micro=�tot) � 100.
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Micro MesoGas GasOil OilWater WaterOil WaterWater OilWater GasGas WaterTable 4: Pore 
uid distributions in the two pore scales.
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Model Saturation VP (m/s) VS (m/s) � (kg/m3) RP GPP GPS1 Gas - Gas 2906.6 2247.7 2261.9 -0.0900 -0.3781 -0.22311 Gas - Water 3673.7 2206.1 2348.0 0.0455 -0.1991 -0.21641 Water - Gas 3026.1 2221.3 2315.9 -0.0582 -0.3444 -0.22961 Water - Water 3823.3 2181.1 2402.0 0.0768 -0.1676 -0.22261 Water - Oil 3565.6 2187.9 2387.1 0.0389 -0.2189 -0.22681 Oil - Water 3783.9 2185.4 2392.7 0.0697 -0.1755 -0.22191 Oil - Oil 3529.4 2192.2 2377.8 0.0318 -0.2268 -0.22602 Gas - Gas 3743.3 2382.0 2261.9 0.0362 -0.2848 -0.27192 Gas - Water 4842.3 2480.5 2348.0 0.1822 -0.1549 -0.32202 Water - Gas 3830.6 2370.4 2315.9 0.0595 -0.2735 -0.28792 Water - Water 4964.9 2468.5 2402.0 0.2057 -0.1390 -0.33502 Water - Oil 4856.7 2464.4 2387.1 0.1919 -0.1521 -0.33062 Oil - Water 4963.6 2472.8 2392.7 0.2037 -0.1396 -0.33322 Oil - Oil 4855.6 2468.7 2377.8 0.1899 -0.1526 -0.32873 Gas - Gas 3350.6 2318.7 2261.9 -0.0192 -0.3269 -0.25043 Gas - Water 4203.8 2275.8 2348.0 0.1127 -0.1452 -0.23953 Water - Gas 3433.5 2307.7 2315.9 0.0048 -0.3163 -0.26723 Water - Water 4310.5 2266.0 2402.0 0.1364 -0.1334 -0.25503 Water - Oil 4020.1 2273.0 2387.1 0.0987 -0.1874 -0.26083 Oil - Water 4309.4 2269.9 2392.7 0.1344 -0.1337 -0.25303 Oil - Oil 4019.4 2277.0 2377.8 0.0967 -0.1878 -0.25884 Gas - Gas 3277.0 2311.0 2261.9 -0.0303 -0.3384 -0.24854 Gas - Water 4251.9 2410.4 2348.0 0.1183 -0.2223 -0.30844 Water - Gas 3402.0 2283.9 2315.9 0.0002 -0.3051 -0.25444 Water - Water 4417.3 2383.2 2402.0 0.1485 -0.1865 -0.31224 Water - Oil 4324.4 2378.9 2387.1 0.1349 -0.1978 -0.30674 Oil - Water 4373.2 2387.9 2392.7 0.1416 -0.1956 -0.31214 Oil - Oil 4281.9 2383.6 2377.8 0.1281 -0.2067 -0.3066Table 5: Properties of the reservoir and AVA parameters for the reservoir with di�erentconnections and saturations. Model 1: Cavities in both micro and meso scale are connected;Model 2: Pores in both micro and meso scale are isolated; Model 3: Micro pores are isolatedand meso pores are connected; Model 4: Micro pores are connected and meso pores areisolated. First 
uid in the table denotes the 
uid in the micro porosity and second 
uiddenotes the 
uid in the meso porosity. The properties of the overburden: VP = 3500m/s,VS = 1900 m/s and � = 2250 kg/m3.
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9 Summary and perspective

The aim of this Ph.D. study is to characterize the acoustic properties of carbonate

rocks with use of a recent developed visco-elastic e�ective medium theory, the T-matrix

approach. The study involves predictions of the acoustic properties by considering di�erent

porosity models, pore sizes and types, crack and fracture orientations together with pore


uid saturation and pressure. By using dual porosity models with di�erent pore types

at two scales, it is shown in paper 1 that large scattering of the velocities observed for

carbonates with equal porosity and mineralogy can be modelled. Also, when predicting

velocity and attenuation for ultrasonic experiments of calcite core plugs in paper 2, the

dual porosity model where the porosity was divided into a dry and a 
uid �led part, is

able to reproduce the measurements, both for the dried and saturated core plugs. In paper

3, the e�ect of large fractures is studied and it was shown how these fractures can cause

attenuation due to wave induced 
uid 
ow even at seismic frequencies. It is di�cult to

di�erentiate between the re
ection coe�cients for the various reservoir model from paper 1

with an overburden of shale. However, by considering di�erent cross plots of the properties

extracted from the re
ection coe�cients, in paper 4, the di�erent reservoir models with

various 
uid distributions was revealed. In the modelling, the characteristic pore types of

carbonates were depicted as cracks, compliant and sti�er pores.

