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Introduction 

The Norwegian fishing sector represents one of the largest national industries in 

terms of economic value, and was responsible for 5 % of the Norwegian export 

revenues in 2006 (Norwegian Seafood Export Council, 2007). The sector provides 

food of high nutritional quality for the consumers. Fish farming has, during the last 

decades, become an increasingly important part of the Norwegian fishing industry. In 

2006 the total sales of farmed fish was 705 000 tons and accounted for 52 % of the 

export income (Directorate of Fisheries, 2007; Norwegian Seafood Export Council, 

2007). From a producer’s point of view, fish is a challenging product. The consumers 

request fresh, mild-processed products with a long shelf-life. However, fish is a 

perishable product and a suitable substrate for bacterial growth, in addition to its 

susceptibility to rapid chemical degradation.  

 

Much research has been carried out on packaging and preservation techniques to 

prolong the shelf-life and product quality. To date, some of the better, and 

commercially utilised, methods include packaging in a modified atmosphere or under 

vacuum. 

 

It is important to have robust methods for a rapid and trustworthy assessment of the 

total product quality, and to determine the product shelf-life. In addition, it is also 

necessary to study the effects of quality improving efforts. Traditional quality 

assessment analyses can be time consuming and not very discriminating for detection 

of specific bacteria found among the total flora present. Consequently, new 

complementary techniques have to be introduced. The work herein describes the 

application of molecular methods to detect and characterise the bacterial flora of 

farmed fish. Furthermore, the methods have been used to study the effects of 

shelf-life prolonging treatment and packaging.  
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Abstract 

Farming of fish has become an increasingly important part of the Norwegian fishing 

industry. Furthermore, the Norwegian fishing sector represents one of the largest 

national industries in terms of economic value. Fish is a perishable product and a 

suitable substrate for chemical degradation and bacterial growth. Determinations of 

shelf-life of fish and fish products have traditionally been based on microbial, 

chemical and sensory evaluation. It is, however, important to have methods for a 

rapid and reliable assessment of the microflora, and to aid in the determination of the 

shelf-life of the fish products. This thesis discusses and describes the use of PCR and 

denaturing gradient gel electrophoresis (DGGE) to detect and characterise the 

microflora of farmed Atlantic halibut and cod. The aims were to introduce and apply 

molecular biological methods for characterisation of the microflora, and to use these 

methods to detect the changes in the microflora as a function of shelf-life extending 

treatments. An additional aim was to compare the results obtained from molecular-

based and culture-based methods.  

 

The DGGE and subsequent sequencing approach displayed the bacterial flora of the 

farmed fish, and identified the predominant microflora. When applying the 

sequencing approach, Photobacterium spp., Pseudomonas spp., Brochothrix 

thermosphacta, Serratia sp., Yersinia sp., Micrococcus luteus and Shewanella spp. 

were found to be the predominant bacteria in farmed Atlantic cod and halibut, stored 

under modified atmosphere (MA). The method detected a more diverse bacterial flora 

than previously obtained when culture-based methods were applied.  

 

Bacterial DNA extracted directly from the sample, without prior cultivation, gave a 

more diverse bacterial community. Furthermore, the molecular methods have been 

used to study the effects of MA packaging and ozone treatment on the microflora 

composition. There was no observable effect of ozone treatment of farmed cod. 
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1. Introduction 

1.1 Microbial diversity  

Researchers worldwide have been interested in the differences in microbial 

composition of various environmental samples. The knowledge about bacterial 

diversity is useful for understanding the nature of the sample to be studied. Studies of 

the microflora and its relation to ecosystems have traditionally focused on the 

cultivable fraction of the bacteria present. It is, however, well known and established 

within environmental ecology research that only a minor proportion, typically 1 %, of 

the total bacteria present are cultivable on agar (Amann et al., 1995). Important 

questions to be raised when studying bacterial floras of environmental samples are 

how bacterial communities respond to environmental changes, and how the 

microflora interact and are dependent on the species in the composition. 

 

Traditional analyses of microbiota use cultivation on specific or non-specific growth 

agars. These methods include colony isolation, phenotypic characterisation, including 

morphology, and biochemical testing. The weaknesses of phenotypic methods 

include poor reproducibility and discriminatory power, laboriously investigations, 

and the ambiguity of some techniques caused by complex growth conditions. 

Alternatively, genotypic methods, studying the bacterial DNA can be introduced. 

Genotypic techniques have also limitations, such as costly equipment and procedures, 

and there is often a need for databases for analyses.  

1.2 Molecular methods describing microbial diversity 

Molecular methods provide an outstanding tool for detection, identification and 

characterisation of microorganisms found in environmental samples, foods and other 

complex ecosystems. Applications of culture independent molecular methods are 
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needed to improve our understanding of the total microbiota, as the conventional 

culture-based methods are selective and do not cover the entire microbial diversity of 

complex environments.  

 

Brosius et al. (1978) described the complete nucleotide sequence of the 16S 

ribosomal DNA (rDNA) from Escherichia coli. Thereafter, researchers have been 

able to design primers suitable for detection of single bacterial species, as well as 

universal primers intended for population analyses. The 16S rDNA has several 

attributes that make it suitable for bacterial identification. In particular, 16S rDNA 

occurs in all bacteria and consists of both variable and conserved regions that can be 

used for species differentiation. Genes that encode the 16S rDNA can be sequenced 

to identify an organism's taxonomic group and determine relationships between 

organisms. In addition, the 16S rDNA is described as molecular chronometers. The 

16S rDNA has advantages as a chronometer as it shows a high degree of functional 

constancy, is large enough for adequate amounts of information, and consists of many 

domains (Woese, 1987). Furthermore, the 16S rDNA can be easily, and thereby 

rapidly, sequenced. Online electronic databases with large amounts of available 

sequences, e.g. the EMBL database from the European Bioinformatics Institute 

(http://www.ebi.ac.uk/embl/), and the BLAST database at NCBI 

(http://www.ncbi.nlm.nih.gov/BLAST/), allows direct comparison of the achieved 

sequences. When unknown bacterial populations and species are to be identified, 16S 

or 23S rDNA sequencing provides powerful tools with high discriminatory power 

(Vandamme et al., 1996).  

1.3 Primers for bacterial diversity examination  

Examination of the bacterial diversity in a food sample can be performed by PCR 

amplification of the bacterial DNA. One of the most common target regions for PCR 

amplification is the 16S rDNA, and several primers have been employed to amplify 

variable regions of the rDNA. Universal primers amplifying one or more 
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hypervariable regions of the 16S rDNA can be used to detect the dominant bacteria in 

a sample. The review of Ercolini (2004) summarises primers targeting the different 

variable regions of the 16S rDNA and their application in food products. Recently, 

Cocolin et al. (2007) published a study where common primers used for profiling 

bacteria in foods were evaluated and the DGGE conditions and fluorescence in situ 

hybridisation were optimised. The 16S rDNA primers can be universal, targeting 

theoretically all bacteria from a sample, or they can be species-specific and detect 

specific bacterial groups such as lactic acid bacteria (LAB). When used on bacterial 

samples from food, the variable region V3 is extensively used. 

 

The heterogeneity of 16S rDNA, resulting in multiple copies of the sequence, is one 

of the disadvantages when using it as a target region for amplification (Nübel et al., 

1996). The average number of 16S rRNA genes per genome is reported to be 4.1 for 

the domain Bacteria (Klappenbach et al., 2001). Schmalenberger et al. (2001) found 

that the heterogeneity varied between the different variable regions on 16S rDNA. 

For the regions V2-V3, they found an average of 2.2 bands per organism, evaluated 

as single-strand-conformation polymorphism (SSCP) bands. For the V4-V5 region, 

1.7 bands were detected, whereas 2.3 bands were found in the V6-V8 region.  

 

Other target regions or genes have been suggested to overcome the disadvantages of 

16S rDNA. The RNA polymerase beta subunit gene (rpoB) appears to be present in 

only one copy, and has shown a high level of discrimination between species for 

some groups (Dahllöf et al., 2000; Qi et al., 2001). However, the use of rpoB 

presents a taxonomic disadvantage as the database of the sequence is less documented 

than that of 16S rDNA. During the last few years, the rpoB gene has been used to 

study specific bacteria such as LAB (De Angelis et al., 2007; Rantsiou et al., 2004; 

Renouf et al., 2006a; 2006b) and Yersinia spp. (Cocolin & Comi, 2005), in foods and 

food products. Another approach for studying diversity uses group-specific primers 

or amplification of bacterial functional genes. Functional genes are especially suitable 

when investigating structure-function relationships (Dahllöf, 2002). 
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1.4 Denaturing Gradient Gel Electrophoresis (DGGE) 

A large number of molecular methods have been developed for examination of 

microorganisms in complex samples. Denaturing gradient gel electrophoresis 

(DGGE) is a widely used fingerprinting method for detection of the bacterial 

population and the diversity in a sample. In food related research, DGGE has been 

used with success for several products. Fischer and Lerman (1983) were the first to 

describe the theoretical aspects of this method. The principle of DGGE is the 

separation of DNA fragments with differences in the base sequence, and the ability of 

the double-stranded DNA to melt, i.e. partially revert from double to single-stranded 

DNA, in a polyacrylamide gel, with an electric current. The DGGE separates DNA 

fragments of the same length, based on differences in the GC content and GC 

distribution of the DNA fragments. Molecules with different sequences have different 

melting behaviours in a polyacrylamide gel containing a gradient of DNA 

denaturants, such as a mixture of urea and formamide. The DNA sequence consists of 

“melting domains”, defined as stretches of base-pairs with an identical melting 

temperature, which is sequence-specific (Muyzer & Smalla, 1998). Once the melting 

temperature of the lowest melting domain is reached at a particular position in the 

denaturing gradient gel, the fragment becomes partially melted and the molecule 

becomes branched. This will result in a decreased migration through the gel 

(Figure 1). Based on this principle, a sample containing many different bacteria, all 

with different melting domains, will result in many bands on the gel. Comparing 

different samples will result in different profiles, reflecting the bacterial diversity of 

the sample. To prevent the complete dissociation of the double-stranded DNA, a 

30-50 base pair GC-rich sequence is attached to the 5’-end of one of the primers 

(Sheffield et al., 1989). This GC-clamp acts as a melting restrictive domain 

(Figure 1).  
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Figure 1. The principle of denaturing gradient gel electrophoresis (DGGE). 
Double stranded DNA fragments (amplicons) of equal length, obtained by 
PCR, are separated on a polyacrylamide gel with a denaturing gradient. The 
increasing gradient of denaturants causes the double-stranded DNA to melt 
and thus, separate as the PCR products move through the gel. The GC-clamp 
attached to the 5’-end of the PCR fragment prevents the amplicons from 
complete denaturation. After DGGE separation, each band on the gel will 
theoretically represent DNA fragments from specific bacteria having different 
base pair compositions. 

 

For initial fingerprinting analysis, the DGGE gel can be used directly. The bacterial 

profiles from the gel are also useful when analysing multiple samples over time, and 

to reveal profile differences. Time studies can also be achieved when samples taken 

at different time points are compared on the same gel.  

 

To identify the origin of DNA in gel bands of special interest, the bands can be 

recovered from the gel and sequenced. By sequencing the band, the bacteria present 

in the sample can be determined, based on the DNA sequence information. Figure 2 

gives an overview of the process flowsheet, from the point at which the fish is 

sampled, to when the bacterial diversity is identified. 
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DNA 
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Sequencing Database, 
alignment 

Phylogenetic 
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Figure 2. Flowsheet of the process form fish sampling to bacterial detection 
and identification. Samples from the fish are taken directly for DNA 
extraction or for cultivation on growth media (A). In B, bacterial DNA is 
extracted using standard procedures, or kits, before the DNA is amplified 
using PCR (C). The PCR products are separated on a denaturing gradient gel 
(D), and bands of interest are excided and sequenced (E). For further 
comparison of the bands, the sequences can be aligned in suitable programs, 
such as ClustalX (F), and a phylogenetic tree can be made to display 
similarities graphically (G).  

 

Using the 16S fragment of the rRNA gene, one can describe both cultivable and 

uncultivable bacteria by their phylogenetic relationship. The DGGE approach 

represents a rapid and reproducible method of studying population dynamics, and is 

well-suited for time interval studies, e.g. shelf-life studies (Cocolin et al., 2001; 

Giraffa & Neviani, 2001). Applying this method, information about the bacterial 

profiles of the sample can be achieved within 24 hours (Figure 2, A-D) (Temmerman 

et al., 2004). 
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1.5 DGGE of bacteria from foods and fish products 

Overall, DGGE is one of the most used molecular methods for studying bacterial 

diversity and microbial changes in food products. Both the total microbial 

composition and specific bacteria have been analysed by this technique for several 

foods. 

 

One of the first paper published using this cultivation-independent method on food 

discussed the distribution of microorganisms in Mexican pozol, which is fermented 

maize dough (Ampe et al., 1999). In this study, lactic acid bacteria (LAB) were 

identified as the predominant bacteria present in the samples, and the authors 

obtained information about the possible biological role of LAB and the dynamic 

changes during fermentation. They demonstrated that the ecology of fermented foods 

cannot be effectively studied by cultivation methods alone, and concluded that 

cultivation-independent methods should be used in such studies. After this 

publication describing the use of DGGE for foods, numerous papers have been 

published using this method. Most of these works have been within the research area 

of fermented food and detection of LAB (Fontana et al., 2005; Rantsiou et al., 2004). 

Since the first publication, various food products have been studied using the DGGE 

approach e.g. fermented Italian sausage (Cocolin et al., 2001), Argentinean sausage 

(Fontana et al., 2005), ham and Viennese sausage (Takahashi et al., 2004), asparagus 

(Yergeau et al., 2005), Mozzarella cheese (Coppola et al., 2001), Stilton cheese 

(Ercolini et al., 2003), Spanish blue-veined Cabrales cheese (Florez & Mayo, 2006), 

mineral water (Dewettinck et al., 2001), wine (Lopez et al., 2003) and farmed cod 

and halibut (Paper I-III), among others. Despite the wide application of DGGE to 

describe food microbiology and the monitoring of bacterial changes during packaging 

and storage, there are few papers discussing the use of this technique for fish and fish 

products.  

 

Yang et al. (2007) studied DGGE and subsequent sequencing to detect the bacterial 

community of the skin, intestine, liver, and ovary of puffer fish (Takifugu obscurus). 
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The authors used the variable V3 16S rDNA region as the target, and detected a wide 

variety of bacteria in the various parts of the fish. Huber et al. (2004) also used 

DGGE to detect the microflora of fish intestine. Another approach using DGGE with 

respect to fish and seafood was the detection of the bacterial diversity in marine 

hatchery (Schulze et al., 2006). Furthermore, DGGE has been used to study the 

bacterial community associated with Atlantic halibut larvae (Jensen et al., 2004) and 

for the early life stage of Coho salmon (Romero & Navarrete, 2006).  

 

Another aspect where DGGE-based methods have been shown to be useful is in 

product authentication in situations of claimed commercial frauds. Some producers 

substitute the product partially or entirely with species of lower commercial value. 

This illegal activity has been seen for Atlantic salmon, where rainbow trout has been 

substituted, and for cod (Gadus morhua) being substituted with other cod-fish. Not 

only is this practice illegal, but other important issues to consider include allergic 

reactions to specific species, as well as the ethical and religious concerns. PCR and 

DGGE have been used as a method to differentiate between species of cod-fish 

(Comi et al., 2005) and to discriminate Atlantic salmon from rainbow trout (Zhang 

et al., 2007). Differentiation between fish species may be based on differences in the 

cytochrome B gene. The authors used DGGE analysis in addition to other 

molecular-based techniques, but did not provide consistent conclusions. While Comi 

et al. (2005) found DGGE to have the best discriminative level for detection between 

cod-fish, Zhang et al. (2007) suggested using a combined method of DGGE, 

amplified fragment length polymorphism (AFLP) and a species-specific sequence 

characterised amplified region (SCAR) marker.  

1.6 Farmed fish 

The aquaculture industry is probably the fastest growing food-producing industry in 

the world. Today, approximately 50 % of all fish produced for consumption is 

aquacultured (FAO, 2007). Atlantic salmon (Salmo salar) is the main species for 
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Norwegian aquaculture production, accounting for 80 % of the total fish farmed 

(FAO, 2007). Lately, interest has become oriented towards new species such as 

Atlantic cod, Atlantic halibut, wolf-fish, turbot, Artic char, lobster, red king crab, 

blue mussels, and sea urchin (Directorate of Fisheries, 2007). The production of these 

species is increasing and some are now in the process of being commercialised. As 

new farmed fish species, they are important for the Norwegian farming industry. This 

industry is known for its high-quality products. To ensure this position, research and 

knowledge about the raw material composition, quality parameters, storage 

conditions, and bacterial and chemical degradation has to be gained for the new 

species. 

 

The interest in farming has increased as a result of variations in wild catches from 

year to year, and the quality differences in wild caught fish. These differences are due 

to seasonal variations, different handling, fishing gear, and fishing ground. The time 

between catch and processing will, in addition, strongly influence the quality. 

Compared to wild caught fish, farmed fish have several advantages as a raw material, 

showing a more uniform quality. Farming also provides controlled feeding, 

slaughtering and processing, and enables the possibility to trace the whole valued 

chain to the market.  

 

Atlantic cod is an important species from the northern Atlantic, both economically 

and socially. As decreasing catches and high prices are reported for wild caught cod, 

farming becomes more interesting for the aquaculture industry. Furthermore, focus 

has been drawn towards ecologically and environmentally friendly production. As a 

result of this, the term “sustainable seafood” has been introduced, indicating usage of 

100 % sustainable natural fish feed, such as off-cuts of herring and mackerel already 

caught for human consumption (Dybdal, 2007).  

 

Only some investigations compare wild and farmed fish of the same species. These 

studies conclude that there is difference in quality between wild and farmed fish, as 

observed for Atlantic halibut (Olsson et al., 2003), Murray cod (De Silva et al., 
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2004), and Atlantic cod (Herland et al., 2007). Herland et al. (2007) studied farmed 

and wild Atlantic cod and found the microbial counts in farmed cod to be 

significantly lower than for wild. The authors also observed differences in other 

quality parameters, such as lowered trimethylamine oxide (TMAO) content in farmed 

cod and a different body composition of farmed cod compared to wild. Other 

attributes have also been studied, including the higher condition factor, smaller head 

and liver for farmed Atlantic cod (Gildberg, 2004) and higher carbohydrate level and 

lower pH in the muscle (Rustad, 1992). Farmed halibut has been reported to have 

lower pH and higher fat content compared with wild (Olsson et al., 2003).  

 

The observed differences between farmed and wild caught fish, makes the evaluation 

of bacterial composition of farmed fish important. Introduction of molecular-based 

techniques, in addition to cultivation-based methods, are suitable for such analysis. 
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2. Aims of the study 

The aims of this work were to: 

 

1. Apply molecular methods as an analytic tool for detection and identification of the 

general bacterial flora and specific spoilage bacteria of farmed fish. 

 

2. Evaluate the effect of improved hygienic handling and processing of farmed fish 

using molecular methods. 

 

 

This was achieved by: 

1. Introduction of the molecular methods PCR, DGGE and sequencing to detect and 

characterise the microflora of farmed Atlantic halibut and cod.  

 

2. Characterisation and detection of the microflora of farmed Atlantic halibut and 

cod, stored under modified atmosphere (Paper I and II). 

 

3. Evaluation of the hygiene enhancing effects of ozone pre-treatment, before 

packaging and storage of farmed cod (Paper III). 

 

4. Comparison of the intestinal bacterial flora using molecular-based methods and 

traditional cultivation-based methods (Paper IV). 
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3. Shelf-life extension and prediction of farmed 

fish products 

3.1 Product deterioration 

In all ecosystems, the growth and metabolic activity of microorganisms are important 

and crucial factors for the turnover of organic and inorganic material. Bacterial 

growth will occur in all foods, except for sterile products, and may result in product 

spoilage over time. Food spoilage is defined as changes that make a product 

unacceptable for human consumption. For example, such changes can include visible 

bacterial growth, slime formation, physical damage or off-odour. The process 

collectively known as food spoilage is a very complex event, in which a combination 

of microbial and biochemical or chemical activities interact.  

 

The parameters responsible for microbial spoilage in foods can be divided into four 

groups (Huis in't Veld, 1996): 

 

i) Intrinsic parameters 

This parameter includes physical, chemical, and structural 

properties of the food itself, such as water activity, pH, redox 

potential, available nutrients, and natural antimicrobial 

substances.  

 

ii) Extrinsic parameters 

Environmental factors such as storage time, temperature, 

humidity, and the composition of the storage atmosphere. 
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iii) Modes of processing and preservation 

Processing can change the characteristics of the food product, 

and thereby the microorganisms associated with the product. 

 

iv) Implicit parameters 

These are mutual factors that synergistically or antagonistically 

influence microbial growth. Growth of one bacterial 

sub-population may affect other sub-populations in a food 

product.  

 

It is important to stress that the parameters are influenced by the effects of the others. 

The overall effect, as a combination of parameters, is generally much higher than the 

perceived effect of each individual parameter.  

3.2 Bacterial spoilage of fish 

The quality of fresh fish and seafood products is rapidly reduced as a consequence of 

various microbial, biochemical and chemical breakdown processes. The initial quality 

loss is mainly due to the post mortem autolytic activity and chemical degradation 

processes, such as lipid oxidation. The rate of quality loss depends directly on the 

nature of the fish species in question, as well as handling and storage conditions. In 

the mid and later stages of product shelf-life, the microbial contribution to quality 

reduction increases (Huss, 1995). 

 

Analyses of the microbial load and diversity are used to determine the amount of 

specific spoilage bacteria in a sample as well as the total bacterial count. Bacterial 

detection on agar media may reduce the bacterial diversity, as agar media are 

selective by their composition, and by the incubation conditions, such as atmosphere 

and temperature.  
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The bacterial spoilage flora contributes to the degradation of fish by producing 

off-odour and off-flavour. For marine fish stored aerobically on ice, the bacterial flora 

is well studied, and dominated by Pseudomonas spp. (Gram & Huss, 1996), in 

addition to Shewanella putrefaciens, Shewanella baltica, Shewanella hafniensis, and 

Shewanella morhuae (Gram et al., 1987; Satomi et al., 2006; Vogel et al., 2005). 

From storage in modified atmosphere enriched by CO2, Photobacterium 

phosphoreum have been reported as the most important spoilage bacterium (Dalgaard 

et al., 1993), whereas Brochothrix thermosphacta (López-Gálvez et al., 1995; 

Pournis et al., 2005) represented the main spoilage bacterium in fish from the 

Mediterranean.  

 

Knowledge of spoilage organisms and their specific activity in various fish species at 

different storage conditions has led to more precise shelf-life predictions and 

facilitated modelling of spoilage (Gram & Dalgaard, 2002). A mathematical model: 

“The Seafood Spoilage and Safety Predictor (SSSP)” has been developed by 

Dalgaard et al. (2002) for estimation of the remaining shelf-life. This software uses 

both kinetic models for growth of specific spoilage microorganisms, and empirical 

relative rates of spoilage models to determine the shelf-life based on the initial 

amount of P. phosphoreum in the sample.  

 

The most important spoilage bacteria of marine fish from cold waters, and spoilage 

bacteria identified in the present work are described in the following.  

 

Photobacterium phosphoreum 

P. phosphoreum is a Gram-negative rod with bioluminescent ability. It belongs to the 

Vibrionaceae family. Photobacterium spp. are common in the marine environment 

and present in the intestinal contents of marine animals. The bacterium is cold 

tolerant and thus able to grow at low temperatures (4 oC), but not at higher 

temperatures (> 40 oC). In addition, Na+ ions are required for growth (Krieg & Holt, 

1984). The fish spoilage potential of P. phosphoreum is, to a large extent, due to the 

ability of the bacterium to grow in high CO2 concentrations, and its active reduction 
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of trimethylamine oxide (TMAO) to trimethylamine (TMA) (Gram & Huss, 1996). 

This TMA production results in off-odour and off-flavour during storage (Gram & 

Dalgaard, 2002). P. phosphoreum is a large bacterium (5 µm) and produces a 

relatively high amount of TMA per cell (Dalgaard, 1995b). The bacterium is regarded 

as the main spoilage bacterium in fish products stored under high CO2 concentrations 

e.g. in modified atmosphere (Gram & Huss, 1996). 

 

Shewanella spp. and S. putrefaciens 

The bacterium Shewanella is a facultative anaerobe Gram-negative, oxidase- and 

catalase- positive rod in the Shewanellacea family. S. putrefaciens is regarded as a 

specific spoilage bacterium of marine fish from temperate water, stored aerobically in 

ice (Gram et al., 1987; Gram & Huss, 1996). This species is capable of anaerobic 

respiration using TMAO as the terminal electron acceptor (Dalgaard et al., 1993; 

Jørgensen et al., 1988), and production of H2S from the sulphur containing amino 

acid L-cysteine (Jørgensen & Huss, 1989). Production of H2S results in a foul off-

odour. The former group of S. putrefaciens is known for being phenotypically 

heterogeneous. Members of this group have recently been reclassified, based on 16S 

rRNA gene sequencing, into several species including some new strains. S. baltica, 

S. hafniensis and S. morhuae, among others, were found in ice-stored fish after 

reclassification (Satomi et al., 2006; Vogel et al., 2005).     

 

Traditionally, the detection of the spoilage bacteria S. putrefaciens has been 

performed on Iron agar supplemented with L-cysteine, where the bacterium form 

black colonies. From previous analyses of ice-stored fish fillets, the majority of black 

colony forming bacteria on Iron agar were found to be S. putrefaciens (Dalgaard 

et al., 1993; Gram et al., 1987), although formation of H2S can also occur among 

members of the family Vibrionaceae (Gram et al., 1987; Lund et al., 2000). 
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Pseudomonas 

Pseudomonas is a large and poorly defined group of microorganisms. The genus is in 

the group of aerobe Gram-negative, catalase- and oxidase-positive rods. Many 

species have a psychrophilic nature and are regarded as part of the natural flora of 

fish. The species can form aldehydes, ketones, esters and sulphides following food 

spoilage, causing odours described as fruity, rotten and sulfhydryl-like (Lund et al., 

2000). Pseudomonas is sensitive to CO2 in concentrations as low as 20 % (Eyles 

et al., 1993), and the removal of oxygen, as under vacuum packaging.  

 

Brochothrix thermosphacta 

This bacterium is a Gram-positive, non-sporing, non-mobile and facultative anaerobe 

rod. It has a growth temperature range between 0 and 30 oC, and the ability to grow in 

high CO2 concentrations. The bacterium is found during spoilage of modified 

atmosphere packaged fish and meat (Borch et al., 1996; Lund et al., 2000; Pournis 

et al., 2005; Stamatis & Arkoudelos, 2007). B. thermosphacta gives a sour odour due 

to lactic acid production under oxygen-free atmospheres, whereas production of 

acetoin-diacetyl occurs in oxygen rich atmospheres (Pin et al., 2002). The bacterium 

produces short fatty acids under aerobic conditions, however lower amounts are 

reported in tuna than in meat (López-Gálvez et al., 1995). 

3.3 Quality parameters 

As a fresh and slightly processed product, the fish needs to be of good quality to be 

regarded as a foodstuff. Shelf-life and quality descriptions are based on a 

combination of several factors.  

 

Microbial analyses 

The available literature on bacterial spoilage and deterioration of fish during storage 

is ample. Depending on the fish species and the storage conditions, different bacterial 

groups contribute to the quality loss to a varying degree. Microbial analyses have 
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traditionally been performed using general or selective media for enumeration of total 

viable counts or specific bacteria. Detection of bacteria on fish from the Northern 

Atlantic typically involves media for determination of psychrotrophic bacteria, H2S 

producing bacteria, and for total viable counts (Table 1). Using such media, one can 

detect the most important spoilage flora of the fish, and estimate the remaining shelf-

life.  

 

Table 1. Commonly applied agar media used for enumeration and detection of 
bacteria associated with fish spoilage. 

Bacterium Medium Reference 

P. phosphoreum Plate Count Agar, (PCA), 

modified by addition of 1 % NaCl 

Long and Hammer 

Nordic Committee on 

Food Analysis, 2000  

van Spreekens, 1974 

S. putrefaciens Iron agar1 Gram et al., 1987 

Aerobic plate count Iron agar2 

Long and Hammer 

Gram et al., 1987  

van Spreekens, 1974 

Pseudomonas Pseudomonas agar base, (C-F-C) Mead & Adams, 1977 

B. thermosphacta  Streptomycin thallous acetate 

actidione agar, (STAA) 

Gardner, 1966 

Lactic acid bacteria Man-Rogosa-Sharke, (MRS) Baird et al., 1987 
1S. putrefaciens is counted as black colonies.                                         
2Aerobic plate count is the total number of black and white colonies.  

 

Sensory evaluation 

For fish as a food, the quality understanding is very much dependent on the consumer 

opinion. After storage, the fish must possess an acceptable sensory quality making it 

suitable for consumption. The sensory evaluation of fresh and stored seafood is based 

on different methods to describe the product, such as QIM (Martinsdottir et al., 2001) 

and the Torry scale (Shewan et al., 1953). When new species and products are 

introduced, thorough investigation and sensory characterisation must be performed. 

Even though the microbiological quality can be acceptable, other attributes or 
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characteristics can make the product appear spoiled or not suitable for consumption. 

For farmed Atlantic halibut and wild and farmed cod an adjusted QIM has been 

developed for sensory assessment (Cardenas Bonilla et al., 2007; Esaiassen et al., 

2007; Guillerm-Regost et al., 2006). 

 

Chemical analyses and other attributes  

Huss (1995) summarises chemical attributes contributing to the fish spoilage. 

Analyses of the total volatile basic amines (TVB) or the total amount of volatile 

nitrogen (TVN) are the most widely used methods. The TVB and TVN include TMA 

(produced by spoilage bacteria), dimethylamine (produced by autolytic enzymes 

during frozen storage), ammonia (produced by the deamination of amino-acids and 

nucleotide catabolites), and other volatile basic nitrogenous compounds. Although 

such analyses generally are easily performed, they only reflect the later stages of 

spoilage (Huss, 1995). For chilled stored lean fish, the most important chemical 

degradation is caused by degradation of sulphur containing amino acids and TMAO 

to TMA. Most of the volatile compounds found in spoiled fish are produced by 

bacteria, including TMA, aldehydes, ketones, esters, hypoxanthine, volatile sulphur 

compounds and other low molecular weight compounds (Lund et al., 2000). 

 

In addition to the above mentioned quality parameters, colour evaluation, drip-loss, 

water content and physical properties, as pH and texture, are used to describe the 

quality of the products.  

3.4 Modified atmosphere packaging  

Modified atmosphere (MA) packaging is a mild preservation method and has been 

shown to extend the shelf-life of many seafood products. Preservation using MA has 

been known for more than 100 years, but not commercially used until the latter part 

of the 20th century (Brody, 1998). In fish products, MA packaging has been studied 

since the 1930s (Coyne, 1932; 1933; Killeffer, 1930). During the last decades, MA 
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packaging of fish and seafood has been well studied and documented (Sivertsvik 

et al., 2002; Stammen et al., 1990).  

 

Different foods may need different gas mixtures to provide optimal bacterial 

inhibition. Thus, various packaging conditions are reported for fish products, e.g. cod 

(Sivertsvik, 2007) and Mediterranean mullet (Pournis et al., 2005), and it has been 

reviewed by Sivertsvik (2002). In addition to various gas compositions and 

concentrations, various types of pre-MA treatments and storage conditions have been 

examined and validated. Shelf-life studies on MA-packaged wild fish have shown the 

importance of temperature, production hygiene and gas composition, including the 

CO2 concentration, in the development of specific spoilage organisms. In addition, 

the microbial load, fat content and gas-to-product-volume ratio in the package play an 

important role in optimising the shelf-life extension of MA packaging.  

 

During MA storage of fish, CO2 is the most important gas due to its inhibitory 

properties. The gas is known to inhibit growth of many Gram-negative and 

Gram-positive bacteria responsible for fish spoilage. The Gram-negative bacteria 

Pseudomonas fluorescens, P. phosphoreum, S. putrefaciens, and Aeromonas 

hydrophila were more inhibited by the CO2, when compared to the Gram-positive 

bacteria Lactobacillus sake, B. thermosphacta and Bacillus circulans (Devlieghere & 

Debevere, 2000). The high sensitivity to CO2 observed for P. phosphoreum is in 

contrast to the findings of Dalgaard (1995a), who found P. phosphoreum to be highly 

resistant to CO2. For marine fish packaged with high CO2 concentration and stored at 

low temperatures (< 4 oC), P. phosphoreum has been identified as the main organism 

responsible for spoilage (Dalgaard et al., 1997). 
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3.5 Ozone treatment 

The food industry is constantly looking for new and improved methods of shelf-life 

extension, and ways to improve and control product characteristics. Such methods 

include, e.g. UVC light treatment, salting and brining, super chilling, soluble gas 

stabilization (SGS), high pressure processing, and ozone treatment. These techniques 

use different approaches to achieve an increased product quality and extended 

shelf-life. A combination of these technologies can provide the greatest degree of 

product quality improvement.  

 

Ozone (O3) has been deemed “Generally Recognized as Safe” (GRAS) for several 

food applications (Graham, 1997), and has been widely used as a disinfectant for 

food products. Ozone is an effective antimicrobial agent that reverts within minutes 

to oxygen, giving no significant toxic residues in the environment following its use. 

Furthermore, ozone does not generate any halogenated and potentially carcinogenic 

by-products making its use more environmentally friendly than chlorine (Kim et al., 

1999). The effect of ozone includes bacterial disinfection, virus inactivation and 

removal of discolouration, odour and taste. The most common use of ozone as a 

bactericide is on drinking water (von Gunten, 2003a; 2003b). The bactericidal effect 

has been tested for preservation of foods such as meat, poultry products, eggs, fruits 

and vegetables, as reviewed by Kim et al. (1999). Ozone treatment is not universally 

beneficial, and excessive use of ozone may promote oxidative food spoilage (Rice 

et al., 1982). Table 2 summarises the use of ozone on fish and fish products. The 

effect of ozone treatment on shelf-life extension and product quality was evaluated by 

chemical and sensory analyses, in addition to microbial counts (Table 2). 

 

Despite the variable effect of ozone on fish and fish products (Table 2), the efficacy 

of ozonated water against pure cultures of food related microorganisms has shown 

that Gram-positive and Gram-negative bacteria were killed at sufficient doses 

(Restaino et al.,  

1995). 
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4. Methodological considerations for the molecular 

methods 

4.1 Limitations of molecular methods and DGGE 

All kinds of methods have specific limitations that need careful evaluation regarding 

analytic procedures and interpretation of results. Sampling and sample handling are 

known to produce biases.  

 

The first obvious source of variability for molecular methods is the extraction of 

bacterial DNA from a complex food matrix, or from a mixture of cultured bacteria. 

Foods represent a complex matrix, including various proteins, fats, enzymes, 

polysaccharides, making it a difficult product for analyses. These substances, in 

addition to various other unknown substances, may interfere and act as inhibitors in 

the following analyses. DNA extraction methods need to be optimised in order to 

gain a concentrated and pure product, and a high yield suitable for subsequent 

analyses. Rudi et al. (2004) collected bacterial cells from MA-packaged salmon and 

coalfish before DNA extraction with a commercial kit. The pre-treatment included 

dilution of the fish muscle and gentle centrifugation in order to capture bacterial cells 

from the matrix. In the current work, this extraction method was adapted and used for 

cod and halibut (Paper I-III). The method was found appropriate, as it already had 

been developed and tested for fish samples. After the pre-treatment the cells were 

lysed and DNA collected. To assess the performance of the method, the waste 

supernatant was grown on solid agar, and the bacteria enumerated. Results showed 

that less than 1 % of the total bacterial amount was lost during preparation.  

 

The next possible source for biases may be the PCR reaction itself, with numerous 

pitfalls, but also possibilities for application improvements. The main issue associated 

with the analysis of food samples is the presence of substances in the DNA mixture, 
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caused by the insufficient purification of the target DNA. These substances may 

inhibit the PCR amplification of DNA (Wilson, 1997). To minimize the risk of 

incomplete PCR amplification, well established and verified PCR conditions and 

procedures were used in the present studies (Paper I-IV).  

 

The fragments studied by DGGE are limited to a length of 500 base pairs (bp), caused 

by the decreased resolution of DNA in the gel (Myers et al., 1985). This represents a 

limiting factor when sequencing is to be performed, or if probes are to be designed. 

Using the universal primers spanning the V3 16S rDNA region as a target, a product 

of approximately 150-200 bp is obtained. This is a relatively short sequence for 

database comparison, although the V3-region is known to have a high grade of 

resolution and to be highly variable (Øvreås, 2000). Hence, it is not always possible 

to differentiate within the same genus. In the present work, detection of 

S. putrefaciens in farmed cod (Paper II) was based on sequencing the partial 16S V3 

sequence. This result is in contrast to the findings of Vogel et al. (2005) who found 

S. baltica in marine fish, based on 16S sequencing of a 1400 bp product. The 

difference in the observed results may be due to the difference in the length of 

sequence being analysed, or the fact that different Shewanella species are found in 

different environments.  

 

The choice of primers is crucial, and several studies have shown that amplifying 

different 16S variable regions may lead to different results in the observed species 

composition of a sample (Cocolin et al., 2001; Dewettinck et al., 2001; Ercolini et al., 

2003). Bottled water was investigated using two different primer sets, where only one 

of the primer sets gave a detectable PCR-product when visualized on agarose gel 

(Dewettinck et al., 2001). Differences in the community structure were also obtained 

when analysing Stilton cheese using the 16S V3-region and the V4-V5-regions as 

targets (Ercolini et al., 2003). The inconsistency among the results was explained due 

to different preferential amplification between the two pairs of primers used. The 

universal primers used in this work were selected based on literature studies on 
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analysis of fish products and other foods, and from discussions with experienced 

DGGE users.  

 

Heterogeneous sequencing, giving rise to more than one band on DGGE and thereby 

overestimating the community diversity, is another problem arising when using the 

16S rDNA as a target. DGGE profiles of S. putrefaciens (CCUG 13.452 = ATCC 

8071) and P. phosphoreum (CCUG 12.228) pure cultures resulted in four and five 

distinct bands, respectively (Figure 2, Paper I and Figure 1, Paper II). These 

bacteria have been used throughout the experiments as internal standards and positive 

controls (Paper I-IV). The heterogeneity was also observed in the performed 

experiments, where multiple DGGE bands were assigned the same bacterium, with 

identical association number in BLAST (Figure 2, Paper I and Figure 1, Paper II 

and III). The pure cultures of S. putrefaciens and P. phosphoreum were 

bidirectionally sequenced with the primers covering the E. coli base positions 27 to 

1491. Our in-house S. putrefaciens strain was assigned as S. putrefaciens gene for 

16S rRNA. P. phosphoreum, on the other hand, was found to be P. phosphoreum and 

P. “kishitanii clade” 16S rRNA gene when comparing the sequence result with 

sequences in BLAST. P. “kishitanii clade” and P. phosphoreum is known for its 

sequence similarity (Ast & Dunlap, 2005; Dunlap & Ast, 2005). Although 

P. “kishitanii clade” is most often found in light organs of deep-sea fish, it has been 

detected on the skin of some fish (Ast & Dunlap, 2005), in addition to cod flesh 

(Paper II). 

 

A problem when using universal primers is the complex binding pattern and the 

ability of some bands to possibly represent multiple species (Temmerman et al., 

2004). A consequence of this gel co-migration is that a DGGE single band does not 

always represent a single bacterial strain (Sekiguchi et al., 2001). Furthermore, 

different 16S regions and DGGE conditions can result in different resolutions of the 

separation (Muyzer & Smalla, 1998). 
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Quantification of PCR products and analysis of the DGGE band intensity may yield 

additional information on the abundance of the different species, though this should 

be regarded with caution. The band intensity may reflect the relative amount of 

particular bacteria or a bacterium for which the PCR amplification is favoured. 

Nevertheless, it is believed that the detected bands are from the predominant species 

of a bacterial community, and that the appearance or disappearance of bands in the 

DGGE profiles indicates an increase or decrease in the numbers of these bacteria 

(Ferris & Ward, 1997).  

 

Although the method of DGGE is often used, there are some disadvantages that can 

reduce the usefulness for community analysis. Despite these limitations, DGGE is 

highly preferred and considered as one of the few techniques allowing a fast and 

reproducible microbial analysis of bacterial communities (Cocolin et al., 2001; 

Schäfer & Muyzer, 2001; Temmerman et al., 2004). 

4.2 Bacterial detection limits 

One of the major problems and concerns for any quantitative bacteriological analysis 

is the detection limit. A key question is: how many bacteria are needed for detection? 

The sensitivity of PCR-DGGE is based on the PCR reaction and its ability to amplify 

bacterial DNA, or product DNA of interest from a complex sample. To get the best 

possible results, the product must be as pure and as concentrated as possible. 

Theoretically, one cell in a 10 µl sample added to a PCR reaction of 100 µl total 

volume, corresponding to 100 cfu/ml, can be amplified by PCR. Generally, the 

sensitivity in food samples is reduced due to a wide range of inhibitory substances 

(Wilson, 1997; section 4.1). Detection limits in the range of 102-105 cfu/ml have 

previously been reported for bacteria in foods (Silvestri et al., 2007; Wilson, 1997). 

The PCR-DGGE approach was used with success for mixed bacterial population 

samples from fermented sausage containing 104 cfu/g (Cocolin et al., 2001). Whilst 

the detection limits for E. coli-containing mineral water have been indicated to be in 
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the range from 104 to 108 cfu/ml (Dewettinck et al., 2001). Other authors have found 

it possible to identify constituents which represent only 1 % of the total bacterial 

population (Muyzer et al., 1993). In fact, the detection limit is suggested to be 

species-, and perhaps strain-, dependent, especially when using the so-called 

“universal bacterial primers”.  

 

The fact that PCR does not distinguish between alive and dead cells is both an 

advantage and disadvantage. PCR amplification is dependent on intact nucleic acid, 

rather than viable or non-viable cells (Josephson et al., 1993). Hence, positive PCR 

amplification and the presence of a PCR product do not imply that the target 

organisms were viable, as PCR can detect viable but non-culturable (VBNC) and 

dead cells. As a consequence, the PCR amplification may result in a false positive 

result. Direct extraction and PCR amplification of mRNA can by-pass the problem of 

viability, although mRNA is unstable and has other disadvantages (Josephson et al., 

1993). During the storage experiments in Paper I-III, bacterial DNA from dead cells 

may contribute to false positive results. Despite the possibility of false positives, the 

predominant population will represent the cultivable bacteria during storage. In fact, 

the bacterial profile of DGGE will be represented by bacterial DNA from the 

dominant, viable species rather than the dead cells. 

 

Detection limits of spoilage bacteria  

For the spoilage bacteria S. putrefaciens and P. phosphoreum shelf-life rejection 

limits at log 8 cfu/g (Jørgensen et al., 1988) and log 7 cfu/g (Dalgaard et al., 1993), 

respectively, have been proposed. For the aerobic plate counts (APC), the maximum 

level set for human consumption is approximately log 6 cfu/g (ICMSF, 1986). 

However, this limit does not necessarily represent spoilage. The method of PCR-

DGGE will theoretically, based on previous discussion, be able to detect the spoilage 

flora at shelf-life rejection. Storage of halibut (Paper I) revealed a product of high 

quality with a low bacterial load. The APC after 5 days was log 1.3-3.3 cfu/g 

depending on MA or air storage. Even with such low bacterial number, the extraction 

method and PCR gave adequate material for DGGE analysis, resulting in DGGE 
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profiles with clear and distinct bands. These findings proved the method suitable for 

the extraction of the bacterial DNA present in the samples. The results for cod (Paper 

II and III), which had a higher initial bacterial count, showed that DGGE profiles 

were detected during the entire storage experiment. MA storage of cod gave an initial 

bacterial count of approximately log 4 cfu/g. According to Muyzer et al. (1993), 

bacterial populations that make up at least 1 % or more of the total population may be 

identified by DGGE. Microorganisms with abundance above 1 % will, in a sample 

consisting of log 4 cfu/g, represent 100 cfu/g. During storage and bacterial growth, 

the detection limit will refer to log 5 cfu/g at log 7 cfu/g. From a consumer and shelf-

life point of view, the DGGE method is adequate for detection of the bacterial flora. 

Furthermore, the spoilage flora of S. putrefaciens and P. phosphoreum will be 

detected before the spoilage rejection limit of log 6 cfu/g APC. 

 

During storage, the bacterial flora will be represented by the species able to grow in 

the fish product at the given storage conditions. For fish samples, this mainly 

represents the spoilage flora. However, pathogens may consist in low numbers in the 

sample, and thereby not be detected by the method. The focus of this work is solely 

the bacterial diversity of products, and a comprehensive discussion on health risks 

from pathogens is not included. It is important to note that psychrotrophic pathogens, 

such as Listeria monocytogenes, Aeromonas hydrophila, and psychrotrophic non-

proteolytic Clostridium botulinum type E, are known from fish processing and may 

grow at temperatures � 4 oC. Burkholderia sp., which was found in Paper I, has to 

our knowledge not been associated with a health risk from fish species in temperate 

waters. Bacillus cereus was found initially on ozone-treated cod (Paper III), but the 

DGGE band representing this bacterium disappeared during storage. In MA, 

hazardous levels of botulinum toxins are formed after 3-4 weeks at 4 oC (Sivertsvik 

et al., 2002). Furthermore, Listeria monocytogenes and Aeromonas hydrophila may 

be a hazard when fish is stored at 4 oC (Huss et al., 2003) and should therefore be 

studied further using longer shelf-lives.  
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5. Bacterial flora of farmed fish 

5.1 Detection of the microflora of farmed cod and halibut 

Characterisations of the microbial flora, primarily detected as the spoilage flora, of 

fish caught in the Northern Atlantic have been performed by many researchers 

(Table 3). During the last decade, as the farming industry has increased and as new 

farmed species are commercialised, knowledge about the microflora on these 

products have to be gained.  

 

Enumeration and characterisation of the bacterial flora of fish, especially the spoilage 

flora, are commonly examined by cultivation and thereafter physiological and 

biochemical characterisation. Traditional methods have been found to be inadequate 

because of non-specific bacterial detection and the use of costly and time consuming 

techniques. The lack of selective media for some important fish spoilage bacteria, like 

S. putrefaciens and P. phosphoreum, illustrates the challenges encountered with 

traditional methods for examining bacterial diversity. Quantification of 

P. phosphoreum can, however, be determined by a conductance method (Dalgaard 

et al., 1996). For the detection of sulphide-producing bacteria, and mainly 

S. putrefaciens, an easy and rapid method has been developed (Skjerdal et al., 2004). 

The Colifast test measures the level of sulphide-producing bacteria in a sample, by 

monitoring the colour change in the growth media as a function of time.   

 

Identification of the bacterial composition of MA-packaged farmed fish is of interest 

as MA packaging is an important shelf-life extending method used for the retail 

market. Shelf-life studies, where bacterial changes during storage are monitored, can 

give valuable information about the bacteria responsible for product spoilage. Certain 

bacterial species are known to be involved in spoilage and responsible for most of the 

spoilage in air and MA-packaged products. These bacteria have not been thoroughly 
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investigated for farmed fish species. Furthermore, molecular-based techniques are 

widely used when studying other foods. However, their use is not as common in the 

study of the bacterial flora of fish and fish products.  

 

Gram and Huss (1996) reviewed and discussed spoilage bacteria of fish and fish 

products up to the middle of the 1990s. Table 3 summarises publications from the last 

10 years discussing bacterial spoilage of air stored and MA-packaged fresh seafood 

products. However, the table only focuses on fish from the Northern Atlantic and 

mostly on farmed fish. 

 

Table 3. Spoilage bacteria detected in marine seafood products during storage 
in air or MA. The table summarise farmed fish and fish from the Northern 
Atlantic, during the last 10 years.  