Considering the porosity at di�erent scales and how the pores are connected can account

for many observed acoustic properties of carbonate rocks. Further work in this direction

would be to account for diagenetic processes into the T-matrix approach. Also in this study

we did not take into consideration any chemical interaction between the rock mineral, which

can be chemical unstable, and the pore 
uid. It would be interesting to study this with

respect to be able to predict e.g. the observed shear modulus weakening due to softening

of the rock frame.
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A Derivation of the e�ective sti�ness tensor

The derivation of the e�ective sti�ness tensor of the T-matrix approach is taken from

Jakobsen et al. (2003a). By assuming an elastic sample with a complex microstructure

occupies a large spherical region 
, the stress tensor �(x) and strain tensor �(x) at point x,

under a deformation with in�nitesimal strain, can be related by the linear transformation

�(x) = C(x)�(x): (13)

Here C(x) is the local tensor of elastic constants. The complex microstructure of the

sample is re
ected in the fact that C(x) varies with x in a random manner, on a scale that

is small compared with all other length-scales. For the heterogeneous material as a whole,

similar relation in terms of the average stress tensor h�(x)i and strain tensor h�(x)i gives

(Jakobsen at al., 2003a)

h�(x)i = C�h�(x)i: (14)

By assuming that the material is statistical homogeneous, which means that any su�ciently

large subregions of 
 is statistical identical with the whole specimen, all ensemble-averaged

material quantities such as C� are independent of position.

By introducing an integral equation for the strain �eld

�(x) =
1

2

n
ru(x) + [ru(x)]T

o
; (15)

under a known displacement u(x) of the surface @
 of the sample 
:

u(x) = U(x); x 2 @
: (16)
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We can evaluate the tensor of the e�ective elastic constants from Equation (14). With

equilibrium equation

r � �(x) = 0; (17)

and since the material is homogeneous on the macroscopic scale, we can write

C(x) = C(0) + �C(x); (18)

where �C(x) is the 
uctuation of C(x) from a quantity C(0) which is uniform in space.

From Equations (13), (17), and (18) we now have

r � [C(0)
�(x)] = �r � [�C(x)�(x)]: (19)

From this di�erential equation there can be derived an integral equation for the strain �eld

�(x) = �
(0) +

Z


dx0G(0)(x� x0)�C(x0)�(x0); (20)

where �(0) is the strain tensor due to the boundary displacements in a material with proper-

ties given by C(0). G(0)(x) is the strain Green's tensor function for a translation-invariant

system where the components are given by

G
(0)
ijkl(x) = �

1

4

2
4g(0)ik (x)

@xj@xl
+

g
(0)
jk (x)

@xi@xl
+

g
(0)
il (x)

@xj@xk
+

g
(0)
jl (x)

@xi@xk

3
5 : (21)

Here g
(0)
ik (x) is a component of the displacement Green's tensor function g(0)(x) which

vanishes at the boundary of 


C
(0)
ijkl

@2g
(0)
km(x)

@xj@xl
+ �im�(x) = 0; g(0)(x) = 0 if x 2 @
: (22)
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Following Zeller and Dederichs (1973), and introducing a fourth-rank tensor �eld T(x)

which, when contracted with �
(0) on the right, yields the stress di�erence �C(x)�(x)

�C(x)�(x) = T(x)�(0): (23)

�(x) is linearly dependent on �(0) through the boundary condition (Equation (16)), so T(x)

depends only on the material properties and not on �(x) or �(0). Similar to Equation (20),

we �nd the integral equation for T(x) by using Equation (23) in Equation (20) and write

�(x) = �
(0) +

Z


dx0G(0)(x� x0)T(x0)�(0): (24)

By multiplying Equation (24) with �C(x) from the left and using Equation (23) again, we

get

T(x)�(0) = �C(x)�(0) + �C(x)
Z


dx0G(0)(x� x0)T(x0)�(0): (25)

The elements Tijkl of T is chosen to be symmetric in (i,j) and (k,l) and, since �(0) may be

chosen to be an arbitrary symmetric matrix, it follows that

T(x) = �C(x) + �C(x)
Z


dx0G(0)(x� x0)T(x0): (26)

The tensor �eld T(x) speci�es the `transitions' out of the reference �eld �
(0) and gives

the complete information about the strain tensor �eld distribution �(x) in the micro-

inhomogeneous material, provided that we can solve the integral equation (Equation (26)).