Bacterium Fish and fish product Reference 

P. phosphoreum Farmed cod Esaiassen et al., 20071; 

Herland et al., 20071; 

Sivertsvik, 2007;  

Paper II2 and III2 

 Wild cod Dalgaard et al., 1997; 

Herland et al., 2007 

 Farmed halibut Rotabakk et al., 2008; 

Paper I2 

 Farmed salmon Sivertsvik et al., 2003 

 Coalfish Dalgaard et al., 1997;  

Rudi et al., 20042 

 Farmed wolf-fish Rosnes et al., 2006 

 Redfish Dalgaard et al., 1997 

 Trout Dalgaard et al., 1997 

 Plaice Dalgaard et al., 1997 
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Table 3. Continued. 
Bacterium Fish and fish product Reference 

S. putrefaciens Wild cod Boskou & Debevere, 1997; 

Herland et al., 2007; 

Olsson et al., 2007 

 Farmed cod Paper II and III 

 Farmed salmon Sivertsvik et al., 2003 

 Farmed halibut Guillerm-Regost et al., 

2006 

 Wild haddock  Olsson et al., 2007 

S. baltica Marine fish (cod, flounder, 

plaice) 

Vogel et al., 20052 

 Farmed cod Paper III  

Shewanella spp. Marine fish (cod, flounder, 

plaice) 

Satomi et al., 20062;  

Vogel et al., 2005 

Pseudomonas spp. Salmon Rudi et al., 2004 

 Farmed cod Paper II and III 

 Farmed halibut Paper I 

Brochothrix thermosphacta Salmon Rudi et al., 2004 

 Farmed salmon  Olofsson et al., 20072 

 Farmed halibut Rotabakk et al., 2008; 

Paper I 

Other spoilage bacteria Coalfish  Rudi et al., 2004 

 Salmon  Rudi et al., 2004 
1P. phosphoreum was detected by a conductance test.           
2With the exceptions of Olofsson et al. (2007), Rudi et al. (2004), Satomi 
et al. (2006), Vogel et al. (2005), and Paper I-III, all papers used microbial 
analyses to detect P. phosphoreum and the H2S producing bacteria 
S. putrefaciens.  
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To characterise the bacterial flora in Paper I-III, PCR-DGGE followed by sequence 

analysis of the V3-region gel bands were performed. The results displayed different 

bacterial profiles during storage and between the storage variants, and showed that 

the DGGE profiles consisted of different bacteria. Using S. putrefaciens and 

P. phosphoreum as internal standards (Paper I-IV), bands from different gels can be 

compared and manually normalised. The profiles of P. phosphoreum and 

S. putrefaciens have also been used as a “ruler” within the gels to determine 

eventually “smiley” gels.  

 

The product spoilage of cod in MA with high CO2 concentrations is caused by the 

presence of P. phosphoreum (Dalgaard et al., 1997). Traditionally P. phosphoreum is 

detected by cultivation on plate count agar (PCA) supplemented with NaCl, as 

P. phosphoreum is salt requiring. However, PCA is not a species-specific media, and 

supports growth of many bacteria. The findings in Paper I-III revealed that the 

predominant bacterial flora detected from PCA plates consisted of a more diverse 

bacterial composition than previously reported for fish (Gram & Huss, 1996). The 

sequencing detected Photobacterium spp., Pseudomonas spp., Brochothrix 

thermosphacta, Serratia sp., Yersinia sp., Micrococcus luteus, Shewanella spp. and 

some bacteria determined as uncultivable (Paper I-III). However, both cod and 

halibut were dominated by the spoilage bacteria P. phosphoreum and Pseudomonas 

(Paper I-III).  

 

Recent shelf-life studies on farmed cod, using microbial and chemical analyses, have 

suggested MA packaging with CO2 and O2 as an optimal gas mixture (Sivertsvik, 

2007). However, until now no proper information about which bacteria that were 

inhibited, and thereby, causing this extended shelf-life has been available. The 

microbial analysis (APC and psychrotrophic counts) gave a lower bacterial count in 

CO2/O2 storage, when compared to CO2/N2. The extended shelf-life was based on a 

combination of the quality parameters; sensory, microbial and chemical analyses 

(Sivertsvik, 2007). With regards to farmed cod (Paper II), no differences between 

the two storage atmospheres were found by cultivation. However, different 
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microfloras were found in the products having different gas mixtures when the 

bacterial composition was described by PCR-DGGE. The DGGE and sequencing 

enabled the examination of the bacterial diversity and population shift, as a result of 

packaging. The observed shelf-life extension of CO2/O2 storage was described by the 

bacterial diversity, where Pseudomonas spp. dominated in the packages during 

storage.  

 

The microflora of farmed Atlantic halibut (Hippoglossus hippoglossus) has, to my 

knowledge, not previously been sufficiently studied. In the storage of halibut 

(Paper I), differences in the microbial enumeration on PCA were found between the 

two gas mixtures CO2/N2 and CO2/O2. DGGE was used to detect and display the 

changes in the bacterial profiles of the various gas compositions. Based on sensory 

and microbial analyses, the CO2/O2 gas mixture was suggested as the better mixture 

for halibut storage (Paper I). During CO2/O2 storage of halibut, there was a clear 

shift in the DGGE bands during the storage period (Figure 2, Paper I). Sequence 

analyses revealed a change in the bacterial composition during storage from 

P. phosphoreum to Pseudomonas, B. thermosphacta and Serratia sp. Detection of 

P. phosphoreum during the entire CO2/N2 storage can explain the somewhat lower 

shelf-life of this gas composition. B. thermosphacta has not been regarded as part of 

the spoilage flora for MA-packaged marine fish, although it is known to be a part of 

the spoilage flora of meat and seafood. This bacterium was, however, found in MA-

packaged halibut (Paper I). The genus Brochothrix is known to grow in both CO2 

and CO2/O2 enriched atmospheres. Lately, B. thermosphacta has been found in the 

initial flora of fresh cold-smoked Norwegian salmon (Olofsson et al., 2007), but not 

during storage in vacuum packaging where Lactobacillus spp. and 

Photobacterium spp. dominated. The growth potential of B. thermosphacta in a 

mixture of other spoilage bacteria has been studied by Russo et al. (2006). The 

authors found that bacterial competition might take place when B. thermosphacta and 

other spoilage bacteria grow on the same media. The growth of B. thermosphacta was 

especially inhibited in the presence of LAB.  
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The general advantage using bacterial DNA isolated directly from a fish matrix 

without prior cultivation is that it represents a more rapid technique, giving a more 

complex profile compared to cultivation-based methods (Amann et al., 1995; Masco 

et al., 2005). Unfortunately, the method of DGGE does not allow quantification of 

the bacteria present. To gain sufficient information both cultivation and molecular 

analyses should be performed. A combination of the methods ensures quantification 

and bacterial identification. 

5.2 DNA extraction from the fish matrix and cultivated 

bacteria 

Comparing the DGGE profile for DNA extracted directly from the fish matrix with 

that of a DNA sample taken from a bacterial population obtained after cultivation on 

agar, is of special interest to this work. Theoretically, one would expect a more 

diverse community composition in samples taken directly from the muscle. Since 

different bacteria have different growth requirements and characteristics, such as the 

inability of certain bacteria to grow on the media and growth conditions used, 

culture-based methods can be biased. Moreover, some bacterial species may outgrow 

others.  

 

In Paper I-III, a more diverse bacterial composition was generally found in samples 

where direct DNA extraction was conducted, compared to what was found after 

cultivation and DNA extraction. Results from the cod storage experiments showed 

initially seven bacterial species using direct DNA extraction, compared to only two 

found after cultivation (Paper II). The bacteria found on the fish at the beginning of 

storage may represent the bacterial diversity in the water environment of the fish. 

These can be introduced onto the flesh when filleting the fish.  

 

Analyses of the salmon gut content revealed great differences between direct DNA 

extraction and cultivation prior to DNA extraction (Paper IV). Analysis from 16S V3 
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sequencing identified the genus Lactobacillus, Lactococcus and Bacillus as the 

predominant bacteria in the salmon intestine, based on direct bacterial DNA 

extraction, whereas the genus Pseudomonas, Acinetobacter, Vibrio and 

Janthinobacterium were found after cultivation. The bacterium P. phosphoreum was 

detected in both extraction methods. The differences found in the salmon intestine are 

further discussed in section 5.4.  

 

Cultivation and subsequent sequencing of isolates were found to give a more diverse 

bacterial composition when analysing cold-smoked salmon, compared to direct 

extraction and cloning (Olofsson et al., 2007). However, the cloning technique was 

needed to identify new species of Photobacterium in the analysed samples. These 

findings are in contrast to Rudi et al. (2004) who found the microbial diversity in 

coalfish and salmon to be more complex than previously suggested, based on 

sequencing. 

5.3 Shewanella species in farmed fish during storage 

Formation of black colonies on Iron agar can occur among members of the family 

Vibrionaceae (Gram et al., 1987; Lund et al., 2000). Analyses of Atlantic salmon 

intestine, combined with comparison of phenotypic characteristics and 16S sequence 

analysis, detected the pure cultured black Iron agar isolates as Vibrio sp. based on 

16S rDNA sequencing (Paper IV). Recently, black colonies on Iron agar from the 

belly flap area of Danish marine fish were assigned as Shewanella species (Satomi 

et al., 2006; Vogel et al., 2005). The authors used the primer set “27f and 1512r”, 

which was found capable of identifying a wide variety of bacterial taxa (Weisburg 

et al., 1991). The primer set used in Paper IV (“27f and 1491r”) has been found to 

extend the species’ diversity compared to the 27f and 1512r primer set (Weisburg 

et al., 1991). 
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A main concern regarding the spoilage potential of Shewanella spp. is the ability to 

produce ammonia, sulphides and TMA, and thereby sour odour and product spoilage. 

Species in the genus Shewanella, including S. putrefaciens, S. baltica, S. hafniensis 

and S. morhuae are found as spoilage bacteria in air stored fish (Gram et al., 1987; 

Satomi et al., 2006; Vogel et al., 2005). S. putrefaciens is commonly found on marine 

fish (Table 2), besides wild caught sea salmon (Hozbor et al., 2006) and 

MA-packaged Mediterranean mullet (Pournis et al., 2005). Farming is expected to 

inhibit the bacterial growth, and S. putrefaciens has been found in low amounts, or 

totally absent in farmed Atlantic cod (Esaiassen et al., 2007; Herland et al., 2007; 

Sivertsvik, 2007), rainbow trout (Chytiri et al., 2004) and wolf-fish (Rosnes et al., 

2006). In MA-packaged farmed halibut the genus Shewanella were found only 

sporadically on Iron agar during storage (Paper I), which is in agreement with the 

results of Rotabakk et al. (2008). In Paper II, where the bacterial diversity was 

monitored on post-rigor filleted farmed cod, S. putrefaciens was detected in low 

numbers on Iron agar during MA storage. Sequencing of DGGE bands detected 

S. putrefaciens in samples when DNA was extracting directly from the fish fillet. 

Contrary to these storage results, no growth of S. putrefaciens was observed for 

farmed pre-rigor cod (Esaiassen et al., 2007; Sivertsvik, 2007). Pre-rigor filleting can 

have a positive affect on the quality of the raw material, resulting in reduced bacterial 

growth during storage. The reasons for the lack of S. putrefaciens are not known, but 

assumptions include the effects of controlled farming conditions, feeding regimes, 

hygienic handling, and the reduced time between slaughtering and processing, in 

addition to different farming locations and year cycle variations.  

 

In Paper II, S. putrefaciens was detected in samples from direct DNA extraction, but 

not from cultivation. The results in Paper III show that S. putrefaciens and S. baltica 

were present in samples from Long and Hammer medium. The detection of 

Shewanella spp. in Paper II and III was based on sequence analyses of DGGE 

bands. No differences in the detection of Shewanella spp., as a function of the gas 

mixtures, were observed during this work. Moreover, ozone treatment did not inhibit 

or affect the growth of these species.  
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5.4 Detection of intestinal flora of farmed salmon 

The incentive for studying the intestinal content of farmed salmon was to compare 

results obtained using different methods (Paper IV). The DGGE profiles and 

sequence analyses gave different results when DNA from cultured bacterial 

populations was compared to DNA extracted directly from stool samples. These 

findings display one of the major problems regarding cultivation-based methods, and 

especially for diverse samples containing a wide variety of bacteria. Bacteria which 

cause spoilage of fish are often introduced onto the flesh when filleting the fish. Sea 

water, the skin, and the intestinal content can all contribute to such contamination. 

Increased knowledge of the bacterial flora of the intestine can give valuable 

information about the origin of the bacteria, and thus the potential sources of 

microbial contamination of the fish flesh.  

 

To compare different methods, cultivation and molecular analyses were performed on 

the same samples obtained from the salmon intestine (Paper IV). Pure colonies were 

described by microscopy and studied using a limited number of biochemical tests, 

such as the Gram-, catalase- and oxydase-reactions, and the API system. The results 

in Paper IV showed that it was not possible to identify any of the tested isolates with 

satisfactory discrimination, or to classify the isolates into taxonomic groups, using the 

selected tests. For further biochemical and phenotypic characterisation, optimisation 

must be carried out, as discussed by Hansen and Sørheim (1991), Ringø and Olsen 

(1999), Satomi et al. (2006), and reviewed by Popovic et al. (2007). Sequencing of 

the 16S rDNA was applied to determine the genotype of the isolates. The 16S rDNA 

sequencing of pure culture isolates were in accordance with the V3-region results of 

DGGE bands obtained after cultivation (Paper IV). Both methods detected 

Vibrio spp. and P. phosphoreum as part of the predominant microflora of the hind-

gut. The V3-region, of about 200 bp, is considered to be a relatively short sequence 

when used in comparative studies. However, it was proven to be adequate for the 

determination of bacteria from cultivated samples, as discussed in section 4.1. 

Disadvantages of the cultivation-based method were found when the bacterial 
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compositions of samples collected directly from the intestinal matrix were compared 

to cultivated samples. Cultivation favours certain bacteria, and can bias the result 

compared to direct analyses. This result is also partly observed in Paper I-III, where 

Paper II concludes that low bacterial diversity exists among the cultured samples, 

and shows the advantages of using DNA from direct extraction. The findings in 

Paper IV show that the PCR-DGGE approach can be used to determine the bacterial 

flora of complex samples. 

 

The intestine of aquatic animals are known to harbour LAB (Ringø, 2004), a 

heterogeneous group of bacteria with different habitats and phenotypic characteristics 

(Lund et al., 2000). In intestines of fish LAB is found in various levels (Ringø, 2004). 

Generally, LAB from fish is known to be slow growing, and therefore, the 

recommended incubation conditions include low temperatures for up to 4 weeks on 

agar-media (Ringø & Gatesoupe, 1998). As reported in Paper IV, Lactobacillus spp. 

and Lactococcus sp. were only detected by sequencing of samples obtained by direct 

extraction of bacterial DNA, and not from cultivation at 15 oC for 1 week. It can be 

assumed that this was caused by the slow growth, and detection on growth media can 

be lower than the actual bacterial number. 

 

The detection of LAB was limited to salmon intestine (Paper IV), as these bacteria 

were not found on cod or halibut flesh (Paper I-III). These bacteria are commonly 

found on fish from tropical waters (reviewed by (Gram & Huss, 1996)), and on 

lightly preserved fish products, such as cold-smoked fish and MA-packaged fish 

products (Gonzalez-Rodriguez et al., 2002; Olofsson et al., 2007; Paludan-Müller 

et al., 1998; Rudi et al., 2004). 
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5.5 Enhanced shelf-life by improved hygienic handling 

Enhanced shelf-life, by inhibition of the spoilage flora, was investigated using ozone 

treatment of farmed Atlantic cod, prior to MA packaging (Paper III). The effects of 

ozone treatment on the bacterial population in the cod during chilled storage were 

examined. Ozone has recently been used in combination with other preservation 

techniques, such as MA for preservation of fruits and vegetables (An et al., 2007; 

Beltran et al., 2005; Zhang et al., 2006). No papers addressing this combined 

approach for farmed fish have been found. By combining ozone treatment and MA 

packaging, an increased shelf-life and improved quality for the products was, 

however, expected. Furthermore, we anticipated DGGE profile differences among the 

fish spoilage organisms as a function of the O3 treatment.  

 

When combining different treatments, it is important to have rapid and precise 

methods to detect changes in the microbial community. Detection of the bactericidal 

effect of ozone treatment is commonly performed by microbiological enumeration on 

agar media. As previously discussed, such media may be selective and not able to 

display microbial changes in the products due to ozone treatment. PCR-DGGE was 

applied in Paper III to determine the effect of ozone treatment. The DGGE technique 

has been used to measure the effect of ozone treatment on the microbiota of ozone-

treated drinking water (Fonseca et al., 2001).  

 

Does ozone treatment affect growth of S. putrefaciens and P. phosphoreum in 

cod? 

During this thesis, discussions and detection of the spoilage bacteria Shewanella spp. 

and P. phosphoreum have been emphasised. One central issue is whether ozone 

treatment does influence the growth of P. phosphoreum and S. putrefaciens, as well 

as giving a reduction in the total number of bacteria in cod. P. phosphoreum is not 

considered a spoilage bacterium, other than in cold water aquaculture. Thus, no 

publications discussing the effect of ozone on P. phosphoreum have been found. 

Determination of psychrotrophic bacteria, often regarded as P. phosphoreum, showed 
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a 0.8-1.5 log cfu/g reduction in ozone-treated MA-packaged cod, compared to 

MA-packaged cod (Figure 2A, Paper III). However, the observed effect was not 

significant (P = 0.21). As for the genus Photobacterium, there was a minor, 0.2-0.5 

log cfu/g, reduction of H2S producing bacteria during storage of ozone-treated MA 

cod, compared to the MA cod (Figure 2B, Paper III). However, no statistical 

significance (P = 0.69) was observed. Previously, ozone treatment, vacuum 

packaging, and storage of aquacultured mussels resulted in a decreased formation of 

H2S producing bacteria enumerated on Iron agar (Manousaridis et al., 2005). The 

authors reported decreased bacterial counts of log 1.1-2.5 cfu/g, as an effect of ozone 

treatment. Furthermore, analysis of H2S producing bacteria on ozone-treated scad 

(Trachurus trachurus) gave significantly lower bacterial growth as a function of 

ozone treatment, represented as > 1 log cfu/g reduction (da Silva et al., 1998). 

Exposure of gaseous ozone (0.27 ppm) on agar plates incubated with S. putrefaciens 

resulted in growth inhibition and an antimicrobial effect (da Silva et al., 1998).  

 

Both growth on agar media and molecular analyses of the ozone-treated cod in 

Paper III detected the bacterium Shewanella. 16S rDNA sequence analysis showed 

that both S. putrefaciens and S. baltica were present in the cod. The finding of 

S. baltica is in agreement with Vogel et al. (2005). No inhibitory effect of ozone was 

observed on the bacterial growth of Shewanella or by detection using DGGE and 

sequencing. 

 

Paper III concludes that no observable effect of ozone treatment was found. 

Sequence analysis of DGGE bands detected P. phosphoreum, Pseudomonas spp., 

S. baltica and S. putrefaciens as the predominant bacteria in all samples, regardless of 

whether or not ozone treatment has been employed. This result is in agreement with 

previous publications, where the ozone treatment alone has variable effects when 

used on products with a high organic content, such as foods (Kim et al., 1999). 
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5.6 Concluding remarks 

The molecular approach is much more than just a method for detecting the bacteria 

present in a sample. It can provide a new tool when studying the bacterial diversity 

during a storage experiment. For further experiments on MA-packaged halibut or 

cod, bacterial profiles obtained from Paper I and II can be used as references, and 

thereby, indicate the bacteria present in the sample.  

 

The method of PCR-DGGE and sequencing is known to amplify and display the 

predominant bacteria in samples, and allows detection of the entire predominant 

bacterial composition in a sample. The conventional, culture-based methods used for 

detection of fish spoilage flora, are not always species-specific. The results presented 

show that there can be more spoilage bacteria as part of the flora of farmed Atlantic 

halibut and cod than previously assumed. Detection and characterisation of the 

bacterial composition of farmed halibut, during MA packaging is of special interest 

since there are, to my knowledge, few other reports available. 

 

The main conclusions are summarised in the following:  

 

• DNA extraction directly from the fish flesh, or the intestine, showed a more 

diverse microflora than for DNA isolated after prior cultivation. 

• DGGE is a rapid method for investigation of bacterial profiles in complex 

sample. Within 48 hours the profiles of unknown samples can be obtained, 

using the methodical conditions described in this work. 

• Farmed Atlantic halibut and cod were dominated by the microflora of 

Photobacterium spp., Pseudomonas spp., Brochothrix thermosphacta, 

Serratia sp., Yersinia sp., Micrococcus luteus, and Shewanella spp. during 

modified atmosphere storage. 
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• Sequence analysis revealed differences in the bacterial composition during 

storage, which was not detected by agar plating techniques alone. 

• The ozone treatment of farmed Atlantic cod did not affect the microflora. 

• In order to obtain quantitative results, agar plating techniques have to be 

performed. 

• A combination of molecular techniques and microbiological analyses should 

be applied to obtain the most representative picture of the microorganisms 

present in a fish sample. 
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6. Further perspectives 

To continue the present work several approaches and topics can be studied more in 

detail.  

 

• The first obvious attempt is to introduce molecular methods to quantify the 

bacterial numbers in foods in a rapid and precise manner. One possible method 

is real-time PCR, quantifying the entire bacterial community of the samples. In 

addition, quantification of the spoilage bacteria Shewanella spp. and 

P. phosphoreum by real-time PCR would give valuable information.  

• Determination of the bacterial detection limits. Theoretically, the predominant 

bacterial flora is identified using the PCR-DGGE approach. Some publications 

discuss this detection limit for specific food applications and in relation to 

specific bacteria. An interesting task for further work would be to determine 

the bacterial detection limit for the fish spoilage flora, and in different fish 

species.  

• Another valuable discussion is regarding inhibitory substances in the fish. 

Such substances can cause problems during bacterial DNA extraction and 

amplification. More research can be directed towards bacterial DNA extraction 

from fish as a matrix.  
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Abstract

It is not well understood why Atlantic halibut (Hippoglossus hippoglossus) has longer shelf-life than most other white fish species. Our

approach was to examine the microbiological diversity of the spoilage microbiota during modified atmosphere (MA) packaging of

farmed Atlantic halibut. Portions were packaged with gas mixtures of CO2:N2 and CO2:O2 (50%:50%) and with air as a reference. The

packages were stored at 4 1C and samples were taken 6 times during the 23 days of storage. Analyses with molecular techniques (PCR-

DGGE) determined profiles of the bacterial populations in the various samples and sequencing detected the bacterial species present. In

addition, samples were analysed for microbial, chemical and sensory parameters. The shelf-life was 10–13 days when stored in air and

between 13 and 20 days for MA packages, with oxygen-enriched packages suggested as the better gas mixture, based on microbial growth

and sensory scores. From sequence analyses of the bacterial population Photobacterium phosphoreum and Pseudomonas spp. were found

to dominate in the halibut. Brochothrix thermosphacta was found in most samples at the end of the storage period. Shewanella

putrefaciens was found sporadically and in low concentrations based on microbial methods, but not detected by PCR-DGGE.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Farmed halibut; MA packaging; Spoilage; PCR-DGGE; Microbial population

1. Introduction

Atlantic halibut (Hippoglossus hippoglossus) is a promis-
ing species for coldwater aquaculture, and an important
food fish of excellent flavour associated with a long shelf-
life compared to other white fishes as cod, saithe and wolf-
fish. Previous studies have reported halibut to be well
suited for ice storage (Ruff et al., 2002; Guillerm-Regost
et al., 2006). The factors responsible for this long shelf-life
are not fully known, but during substantial research,
factors as fish size and dietary fat content (Nortvedt and
Tuene, 1998; Ruff et al., 2002), water holding capacity

(Olsson et al., 2003b) and seasonal variations (Olsson et al.,
2003a) have been suggested to contribute. For improved
shelf-life in retail packages, storage in vacuum or modified
atmosphere (MA) is likely to be beneficial.
Compared to ice storage in air, MA packaging inhibits

growth of the specific spoilage organisms (SSO) which
supports bacterial degradation by producing off-odour and
off-flavour. From shelf-life studies of MA packaged
farmed cod and salmon (Dalgaard et al., 1993; Sivertsvik
et al., 2002, 2003) it is known that Shewanella putrefaciens

and Pseudomonas spp. are inhibited in MA, resulting in a
prolonged shelf-life. Photobacterium phosphoreum is more
CO2 tolerant and may cause deterioration in MA
(Dalgaard et al., 1993). The main spoilage microbiota for
halibut is, however, not fully characterised. In order to

ARTICLE IN PRESS

www.elsevier.com/locate/fm

0740-0020/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.fm.2006.07.018

�Corresponding author. Tel.: +4751 84 46 00; fax: +4751 84 46 51.

E-mail address: jtr@norconserv.no (J.T. Rosnes).



develop high-quality products it is important to know the
microbiota, and to have rapid and precise methods to
detect this microbiota.