For �nding the e�ective elastic constants in terms of T, we get from Equations (13)

and (18)

h�i = C(0)h�i+ h�C�i: (27)
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By combining Equations (23) and (27) we get

h�i = C(0)h�i+ hTi�(0): (28)

From Equation (24) it is clear that

h�i = �
(0) + �GhTi�(0); (29)

where

�G =
Z


dx0G(0)(x� x0); x 2 
; (30)

is a constant tensor (Eshelby, 1957). Equation (29) gives �(0) in terms of h�i

�
(0) =

�
I+ �GhTi

��1
h�i; (31)

where I is the identity tensor. Equations (14), (28), and (31), imply that

C� = C(0) + hTi
�
I+ �GhTi

��1
: (32)

Now having obtained a formal exact solution for the case of local elasticity in terms of

the T-matrix for the material, we consider a material in which the elastic constant C(x) is

piecewise constant, speci�cally we consider media with inclusions that are either embedded

in a homogeneous matrix material or else make up a granular aggregate. The population

of inclusions is divided into families of inclusions having the same shape/orientation and

sti�ness tensor C(r), labelled by r = 1; 2; :::; F . Dry cavities may formally be treated as

inclusions having vanishing sti�nesses (see Nemat-Nasser and Hori, 1993; Ponte Castaneda

and Willis, 1995). We assume that there are n(r) inclusions of type r, occupying identical
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regions 
(r)
� of the space 
, centred at random points x(r)� (� = 1; :::; n(r)). Denote by

�(r)(x) the characteristic function of the domain 
(r)
� (that is, �(r)(x�x(r)� ) = 1, if x 2 
(r)

�

and 0 otherwise). It follows that the 
uctuation �C(x) may be decomposed as

�C(x) =
FX
r=1

n(r)X
�=1

�C(r)
� (x); (33)

�C(r)
� (x) = �C(r)�(r)(x� x(r)� ); (34)

�C(r) = C(r) �C(0): (35)

A decomposition of the T-matrix for the material, which is analogous with that of �C(x)

in Equation (33), is given by

T(x) =
FX
r=1

n(r)X
�=1

T(r)
� (x); (36)

T(r)
� (x) = T(x)�(r)(x� x(r)� ): (37)

Equations (26), (33), and (36), imply that the T(r)
� (x) must satisfy

T(r)
� (x) = �C(r)

� (x) + �C(r)
� (x)

Z


dx0G(0)(x� x0)

X
s;�

T
(s)
� (x0): (38)

If we let t(r)� (x) denote the solution of the integral equation

t(r)� (x) = �C(r)
� (x) + �C(r)

� (x)
Z


dx0G(0)(x� x0)t(r)� (x0); (39)

then we may rewrite expression (38) for Tr
�(x) exactly as

T(r)
� (x) = t(r)� (x) + t(r)� (x)

Z


dx0G(0)(x� x0)

X
s;�

T
(s)
� (x0)(1� �rs���); (40)
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A single iteration of Equation (40) yields

T(r)
� (x) � t(r)� (x) + t(r)� (x)

Z


dx0G(0)(x� x0)

X
s;�

t
(s)
� (x0)(1� �rs���): (41)

Now assuming that the inclusions are ellipsoidal in shape, we can �nd the T-matrix for

a single inclusion. The transition tensor t(r)� (x) satis�es (see Equation (23))

�C(r)
� (x)�(r)� (x) = t(r)� (x)�(0); (42)

where �(r)� (x) is the strain �eld for a single inclusion of type r embedded in the homogeneous

matrix. If �(r)� (x) is constant within the inclusion, then t(r)� (x) must also be; and it is zero

outside, so we may write

t(r)� (x) = t(r)�(r)(x� x(r)� ); (43)

where t(r) is a constant tensor. Inserting this into the integral equation (Equation (39)),

we get

t(r)�(r)(x� x(r)� ) = �C(r)�(r)(x� x(r)� )

+ �C(r)�(r)(x� x(r)� )
Z


dx0G(0)(x� x0)t(r)�(r)(x0 � x(r)� ): (44)

Integrating over 
 we get

t(r) = �C(r) + �C(r)G(r)t(r); (45)

or

t(r) = (I� �C(r)G(r))�1�C(r); (46)

where

G(r) =
1

j
(r)j

Z

(r)

dx
Z

(r)

dx0G(0)(x� x0); (47)
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and 
(r) is the region of an inclusion of type r centred at the origin. Clearly, G(r) is a

contant tensor, and its components can be evaluated by using the formulae discussed in

Appendix B.