Applications of culture independent molecular methods
are needed to improve our understanding of the total
microbial microbiota, as conventional culture-based meth-
ods are selective and do not provide the entire microbial
diversity of complex environment (Amann et al., 1995).
DNA extracted from a microbial population can be used to
identify the genetic diversity of the dominant populations
by PCR and denaturing gradient gel electrophoresis
(DGGE) (Muyzer et al., 1993). Using the 16S fragment
of the rRNA gene one can describe both cultivable and
unculturable bacteria by phylogenetic relationship. PCR
and DGGE are commonly used in environmental micro-
bial ecology and have recently been implemented in
studying foods as reviewed by Ercolini (2004). Universal
primers amplifying a hypervariable region of the 16S
rDNA are used to detect the dominant bacteria in the
samples. Separation of DNA fragments on gel is based on
sequence differences, and bacteria can subsequently be
identified by sequencing. This is a reliable and fast method
to study the variation of dominant bacteria and it is well
suited for time interval studies, and to characterise complex
microbial populations (Giraffa and Neviani, 2001).

To our knowledge, there are no reports using the PCR-
DGGE technique to compare the predominant bacterial
composition and diversity in farmed Atlantic halibut. In
the present study our aim was to explain the shelf-life and
quality of farmed halibut (stored in different atmospheres)
by means of the PCR-DGGE method in combination with
sensory, chemical and traditional microbiological analyses.

2. Materials and methods

2.1. Raw material and sample preparation

Commercial farmed Atlantic halibut (H. hippoglossus) of
6–8 kg were obtained from Marine Harvest (Hjelmeland;
Norway). The fish were gutted and stored on ice during
shipment to Norconserv (Stavanger, Norway). The fish
were filleted, deskinned and packaged at Norconserv 1 day
after slaughtering.

2.2. Packaging materials

Portions of 150 g were packaged in 415ml high-density
polyethylene (HDPE) semi-rigid trays (no. 523, Polimoon,
Kristiansand, Norway). The air was evacuated and a food
grade gas mixture (50% CO2 and 50% N2 or O2, AGA,
Oslo, Norway) was introduced into the package before
heat-sealing (lidding film: 15 my PE/74 my PA, Dynoseal
ST 1575, Polimoon) on a semi-automatic packaging
machine (Dyno VGA 462, Polimoon). The gas volume-
to-product (G/P) ratio was approximately 2:1. The air-
stored portions were wrapped with non-barrier cling film
(PVC-film, Linpac plastics pontivy SA, Noyal-Pontivy,

France). Packages of both MA and air were stored at
4.0 1C in chill cabinets (Porkka CM710, Huurre Group,
Hollola, Finland). Duplicate samples were taken for
analyses 1, 5, 9, 13, 20 and 23 days after packaging.

2.3. Cultivation and isolation of bacteria from fish matrix

Samples of 10 g fish muscle were homogenised in 90ml
peptone water (0.9% NaCl (w/v) and 0.1% peptone (w/v))
for 30 s in a Stomacher 400 Laboratory Blender (AJ
Steward Company LTD, London, England). Total viable
counts were measured as aerobic plate counts (APC),
where aliquots from suitable dilutions were added to
melted and temperate (45 1C) iron agar with an overlay
(Iron Agar Lyngby, Oxoid CM 964, Basingstoke, Eng-
land). The agar was supplemented with 0.04% L-cysteine,
and incubated at 2071 1C for 3 days. Black colonies were
counted as H2S-producing bacteria and APC were counted
as the total of black and white colonies. The content of
psychrotrophic bacteria was determined by a spread plate
count method with plate count agar (PCA, Merck,
Darmstadt, Germany) added 1% NaCl, in order to support
growth of the salt requiring P. phosphoreum. Plates were
incubated at 771 1C for 10 days. Average results of
duplicate measurements are presented as log colony
forming units (cfu) per gram muscle.
After counting, the psychrotrophic bacteria from PCA

spread plates were collected, using an inoculation loop,
washed twice with 1�PBS (137mM NaCl, 2.7mM KCl,
0.9mM KH2PO4 and 6.4mM Na2HPO4 [pH 7.4]) and
frozen at �20 1C. The pellets were thawn immediately prior
to DNA extraction, and the cell pellet DNA was purified
using a commercial extraction kit. To ensure extraction of
Gram-positive bacteria DNA, a lysozyme lysis was
performed in advance, in accordance with the manufac-
turer’s recommendations (DNeasy Tissue Kit, Qiagen,
Hilden, Germany).

2.4. Extraction of total DNA from fish matrix

Duplicate surface samples of 10 g muscle were aseptically
removed by making a 0.2–0.5 cm deep cut of approximately
20 cm2 and diluted 1:10 in peptone water, homogenised for
2min in a Stomacher 400 Laboratory Blender (Colworth,
AJ Steward Company LTD, London, England) before
50ml of the suspensions were frozen. Bacterial DNA was
extracted in accordance with the method of Rudi et al.
(2004), and DNA was purified using the DNeasy Tissue Kit
with the Gram positive bacteria modification.

2.5. PCR protocol

Universal primers for the domain Bacteria were used for
amplification of the hypervariable V3 region on 16S rDNA
(Table 1). The forward primer included a 40 base GC
clamp (Sheffield et al., 1989). Bacterial DNA extracted
from fish matrix or cell pellet, 2.5 ml, was used as a template
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in a PCR reaction containing a final concentration of
0.5 mM of each primer (Eurogentec, Ougrée, Belgium and
MWG-Biotech, Ebersberg, Germany), 0.5U DyNAzyme
II Polymerase (Finnzyme, Espoo, Finland), 0.1% BSA
(Sigma, Germany) and 0.2mM of each dNTP (Fermentas,
Lithuania) in a total reaction volume of 25 ml. The reaction
was performed on a Mastercycler personal (Eppendorf,
Germany) using the following conditions: 92 1C for 2min
and than 30 cycles of 92 1C for 1min, 55 1C for 30 s and
72 1C for 1min. The reaction was terminated with an
extension step of 6min at 72 1C. PCR products were
examined and verified on 2% agarose gels (SeaKem Le
agarose, BMA, Rockland, USA) and visualised by
ethidium bromide staining. The gels were photographed
under UV light in a Bio-Rad GelDoc 2000 system (Bio-
Rad Laboratories Inc., USA).

2.6. DGGE analysis and identification of bands

DGGE was performed with the V20-HCDC system
(Scie-Plas Limited, Southham, England) using 10 ml of the
PCR product on a 0.75mm thick 8% (w/v) polyacrylamide
gel, with a denaturing gradient ranging from 30% to 55%.
The electrophoresis was run in 0.5�TAE buffer (Eppen-
dorf AG, Hamburg, Germany) at 60 1C for 10min at 20V
and further 18 h at 70V. After electrophoresis the gel was
stained for 1 h with 1� (final concentration) SybrGold
(Molecular Probes, Eugene, USA) in 1�TAE buffer,
rinsed in water and the bands were visualised under UV
light as described above. DNA fragments to be nucleotide
sequenced were excised with sterile pipette tips and
transferred to 30 ml sterile water. The DNA was allowed
to diffuse into the water at 4 1C overnight. From the eluate
5 ml was used as a template and re-amplified using PCR as
described above. The PCR product was re-run on DGGE
to confirm that it migrated as a single band, to the same
position. Single and correct positioned products were
cleaned by E.Z.N.A. Cycle-Pure Kit (Omega Bio-Tek,
Doraville, USA), according to the manufacturer’s recom-
mendations. Sequencing was performed at the University
of Bergen Sequencing Facility (Bergen, Norway) with an
ABI PRISM 3700 DNA Analyser (Applied Biosystems,
Warrington, UK). The partial sequencing was performed
using the forward primer BA338f without the GC clamp
and the BigDye Terminator v3.1 Cycle Sequencing kit

(Applied Biosystems, Warrington, UK). Searches in
BLAST from GenBank were used to find the closest
known relatives to the partial 16S rDNA sequences
(140–210 bp) (Altschul et al., 1997). Sequences with 97%
or higher identity were considered to represent the same
species.

2.7. Chemical analyses

Total volatile bases (TVB-N), trimethylamine (TMA)
and trimethylamine oxide (TMAO) was determined using a
Conway microdiffusion method (Conway and Byrne,
1933), as described by Rosnes et al. (2006).

2.8. pH measurements

The pH of the fish tissue was determined in triplicate,
using a pH meter (Beckman 72, Beckman Instruments Inc.,
Fullerton, USA) on homogenised muscle (25 g) added
25ml 0.1M KCl (ISO, 1993).

2.9. Sensory analysis (Quality Index Method)

The sensory evaluations were assessed using the Quality
Index Method (QIM) described by QIM Eurofish (Mar-
tinsdottir et al., 2001), modified and adapted for halibut.
The QIM-score was based on appearance, colour, texture
and odour of raw products. The panel gave demerit scores
of 0–2 points for the different attributes. The odour was
evaluated as sea fresh, fishy or sour, giving 0, 1 or 2 points,
respectively. The other attributes evaluated were colour
(0: homogeneous white—2: yellow, translucent), appear-
ance (0: transparent—2: dull) and texture (0: firm—2: very
soft). The QIM-score was the sum of the scores given by
the sensory panel on the individual quality parameters on a
scale from 0 to 8. Coded trays of raw halibut were
evaluated in duplicate by a trained sensory panel consisting
of 4 experienced evaluators.

2.10. Gas analysis

The headspace gas composition in the MA packages was
determined in quadruplicate by analysing an aliquot
(20ml) of the headspace gas in the trays using an oxygen
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Table 1

PCR primers and their position used for DGGE analysis and sequencing (Muyzer et al., 1993; Øvreås et al., 1997)

Primera Positionb Sequence Target

BA338fc 338–357 50ACT CCT ACG GGA GGC AGC AG Bacteria, 16S rDNA V3-region

UN518r 518–534 50ATT ACC GCG GCT GCT GG Universal, 16S rDNA V3-region

GC clamp 50CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G

af, forward primer; r, reverse primer.
bThe numbering of position is based on E. coli 16S rRNA.
cThe GC clamp was attached to the 50 end of the BA338f primer.
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and carbon dioxide analyser (Checkmate 9900 Analyzer,
PBI-Dansensor, Ringsted, Denmark).

2.11. Statistical analysis

Analysis of variance (ANOVA) was performed with
Minitab 14 (Minitab Inc., US) using General Linear Model
with Tukey’s HSD test at level Po0:05 (95%). The
analyses determined the main effects of the experimental
variables (time and packaging method) on the responses.

3. Results and discussion

3.1. Microbiological analyses

Growth started immediately in air, but had a lag phase
of about 5 days (CO2:N2) and 13 days (CO2:O2) in MA for

both psychrotrophic counts (PC) (Fig. 1) and APC.
Psychrotrophic bacteria are defined as bacteria capable of
growing at 0 1C and with a growth optimum exceeding
25 1C (Huss, 1995). International fish trade organisations
use APC as an indicator for high-quality shelf-life (not
necessarily spoilage), and log 6 cfu/g is often used as a
maximum level for fish sold for human consumption
(ICMSF, 1986). Application of this limit would give a high
quality shelf-life of about 10 days in air storage and 20 days
in CO2:N2, whereas the CO2:O2 did not reach this limit
during the 23 storage days (Table 2).
For fish stored at high CO2 concentrations, P. phosphor-

eum is regarded as the main spoilage organism, e.g. on
salmon (Emborg et al., 2002) and cod at 0 1C (Dalgaard
et al., 1993; Dalgaard, 1995). Spoilage of chilled, CO2

packaged fish is found at a level of log 7 cfu/g
P. phosphoreum (Dalgaard et al., 1993). Assuming that
the major part of the psychrotrophic bacteria are
P. phosphoreum, this level was reached for air packaged
halibut after about 10 days, and for CO2:N2 packages first
at day 20. CO2:O2 packages had a lag phase of 13 days and
the bacterial number were below the rejection limit the
entire storage period (Fig. 1). A significant difference was
found between different gas compositions (Table 2).

S. putrefaciens is a main spoilage organism on marine
fish during cold storage in air (Gram et al., 1987), causing
production of off-flavouring volatile compounds such as
ammonia, TMA and sulphides (Dalgaard, 2000). It forms
characteristic black colonies in Iron Agar. Of the halibut
samples (n ¼ 32) only 6 formed black colonies above the
detection level (X10 cfu/g). Growth was detected sporadi-
cally and irrespectively of the parallels and atmosphere,
and the bacterial number varied between log 1 (n ¼ 3) and
log 4 (n ¼ 1). Log 8 cfu/g are often set as a spoilage limit
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Fig. 1. Growth of psychrotrophic bacteria (PC) in farmed halibut as a

function of storage time. Halibut samples were stored for a total of 23

days after packaging. n ¼ air, & ¼ CO2:N2 and B ¼ CO2:O2.

Table 2

Effecta of storage time (days) and gas mixture on aerobic plate count (APC) (log CFU/g), psychrotrophic count (PC) (log CFU/g), quality index method

(QIM) score (0–8), trimethylamine oxide (TMAO), trimethylamine (TMA) and total volatile bases (TVB-N) (mg-N/100 g fish)

APC PC QIM TMAO TMA TVB-N

Storage time (days)

5 1.9A (n ¼ 6) 3.2A (6) 2.2A (24) 13.2A (6) 0.2A (6) 16.1 (6)

9 3.3AB (6) 4.1AB (6) 2.3A (24) 13.2A (6) 0.3A (6) 16.3 (6)

13 4.4B (6) 5.5BC (6) 3.8B (24) 11.3AB (6) 1.9AB (6) 18.1 (6)

20 6.3C (6) 6.7CD (6) 4.8BC (18)c 9.7AB (6) 3.1AB (6) 23.5 (6)

23 7.0C (6) 7.2D (6) 5.2C (18) 6.3B (6) 5.8B (6) 32.8 (6)

Effect of time (P-value) o0.001 o0.001 o0.001 0.003 0.022 0.072

SEM 0.4 0.3 0.3 1.2 1.2 4.5

Gas mixture

Air 7.1A (10) 7.4A (10) 5.2A (36) 7.8A (10) 5.6A (10) 31.7A (10)

50% CO2:50% N2 4.3B (10) 5.3B (10) 3.3B (36) 11.0AB (10) 1.0B (10) 16.1B (10)

50% CO2:50% O2 2.4C (10) 3.3C (10) 2.5C (36) 13.4B (10) 0.2B (10) 16.4B (10)

Effect of gas mixture (P-value) o0.001 o0.001 o0.001 0.001 0.001 0.005

SEM 0.3 0.3 0.2 0.9 1.0 3.5

R2(adj) 0.88 0.88 0.55 0.54 0.47 0.37

Values are given as least squares meansb. Number (n) of samples per sampling point is given in brackets.
aEffect of treatment (P-value), ANOVA (GLM) and Tukey’s pairwise comparison test.
bMeans with different upper case superscripts in the column are significant different by ANOVA (GLM) and Tukey’s pairwise comparison test.
cAt day 20 and 23 there were only 3 evaluators for the samples.
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(Jørgensen et al., 1988), and consequently our results
suggests other organisms to be involved in spoilage.

3.2. Molecular analysis

Molecular analysis using PCR-DGGE followed by
sequencing enabled characterisation of the bacterial
population in farmed halibut, and also monitoring of the
profile changes during storage (Table 3). This approach
allows detection of the dominant bacteria present in the
samples by sequencing the interesting gel bands. Farmed
halibut is a new and not well-characterised species, and to
our knowledge there is no information on the bacterial
microbiota causing deterioration during storage.

Excised DGGE bands were compared with BLAST
references based on the phylogenetic relationship of the
�180 bp partial 16S rDNA sequence of the hypervariable
V3 region. The V3 region is regarded as a good choice
when it comes to length and species–species heterogeneity
(Coppola et al., 2001; Ercolini, 2004), the region is also
considered to be highly variable and have a high grade of
resolution. The primers used in this experiment have
previously been used with success to analyse the bacterial
diversity in other foods, e.g. Cabrales cheese (Florez and
Mayo, 2006), fermented sausages (Fontana et al., 2005)
and meat products (Takahashi et al., 2004). Only two
reports have discussed the use of these primers to study
fish, Jensen et al. (2004) on halibut larvae and in MA
packaged farmed cod (Hovda et al., 2006).

3.2.1. PCR-DGGE profiles of bacteria isolated from cell

pellets

Air storage of farmed halibut, where oxygen could pass
freely through the cling film, resulted in a product that
rapidly deteriorated (10 days) as evaluated by microbial
and sensory methods. The bacterial profile of air stored
samples changed during the storage period (Fig. 2). The
main spoilage organisms of coldwater fish P. phosphoreum

and Pseudomonas spp. were detected as part of the
observed bacteria population (Table 3).

Seven bands were found in the CO2:O2 stored samples
during the first 9 days. At day 23 the profile was completely
changed and contained 10 ‘‘new’’ bands (Fig. 2). From
sequence analyses P. phosphoreum represented the bands in
the first period, in addition to an uncultured bacteria clone
spb33, found the first 9 days. Moreover, at the end of the
storage period the dominating bacteria were the aerobic
bacteria Pseudomonas spp., Serratia sp. and probably
Brochothrix thermosphacta with 95% similarity (Table 3).

The CO2:N2 samples had a similar bacterial profile as the
CO2:O2 during the first days of storage, but changed during
storage. This atmosphere gave, however, a more diverse
composition than CO2:O2 during storage (Table 3).

B. thermosphacta and Pseudomonas spp., known as
common spoilage bacteria in raw and processed meat
stored in air or MA (Borch et al., 1996), were found in air
and CO2:N2 packages after 13 days. These bacteria are also

associated with spoilage of e.g. ice stored Sea bass and
rainbow trout (Chytiri et al., 2004; Paleologos et al., 2004),
and MA packaged salmon and Mediterranean mullet
(Rudi et al., 2004; Pournis et al., 2005).

3.2.2. PCR-DGGE profiles of bacteria extracted directly

from fish matrix

Samples with CO2:O2 gave a distinct profile of 11 bands
the first 13 days of storage, before a change at day 20 (data
not shown). Bacteria present the first 20 days represented
P. phosphoreum, Micrococcus luteus and different Pseudo-

monas species (Table 3). In addition two of the sequenced
bands were assigned as eukaryotic 18S rDNA sequences
from fish, with similarity of 100% and 95%. Only two 18S
rDNA sequences of halibut are available from the BLAST
database, obtained from a pooled cDNA library of halibut
anterior kidney, liver and spleen (Park et al., 2005). Our
sequences did not match any of these, but due to lack of
information it is not possible to omit an origin from
halibut. The primers we used have been shown to amplify
halibut 18S rDNA, and to avoid this the annealing
temperature is suggested to be raised to 65 1C (Jensen
et al., 2004). After 23 days there were only 2 bands present
in the profile, representing Staphylococcus sp. and pre-
sumably B. thermosphacta (Table 3).
The bacterial diversity in nitrogen-enriched packages

was more complex than that of the CO2:O2 samples, and
contained in addition B. thermosphacta (day 13–20) and
P. phosphoreum (day 23), whereas Pseudomonas spp. were
not detected at days 13–20. Products stored in air had
bacterial profiles unlike the MA packaged samples, and the
number of bands increased during storage. However,
sequencing did not show any other species than found in
the MA samples, except the presence of Burkholderia sp., a
potential pathogen, at day 23 (Table 3).
It is surprising not to find S. putrefaciens which is one of

the well-defined spoilage organisms on lean fish stored in
air, and responsible for the sour odour. S. putrefaciens is
commonly found on wild caught salmon (Hozbor et al.,
2006) and MA packaged Mediterranean mullet (Pournis
et al., 2005). Lately Vogel et al. (2005) identified S. baltica

as the most important H2S-producing species during ice
storage of Danish marine fish. On farmed fish, i.e. cod
(Sivertsvik, 2007; Hovda et al., 2006), wolf-fish (Rosnes
et al., 2006) and the present study S. putrefaciens seems to
be absent, and to our knowledge there are no reports
explaining this observation. This supports the iron agar
results, where H2S-producing bacteria were found only
sporadically and in low numbers, and with variations
between the parallels. Reasons for this may be associated
with the controlled farming conditions, including feeding
regimes, hygienic handling and reduced time between
slaughtering and processing.
This work discusses the shelf-life based on spoilage, i.e.

microbial counts and sensory evaluation. A comprehensive
discussion on health risk from pathogens is not included
since the present work does not contain data on pathogenic
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Table 3

The table shows the results after sequencing of the dominant bands from the bacterial profiles of Fig. 2, in the different storage variants and during the storage period

Storage variant Air (cell pellet) CO2:O2 (CP) CO2:N2 (CP) Air (fish) CO2:O2 (fish) CO2:N2 (fish)

After 5–9 days Uncultured bacterium

clone spb33b1 (#8)

Pseudomonas sp. (#15)

Pseudomonas putida (#19)

P. phosphoreum (#12)

Uncult. bacterium

clone spb33b1

(#20–21)

P. phosphoreum

(#22–24)

Uncult. bacterium

clone spb33b1

(#20–21)

P. phosphoreum

(#22–24)

Uncult. bacterium

clone spb33b1

Pseudomonas sp.

P. phosphoreum

Pseudomonas sp.

Pseudomonas putida

P. phosphoreum

Micrococcus luteus

Pseudomonas sp.

Pseudomonas putida

P. phosphoreum

M. luteus

After 13–20 days Pseudomonas putida

(#14,19)

Pseudomonas sp. (#15,18)

P. phosphoreum (#13)

Uncult. bacterium isolate

DGGE

B. thermosphactaa

P. phosphoreum

(#22–24)

Uncult. bacterium

clone spb33b1 (#20)

Pseudomonas spp.

(#2)

B. thermosphactaa

Serratia sp.

Yersinia aleksiciae

(#7)

Uncult. bacterium

clone spb33b1

Pseudomonas sp.

Uncult. bacterium

isolate DGGE

Pseudomonas sp.

Pseudomonas putida

P. phosphoreum

M. luteus

B. thermosphactaa

M. luteus

After 23 days Uncult. bacterium clone

spb33b1

(#8)Pseudomonas putida

(#14,19)Pseudomonas

spp. (#15,16,18)B.

thermosphactaaUncult.

bacterium (#17)

Pseudomonas spp.

(#25–27)

B. thermosphactaa

(#28)

Serratia sp. (#29-30)

Pseudomonas

fluorescens (#1)

Uncult. bacterium

clone

MAR-47 (#3)

Pseudomonas sp.

(#2, 4)

B. thermosphactaa

(#28)

P. phosphoreum (#5)

Uncult. bacterium

clone spb33b1

Burkholderia sp.

Pseudomonas sp.

Uncult. bacterium

isolate DGGE

B. thermosphactaa

Serratia sp. (#6)

Yersinia aleksiciae

(#7)

Y. aldovae

Staphylococcus sp.

B. thermosphactaa
Staphylococcus sp.

B. thermosphactaa

P. phosphoreum

P. phosphoreum

The associated bands from Fig. 2 and Table 4 are shown in brackets. Only sequences with similarity 497% are included in the table.
aThe similarity observed for sequences assigned as B. thermosphacta was 95–96%.

M
.B

.
H

o
vd

a
et

a
l.

/
F

o
o

d
M

icro
b

io
lo

g
y

2
4

(
2

0
0

7
)

3
6

2
–

3
7

1
3
6
7



growth. However, psychrotrophic pathogens as Listeria

monocytogenes, Aeromonas hydrophila and psychrotrophic
non-proteolytic Clostridium botulinum type E are known
from fish processing and may grow at temperatures p4 oC.
Burkholderia sp. has to our knowledge not been associated
with a health risk from fish species in temperate waters. In
MA hazardous levels of botulinum toxins are formed after
3–4 weeks (Sivertsvik et al., 2002). Furthermore, Listeria

monocytogenes and Aeromonas hydrophila may be a hazard
on stored fish at 4 1C (Huss et al., 2003) and should be
further explored at extended shelf-lifes.
It is important to note that not all bands in the profiles

have been sequenced and analysed, due to problems
making them appear as a single band. Hence some
biologically significant bacteria may remain undiscovered.
Some analysed bands had sequence similarity of less than
97%, and were thereby not assigned as the same species.
Limitations of the method include the heterogeneity where
the observed bands in the profiles does not necessarily
correspond to different bacteria strains. It is well estab-
lished that some bacteria have heterogeneous copies of
rDNA operons (Nübel et al., 1996). In pure culture of
S. putrefaciens (CCUG 13.452) and P. phosphoreum
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Fig. 2. DGGE bacterial profile of halibut (cell pellet) stored in different

gas mixtures and in air, for 23 days. Shewanella putrefaciens (lanes 1 and 9)

and Photobacterium phosphoreum (lane 5) were used as internal standards.