From Equations (36), (41), and (43), we �nd that

T(x) � T1(x) +T2(x); (48)

where

T1(x) =
X
r

t(r)��(r)(x); (49)

T2(x) =
X
r

X
s

t(r)
Z


dx0G(0)(x� x0)��(r)(x)��(s)(x0)t(s)

�
X
r;�

t(r)�(r)(x� x(r)� )
Z


dx0G(0)(x� x0)�(r)(x0 � x(r)� )t(r); (50)

and

��(r)(x) =
X
�

�(r)(x� x(r)� ); (51)

is the indicator function for phase r.

In order to evaluate the e�ective elastic constants from Equation (32), or from some

equation implied by it, we need to construct an equivalent hTi. From Equation (48) we

get

hTi � hT1i+ hT2i: (52)

Equation (49) yields

hT1i =
X
r

t(r)v(r); (53)

where

v(r) = h��(r)(x)i; (54)
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is the relative volume concentration of phase r. From Equation (50) we get

hT2i =
X
r

X
s

t(r)
Z


dx0G(0)(x� x0)h��(r)(x)��(s)(x0)it(s) �

X
r

t(r) ~G(r)t(r); (55)

where

~G(r) =
X
�

1

j
j

Z


dx�(r)(x� x(r)� )

Z


dx0G(0)(x� x0)�(r)(x0 � x(r)� ); (56)

and we have replaced the ensemble average of the second term on the right-hand side of

Equation (50) by its volume average. Equations (47) and (56) imply that

~G(r) = v(r)G(r); (57)

since

v(r) =
X
�

j
(r)j

j
j
= n(r)

j
(r)j

j
j
: (58)

The exact expression (32) for the e�ective elastic constant C� can be rewritten exactly

as

(�C�)�1 = hTi�1 + �G; (59)

where

�C� = C� �C(0): (60)

Multiplying Equation (59) with hT1i from the left and using the standard rule for inversion

of tensor inner products, we get

hT1i(�C
�)�1 =

h
hTihT1i

�1
i�1

+ hT1i �G: (61)
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Combining Equations (52) and (61) we get

hT1i(�C
�)�1 �

h
I+ hT2ihT1i

�1
i�1

+ hT1i �G: (62)

If we now assume that

jjhT2ihT1i
�1jj < 1; (63)

where jj � jj denotes a suitable tensor norm, then it follows from Equation (62) that �C� �

�C�
T where

hT1i(�C
�
T )

�1 = I� hT2ihT1i
�1 + hT1i �G: (64)

After some tensor algebra, we can rewrite this expression for the e�ective material param-

eters:

�C�
T = hT1i(I� hT1i

�1X)�1; (65)

where

X = hT2i � hT1i �GhT1i: (66)

From Equations (30), (53), (54), (55), (57), and (66), we get

X =
X
r

X
s

t(r)hA(rs)it(s) �
X
r

t(r)v(r)G(r)t(r); (67)

where

hA(rs)i =
Z


dx0G(0)(x� x0)

h
h��(r)(x)��(s)(x0)i � h��(r)(x)ih��(s)(x0)i

i
; (68)

depends only on C(0) and the stochastic geometry of the microstructure. hA(rs)i can be

written as (Ponte Castaneda and Willis, 1995; Jakobsen et al., 2003a)

hA(rs)i = �rsv
(r)G(s) � v(r)v(s)G

(rs)
d ; (69)
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where

G
(rs)
d =

Z



(rs)
d

dx0G(0)(x� x0); x 2 

(rs)
d ; (70)

is a spatially invariant tensor since 

(rs)
d represents an ellipsoid having the same symmetry

as p(sjr)(z � z0) which, in turn, represents the probability density for �nding an inclusion

of type s centred at point z0 given that there is an inclusion of type r centred at point z.