Profiles of CO2:N2 packaged samples were taken after 5 (lane 2), 13 (lane

3) and 23 (lane 4) days. The lanes 6–8 represent air stored samples and

lanes 10–12 CO2:O2, taken at the same time points. The identification of

the bands (1–30) are shown in Table 4.

Table 4

16S rDNA sequence similarities to closest relatives of DNA recovered from the respective bands in the DGGE gel, Fig. 2

Band

no.

Closest relative in GenBank database (accession number) Similarity (%)

1 Pseudomonas fluorescens (AJ971392.1) 99

2 Pseudomonas sp. (AB079096.1) 96

3 Uncultured bacterium clone MAR-47 (AY842561.1) 98

4 Pseudomonas sp. (AM114526.1) 99

5 Photobacterium phosphoreum (AY780010.1) 98

6 Serratia sp. (AM048794.1) 100

7 Yersinia aleksiciae (AJ627597.1) 100

8 Uncultured bacterium clone spb33b11 (DQ321621.1) 97

9 Pseudomonas pseudoalcalignenes (AY789572.1) 83

10 Photobacterium phosphoreum (AY780010.1) 89

11 Uncultured Vibrio sp. clone (AY702295.1) 84

12 Photobacterium phosphoreum (AY780010.1) 96

13 Photobacterium phosphoreum (AY780010.1) 100

14 Pseudomonas putida (AY450555.1) 100

15 Pseudomonas sp. (AM111035.1) 100

16 Pseudomonas sp. (DQ137854.2) 100

17 Uncultured bacterium clone MAR-47 (AY842561.1) 99

18 Pseudomonas sp. (AJ864857.1) 99

19 Pseudomonas putida (AY450555.1) 99

20 Uncultured bacterium clone spb33b11 (DQ321621.1) 98

21 Uncultured bacterium clone spb33b11 (DQ321621.1) 97

22 Photobacterium phosphoreum (AY577825.1) 94

23 Photobacterium phosphoreum (AY780010.1) 94

24 Photobacterium phosphoreum (AY780010.1) 97

25 Pseudomonas sp. (AB121752.1) 97

26 Pseudomonas sp. (AY574283.1) 96

27 Pseudomonas sp. (AM111028.1) 97

28 Brochothrix thermosphacta (AY543029.1) 95

29 Serratia sp. (AM048794.1) 95

30 Serratia sp. (AM048794.1) 97
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(CCUG 16.288) both showed 4 and 5 main bands (Fig. 2).
Also in the MA packaged samples this heterogeneity
is clearly seen, represented by 3 bands identified as
P. phosphoreum (Table 4).

Comigration and issues related to one band representing
more than one bacterium was evaluated by Li et al. (2006).
These migration problems were also observed in this study
where similarly migrating bands represented different
bacteria depending on the sample source (data not shown).
By altering the resolution capability and denaturing
conditions (different temperature, time and denaturing
percentage) one can improve the band separation.

3.5. Sensory characteristics

Both CO2:N2 and CO2:O2 stored halibut had a low
sensory score and good quality until day 13 and a shelf-life
around 20 days based on the QIM score and the observed
sour odour and the dull appearance (Table 2). Samples
stored in air had a shelf-life up to 13 days set by the sour
odour and the soft texture. This prolonged shelf-life is, in
fact, supported by the observed low TMA production, low
microbial growth and low pH. Comparable results were
observed for storage of whole halibut, which had a
constant muscle quality, at the best score, for 14 days
(Guillerm-Regost et al., 2006). As there is little experience
using QIM for halibut, the QIM scheme used was not ideal
to define the quality and shelf-life of farmed halibut. This
has to be taken into account when results from the sensory
evaluation are analysed, and the scheme has to be further
optimised based on sensory panel experiences.

3.6. Chemical analyses

The amount of TMAO and TMA in Atlantic halibut
fillets were 12.3 and 1.1mg N/100 g fish, respectively, 1 day
after filleting. TMAO is an important osmoregulator in
marine fish found at low levels in salmon (Rosnes et al.,
1997), while high levels (55–102mgN/100 g) are reported in
cod, red fish and haddock (Oehlenschläger, 1992). Many
bacteria are able to produce TMA, mainly responsible for
the fishy odour, by using TMAO as a terminal electron
acceptor in the metabolism. No degradation of TMAO was
seen and no TMA was produced in any storage variants
during the first 9 days of storage (Table 2). A clear increase
in TMA production was seen in air from day 9 to a final
amount of 14.4mgTMA-N/100 g fish. In cod 30mgTMA-
N/100 g is set as the limit for sensory rejection (Dalgaard
et al., 1993). Oxygen-enriched packages produced no TMA
and in CO2:N2 the production of TMA started after 20
days and ended at 3.2mgTMA-N/100 g. In fact, this lack
of TMA production indicates that TVB-N may explain the
off-odour. The production of total volatile bases started
after 9 days in air and exceeded 30mgTVB-N/100 g after
about 17 days (Table 2). As MA packaging did not
produce any TVB-N, and the samples had an initial
concentration of 15.2mgTVB-N/100 g throughout the

storage period, Table 2 gives the result of TVB-N
production in the air stored products. The European
Commission (1995) has set critical limits of 25, 30 and
35mgTVB-N/100 g for certain fish species. The results
showed that off-flavour in spoiled Atlantic halibut were not
caused by a single chemical degradation product alone.
The main effects (Table 2) showed that TVB-N agreed with
the observed shelf-life and better described differences
between the packaging methods than TMA.
There were significant differences in the pH between the

MA and air stored samples, but no specific trend in pH as a
function of storage time (data not shown). pH varied
between 6.0 and 6.9 during air storage, between 6.0 and 6.4
in CO2:O2 and 6.0–6.2 in CO2:N2 storage. The low pH
in the MA packaged samples can explain the absence of
S. putrefaciens, according to the results of Boskou and
Debevere (1998) that found a prolonged lag phase below
pH 6.2. MA packaging resulted in a CO2 concentration in
the head space above 20% of the entire period (data not
shown), a level often regarded as necessary to obtain
sufficient bacterial inhibition (Devlieghere and Debevere,
2000). MA packaging significantly improved the shelf-life
compared to air storage. There were also significant
differences between the two gas mixtures, where oxygen
is suggested to give the most shelf-life extension and also a
lower bacterial diversity based on the results of PCR-
DGGE analyses.

4. Conclusion

Our findings revealed that halibut as a fresh product has
properties that makes it well suited for MA packaging and
has a shelf-life ranging from 13 to 20 days at 4 1C. There
was a significant difference between CO2:N2 and CO2:O2

packaging, where oxygen enrichment was suggested to be
the better gas mixture. The PCR-DGGE technique was
useful to identify a broad range of bacteria from stored
MA packaged farmed halibut. Combining the results
obtained from PCR-DGGE, microbial counts and sensory
analyses enabled us to determine the shelf-life of the
product. The main bacterial microbiota in both MA
packaged and air stored farmed halibut were found to be
P. phosphoreum, Pseudomonas spp. and B. thermosphacta.

S. putrefaciens was not detected by molecular methods
during this experiment, confirming the plate count results
and other reports on farmed fish species. These results can
be used in order to optimise MA packaging as a mild
preservation method for Atlantic halibut (Hippoglossus

hippoglossus).
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Abstract

The present article describes the use of broad-range molecular analyses to characterise the microbial population of farmed Atlantic cod (Gadus
morhua) packaged for the retail market. Cod was filleted post rigor, packaged in air or in modified atmosphere (MA) (50% CO2:50% N2 or 50%
CO2:50% O2) and stored at 0 °C for 11 days. To determine the community profiles of the samples the variable V3-region of the bacterial 16S rRNA
gene were amplified by PCR, before the PCR products were separated by denaturing gradient gel electrophoresis (DGGE). From sequence analyses
Pseudomonas spp. were found to be the predominant bacteria in oxygen enriched atmospheres, whereas the spoilage bacteria Photobacterium sp.,
Shewanella putrefaciens and Pseudomonas spp. dominated in CO2:N2 and air packaged samples. Additional microbial analyses by cultivation
methods observed highest bacterial numbers in air stored samples, and both MA mixtures gave growth inhibition when measuring aerobic plate
count, psychrotrophic bacteria and H2S-producing bacteria. The results show that PCR-DGGE can be applied to examine bacterial diversity and
population shifts among different MA-packaged products.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Farmed cod; MA packaging; PCR; DGGE; Bacterial community

1. Introduction

Marine fish products deteriorate rapidly post mortem as a
consequence of various microbial and biochemical breakdown
processes. The rate of quality loss depends directly on the nature
of the fish species in question, as well as the handling and storage
conditions. The quality of wild caught cod may vary consid-
erably, due to seasonal variations, different handling, fishing
gear and fishing ground. The time between catch and processing
will in addition strongly influence the quality. Compared to wild
caught fish, farmed fish have several advantages as a raw
material. Wild caught cod is known to have a different body
composition than farmed cod, with a higher condition factor,
smaller head and larger liver (Gildberg, 2004). There is also
observed a higher carbohydrate level and lower pH in the muscle

(Rustad, 1992). Shelf life studies on MA-packaged wild fish
have shown the importance of temperature, production hygiene
and gas composition on the development of specific spoilage
organisms (SSO) (Gram and Huss, 1996). The bacterial flora
of wild cod stored aerobically on ice is well studied and dom-
inated by Pseudomonas sp. (Gram and Huss, 1996), Shewanella
baltica, Shewanella hafniensis and Shewanella morhuae (Vogel
et al., 2005; Satomi et al., 2006), rather than Shewanella
putrefaciens, which has previously been considered, in many
studies, as the main spoilage organism (Gram et al., 1987). In
modified atmosphere (MA) packaging with high CO2 concen-
tration, the CO2 tolerant bacterium Photobacterium phosphor-
eum has been identified as the main organism responsible for
spoilage (Dalgaard et al., 1997).

Knowledge about spoilage organisms and their specific
activity in various fish species at different storage conditions
has led to more precise shelf life predictions and facilitated
modelling of spoilage (Gram and Dalgaard, 2002). Thus, in
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order to develop new high quality products it is important to
have rapid and precise methods to analyse changes in the
microbial community as a function of hygienic handling, pack-
aging and storage. Publications during the last decade tend to
present investigation of the whole microbial community, rather
than sub populations, by using culture-independent methods
(Muyzer and Smalla, 1998; Torsvik et al., 1998). Identification
of the bacterial flora based on conserved genomic regions
coding for the 16S rRNA gene by the polymerase chain reaction
(PCR) and denaturing gradient gel electrophoresis (DGGE) is a
widely used method in environmental microbiology (Muyzer
et al., 1993; Øvreås, 2000; Schäfer and Muyzer, 2001) as well
as in the food industry (Ercolini, 2004; Nakano et al., 2004;
Takahashi et al., 2004). Recently the method has been used to
study the bacterial flora of MA-packaged Atlantic halibut
(Hovda et al., 2007) and Atlantic halibut larvae (Jensen et al.,
2004). Rudi et al. (2004) described the bacterial community in
MA-packaged salmon and coalfish using the PCR and terminal
restriction fragment length polymorphism (T-RFLP) technique.
Culture independent methods involving the 16S rRNA gene
fragment can be used to describe both cultivable and uncul-
turable bacteria in a population. The target sequence for PCR
amplification is the hypervariable V3-region on the 16S rRNA
gene. Separation of DNA fragments on a gel is based on se-
quence differences, and subsequent sequencing and phylogenetic
relationship can determine the predominant bacteria population
in a sample. To our knowledge there are no available studies
which have used PCR-DGGE to describe the predominant bac-
teria composition and diversity in cod. PCR-DGGE is a repro-
ducible and reliable method for fingerprinting the microbial
community in a sample, directly after DNA extraction.

The aim of this work was to evaluate PCR-DGGE as a
molecular approach to analyse the predominant microbial com-
munity on farmed cod. Moreover, we wanted to study how this
method can be used as a tool to differentiate microbial de-
velopment occurring during storage in different atmospheres.

2. Materials and methods

2.1. Raw material, preparation and storage

Farmed Atlantic cod (Gadus morhua) was obtained from the
commercial fish farm FjordMarin Helgeland AS (Brønnøysund,
Norway). Whole, gutted fish with a weight of 2.1 to 2.9 kg were
stored and shipped on ice to Norconserv (Stavanger, Norway).
Post rigor cod were filleted and cut into single portions of
150±5 g, without skin and bone, 5 days after slaughtering.
Fillets were individually packaged in high density polyethyl-
ene (PE) semi rigid trays (no. 523, volume: 415 ml, Polimoon,
Kristiansand, Norway; oxygen transmission rate (OTR)=3.2 cm3

d−1 atm−1 tray−1, CO2 transmission rate=14.0 cm3 d−1 atm−1

tray−1, at 23 °C, 0% RH). The packages were evacuated and a
food grade gas (50% CO2 and 50% O2 or N2, AGA, Linde Gas,
Stavanger, Norway) was introduced into the package before heat
sealing with a laminate cover film (15/70 μm PA/PE, Polimoon,
ibid.; OTR=30 cm3 m−2 d−1 atm−1) on a semi-automatic tray
sealer (Dyno 460 VGA, Polimoon, ibid.). The gas volume-to-

product (g/p) ratio was approximately 2:1. Control fillets were
stored in high density PE trays wrapped in cling film with low
barrier properties to allow air to penetrate (PVC-film, Linpac
plastics Pontivy SA, Noyal-Pontivy, France). The packages were
stored in chill cabinets at 0 °C for a total of 11 days, were day 0
was defined as the day of packaging (5 days after slaughtering).
Samples were taken at day 0, 4, 7, 9 and 11.

2.2. Gas measurement

The gas composition (O2 and CO2, %) in the packages was
measured in triplicate using an oxygen and carbon dioxide
analyser (Checkmate 9900 Analyzer, PBI-Dansensor, Ringsted,
Denmark). A 20 ml aliquot of the gas was collected through a
syringe from the headspace after intrusion of the top foil and
analysed. Before intrusion of the syringe, a foam rubber septum
(Nordic Supply, Skodje, Norway) was added to the top foil to
avoid introduction of false atmosphere into the gas analyser.

2.3. Cultivation and isolation of bacteria from fish matrix

Duplicate samples of 10 g were collected by slicing through
the fillet, diluted 1:10 in peptone water (1 g/l Bacto peptone
(Merck 1.07224, Darmstadt, Germany) and 8.5 g/l NaCl (p.a.))
and homogenised for 30 s in a Stomacher 400 (AJ Steward
Company LTD, London, England). The aerobic plate count
(APC) and number of H2S-producing bacteria were determined
from appropriate 10-fold dilutions added to melted and temperate
(45 °C) Iron Agar Lyngby (IA, Oxoid CM 964, Basingstoke,
England) supplemented with 0.04% L-cysteine (p.a.), and
incubated for 3 days at 20±1 °C. Black colonies were counted
as H2S-producing bacteria and the total numbers of black and
white colonies were determined as the APC. Psychrotrophic
bacteria were determined by a spread plate count method on solid
Plate Count Agar (PCA) (Merck 1.05463, Darmstadt, Germany)
with 1% NaCl (p.a.), which support growth of P. phosphoreum.
Plates were incubated aerobically for 10 days at 7±1 °C. Colonies
were counted, and colony forming units (CFU) per gram sample
were calculated.

After counting, the psychrotrophic bacteria from PCA spread
plates were collected, using an inoculation loop, washed twice
with 1× PBS (137mMNaCl, 2.7mMKCl, 0.9mMKH2PO4 and
6.4 mM Na2HPO2 [pH 7.4]) and frozen at −20 °C. The pellets
were thawed immediately prior to DNA extraction, and cell
pellets DNA were purified using DNeasy Tissue Kit (Qiagen,
Hilden, Germany) or E.Z.N.A. Tissue DNA kit (Omega Bio-tek,
Doraville, USA).

2.4. Extraction of total DNA from fish matrix

Duplicate surface samples of 10 gram muscle were asep-
tically removed by making a 0.2–0.5 cm deep cut of approx-
imately 20 cm2 and DNAwas extracted in accordance with the
method of Rudi et al. (2004). Briefly the method consisted of
1:10 dilution of the samples in peptone water, homogenising for
2 min in a Stomacher 400 (Colworth, AJ Steward Company
LTD, London, England) before 50 ml of the suspensions were
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frozen. For bacterial extraction the tubes were thawed and
diluted 1:2 with peptone water before centrifugation for 2 min at
700 rpm (Sorvall RC 5C Plus, Sorvall Products, Newtown,
USA). The supernatants were removed, and collected, until
approximately 10 ml was left. 90 ml peptone water was added to
the fish suspensions and the centrifugation repeated. The super-
natants were added to the first supernatants, and centrifuged for
15 min at 13 000 rpm. Pellets were diluted in 10 ml TE-buffer
pH 8 (10 mM Tris–HCl (p.a.) and 1 mM EDTA (p.a.)), and
centrifuged for 10 min at 9000 rpm. Pellets were diluted in 5 ml
TE-buffer and DNA was purified using DNeasy Tissue Kit
(Qiagen, Hilden, Germany) or E.Z.N.A. Tissue DNA kit
(Omega Bio-tek, Doraville, USA) following the manufacturer's
instructions.

2.5. Bacterial control strains

P. phosphoreum (CCUG 12.228) and S. putrefaciens (CCUG
13.452) from the culture collection of Gothenburg, Sweden,
were used as reference strains. The DNA was extracted using
DNeasy Tissue Kit (Qiagen, Hilden, Germany).

2.6. PCR protocol

Universal primers for the domain Bacteria were used for
amplification of the variable V3-region on 16S rRNA gene.
For PCR the forward primer BA338f (5′ACT CCT ACG GGA
GGC AGC AG) (Øvreås et al., 1997) included a 40 base GC
clamp at the 5′ end (5′CGC CCG CCG CGC GCG GCG GGC
GGG GCG GGG GCA CGG GGG G) (Sheffield et al., 1989),
and the reverse primer was UN518r (5'ATT ACC GCG GCT
GCT GG) (Muyzer et al., 1993). Bacterial DNA extracted from
fish matrix or cell pellet, 2.5 μl, were used as template in the
PCR reaction containing a final concentration of 0.5 μM of
each primer (Eurogentec, Ougrée, Belgium and MWG-Biotech,
Ebersberg, Germany), 0.5 U DyNAzyme II Polymerase (Finn-
zyme, Espoo, Finland), 0.1% BSA (Sigma, Germany) and
0.2 mM of each dNTP (Fermentas, Lithuania) in a total reaction
volume of 25 μl. The reaction was performed on a Mastercycler
personal (Eppendorf, Germany) using the following conditions:
92 °C for 2 min and than 30 cycles of 92 °C for 1 min, 55 °C
for 30 s and 72 °C for 1 min. The reaction was ended with an
extension step of 6 min at 72 °C. PCR products were examined
and verified on 2% agarose gels (SeaKem Le agarose, BMA,
Rockland, USA), visualized by ethidium bromide staining. The
gels were photographed under UV light in a Bio-Rad GelDoc
2000 system.

2.7. DGGE analysis

The DGGE-unit V20-HCDC (Scie-Plas Limited, Southham,
England), a vertical dual heater system, was used for DGGE
analysis of the PCR 16S rRNA gene products. Electropho-
resis was performed on a 0.75 mm thick 8% (w/v) polyacryl-
amide gel in 0.5× TAE (40 mM Tris–Acetate and 1 mM EDTA
[pH 8.3]), using 10 μl of the PCR product. The polyacryl-
amide gels (37.5:1 acrylamide:bisacrylamide (Bio-Rad, Hercu-

les, USA)) were made with a denaturing gradient ranging from
30 to 60%. The denaturant (100%) corresponds to 40% form-
amide (BDH Electran, England) deionised with Dowex 1-X8
mixed-bed resin (BDH Electran, England) and 7 M Urea (BDH
Electran, England). Electrophoresis was run in 0.5× TAE buff-
er at 60 °C for 10 min at 20 V and further 18 h at 70 V. After
electrophoresis the gel was stained for 1 h with 1× (final
concentration) SybrGold (Molecular Probes, Eugene, USA) in
1× TAE buffer, rinsed in water and visualized under UV light as
described previously.

2.8. Sequencing of DGGE fragments

Main fragments were selected for nucleotide sequence de-
termination. Materials from selected bands were excised with
sterile pipette tips and transferred to 30 μl of sterile water. PCR
fragments recovered in the solution by passive diffusion at 4 °C
over night. From the eluate 5 μl was used as template and re-
amplified using PCR with the same primers and conditions as
described. The PCR product was re-run on DGGE to confirm
that it migrated as a single band, to the same position. Single
and correct positioned products were cleaned by GenElute PCR
Clean-Up Kit (Sigma-Aldrich, St. Louis, USA), according to the
manufacturer’s recommendations. Sequencing was performed at
the University of Bergen Sequencing Facility (Bergen, Norway)
with an ABI PRISM 3700 DNAAnalyser (Applied Biosystems,
Warrington, UK), the forward primer BA338f without the GC
clamp and the BigDye Terminator v3.1 Cycle Sequencing kit
(Applied Biosystems, Warrington, UK). Searches in BLAST
from GenBank were used to find the closest known relatives to
the partial 16S rRNA gene sequences (145 bp–190 bp) (Altschul
et al., 1997).

2.9. pH measurement

The pH was measured in duplicate directly in cold cod fillet
using a pH meter (Orion 410Aplus Benchtop, Thermo Electron
Corporation, Beverly, US) equipped with a puncture combina-
tion electrode (81-63 ROSS™, Thermo Electron Corporation,
Beverly, US).

2.10. Determination of trimethylamine (TMA) and trimethyla-
mine oxide (TMAO)

Trimethylamine (TMA) and trimethylamine oxide (TMAO)
was determined using the Conway microdiffusion method
(Conway and Byrne, 1933), as described by Rosnes et al. (2006).

2.11. Sensory characteristics (Quality Index Method)

The sensory characteristics of the cod were assessed by a
modified Quality Index Method (QIM) described by QIM
Eurofish (Martinsdottir et al., 2001), and adapted for cod. The
QIM-score was based on appearance, texture and odour of raw
products. The panel gave demerit scores of 0 to 2, or 0 to 3
points for the different attributes. The odour was evaluated
as sea fresh, neutral, fishy or ammonia/sour, giving 0, 1, 2 or 3
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points, respectively. The other attributes evaluated were gaping
(0: none–3: severe), colour (0: homogeneous white–2: yellow,
translucent), surface (0: dry and shiny–2: dispersed) and texture
(0: natural–3: very soft). The QIM-score was the sum of the
scores given by the sensory panel on the individual quality
parameters on a scale from 0 to 13. Coded trays of raw cod were
evaluated in duplicate by a trained sensory panel consisting of 4
panellists.

2.12. Statistical analysis

Analysis of variance (ANOVA) by the general linear model
(GLM) were performed with Minitab 14.13 (Minitab Inc., US)
using Tukey's HSD test at level Pb0.05 (95%) to obtain confi-
dence intervals for differences between level means for packaging
type and storage time.ANOVAwas applied to log transformations
of the microbiological counts.

3. Results and discussion

3.1. Microbial diversity during storage

The molecular approach, PCR-DGGE and sequencing, was
applied to describe changes in the bacterial populations found
on farmed cod stored over a period of time, in different atmo-
spheres (Fig. 1). The universal primer set BA338f and UN518r
amplified the hypervariable V3-region on the 16S rRNA gene,
and it was used to determine the bacterial profile of the com-
munity during storage of cod. The V3-region is considered to
have a high grade of resolution and to be highly variable, and it
is regarded as a good choice when it comes to length and
species–species heterogeneity (Coppola et al., 2001; Ercolini,
2004). These primers have previously been used with success

for detection of bacteria from e.g. meat products and food
processing plant (Takahashi et al., 2004), Atlantic halibut larvae
(Jensen et al., 2004), diary products (Coppola et al., 2001) and
mineral water (Dewettinck et al., 2001). We have recently used
this method to investigate the bacterial population in MA-
packaged farmed halibut (Hovda et al., 2007). We used PCR-
DGGE as a tool to explain the observed quality changes during
storage based on the bacterial composition. In this paper we
have discussed and compared the results from the PCR-DGGE
analysis with results obtained by cultivation methods and
sensory scores.