Since p(sjr)(z � z0) = p(rjs)(z0 � z) it follows that G
(rs)
d = G

(sr)
d . We have assumed that

the inclusions do not overlap because an ellipsoid of type r is surrounded by a `security'

ellipsoid 

(rs)
d , in the sense that p(sjr)(z00) = 0 if z00 2 


(rs)
d . From Equations (67) and (69)

we �nd that

X = �
X
r

X
s

t(r)v(r)G
(rs)
d t(s)v(s): (71)

From equations (53), (60), (65), and (71), have a new expression for the e�ective elastic

constants

C� = C(0) +
X
r

t(r)v(r)

2
4I+

 X
s

t(s)v(s)
!�1X

u

X
v

t(u)v(u)G
(uv)
d t(v)v(v)

3
5
�1

; (72)

setting

C1 =
X
r

v(r)t(r); (73)

C2 =
X
r

X
s

v(r)t(r)G
(rs)
d t(s)v (s); (74)

we can express the e�ective sti�ness tensor as

C� = C(0) +C1(I+C�1
1 C2)

�1: (75)



B The tensors G(r) and G
(rs)
d

Jakobsen et al. (2003a,b) show that G(r) for an ellipsoidal inclusion can be written as

G(r)
pqrs = �

1

4
(E(r)

pqrs + E(r)
pqsr + E(r)

qprs + E(r)
qpsr); (76)

where

E(r)
pqrs =

Z �

0
d�sin�

Z 2�

0
d�D�1

qs (k)kpkrA
(r)(�; �); (77)

and D�1
qs (k) is the invers matrix of the Fourier transform of the displacement Green's

function, and

A(r)(�; �) =
1

�j
(r)j

Z 1

0
dkk2

Z

(r)

dxe�ik�x
Z

(r)

dx0e�ik�x
0

(78)

where k, � and � are the spherical coordinates in k space, and ki the Cartesian components

of k. A(r) represent a shape/orientation factor independent of the elastic constant.

The tensor G(r) can also be expressed by the Eshelby (1957) tensor of an ellipsoid, S(r),

given by (Torquato, 2002)

G(r) = �S(r)S(0): (79)

In the case a matrix material containing spheroidal inclusions with semiaxies a
(r)
1 = a

(r)
2 =

ar and a
(r)
3 = br and whose symmetry axis is aligned in the x3-direction, the Eshelby's

tensor (which generally is given in terms of elliptic integrals) can be evaluated analytically

(Mura, 1982). If the matrix material is isotropic then the components of S
(r)
ijkl are given by

(Torquato, 2002)

S
(r)
1111 = S

(r)
2222 =

3

8(1� �)

�2
r

�2
r � 1

+
1

4(1� �)

"
1� 2� �

9

4(�2
r � 1)

#
q; (80)
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S
(r)
3333 =

1

2(1� �)

(
1� 2� +

3�2
r � 1

�2
r � 1

�

"
1� 2� +

3�2
r

�2
r � 1

#
q

)
; (81)

S
(r)
1122 = S

(r)
2211 =

1

4(1� �)

(
�2
r

2(�2
r � 1)

�

"
1� 2� +

3

4(�2
r � 1)

#
q

)
; (82)

S
(r)
1133 = S

(r)
2233 =

1

2(1� �)

(
��2

r

�2
r � 1

+
1

2

"
3�2

r

�2
r � 1

� (1� 2�)

#
q

)
; (83)

S
(r)
3311 = S

(r)
3322 =

1

2(1� �)

(
2� � 1�

1

�2
r � 1

+

"
1� 2� +

3

2(�2
r � 1)

#
q

)
; (84)

S
(r)
1212 =

1

4(1� �)

(
�2
r

2(�2
r � 1)

+

"
1� 2� �

3

4(�2
r � 1)

#
q

)
; (85)

S
(r)
1313 = S

(r)
2323 =

1

4(1� �)

(
1� 2� �

�2
r + 1

�2
r � 1

�
1

2

"
1� 2� �

3(�2
r + 1)

�2
r � 1

#
q

)
(86)

where � is the Poisson ratio of the matrix, �2
r = br=ar is the aspect ratio f the rth spheroid,

and q is given by

q =
�r

(1� �2
r)

3=2
[cos�1�r � �r(1� �2

r)
1=2]; (87)

when �r � 1.

For an sphere (�r = and q = 3=2) the components of the Eshelby's tensor simpli�es

even more

S
(r)
ijkl =

5� � 1

15(1� �)
�ij�kl �

4� 5�

15(1� �)
(�ik�jl + �il�jk) (88)

The above expressions for the G(r) tensor can also be used to evaluate the G
(rs)
d tensor

and the tensor G(r) is identical to �P(r), where P(r) is a tensor well known for the works

of Willis and his associates (see e.g. Ponte Castaneda and Willis, 1995).



C Derivation of the equations for a single communi-

cating cavity

The derivation is taken from Jakobsen and Hudson (2003) and Jakobsen et al. (2003b).

The t-matrix in Appendix A can be expressed with a K-tensor which relates the strain,

�(r), within an inclusion to the imposed stress at in�nity (Jakobsen et al., 2003b; Jakobsen

and Hudson, 2003)

�(r) = K(r)�(0); (89)

where the K-tensor can be written as (Jakobsen et al., 2003b)

K(r) = [I4 �G(r)(C(r) �C(0))]�1S(0); (90)

such that the t-matrix is

t(r) = (C(r) �C(0))K(r)C(0): (91)

By linear superposition (Jakobsen et al., 2003b), the strain inside a fully saturated

cavity of type r with pore 
uid pressure p
(r)
f , under imposed stress �(0), is given by the

strain of the same dry cavity minus the strain within a similarly shaped and oriented

cavity with hydrostatic stress I2p
(r)
f applied both at in�nity and inside the cavity. I2 is

the second-rank identity tensor. By this argument and Equations (89) and (90) we get

(Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

K(r)
�
(0) = K

(r)
d (�(0) + I2p

(r)
f )� S(0)I2p

(r)
f : (92)

Here K
(r)
d is the dry response of the K-tensor.

Following Hudson et al. (1996), we require that the 
uid mass in an arbitrary volume

is conserved and that the average 
ow of 
uid is regulated by Darcy's law (Jakobsen et al.,

206
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2003b)

@mf

@t
= r

 
�f
�f
� � rpf

!
: (93)

Here mf is the total 
uid mass, �f is the 
uid mass density, �f is the viscosity of the


uid, � is a second-rank tensor of permeability parameters and pf is the average 
uid

pressure. The 
uid pressure and density of the r'th cavity are related by (Hudson et al.,

1996; Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

�0

�
(r)
f

= 1�
p
(r)
f

�f
; (94)

where �0 is the density of the unstressed 
uid and �f is the 
uid bulk modulus. The mass


ow out of the r'th set of cavities is assumed to be controlled by the expression (Hudson

et al., 1996; Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

@(�
(r)
f �v(r))

@t
=

v(n)�0
�f�

�
p
(r)
f � pf

�
; (95)

where � is the relaxation time constant.

The changes in the porosity can be be found from Equations (89) and (92) (Jakobsen

et al., 2003b; Jakobsen and Hudson, 2003)

�v(r) � v(r)

v(r)
= (Kd)uupq

�
�(0)pq + �pqp

(r)
f

�
� S(0)

uupq�pqp
(r)
f : (96)

Here v(r) is the unstressed porosity of the r'th cavity set.

By introducing a second-rank tensor 	 which relate the average 
uid pressure and

applied stress by (Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

pf = 	�(0); (97)
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and assuming the propagating plane wave has frequency !, we �nd from Equations (94) -

(97) that (Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

	(r) =
	� i!��fI2K

(r)
d

1 + i!
(r)�
; (98)


(r) = 1 + �f
�
K

(r)
d � S(0)

�
uuvv

; (99)

to �rst order in p
(r)
f =�f and

�
�v(r) � v(r)

�
=v(r). After some manipulation the above equations

can be written as (Jakobsen et al. 2003b; Jakobsen and Hudson, 2003)

	 = ��
NcX
r=1

v(r)I2K
(r)
d

1 + i!
(r)�
; (100)

where

� = �f

2
64(1� �fS

(0)
uuvv)

NcX
r=1

v(r)

1 + i!
(r)�
+ �f

NcX
r=1

v(r)
�
K

(r)
d

�
uuvv

1 + i!
(r)�
�

ikukv�uv�f
�f!

3
75
�1

: (101)

Here ku and kv are components of the wave number vector. The summation is over all

the cavities (r = 1; :::; Nc). From these equations the t-matrix for a single communicating

cavity (listed in papers 1-4) is given as

t(r) = t
(r)
d +

�Z(r) + i!��fX
(r)

1 + i!
(r)�
; (102)

X(r) = t
(r)
d S(0)(I2 
 I2)S

(0)t
(r)
d ; (103)

Z(r) = t
(r)
d S(0)(I2 
 I2)S

(0)
� NcX
n=1

v(n)t
(n)
d

1 + i!
(n)�

�
: (104)
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