Analysing the bacterial profiles of DNA extracted directly
from the fish muscle, it was observed a decrease in the bands
for air stored samples, whereas an increase in the MA-packaged
samples during storage (Fig. 1). Sequence analyses of 28 bands,
included the indicated bands (Fig. 1), detected Pseudomonas
spp. and P. phosphoreum as the dominating bacteria in the
MA samples (Table 1). P. phosphoreum is regarded as the main
spoilage bacteria in chilled stored MA-packaged cod (Dalgaard
et al., 1993; Dalgaard, 1995). Initially the bacteria of farmed
cod included Chryseobacterium sp., Carnobacterium piscicola,
Tiedjeia arctica, Serratia sp., S. putrefaciens, various Pseudo-
monas and Photobacterium (Table 2A). C. piscicola has been
reported to be part of the microflora of MA-packaged smoked
salmon, however the bacterium do not contribute to product
spoilage (Paludan-Müller et al., 1998). Chryseobacterium sp.
and Serratia sp., mainly Serratia liquefaciens, has been

Fig. 1. DGGE bacterial profile of farmed cod stored in different gas mixtures and
in air, for 11 days. The initial bacterial population profiles on the fish (day 0) are
shown in lane 1 and 2 (different parallels). Samples were taken after 4 and
11 days; air stored samples in lane 3 (4 days) and 6 (11 days), CO2:O2 packaged
samples (lane 4 and 8) and CO2:N2 packaged samples (lane 5 and 7). Shewa-
nella putrefaciens (lane 9) was used as internal reference. The identification of
the bands (1–28) is shown in Table 1.

Table 1
16S rRNA gene sequence similarities to closest relatives of DNA recovered
from the respective bands in the DGGE gel, Fig. 1

Band no. Closest relative in GenBank database
(accession number)

Similarity (%)

1 Chryseobacterium sp. (AY751083) 98
2 Pseudomonas sp. (DQ200852) 99
3 Tiedjeia arctica (DQ107523) 99
4 Serratia sp. (AY745744) 98
5 Gadus morhua (AF518205) 98
6 Shewanella putrefaciens (AY321590) 99
7 Endosymbiont of Acanthamoeba sp. (AF366582) 100
8 Pseudomonas fragi (AY972397) 99
9 Shewanella putrefaciens (AF005255) 99
10 Photobacterium ‘kishitanii clade’ (AY849426) 99
11 Photobacterium phosphoreum (AY888016) 94
12 Carnobacterium piscicola (AF270795) 97
13 Pseudomonas fluorescens (AY730552) 93
14 Photobacterium phosphoreum (AJ746359) 96
15 Photobacterium phosphoreum (AJ746359) 99
16 Photobacterium phosphoreum (AY780010) 96
17 Photobacterium phosphoreum (AY780010) 98
18 Pseudomonas sp. (DQ200852) 100
19 Pseudomonas fluorescens (AY730552) 99
20 Pseudomonas putida (AY450556) 100
21 Pseudomonas putida (AY450555) 95
22 Pseudomonas putida (AY450555) 100
23 Pseudomonas sp. (DQ226216) 100
24 Pseudomonas sp. (AF388027) 99
25 Pseudomonas sp. (DQ173210) 99
26 Pseudomonas syringae (AM086227) 98
27 Pseudomonas sp. (AY331374) 90
28 Pseudomonas sp. (DQ200852) 99
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reported as part of the fish microflora (Gonzalez et al., 2000;
Olsson et al., 2004), while Tiedjeia arctica has been found in
tundra and artic environment (Rivkina et al., 2004). Sequencing
detected DNA from cod as one of the bands represented in
the profiles (Fig. 1, Table 1). The universal primer set BA338f
and UN518r has previously been shown to amplify eukary-
otic 18S rDNA (Jensen et al., 2004). During air storage the
bacterial profile changed to include only the spoilage bacteria
Pseudomonas spp., P. “kishitanii clade”, P. phosphoreum and
S. putrefaciens. MAwith CO2:N2 inhibited the bacterial growth,
and the initial bacterium was Pseudomonas fluorescens. A
higher bacterial diversity was detected during storage, and
Pseudomonas putida, S. putrefaciens, P. “kishitanii clade” and

P. phosphoreum were detected as the predominant bacteria in
the samples at the end of the trail. Compared to air and CO2:N2,
the oxygen enriched packages were dominated by Pseudomo-
nas spp. during storage (Table 2A). S. putrefaciens was found
only at day 4 in CO2:O2 stored samples and the absence during
storage supported earlier findings that this bacterium is inhibited
at high O2 concentrations during cold (7 °C) storage (Boskou
and Debevere, 1997). Based on analyses of the V3-region on
16S rRNA gene S. putrefaciens was detected as part of the
bacterial flora on farmed cod, in contrast to S. balticawhich was
found by Vogel et al. (2005). The differences in the results
obtained might be the result of different bacterial population on
farmed and wild cod or cod caught at various fishing grounds
and during a year cycle (Vogel et al., 2005). The choice of
primers and detection area on 16S rRNA gene may also
contribute to the observed differences (Schmalenberger et al.,
2001). In the study of Vogel et al. (2005) the detected H2S-
producing bacteria were identified based on the sequence
analysis of a 1.4 kb nucleotide sequence of the 16S rRNA gene.
Our study used the 16S rRNA gene V3-region resulting in a
∼180 bp partial sequence.

Photobacterium sp., P. phosphoreum, Pseudomonas fragi,
P. putida and Pseudomonas sp. were the predominant bacteria
in air and CO2:N2 stored cod found as psychrotrophic bacteria
on spread plates (Table 2B). We found a low bacterial diversity
in the cultured samples (15 bands sequenced), and detected the
same bacteria as the predominant population in all samples. A
general advantage using bacterial DNA extracted directly from
fish matrix is more rapid results and a more complex profile
compared to cultivation methods (Amann et al., 1995; Masco
et al., 2005).

Using the recently described method one can monitor and
compare the effect of modified atmosphere storage on the
predominant microflora. Another advantage is the possibility to
follow community changes over time, where samples taken
during storage can be compared and analysed simultaneously.
The two reference strains P. phosphoreum and S. putrefaciens
had both multiple profiles, which are caused by sequence het-
erogeneity as described by Nübel et al. (1996) and Schma-
lenberger et al. (2001). The reference strains confirm that the
primers amplify known spoilage bacteria, and they can be used
as a “reference” when bands are compared. Some bands from
the DGGE profile were not sequenced, hence some bacteria of
possible relevance for quality may remain undiscovered in the
farmed cod flora. Other bands had sequence similarity of less
than 97%, and were thereby not assigned as the same species.
Limitations of this technique include extraction and sample
preparation as well as detection limits of the PCR reaction
(Wintzingerode et al., 1997). The DGGE approach allows only
short sequence fragments (b500 bp) to be used, thereby limiting
the amount of sequence information available.

3.2. Microbiological characteristics

The initial APC was log 3.9 CFU/g cod (Fig. 2A). After
11 days in air storage at 0 °C this number had increased to log
9.5 CFU/g. Packaging of cod fillets using CO2:O2 or CO2:N2

Table 2
Sequencing of dominant bands in DGGE profiles obtained from direct
extraction on DNA from the fish matrix (A) and from psychrotrophic bacteria
cultivated on agar plates (B)

A

Day Day 0 Day 4 Day 11

Bacteria/storage Air CO2:O2 CO2:N2 Air CO2:O2 CO2:N2

Chryseobacterium
sp. (#1)

x x

Carnobacterium
piscicola (#12)

x x

Pseudomonas sp.
(#2, 18, 23–25, 28)

x x x x

Gadus morhua (#5) x
Shewanella
putrefaciens (#6, 9)

x x x x x

Endosymbiont of
Acanthamoeba
sp. (#7)

x x

Pseudomonas fragi
(#8)

x x

Photobacterium
‘kishitanii clade’
(#10)

x x x x

Photobacterium
phosphoreum
(#15, 17)

x x x x

Tiedjeia arctica (#3) x x
Serratia sp. (#4) x x
Pseudomonas
fluorescens (#19)

x x

Pseudomonas putida
(#20, 22)

x x

Pseudomonas
syringae (#26)

x

B

Day Day 0 Day 4 Day 11

Bacteria/storage Air CO2:N2 Air CO2:N2

Pseudomonas sp. x x x x x
Pseudomonas fragi x x x x x
Pseudomonas putida x x x
Photobacterium sp. x x x x x
Photobacterium phosphoreum x x x x x

The table includes the different storage variants during the storage period. The
associated bands from Fig. 1 and Table 1 are shown in brackets (A). Only
sequences with similarity N97% are included in the table.
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(50%:50%) strongly inhibited the bacterial growth (Pb0.001).
After 11 days there were almost no increase in APC, and the
counts were approximately log 4.4 CFU/g for both gas mix-
tures. No differences in bacterial growth between the two
atmospheres CO2:O2 and CO2:N2 were observed (Fig. 2A).
APC is used as an indicator for high quality shelf life (not
necessarily spoilage), and log 6 CFU/g is used as a maximum
level for fish sold for human consumption (ICMSF, 1986). The
air stored sample reached this limit after approximately 5 days,
whereas the MA packaging extended the microbial shelf life,
and gave acceptable microbial levels after 11 days, which is
16 days after slaughtering (Fig. 2A).

Both atmospheres inhibited the growth of psychrotrophic
bacteria (Pb0.001) (Fig. 2B) and H2S-producing bacteria
(Pb0.001) (Fig. 2C) compared to the air storage. Spoilage of

chilled CO2 packaged fish is found at a level of log 7 CFU/g
P. phosphoreum (Dalgaard et al., 1993). Using this level and
assuming that the major part of the psychrotrophic bacteria are
P. phosphoreum, this spoilage level was reached after 6 days in
air storage and after about 11 days for CO2:N2 (Fig. 2B). At
the end of the trail oxygen enrichment inhibited growth of
psychrotrophes more than the CO2:N2 atmosphere, as also
observed by Sivertsvik (2007) who found a decreased bacterial
growth in 50% O2 and 50% CO2. MA also inhibited the growth
of H2S-producing bacteria. Bacterial counts increased from log
1.7 to log 2.6 CFU/g for both gas mixtures after 11 days, and to
log 6.9 CFU/g when stored in air. It is well established that CO2

inhibit growth of strict aerobic bacteria (Dalgaard et al., 1993;
Dalgaard, 1995) and H2S-producing spoilage organisms
(Debevere and Boskou, 1996). S. putrefaciens is also known
to be inhibited by low storage temperature and lowered pH, as
discussed in the chemical analyses section. S. putrefaciens has
been detected in low numbers or reported as absent in other
farmed fish e.g. wolf-fish (Rosnes et al., 2006), halibut (Hovda
et al., 2007) and pre rigor filleted farmed cod (Sivertsvik, 2007).

3.3. Sensory evaluation

The cod fillets were characterised as dry and shiny white,
with a sea fresh odour and a firm to elastic texture before
packaging, which is 5 days after slaughtering. The first 4 days of
storage changed the parameters except the surface, to a less
fresh appearance. Further air storage decreased the sensory
quality of the fillets, and after 7 days the odour was described
as “sour/ammonia”, and the fish was considered as spoiled
(Fig. 3). MA packaging gave significantly lower QIM-score and
better quality for both CO2:N2 and CO2:O2 packaged samples
compared to samples stored in air (Pb0.05). For packaging in
CO2:N2 this “sour/ammonia” odour was observed after 11 days.
The CO2:O2 packaged samples never got this characteristic sour
odour and were acceptable even at the end of storage.

3.4. Chemical analyses

Bacteria like P. phosphoreum, S. putrefaciens, Vibrio spp.,
Aeromonas spp. and psychotolerant Enterobacteriaceae use

Fig. 3. QIM scores of raw fillets as a function of storage time, for the different
gas compositions.⋄ = air packaged variant,□ = CO2:N2MA packaging andΔ =
CO2:O2 MA packaging.

Fig. 2. Bacterial growth in farmed cod during storage. The cod sampleswere stored
for a total of 11 days after packaging. Fig. 2A) aerobic plate counts, B) psychro-
trophic bacteria and C) H2S-producing bacteria. ⋄ = air packaged variant, □ =
CO2:N2 MA packaging and Δ = CO2:O2 MA packaging.

73M.B. Hovda et al. / International Journal of Food Microbiology 117 (2007) 68–75



TMAO as a terminal electron acceptor with TMA as end
product in the metabolism (Gram and Dalgaard, 2002). The
TMAO and TMA concentrations were measured before storage
and after 14 days. The initial TMA concentration (4 mg TMA-
N/100 g) increased to 20 mg TMA-N/100 g for CO2:N2, and to
5 mg TMA-N/100 g for CO2:O2 storage. Air storage was
measured after 11 days, and gave 36 mg TMA-N/100 g. The
TMAO concentration was initially 26 mg TMAO-N/100 g, and
decreased to 23 mg TMAO-N/100 g (CO2:N2), 19 mg TMAO-
N/100 g (CO2:O2) and 6 TMAO-N/100 g (air). In the exper-
iment of Sivertsvik (2007) there were not observed any TMA
development in farmed cod stored under CO2:O2 (50:50%) at
0 °C. Similar results are found by Boskou and Debevere (1997,
1998), with an optimal inhibitory concentration of 40% O2 and
60% CO2 for storage at 7 °C. Our results indicated a reduced
TMA production in MA, and especially for enriched oxygen
concentrations, which supported previous results. Sequencing
data supports these findings where CO2:O2 storage detected
only the non TMAO reducing Pseudomonas, whereas CO2:N2

storage included the TMAO reducing bacteria P. phosphoreum
(Table 2A). At sensory rejection the concentration of TMA in
cod is 30 mg TMA-N/100 g (Dalgaard et al., 1993), and about
log 7 CFU/g P. phosphoreum is needed to produce this con-
centration (Dalgaard, 1995). Plate count of air stored psychro-
trophes, assumed to consist of P. phosphoreum, reached this
limit after 6 day (Fig. 2B), and could thus explain the observed
off-odour.

The high gas to product ratio (2:1) and CO2 levels above
20% during storage in MA (data not shown) should account for
a substantial bacterial growth inhibition in the packaged cod
(Devlieghere and Debevere, 2000). In addition, at low storage
temperature (0 °C) increased amounts of CO2 are absorbed in
the fish muscle causing lowered pH.

The pH measurements showed a significant difference be-
tween the air stored andMA-packaged samples (data not shown).
Air storage increased the pH from 6.0 in fresh fish to 6.4 at day 11.
In MA the pH was about 6.0 the entire storage period (max=6.1,
min=6.0). Low pH, i.e. below 6.2, has been shown to prolong the
lag phase of S. putrefaciens (Boskou and Debevere, 1998). This
may be an additional factor for explaining our findings that H2S-
producing bacteria were inhibited in MA-packaged cod, but
increased in the air stored samples (Fig. 2C).

4. Conclusion

Our results indicate a shelf life of at least 11 days at 0 °C for
MA-packaged farmed cod, which is 16 days after slaughtering.
There was a significant difference between storage in air, and
CO2:N2 and CO2:O2, where oxygen was suggested as the
better gas mixture. The PCR-DGGE technique allowed identi-
fication of the predominant bacterial species and observed the
variations in community composition between packaging and
storage conditions. Sequence analyses showed that Pseudo-
monas sp. dominated in CO2:O2 packaged cod during storage,
whereas Photobacterium spp., S. putrefaciens and Pseudo-
monas spp. dominated in the air and CO2:N2 packages. PCR-
DGGE and sequencing detected the microbial community

differences that were not detectable by the cultivation based
methods alone.

Acknowledgments

Thanks to the technical staff at Norconserv AS. This work
was founded by The Research Council of Norway, Grant no.
158929/I10.

References

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research 25, 3389–3402.

Amann, R.I., Ludwig,W., Schleifer, K.H., 1995. Phylogenetic identification and in
situ detection of individual microbial cells without cultivation.Microbiological
Reviews 59, 143–169.

Boskou, G., Debevere, J., 1997. Reduction of trimethylamine oxide by Shewanella
spp. under modified atmospheres in vitro. Food Microbiology 14, 543–553.

Boskou, G., Debevere, J., 1998. In vitro study of TMAO reduction by Shewanella
putrefaciens isolated from cod fillets packed in modified atmosphere. Food
Additives and Contaminants 15, 229–236.

Conway, E.J., Byrne, A., 1933. LXI. An absorption apparatus for the micro-
determination of certain volatile substances I. The micro-determination of
ammonia. Biochemical Journal 27, 419–429.

Coppola, S., Blaiotta, G., Ercolini, D., Moschetti, G., 2001. Molecular eval-
uation of microbial diversity occurring in different types of Mozzarella
cheese. Journal of Applied Microbiology 90, 414–420.

Dalgaard, P., 1995. Qualitative and quantitative characterization of spoilage
bacteria from packed fish. International Journal of Food Microbiology 26,
319–333.

Dalgaard, P., Gram, L., Huss, H.H., 1993. Spoilage and shelf-life of cod fillets
packed in vacuum or modified atmospheres. International Journal of Food
Microbiology 19, 283–294.

Dalgaard, P., Mejholm, O., Christiansen, T.J., Huss, H.H., 1997. Importance of
Photobacterium phosphoreum in relation to spoilage of modified atmo-
sphere-packed fish products. Letters in Applied Microbiology 24, 373–378.

Debevere, J., Boskou, G., 1996. Effect of modified atmosphere packaging on the
TVB/TMA-producing microflora of cod fillets. International Journal of
Food Microbiology 31, 221–229.

Devlieghere, F., Debevere, J., 2000. Influence of dissolved carbon dioxide on the
growth of spoilage bacteria. Lebensmittel-Wissenschaft und-Technologie 33,
531–537.

Dewettinck, T., Hulsbosch, W., van Hege, K., Top, E.M., Verstraete, W., 2001.
Molecular fingerprinting of bacterial populations in groundwater and bottled
mineral water. Applied Microbiology and Biotechnology 57, 412–418.

Ercolini, D., 2004. PCR-DGGE fingerprinting: novel strategies for detection of
microbes in food. Journal of Microbiological Methods 56, 297–314.

Gildberg, A., 2004. Digestive enzyme activities in starved pre-slaughter fanned and
wild-captured, Atlantic cod (Gadus morhua). Aquaculture 238, 343–353.

Gonzalez, C.J., Santos, J.A., Garcia-Lopez, M.L., Otero, A., 2000. Psychro-
bacters and related bacteria in freshwater fish. Journal of Food Protection 63,
315–321.

Gram, L., Dalgaard, P., 2002. Fish spoilage bacteria-problems and solutions.
Current Opinion in Biotechnology 13, 262–266.

Gram, L., Huss, H.H., 1996. Microbiological spoilage of fish and fish products.
International Journal of Food Microbiology 33, 121–137.

Gram, L., Trolle, G., Huss, H.H., 1987. Detection of specific spoilage bacteria
from fish stored at low (0 °C) and high (20 °C) temperatures. International
Journal of Food Microbiology 4, 65–72.

Hovda, M.B., Sivertsvik, M., Lunestad, B.T., Lorentzen, G., Rosnes, J.T., 2007.
Characterisation of the dominant bacterial population in modified atmo-
sphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S
rDNA-DGGE. Food Microbiology 24, 362–371.

International Commission on Microbiological Specifications for Foods
(ICMSF), 1986. Sampling plans for fish and shellfish. Microorganisms in

74 M.B. Hovda et al. / International Journal of Food Microbiology 117 (2007) 68–75



Foods 2. Sampling for Microbiological Analysis: Principles and Specific
Applications. University of Toronto Press, Toronto, Canada, pp. 181–196.

Jensen, S., Øvreås, L., Bergh, Ø., Torsvik, V., 2004. Phylogenetic analysis of
bacterial communities associated with larvae of the Atlantic halibut propose
succession from a uniform normal flora. Systematic andAppliedMicrobiology
27, 728–736.

Martinsdottir, E., Sveinsdottir, K., Luten, J.B., Schelvis-Smit, R., Hyldig, G.,
2001. Sensory Evaluation of Fish Freshness — Reference manual for the
Fish sector. QIM Eurofish. www.qim-eurofish.com.

Masco, L., Huys, G., De Brandt, E., Temmerman, R., Swings, J., 2005. Culture-
dependent and culture-independent qualitative analysis of probiotic products
claimed to contain bifidobacteria. International Journal of Food Microbi-
ology 102, 221–230.

Muyzer, G., de Waal, E.C., Uitterlinden, A.G., 1993. Profiling of complex
microbial populations by denaturing gradient gel electrophoresis analysis of
polymerase chain reaction-amplified genes coding for 16S rRNA. Applied
and Environmental Microbiology 59, 695–700.

Muyzer, G., Smalla, K., 1998. Application of denaturing gradient gel electro-
phoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in
microbial ecology. Antonie Van Leeuwenhoek 73, 127–141.

Nakano, S., Kobayashi, T., Funabiki, K., Matsumura, A., Nagao, Y., Yamada, T.,
2004. PCR detection of Bacillus and Staphylococcus in various foods.
Journal of Food Protection 67, 1271–1277.

Nübel, U., Engelen, B., Felske, A., Snaidr, J.,Wieshuber, A.,Amann, R.I., Ludwig,
W., Backhaus, H., 1996. Sequence heterogeneities of genes encoding 16S
rRNAs in Paenibacillus polymyxa detected by temperature gradient gel elec-
trophoresis. Journal of Bacteriology 178, 5636–5643.

Olsson, C., Ahrne, S., Pettersson, B., Molin, G., 2004. DNA based classification
of food associated Enterobacteriaceae previously identified by biolog GN
microplates. Systematic and Applied Microbiology 27, 219–228.

Paludan-Müller, C., Dalgaard, P., Huss, H.H., Gram, L., 1998. Evaluation of the
role of Carnobacterium piscicola in spoilage of vacuum- and modified-
atmosphere-packed cold-smoked salmon stored at 5 °C. International Journal
of Food Microbiology 39, 155–166.

Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V.,
Gilichinsky, D., 2004. Microbial life in permafrost. Advances in Space
Research 33, 1215–1221.

Rosnes, J.T., Kleiberg, G.H., Sivertsvik, M., Lunestad, B.T., Lorentzen, G.,
2006. Effect of modified atmosphere packaging and superchilled storage on
the shelf-life of farmed ready-to-cook spotted Wolf-fish (Anarhichas minor).
Packaging Technology and Science 19, 325–333.

Rudi, K., Maugesten, T., Hannevik, S.E., Nissen, H., 2004. Explorative
multivariate analyses of 16S rRNA gene data frommicrobial communities in
modified-atmosphere-packed salmon and coalfish. Applied and Environ-
mental Microbiology 70, 5010–5018.

Rustad, T., 1992. Muscle chemistry and the quality of wild and farmed cod. In:
Huss, H.H., Jakobsen, M., Liston, J. (Eds.), Quality Assurance in the Fish
Industry. Elsevier Science Publishers B.V, Amsterdam, NL, pp. 19–27.

Satomi, M., Vogel, B.F., Gram, L., Venkateswaran, K., 2006. Shewanella
hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine
fish of the Baltic Sea. International Journal of Systematic and Evolutionary
Microbiology 56, 243–249.

Schmalenberger, A., Schwieger, F., Tebbe, C.C., 2001. Effect of primers hybrid-
izing to different evolutionarily conserved regions of the small-subunit rRNA
gene in PCR-based microbial community analyses and genetic profiling.
Applied and Environmental Microbiology 67, 3557–3563.

Schäfer, H., Muyzer, G., 2001. Denaturing gradient gel electrophoresis in
marine microbial ecology. Methods in Microbiology 30, 425–468.

Sheffield, V.C., Cox, D.R., Lerman, L.S., Myers, R.M., 1989. Attachment of a
40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments
by the polymerase chain reaction results in improved detection of single-
base changes. Proceedings of the National Academy of Science of the
United States of America 86, 232–236.

Sivertsvik, M., 2007. The optimized modified atmosphere for packaging of pre-
rigor filleted farmed cod (Gadus morhua) is 63 ml/100 ml oxygen and
37 ml/100 ml carbon dioxide. LWT — Food Science and Technology 40,
430–438.

Takahashi, H., Kimura, B., Yoshikawa, M., Gotou, S., Watanabe, I., Fujii, T.,
2004. Direct detection and identification of lactic acid bacteria in a food
processing plant and in meat products using denaturing gradient gel
electrophoresis. Journal of Food Protection 67, 2515–2520.

Torsvik, V., Daae, F.L., Sandaa, R.A., Øvreås, L., 1998. Novel techniques for
analysing microbial diversity in natural and perturbed environments. Journal
of Biotechnology 64, 53–62.

Vogel, B.F., Venkateswaran, K., Satomi, M., Gram, L., 2005. Identification of
Shewanella baltica as the most important H2S-producing species during
iced storage of Danish marine fish. Applied and Environmental Microbi-
ology 71, 6689–6697.

Wintzingerode, F., Göbel, U.B., Stackebrandt, E., 1997. Determination of
microbial diversity in environmental samples: pitfalls of PCR-based rRNA
analysis. FEMS Microbiology Reviews 21, 213–229.

Øvreås, L., 2000. Population and community level approaches for analysing
microbial diversity in natural environments. Ecology Letters 3, 236–251.

Øvreås, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterio-
plankton in meromictic Lake Sælenvannet, as determined by denaturing
gradient gel electrophoresis of PCR-amplified gene fragments coding for
16S rRNA. Applied and Environmental Microbiology 63, 3367–3373.

75M.B. Hovda et al. / International Journal of Food Microbiology 117 (2007) 68–75



 

 

 

 

Paper III  
 
 

Hovda, M. B., Sivertsvik, M., Lunestad, B. T. & Rosnes, J. T. (2007): 

Microflora assessments using PCR-DGGE of ozone-treated and modified 

atmosphere packaged farmed cod fillets. Journal of Food Protection, in press, 

to be published in Vol. 70. 

 

The included Paper III is the proof to be published. There are some minor spelling 

corrections in the published paper, compared to this version.  

 

 

  

 





      

•

Journal of Food Protection, Vol. 70, No. 9, 2007, Pages 000–000
Copyright �, International Association for Food Protection

Microflora Assessments using PCR–Denaturing Gradient Gel
Electrophoresis of Ozone-Treated and Modified

Atmosphere–Packaged Farmed Cod Fillets

MARIA BEFRING HOVDA,1,2 MORTEN SIVERTSVIK,1 BJØRN TORE LUNESTAD,3 AND JAN THOMAS ROSNES1*

1Norconserv AS, Seafood Processing Research, P.O. Box 327, N-4002 Stavanger, Norway; 2Department of Biology, University of Bergen,
Jahnebakken 5, N-5020 Bergen, Norway; and 3National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817

Bergen, Norway

MS 07-095: Received 21 February 2007/Accepted 22 April 2007

ABSTRACT

Denaturing gradient gel electrophoresis (DGGE) of a PCR-amplified 16S rDNA sequence was used to characterize changes
in the microbial flora caused by ozone (O3) treatment of farmed cod (Gadus morhua). Portions of cod were produced under
controlled conditions, bathed in fresh water supplemented with 2 ppm of O3 for 30 min, and packaged in modified atmosphere
(MA: 60% CO2 and 40% N2) before 4�C storage. Control samples were packaged in MA or air, without prior O3 treatment.
Samples were analyzed by PCR-DGGE to determine the predominant bacterial flora and to examine possible differences in
the microbial community due to O3 treatment. The DGGE analysis during the storage period showed that the O3 treatment
produced no significant difference in the microbial flora compared with the controls. Sequencing of 16S rDNA detected the
specific spoilage bacteria Photobacterium phosphoreum, Pseudomonas spp., Shewanella baltica, and Shewanella putrefaciens
as the predominant bacteria in all samples. PCR-DGGE results were supported by culture and sensory analyses used in
predicting product shelf life. Aerobic plate count, H2S-producing bacteria, and psychrotrophic bacterial counts demonstrated
no significant extension of the shelf life of MA-packaged, O3-treated cod fillets.

Ozone (O3) is an effective antimicrobial agent that re-
verts within minutes to oxygen, giving no significant toxic
residues in the environment following its use. It has been
deemed GRAS (generally recognized as safe) for several
food applications (11). Ozonated water can be used on food
products as a disinfectant, leaving the food products free of
disinfectant residues. The use of O3 in marine-based aqua-
culture systems has been limited because of the potential
of O3 to form bromate during the oxidation of naturally
occurring bromide. Bromate has been demonstrated to be a
carcinogen in animals, but there are no data indicating the
same effect in humans (3). To avoid customer concern
about possible carcinogenic by-products, moderate concen-
trations of O3 in fresh water can be used.

The bactericidal effect of O3 on bacteria in food has
been tested for preservation of foods such as meat, poultry
products, eggs, fruits, and vegetables (19). The most com-
mon use of O3 as a bactericide is on municipal and indus-
trial drinking water (35, 36). Trials to assess the efficacy of
ozonated water against food-related microorganisms have
shown that gram-positive bacteria, such as Listeria mono-
cytogenes, Staphylococcus aureus, and Bacillus cereus, as
well as gram-negative bacteria, such as Pseudomonas aeru-
ginosa and Yersinia enterocolitica, are killed at sufficient
doses (26). O3 treatment of �1 ppm for less than 5 min
gave growth inhibition of various pathogens (19). Previous
publications have shown that O3 alone has variable effects

* Author for correspondence. Tel: (�47) 51 84 46 00; Fax: (�47) 51 84
46 51; E-mail: jtr@norconserv.no.

when used on products with a high organic content, such
as foods (19). However, comparison is difficult because dif-
ferent O3 concentrations and treatment times, as well as
various volumes of food items, have been used. The shelf
life extension of seafood based on O3 treatment shows var-
iable results. Some authors report an extended shelf life and
sensory quality (8, 20, 21), whereas no or a negative effect
is observed by others (4, 25). O3 treatment is not univer-
sally beneficial, and excessive use of O3 may promote ox-
idative food spoilage (27). Thus, producers are encouraged
to use additional preservation techniques. By combining
different preservation factors, improvements in quality can
be achieved. Modified atmosphere (MA) packaging is a
mild preservation method, and it has been shown to extend
the shelf life of many seafood products. The effects of MA
packaging on the shelf life of fish products show that this
is dependent on the fish species, the gas composition, and
the storage conditions (30–32). Spoilage bacteria contribute
to degradation of the fish by producing off-odor and off-
flavor. Photobacterium phosphoreum (7), Shewanella pu-
trefaciens, Shewanella baltica, Pseudomonas sp. (12, 34),
and Brochothrix thermosphacta (5) have been described as
the most important spoilage bacteria during fish storage.

When combining different treatments, it is important
to have rapid and precise methods to detect changes in the
microbial community. DNA extracted from a microbial
population can be used to identify the genetic diversity of
the dominant populations by PCR and denaturing gradient
gel electrophoresis (DGGE) (22). This method allows sep-
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aration of DNA fragments with different base sequences
and hence provides information about variations in the tar-
get region of a bacterial population. The target sequence
used for PCR amplification is the hypervariable V3 region
on the 16S rRNA gene. Recently, the method has been used
to study the bacterial flora of MA-packaged cod (14).

The objective of this study was to examine the effects
of O3 treatment on changes in the bacterial population of
farmed cod during chilled storage. PCR-DGGE was used
to detect the predominant bacteria in a sample representing
the bacteria that are not affected by the initial O3 treatment.
As DGGE monitors bacterial profiles, it can be used to
study hygienic effects of the O3 treatment. The PCR-am-
plified V3 region of the 16S rDNA was analyzed by DGGE
to monitor and identify the bacteria able to grow on O3-
treated, MA-packaged farmed cod. The DGGE profiles ob-
tained were compared to determine and describe the effects
of O3 treatment.

MATERIALS AND METHODS

Raw material and packaging. One lot (4 to 5 kg) of com-
mercially farmed, harvested, and processed prerigor cod (Gadus
morhua) was obtained from Vikenco AS (Aukra, Norway). The
fish was produced under controlled conditions, where the fillets
were rinsed under water after filleting and kept on ice before and
after O3 treatment. Portions of 400-g skin- and boneless cod fillets
were submerged in potable water supplemented with 2 ppm of O3

for 30 min within 2 to 3 h after filleting. The treatment of cod
fillets (10 kg) was conducted in a 500-liter tank with gentle agi-
tation to maximize the O3 exposure. This exposure was chosen
on the basis of previous studies as a treatment suitable for the
industry and able to kill food spoilage bacteria. The O3 was pro-
duced by a Corona discharge O3 generator, 540 W, 50/60 Hz, and
O3 output of 60.1 g/h (SGA Ozone System, Pacific Ozone Tech-
nology Inc., Brentwood, Calif.). The O3 concentrations were mea-
sured with a HACH DR 2800 spectrophotometer with AccuVac
Ozone Reagent (Hach Company, Loveland, Colo.). The fillets
were packaged in 1,800-ml high-density polyethylene semirigid
trays (Tray 870, Polimoon, Kristiansand, Norway). The air was
evacuated, and a food-grade gas mixture (60% CO2 and 40% N2;
AGA, Oslo, Norway) was introduced into the package before heat
sealing, with a packaging machine (900VG-XL, Polimoon). The
air-stored portions were wrapped with nonbarrier cling film di-
rectly after filleting. Packages of both MA and air were stored at
4.0�C, and samples were analyzed 1, 6, 11, and 14 days after
slaughtering and packaging.

Microbiological analyses. Samples of 10 g of fish muscle
were homogenized in 90 ml of peptone water (0.9% NaCl [wt/
vol]) and 0.1% peptone [wt/vol]) for 30 s in a Stomacher 400
Laboratory Blender (Seward Ltd., London, UK). Suitable 10-fold
dilutions of the fish suspensions were spread in duplicate on plates
containing the following media: plate count agar (PCA; Merck,
Darmstadt, Germany) containing 1% NaCl, which was used to
enumerate psychrotrophic bacteria, including the salt requiring P.
phosphoreum; iron agar (Lyngby, CM 964, Oxoid, Basingstoke,
UK) for aerobic plate counts (APCs) and H2S-producing bacteria
by counting the black colonies; and Long & Hammer Agar (LHA)
to determine aerobic count and specific spoilage organisms in fish,
as P. phosphoreum (33). The PCA plates were incubated at 7�C
for 10 days, the iron agar plates were incubated at 20�C for 3
days, and the LHA plates were incubated at 15�C for 7 days.

Averages for duplicate plate counts were presented as log CFU
per gram of muscle.

DNA extraction. Bacterial DNA was extracted directly from
the fish matrix with surface samples of 10 g of muscle, as de-
scribed previously (15). DNA was also obtained from colonies
growing on LHA and PCA spread plates. After counting, the bac-
teria were collected, washed with phosphate-buffered saline
(PBS), and frozen at �20�C. The pellets were thawed and sus-
pended in 500 �l of PBS and incubated in boiling water for 20
min and then on ice for 10 min to weaken the bacteria cell wall,
before DNA extraction with the DNeasy Tissue Kit (Qiagen, Hil-
den, Germany) with the gram-positive bacteria modification, as
recommended by the manufacturer.

PCR, DGGE, and identification of bands. Bacterial DNA
extracted directly from fish and cell pellets was used as the tem-
plate to amplify the hypervariable V3 region on 16S rDNA, with
the universal primers BA338f (5�ACTCCTACGGGAGGCAGC
AG) and UN518r (5�ATTACCGCGGCTGCTGG) (22, 37). A GC
clamp was linked to the forward primer (28). After amplification,
the PCR products were separated by DGGE on a V20-HCDC
system (Scie-Plas Limited, Southham, UK), with denaturing gra-
dient ranging from 30 to 55%, as previously described (15). The
partial sequencing was performed at the University of Bergen Se-
quencing Facility (Bergen, Norway) with the forward primer
BA338f without the GC clamp and the BigDye Terminator v3.1
Cycle Sequencing kit (Applied Biosystems, Warrington, UK).
Searches in BLAST from GenBank were used to find the closest
known relatives to the partial 16S rDNA sequences (90 to 200
bp) (1). Sequences with 97% or higher identity were considered
to represent the same species.

pH measurements. The pH of the fish tissue was determined
in duplicate with a pH meter (Beckman 72, Beckman Instruments
Inc., Fullerton, Calif.) on homogenized muscle (25 g) in a 1:1
dilution with 0.1 M KCl.

Sensory analyses. The samples were evaluated both as raw
and cooked fillets by a descriptive test adopted from Shewan et
al. (29). Raw assessments of odor and texture were evaluated on
a Torry scale for odor scores of 10 (sea fresh) to 3 and below
(putrid). The texture range used was 10 (firm) to 4 and below
(soft). The sensory evaluation of cooked muscle, 80�C for 8 min
in steam, was carried out on fillet portions (15 to 20 mm wide)
packaged in cook-plastic pouches (PA/PE 20/50) under slight vac-
uum (95%). Both odor and flavor of the samples were evaluated
on a scale from 10 (fresh seaweedy odor and fresh sweet flavor)
to 0 (putrid odor and flavor). Texture assessments, including firm-
ness and juiciness, were on a scale from 10 (firm and juicy) to 0
(very soft and dry). Analyses were carried out in randomized or-
der of coded samples with replicates by a panel of three experi-
enced evaluators.

Statistical analysis. An analysis of variance was performed
with Minitab 14 (Minitab Inc., Foster City, Calif.) by the General
Linear Model with Tukey’s honest significant difference test at the
P � 0.05 (95%) level.

RESULTS AND DISCUSSION

The cod used in this experiment was filleted prerigor
and was of high quality when cut into portions, treated with
O3, and packaged. Molecular analyses by PCR-DGGE
monitored the bacterial population and profile changes after
O3 treatment and during storage (Fig. 1). The bacterial pro-
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FIGURE 1. DGGE bacterial profiles of farmed cod fillets at stor-
age day 1 (lanes 1 to 3) and day 14 (lanes 4 to 6). At each time
point, samples were taken from air storage (lanes 1 and 4), MA
packaging (lanes 2 and 5), and ozone-treated, MA-packaged cod
(lanes 3 and 6). The indicated bands (1 to 15) represent the se-
quenced bands with an identity of �97%, with the GenBank ac-
cession number in brackets. Bands 1, 13, and 15 identified Pho-
tobacterium phosphoreum (AY577825), band 2 identified Pseu-
domonas sp. (DQ344864), band 3 identified Pseudomonas putida
(AY450556), band 4 identified Flavobacterium sp. (AY494683),
band 5 identified soil bacterium (DQ518553), bands 6 and 11
identified Pseudomonas sp. (AJ864857), band 7 identified uncul-
tured bacterium (DQ633741), bands 8 and 12 identified P. putida
(AY450555), band 9 identified Bacillus cereus (DQ841261), band
10 identified Pseudomonas sp. (DQ521397), and band 14 identi-
fied P. phosphoreum (AJ746359).

FIGURE 2. Microbial growth of psychrotrophic bacteria on PCA
(A), aerobic plate counts (APCs) on iron agar (B), and H2S-pro-
ducing bacteria as black colonies on iron agar (C) on cod stored
in air (— � —), MA (— � —), and ozone-treated MA
(— � —).

file obtained directly from the fish muscle at the beginning
of the storage represented a wide variety of bacteria, in-
cluding P. phosphoreum, Pseudomonas spp., Flavobacte-
rium sp., and B. cereus. No bacterial differences were ob-
served between the treatments after day 1. Flavobacterium
is widely found in marine waters, and Flavobacterium psy-
chrophilum is considered a fish pathogen (23). During stor-
age, the diversity decreased, and MA-stored samples, with
and without ozonization, showed similar DGGE profiles
(Fig. 1). The 16S rDNA analyses identified Pseudomonas
spp. and P. phosphoreum as the predominant bacteria dur-
ing storage. These bacteria have previously been found to
be an important part of the spoilage microflora of MA-
packaged fish (7, 14, 24). Our PCR-DGGE result, showing
that the O3 treatment had no detectable effect on the mi-
crobial community composition, was supported by findings
from three types of bacteriological plate counts (Fig. 2A
through 2C). This study is in agreement with previous stud-
ies, showing minor effects of O3 when applied on fish mus-
cle (6, 8). Güzel-Seydim et al. (13) tested the potential of
O3 to reduce the bacterial load of five different food com-
ponents. They reported that the food components had sig-
nificant effects on the bactericidal power of O3. These ef-

fects must be considered when designing processes that will
rely on O3 for bacterial destruction.

Analyses of the predominant bacteria obtained from
cultivation on LHA showed no significant differences be-
tween the different storage conditions, which indicated little
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FIGURE 3. Reductions in the sensory scores for odor (A) and
flavor (B) in cooked cod and raw odor (C). Air storage
(— � —), MA (— � —), and ozone-treated cod packaged in MA
(— � —). The Torry scale of 10 represents a fresh seaweedy odor
and fresh sweet flavor, and 0 represents a putrid odor and flavor.

effect of the O3 treatment (data not shown). Gel analyses
showed that the main bands were represented in all samples
throughout the storage period. Sequencing detected Pseu-
domonas spp., P. phosphoreum, and Psychrobacter sp. as
the bacteria present on the spread plate samples. Although
Pseudomonas and P. phosphoreum are known spoilage bac-
teria, the spoilage potential of Psychrobacter is not fully
known (9). Furthermore, S. baltica and S. putrefaciens were
found on air-stored and O3-treated MA-packaged cod. This
result supports the result of da Silva et al. (8), who found
no effect of the ozonization on the growth of Pseudomon-
adaceae or H2S-producing bacteria on cod, except after 8
days, when there was a 1-log reduction of H2S-producing
bacteria. The detection of Shewanella spp. supported the
microbial plate counts, although the growth of H2S-pro-
ducing bacteria occurred in all packaging variants (Fig. 2C).
Cultivated bacteria from PCA plates gave profiles and se-
quencing results similar to LHA plates (data not shown).
The aim of this study was to investigate and detect potential
changes in the bacterial flora of O3-treated fish. Previous
studies have shown that pure cultures of S. putrefaciens and
Pseudomonas putida were inhibited when exposed to O3

(8). In the present study, we found that O3 treatment did
not change the bacterial flora compared with untreated sam-
ples and that the same predominant bacteria were found
during the storage of cod. This is also supported by the
study of Ravesi et al. (25), in which O3 treatment of fresh
cod had no effect on the shelf life.

On the basis of microbial counts, the O3-treated MA-
packaged cod had a shelf life of about 10 to 13 days. There
was no significant effect of O3 treatment compared with
control MA-packaged cod as expressed by microbial plate
counts. The psychrotrophic counts increased for both air-
stored and MA-packaged products after day 1. There were,
however, significantly (P � 0.05) lower bacterial numbers
in the MA packages (Fig. 2A). Psychrotrophic bacterial
growth on PCA-added salt is assumed to consist mainly of
P. phosphoreum, a spoilage bacterium during MA pack-
aging. Measured as APC, the microbial growth started im-
mediately in air but had a lag phase of about 9 days for
MA-packaged products (Fig. 2B). An APC of 6 log CFU/g
is often used as a maximum level for fish sold for human
consumption (17). Application of this limit would give a
high-quality shelf life of about 13 days for O3-treated cod,
whereas MA packaging without O3 treatment was below
this limit (Fig. 2B). S. putrefaciens and the recently de-
scribed S. baltica are the main spoilage bacteria in air- and
ice-stored fish, e.g., cod, plaice, flounder (16, 34), causing
off-odor by the production of H2S and trimethylamine. MA
packaging inhibited the bacterial growth of H2S-producing
bacteria the first 11 days. On day 14, the O3-treated cod
was 6.5 log CFU/g versus 4 log CFU/g for MA-packaged
cod fillets without O3 treatment (Fig. 2C). During air stor-
age, the growth of H2S-producing bacteria increased from
3 to 8 log CFU/g, where 8 log CFU/g often is used as a
spoilage limit (18). O3 treatment of cod muscle showed no
marked differences on the bacterial growth of APC and
psychrotrophic bacteria. Variations in the muscle pH may
affect the bacterial growth. Farmed cod is known to have

a lower pH than wild-caught cod, and previous studies have
reported a pH of around 6.0 for farmed cod (14). A pH
below 6.2 has been shown to prolong the growth lag phase
of S. putrefaciens (2). We observed a pH of 6.3 (�0.1),
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and there were no differences in the pH as a function of
storage or treatment.

During O3 treatment in a water bath, the fillets ap-
peared whiter and softer than nontreated cod. These differ-
ences in surface appearance disappeared after 1 day of stor-
age. A score of 5 was used as the lower limit of accept-
ability when analyzing the sensory quality during storage.
One day after filleting, MA-packaged samples with and
without ozonization had a sea fresh and firm raw odor and
texture, a seaweedy and sweet cooked odor and flavor, and
a firm and elastic texture. During air storage, the fish de-
teriorated rapidly, and after about 10 days, the air-stored
cod was unacceptable based on cooked odor and flavor
characteristics (Fig. 3A through 3B). Raw assessment found
a firm texture above the acceptance level throughout storage
for the MA-packaged cod fillets, whereas air storage had
an acceptable score for 12 days. For O3-treated cod fillets,
the raw odor decreased rapidly the first 6 days, giving the
characteristic trimethylamine and NH3 odor. MA-packaged
cod without O3 treatment had a better odor the first 11 days
(Fig. 3C). At the rejection level, the shelf life of MA-pack-
aged cod was 12 to 14 days, and there were no differences
between O3-treated and nontreated samples (Fig. 3A
through 3C). We observed no marked difference between
O3-treated and nontreated fish stored under MA, and this is
in agreement with previous experiments on the ozonization
of tilapia (10).

In conclusion, 2 ppm of ozonated water for 30 min had
no additional effect on the main spoilage flora or the shelf
life of MA-packaged farmed cod fillets. The shelf life ex-
tension compared with air storage was caused by MA pack-
aging and not the O3 treatment.
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Abstract 14 

In this study, the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.) was 15 

examined with traditional culture-based techniques and by molecular analysis of the 16S 16 

rDNA. The aim of the study was to investigate and compare the results obtained by 17 

molecular-based methods and culture-based methods. Samples were collected from the fore-, 18 

mid- and hind-gut, respectively. PCR and denaturing gradient gel electrophoresis (DGGE) 19 

analyses were performed on DNA extracted directly from the gut content and from bacteria 20 

cultivated on Tryptic Soy Agar (TSA). Population fingerprints of the predominant microbiota 21 

were generated by DGGE analysis of universal V3 16S rDNA PCR amplicons, and distinct 22 

bands from DGGE were sequenced. Results show that the salmon intestine was dominated by 23 

Lactobacillus spp., Lactococcus sp., Bacillus sp., Photobacterium phosphoreum, 24 

Acinetobacter sp., Pseudomonas sp. and Vibrio sp. Molecular analyses of samples from direct 25 

DNA extraction enabled detection of lactic acid bacteria. Prior cultivation detected Vibrio sp., 26 

Acinetobacter sp. and Pseudomonas sp., which were not detected by the direct analyses. In 27 

addition to the PCR-DGGE approach, 50 TSA isolates from the hind-gut were pure cultured 28 

and identified by partial sequencing of the 16S rDNA. Vibrio spp. and P. phosphoreum 29 

dominated among these isolates. The data provided demonstrate the advantage of the PCR-30 

DGGE molecular approach for studying the intestinal microbiota of fish.  31 

 32 

Keywords: DGGE, Gut microbiota, 16S rDNA, Sequencing, Cultivation  33 
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1. Introduction 34 

The functions of the fish intestinal microbiota are not as well studied as for humans and 35 

homoeothermic animals, and appear to be simpler (Ringø et al., 1995). However, recent 36 

papers find a more diverse microbiota and suggest this statement to be revised (Ringø et al., 37 

2006b; Bakke-McKellep et al., 2007; Kim et al., 2007). The microbial floras of the fish 38 

intestine have been shown highly dependent on the bacterial colonization during early 39 

development, environmental conditions and dietary changes (Ringø et al., 1995, 2006a; Ringø 40 

and Birkbeck, 1999; Olafsen, 2001). In addition to digestion, absorption and metabolism, the 41 

intestine act as a main infection route for fish pathogenic bacteria (Ringø et al., 2003; 42 

Brikbeck and Ringø, 2005). The interest in gut microbiota investigations of farmed Atlantic 43 

salmon is based on the need for a better understanding of how the environment and diet may 44 

influence on the bacterial composition.  45 

 46 

In the review by Ringø et al. (1995) the culturable intestinal microbiota of salmonids was 47 

reported to consist of Gram-negative bacteria, where Acinetobacter spp., Enterobacteriaceae, 48 

Aeromonas spp., Flavobacterium spp. and Pseudomonas spp. were the most common 49 

bacteria, in addition to the Gram-positive Lactobacillus spp. Applying molecular-based 50 

methods Carnobacterium, Shewanella, Citrobacter, Clostridium and Mycoplasma have also 51 

been identified in the intestinal flora of rainbow trout and salmon (Spanggaard et al., 2000; 52 

Holben et al., 2002; Huber et al., 2004; Pond et al., 2006).  53 

 54 

Traditionally population analyses of the intestinal microbiota of fish have been carried out 55 

using conventional culture-based techniques, including cultivation on selective or non-56 

selective media followed by isolation and phenotypic characterisation. Instead of these 57 

traditional culture-based methods, molecular methods based on PCR and 16S rDNA 58 
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sequencing can be applied, and this approach is highly accepted in the study of microbial 59 

ecology. Several authors have used such methods in the study of fish intestine (Ringø et al., 60 

2000, 2006a; Holben et al., 2002; Verner-Jeffreys et al., 2003; Huber et al., 2004; Martin et 61 

al., 2006; Pond et al., 2006; Kim et al., 2007). Applications of culture-independent molecular 62 

methods are needed to improve our understanding of the total microbial microbiota, as 63 

conventional culture-based methods are time consuming and selective, and do not provide the 64 

entire microbial diversity of complex environments. DNA extracted from a microbial 65 

population can be used to identify the genetic diversity of the dominant populations by PCR 66 

and denaturing gradient gel electrophoresis (DGGE) (Muyzer et al., 1993). Using the 16S 67 

fragment of the rRNA gene one can describe both cultivable and uncultivable bacteria by 68 

phylogenetic relationship. PCR and DGGE are commonly used in environmental microbial 69 

ecology, in studying foods (for a review (Ercolini, 2004)) and for analyses of gut microbiota 70 

(Simpson et al., 1999; Huber et al., 2004; Mättö et al., 2005; Vanhoutte et al., 2005; Kim et 71 

al., 2007). Universal primers amplifying a hypervariable region of the 16S rDNA are 72 

frequently used to detect dominant bacteria in the samples. The target sequence for PCR, in 73 

the present study, was the V3-region on the 16S rDNA, which is known to have a high grade 74 

of resolution and to be highly variable (Øvreås, 2000). After PCR amplification, the 75 

separation of the DNA fragments in the gel is based on differences in the GC content and GC 76 

distribution in the bacterial DNA. Bacterial DNA from excised gel bands can subsequently be 77 

identified by sequencing. PCR-DGGE is a reliable and rapid method to study the variation of 78 

dominant bacteria and to characterise complex microbial populations (Giraffa and Neviani, 79 

2001). 80 

 81 

The purpose of this work was to use PCR, DGGE and sequencing to describe the intestinal 82 

microbiota of farmed Atlantic salmon. In addition, we wanted to compare standard isolation 83 



 5 

and characterisation methods, with PCR-DGGE and 16S rRNA gene sequence analyses for 84 

the bacteria in the fore-gut, mid-gut and hind-gut.  85 

 86 

2. Materials and methods 87 

2.1 Sample collection 88 

Atlantic salmon (Salmo salar L.) were raised at the Skretting Research Station in Lerang 89 

(Norway) in two sea cages (I and II), from July 2007 until October 2007. The fish were fed to 90 

satiation with two diets (9 mm commercial diet, Skretting AS), based on fish meal, fish oil, 91 

and extracted soybean meal, in addition to wheat, rapeseed oil, and vitamin premix. At the 92 

end of the feeding period, and 4-6 hrs after feeding, 5 fish from each cage with an average 93 

weight of ~1.8 kg were killed using high doses of anaesthesia (Tricaine methanesulfonate, 94 

Finquel MS 222, Argent Chemical Laboratories). The gut was divided into fore-gut, mid-gut 95 

and hind-gut. The fore-gut refers to: the proximal portion of the digestive system including 96 

the esophagus and the stomach, the mid-gut: intermediate portion of the digestive system 97 

including the pyloric caeca and small intestine, and the hind-gut: distal portion of the 98 

digestive system that corresponds to the large intestine. The gut contents, of 5 fish from each 99 

cage, were squeezed out, and the gut rinsed three times using ~3 ml peptone water (1 g/l 100 

Bacto peptone (Merck) and 8.5 g/l NaCl) to ensure capturing of adherent bacteria, as 101 

recommended and described by Ringø et al. (2006b). The hind-gut samples were divided into 102 

the squeezed (non-adherent bacteria) and the washed fraction (adherent bacteria). Since the 103 

hind-gut were expected to contain the most stabile microbial community, a more throughout 104 

examination of this intestinal segment were conducted. 105 

 106 

2.2 Cultivation and phylogenetic characterisation  107 
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The intestinal content were homogenised for 3 min in a Stomacher 400 Laboratory Blender 108 

(AJ Steward Company LTD, London, England), and appropriate 10-fold dilutions were 109 

spread and cultivated on Tryptic Soy Agar (TSA, Oxoid CM0131, Basingstoke, England). 110 

The plates were incubated at 15 oC for one week, in order to determine the aerobic plate count 111 

of the cultivable bacteria present. The presences of H2S-producing bacteria in the hind-gut 112 

were determined using Iron Agar Lyngby media (Oxoid CM 964, Basingstoke, England), 113 

incubated for three days at 20 oC. Black colonies on the agar were counted as H2S-producing 114 

bacteria. Cultivated bacteria from TSA were collected, washed with 1x PBS and frozen. The 115 

pellets were thawed immediately prior to DNA extraction using the E.Z.N.A. Tissue DNA kit 116 

(Omega Bio-tek, Doraville, USA). To ensure extraction of DNA from Gram-positive bacteria, 117 

a lysozyme treatment was performed in advance.  118 

 119 

For phenotypic characterisation, 100 selected hind-gut bacteria colonies from TSA and 20 120 

colonies from Iron Agar were isolated and subcultured, on their respective media, until purity 121 

was achieved. The isolates were characterised by microscopy, Gram-, catalase- and oxidase-122 

reactions. Pure cultures were stored at -70 oC using the Microbank system (Pro-Lab 123 

Diagnostics, Richmond Hill, Canada). Based on these preliminary tests, a total of 19 TSA 124 

isolates were biochemically examined using API 20E for detection of Enterobacteriaceae and 125 

other Gram-negative rods, and API 20NE for non-fastidious and non-enteric Gram-negative 126 

rods in accordance with the recommendations from the producer (Biomerieux, Marcy 127 

I’Etoile, France). 128 

 129 

2.3 Direct DNA extraction from intestine samples 130 

In order to ensure detection of non cultivable bacteria, DNA was purified directly from the 131 

intestine samples. Extraction was performed using QIAamp DNA Stool Mini kit (Qiagen, 132 
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Hilden, Germany). This kit is designed for stool samples, but the obtained DNA concentration 133 

was low when measured as the absorbance at 260 nm. Therefore, the following PCR reaction 134 

was preformed twice to increase the amount of DNA for subsequent analysis.   135 

 136 

2.4 16S rDNA PCR and DGGE  137 

Universal primers for the domain Bacteria were used for amplification of the variable V3-138 

region on 16S rDNA. Primers for PCR were the forward primer BA338f (5’ACT CCT ACG 139 

GGA GGC AGC AG) including a 40 base GC clamp at the 5’ end, and the reverse primer 140 

UN518r (5’ATT ACC GCG GCT GCT GG). The PCR and DGGE were performed as 141 

described by (Hovda et al., 2007b). Briefly the method consists of PCR amplification before 142 

separation of the amplicons on DGGE, with a gradient ranging from 30 to 55 %. The gel was 143 

run for 10 min at 20 V and further 18 h at 70 V at 60 oC. The DNA fragments to be nucleotide 144 

sequenced were excised, amplified using the forward primer BA338f without the GC clamp, 145 

and sequenced at the University of Bergen Sequencing Facility (Bergen, Norway). Searches 146 

in BLAST from GenBank were used to find the closest known relatives to the partial 16S 147 

rDNA sequences (117-162 bp).  148 

 149 

2.5 Sequencing of the 16S rDNA from pure cultures 150 

Out of the 100 TSA isolates, 50 were selected for sequencing, in addition to 18 of the Iron 151 

Agar isolates. The isolates were amplified using PCR and primers corresponding to the 152 

nucleotides 27-1491 on the 16S rRNA gene. PCR were performed using 5 µl thawed pure 153 

culture, diluted 1:100, as template. To each PCR tube, finale concentrations of the following 154 

reagents were included; 0.5 µM of the primers 27f (5’AGA GTT TGA TCM TGG CTC AG) 155 

and 1491r (5’GTT TAC CTT GTT ACG ACT T) (MWG-Biotech, Ebersberg, Germany), 0.1 156 

mM of each dNTP (Fermentas, Lithuania), 1x buffer, 0.5 U DyNAzyme II Polymerase 157 
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(Finnzyme, Espoo, Finland) and distilled water to a final volume of 50 �l. The PCR cycling 158 

was performed using the following conditions: 94 oC for 10 min and than 35 cycles of 94 oC 159 

for 30 sec, 53 oC for 30 sec and 72 oC for 90 sec, before 7 min at 72 oC. Purified isolate 160 

amplicons were then fully bidirectional sequenced. The phylogenetic relationships of 161 

organisms covered in the present study were determined by comparison of individual rRNA 162 

gene sequences to those published in the BLAST database.  163 

 164 

3. Results 165 

3.1 Bacterial enumeration 166 

The average bacterial numbers in the different parts of the gut were log 3.9 cfu/g digesta in 167 

the fore-gut, and log 3.7 cfu/g digesta in the mid-gut. The squeezed part of the hind-gut 168 

consisted of log 6.4 cfu/g digesta, whereas the washed fraction of log 4.8 cfu/g (Table 1). 169 

H2S-producing bacteria, counted as black colonies on Iron Agar, were determined for the 170 

mixed sample of squeezed and washed hind-gut, giving a bacterial number of log 5.4 cfu/g 171 

digesta.  172 

 173 

3.2 Characterisation of pure cultures 174 

From the hind-gut TSA plates 100 colonies were randomly collected irrespectively of colour 175 

and shape, for further characterisation and identification. The subcultured and purified 176 

colonies were tested with Gram-, catalase-, oxidase-reactions. In addition, 19 colonies were 177 

tested using API strips (20E and 20NE), but this did not identify any of the isolates with a 178 

satisfactory discrimination. From the descriptive tests and analyses it was not possible to 179 

classify the isolates into taxonomic groups, hence API failed to identify the isolates.  180 

 181 
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Out of the 100 TSA isolates, 50 were phylogenetic analysed by sequencing the 16S rRNA 182 

gene. The sequencing assigned isolates as Vibrio spp. (25 isolates), Photobacterium 183 

phosphoreum (23 isolates), Psychrobacter glacincola (AJ312213) (1 isolate) and 184 

Brevundimonas sp. (DQ177489) (1 isolate). Vibrio was found to dominate in gut from sea 185 

cage I, whereas P. phosphoreum in the gut from sea cage II. Within the Iron Agar isolates, 18 186 

colonies were selected for sequencing. Sequencing resulted in 12 colonies representing Vibrio 187 

sp. (DQ146979 and AM159569), all from sea cage I, and 6 colonies assigned as P. 188 

phosphoreum, from sea cage II.  189 

 190 

3.3 Intestinal bacterial profiles using DGGE  191 

PCR and DGGE were used to visualize the bacterial diversity, and changes between different 192 

parts of the intestine. The bacterial profiles of the gut microbiota achieved by direct DNA 193 

extraction are shown in Fig. 1. It was observed a change in the bacterial flora towards more 194 

bands in the hind-gut. In order to determine to which bacterial group the particular excised 195 

bands could be ascribed, DGGE bands were sequenced. Partial sequencing detected 196 

Lactobacillus spp., Lactococcus sp., P. phosphoreum, Bacillus sp. and an unidentified 197 

bacterium as the predominant microbiota of the salmon intestine (Table 1). Although an 198 

increase in DGGE bands was observed through the gut, the results show no increased 199 

microbiota diversity. In the hind-gut, P. phosphoreum accounted for three bands, which is 200 

caused by the heterogeneity of 16S, and also previously observed for the bacterium (Hovda et 201 

al., 2007a, 2007b).  202 

 203 

Cultivation on TSA enabled growth of aerobic and facultative anaerobic bacteria, and DGGE 204 

visualized the predominant bacterial profiles obtained from the cultivated samples. Different 205 

bacterial DGGE profiles were observed between samples from the two cages (Fig. 2). In fish 206 
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from cage I the bacterial profiles changed towards the hind-gut, and had fewer gel bands than 207 

fish from cage II. The bacterial profiles of fish from sea cage II were similar for the mid- and 208 

hind-gut samples, whereas the fore-gut had a unique profile (Fig. 2). Using sequence analysis 209 

to determine the bacteria present, a clear shift in the bacterial composition in the various 210 

sections of the intestine was observed (Table 1). The fore-gut was dominated by 211 

Janthinobacterium sp., Pseudomonas sp., Acinetobacter sp. and Vibrio sp., and the mid-gut 212 

by P. phosphoreum and Pseudomonas sp. In the hind-gut Vibrio sp. (sea cage I), and 213 

P. phosphoreum (sea cage II) were detected. Overall, the DGGE profiles and sequence 214 

analyses of excised bands revealed different bacterial composition in samples from direct 215 

DNA extraction compared to bacterial DNA obtained from TSA cultivation. 216 

  217 

4. Discussion 218 

One reported constrain in the analysis of the fish intestine microbiota is the individual 219 

variations (Spanggaard et al., 2000). To minimize the influence of these variations, the gut 220 

content 5 fish were pooled prior to analyses. Cultivation on TSA has previously been reported 221 

by several authors to be suitable for the study of the bacterial composition of fish intestine 222 

(Spanggaard et al., 2000; Huber et al., 2004; Korsnes et al., 2006; Ringø et al., 2006b). This 223 

agar was, therefore, included in the present study, in order compare this work and previous 224 

results. According to Spanggaard et al. (2000) and Ringø et al. (1995), most of the bacteria in 225 

the fish intestine are found to be aerobic and cultivable on TSA. This is in contrast to the 226 

findings of Huber et al. (2004), who found that 11-50 % was cultivable, and for one particular 227 

sample only 2 % of the intestinal bacteria could be cultured. In the present study, the bacterial 228 

counts on TSA increased from the fore-gut to the hind-gut. Compared to Holben et al. (2002), 229 

who found the distal intestinal content of farmed Norwegian and Scottish salmon to be log 7.2 230 

and 7.8 cfu/g digesta, we reports lower bacterial counts of log 3.7-6.4 cfu/g digesta. Recent 231 
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analyses of Atlantic cod reported a variable bacterial content in the different parts of the gut, 232 

ranging between log 3.9-5.6 cfu/g wet weight (Ringø et al., 2006b). In this study, Ringø et al. 233 

(2006b) found that the adherent bacteria in the hind-gut gave the highest bacterial numbers of 234 

log 4.7 to log 5.6 cfu/g wet weight, depending on diet. Other studies report a bacterial number 235 

between log 2.3-6.3 cfu/g (Pond et al., 2006; Ringø et al., 2006a; Seppola et al., 2006). It is, 236 

however, difficult to compare all the available results as different studies examine different 237 

parts of the gut, different fish species, and furthermore, the fish sampling locations and times 238 

between feeding and analyses may vary.  239 

 240 

In the present study, traditional morphological, and biochemical criteria for identification of 241 

representatives from the intestinal microbiota failed to differentiate between the isolates. 242 

Ringø and Olsen (1999) used an extended and adjusted procedure to identify such isolates. 243 

The insufficiency of the API system, when testing environmental samples, has been discussed 244 

by several authors, and is reviewed by Popovic et al. (2007). Hansen and Sørheim (1991) 245 

developed a multidish system as an alternative to API for characterising marine bacteria. For 246 

further analyses one should consider using these modified procedures.  247 

 248 

To identify the isolates we used 16S rDNA sequencing. A total of 18 hind-gut colonies from 249 

Iron Agar were sequenced. Out of these, 10 appeared as black H2S-producing bacteria on the 250 

agar. From previous analyses of ice stored fish fillets the majority of black colony forming 251 

bacteria on Iron Agar were found to be Shewanella putrefaciens (Gram et al., 1987; Dalgaard 252 

et al., 1993), although formation of H2S can occur among members of the family 253 

Vibrionaceae (Gram et al., 1987; Lund et al., 2000). Sequence analyses of the 16S rDNA 254 

assigned the black colonies as Vibrio sp. V170 (DQ146979) and Vibrio sp. DAI (AM159569) 255 

with a sequence similarity of 97-99 %. None of the selected Iron Agar pure colonies were 256 
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identified as Shewanella species, only Vibrio sp. and P. phosphoreum were found in the hind-257 

gut samples.  258 

 259 

A total of 50 colonies isolated from TSA were sequenced, with Vibrio spp. (50 %) and P. 260 

phosphoreum (46 %) as the dominating taxa. Vibrio species have also previously been 261 

detected in gut of halibut larvae (Verner-Jeffreys et al., 2003; Jensen et al., 2004) and Atlantic 262 

cod (Korsnes et al., 2006; Ringø et al., 2006b). Several papers discuss the importance of the 263 

genera Vibrio in aquaculture, and the presence in the intestinal microbiota of fish 264 

(Vandenberghe et al., 2003; Thompson et al., 2004; Austin, 2006). P. phosphoreum is known 265 

as a marine bacterium, found in fish intestine, and it is lately reported in farmed Norwegian 266 

salmon (Holben et al., 2002) and UK halibut (Verner-Jeffreys et al., 2003). The bacterium is 267 

also known for its spoilage potential of fish fillets, stored in air or modified atmosphere with 268 

high CO2 concentrations (Gram and Huss, 1996). Identifying this bacterium as part of the 269 

intestinal microbiota can be of interest to determine contamination routes, from the gut to the 270 

fish flesh. Psychrobacter glacincola, reported as 2 % of the sequenced bacteria, and 271 

Brevundimonas sp. (2 %) were also identified using 16S sequencing. Ringø et al. found 272 

Psychrobacter glacincola in the hind-gut of Arctic charr (2006a) and Atlantic cod (2006b), 273 

whilst Brevundimonas has previously been found on gills and in the spleen from Bluefin tuna 274 

(Kapetanovic et al., 2006). 275 

 276 

Sequencing DGGE bands from TSA cultivated bacteria identified Acinetobacter sp. and 277 

Pseudomonas sp. These taxa are known to be members of the intestinal microbiota of 278 

salmonids (Ringø et al., 1995). The DGGE approach confirmed the results from 16S rDNA 279 

sequencing of the hind-gut isolates, finding Vibrio spp. and P. phosphoreum. 280 

 281 
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As plate counts only detected the cultivable aerobic bacteria, a cultivation independent 282 

method was used to visualize the total bacterial flora in the intestine. We describe the 283 

recovery and subsequent 16S rDNA analysis of the total bacterial community of salmon 284 

intestine, using universal PCR primers and DGGE profiling. By extracting DNA directly from 285 

the intestine without prior cultivation, it is possible to detect uncultivable anaerobic bacteria 286 

and other bacteria requiring special growth conditions, not obtained on conventional media.  287 

 288 

It is well documented, during several investigations, that lactic acid bacteria (LAB) constitute 289 

a part of the native microbiota of aquatic animals (for a review (Ringø, 2004)). Generally, 290 

LAB from fish is known to be slow growing, and the recommended growth conditions on 291 

agar-media at low temperatures is up to 4 weeks (Ringø and Gatesoupe, 1998). This may 292 

explain why Lactobacillus spp. and Lactococcus sp. were only detected from direct extraction 293 

of bacterial DNA and not from TSA, after incubation at 15 oC for one week. Moreover, the 294 

detection on growth media can be lower than the actual bacterial number. 295 

 296 

The unidentified bacterium detected in our study has earlier been found in chicken intestine, 297 

with 85 % sequence similarity (Gong et al., 2007). It has been demonstrated that 18S rDNA 298 

sequences may be amplified using the present primer set (Hovda et al., 2007b), hence the 299 

angiosperm environmental sample and the eukaryotic 18S rDNA can be traces of plants and 300 

other eukaryotes eaten by the fish. Analysing the bacteria from direct DNA extraction did not 301 

show any differences in the microbiota of the different parts of the gut. This is contrary to the 302 

results obtained during cultivation, where the DGGE profiles differed between the fore-, mid- 303 

and hind-gut. Furthermore, no differences were found between the squeezed and washed 304 

hind-gut fraction. The cultivation based method showed a decreasing bacterial diversity from 305 

the fore- to the hind-gut (Table 1).  306 
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 307 

The direct extraction of intestinal bacterial DNA gave a different microbiota compared to the 308 

results obtained by cultivation. As PCR-DGGE monitors the predominant bacteria in a 309 

sample, differences in the bacterial composition based on cultivation can be biases due to 310 

media selectivity (Amann et al., 1995). Our results indicate that Acinetobacter sp., 311 

Pseudomonas sp. and Vibrio sp. might not be part of the predominant bacteria in the gut. 312 

During cultivation these bacteria can dominate over bacteria as LAB, and thus explain the 313 

differences in the microbial composition obtained. The cultivation-based method detected two 314 

bacteria in the hind-gut, whereas the direct extraction detected four bacteria species. The 315 

universal PCR primers targeting the highly conserved hypervariable 16S rDNA V3-region 316 

employed here were appropriate for surveying the microbial community and possible 317 

community changes throughout the salmon intestine. 318 

 319 

Further studies could benefit from applying the molecular approach described, for additional 320 

analyses of the differences between microbiota of cultivated and non cultivated samples. Such 321 

studies will be helpful to determine whether the observed results are due to sample variations, 322 

or occur as a result of cultivation biases.  323 

 324 

Conclusion 325 

Population analysis based on DGGE and sequencing of DNA obtained directly from samples 326 

of salmon intestine was shown to be different from those obtained after prior cultivation. 327 

Whereas cultivation-based methods detected Vibrio sp., Pseudomonas sp., Janthinobacterium 328 

sp., Acinetobacter sp. and P. phosphoreum, the direct DNA extraction approach found 329 

Lactobacillus fermentum, Lactococcus sp., P. phosphoreum and Bacillus sp. as the 330 

predominant bacteria in the intestine of Atlantic salmon.  331 
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Table 451 

Table 1. The bacterial growth on TSA in the different parts of the Atlantic salmon intestine, 452 

and identification of the bacteria present in the intestinal microbiota. The gut microbiota is 453 

detected by sequencing DGGE bands from both direct DNA extraction, and from cultivated 454 

samples.  455 

Direct extraction Cultivated bacteria 
Fore Mid Hind Fore Mid Hind 

Bacterial number  
(log cfu/g) 

Bacterial groups    3.9 3.7 6.41 and 4.82 

Lactobacillus spp. x x x    
P. phosphoreum  x x  x x 
Lactococcus sp. x x x    
Bacillus sp. x x x    
Unidentified bacterium x x x    
18S rDNA  x  x    
Angiosperm environmental 
sample 

x x x    

Pseudomonas sp.    x x  
Janthinobacterium sp.    x   
Acinetobacter sp.    x   
Vibrio sp.    x  x 
1Bacterial number in the squeezed hind-gut sample. 456 

2Bacterial number in the washed hind-gut sample. 457 
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Figure captions 458 

Figure 1. 459 

DGGE bacterial profiles of gut microflora obtained after direct DNA extraction. Lane 1 460 

represents the fore-gut, lane 2; the mid-gut, lane 3; hind-gut squeezed and lane 4; hind-gut 461 

washed. The indicated bands (1-16) represent the sequenced bands with a sequence similarity 462 

of � 97 %, if nothing else is mentioned. Band #1 identified Lactobacillus sp., #2 and 3 463 

Lactobacillus fermentum, #4 and 15 18S rDNA, #5 unidentified bacterium clone (AY654985) 464 

with 85 % identity, #6 and 13 Bacillus sp., #7 Angiosperm environmental, #8-10 P. 465 

phosphoreum, #11 Lactococcus sp., #12 and 14 Photobacterium sp. and #16 Lactobacillus 466 

fermentum with 96 % similarity. 467 

 468 

Figure 2. 469 

DGGE profiles of DNA from gut microflora obtained after cultivation of bacteria on TSA. 470 

The fore-gut (lane 1 and 5), mid-gut (lane 2 and 6) and hind-gut squeezed (lane 3 and 7) and 471 

washed (lane 4 and 8), which represents samples from the two cages included in the 472 

experiment. The indicated bands (1-18) represent the sequenced bands with a sequence 473 

similarity of � 97 %, if nothing else is mentioned. Bands #1, 4 and 5 identified Pseudomonas 474 

sp., #2 Janthinobacterium sp. (EF422171), #3, 9 and 10 Acinetobacter sp., #6, 11 and 12 475 

Vibrio sp., #7 and 8 Acinetobacter sp. (95-96 % similarity), #13, 14, 16 and 18 P. 476 

phosphoreum (95-96 % similarity), #15 and 17 P. phosphoreum.  477 
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