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Introduction 
 
Synaptic plasticity 

 
Neuronal transmission occurs primarily through chemical synaptic 

transmission. Long-term adaptive brain response such as memory storage are 

thought to require lasting changes in synaptic strength, a property known as 

synaptic plasticity. Classical paradigms for studying activity-dependent synaptic 

plasticity in the mammalian brain are long-term potentiation (LTP) and long-term 

depression (LTD) (Malenka and Bear, 2004; Bliss and Collingridge, 1993). In 

1949, Donald Hebb predicted a form of synaptic plasticity driven by temporal 

contiguity of pre- and post-synaptic activity. This prediction was verified decades 

later with the discovery of long-term potentiation (LTP), wherein high-frequency 

stimulation of afferent fibers produces an enduring increase in synaptic strength 

(Bliss and Lomo, 1973). Intensive research on LTP since the original description 

by Bliss and Lomo has given fundamental insights into synapse physiology and 

the cell biological mechanisms underlying activity-dependent changes in synaptic 

strength. 

Growing evidence implicates LTP-like mechanisms in memory processes 

in many brain regions including the hippocampal formation (Morris et al., 2003, 

Pastalkova et al., 2006). The hippocampal formation plays a critical role in 

memory in rodents and humans, and much of what we know about the 

mechanisms of LTP has come from studies of rodent hippocampus. This thesis 

explores LTP mechanisms in the rat dentate gyrus, a critical component of the 

hippocampal network.  
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The hippocampal formation 

 
The hippocampus, buried deep in the temporal lobe near the center of the 

brain stem, is only visible when the overlying cortex is removed. The 

hippocampus is one of a group of closely interconnected structures within the 

limbic system called the hippocampal formation (HF). The hippocampal formation 

in mammals is crucial for spatial learning and memory. The hippocampus is a 

bilateral limbic structure which resembles two "Cs" leaning together at the top 

and spread apart at the base. One "C" makes up Ammon's horn or cornu 

ammonis (CA1-CA3), also known as the "hippocampus proper". The principle cell 

layer of Ammon's Horn is the stratum pyramidale, or the pyramidal cell layer. The 

other "C" is made up of the dentate gyrus, of which the stratum granulosum, or 

granule cell layer is the principle cell layer (Amaral and Witter, 1989). When the 

hippocampus is cut transverse to its longitudinal (septal-temporal) axis, it shows 

a set of three pathways known as the trisynaptic circuit or loop (Andersen et al., 

1966; Swanson, 1977; Amaral and Witter, 1989). Sensory information enters the 

hippocampal formation through inputs from the entorhinal cortex (EC). Stellate 

cells of the entorhinal cortex project to dentate granule cells via the perforant 

path, granule cells projects to CA3 pyramidal cells via the mossy fiber pathway, 

and CA3 neurons project to CA1 pyramidal cells via the Schaffer collateral 

pathway (Amaral and Witter, 1989). 

The perforant path input to the dentate gyrus is divided into lateral and 

medial components arising from the lateral and medial entorhinal cortex, 

respectively. The lateral and medial perforant path fibers innervate the outer-third 

and middle-third of the granule cell dendritic tree, respectively, creating discretely 

segregated laminar inputs. In the present work, synaptic plasticity was studied in 

the medial perforant path input to the dentate gyrus.  

 

 

 



 9

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1.The hippocampal trisynaptic circuit. 
Schematic representation of the major synaptic excitatory circuitry in the hippocampus. The tri-
synaptic circuit includes three excitatory pathways: fibers from the perforant path innervate 
granule cell dendrites.Mossy fibers make synapses on CA3 pyramidal cells and the Schaffer 
collaterals synapses on CA1  pyramidal cell dendrites. Adapted from (Amaral and Witter,1989) 

Glutamate is the predominant mediator of fast excitatory synaptic 

transmission in the hippocampus and elsewhere in the CNS. Although a detailed 

description of glutamatergic transmission is beyond the scope of this thesis, the 

most relevant points are to be noted. Excitatory synapses onto projection 

neurons (pyramidal cells and granule cells in the hippocampus) occur almost 

exclusively on dendrite spines, often numbering more than 100,000 per neuron. 

The ionotropic glutamate receptors alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) are located 

primarily in the plasma membrane on the head of the spine. Glutamate generates 

an excitatory postsynaptic potential (EPSP) primarily through activation of AMPA 

receptors. Opening of the AMPA receptors allows Na2+ influx, causing 

depolarization of the postsynaptic neuron. The NMDA receptor has unique 

properties that come to use in activity-dependent synaptic plasticity. Unlike 

AMPA receptors, NMDA receptor activation requires membrane depolarization in 

addition to glutamate binding. The NMDA receptor gates a cation channel with 

high calcium permeability. The channel is blocked by magnesium ion in a 

voltage-dependent manner. Strong depolarization, as mediated by AMPA 

receptors during repetitive or synchronous activation by glutamate synapses, 
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relieves the magnesium block, allowing calcium to enter the spine. NMDA 

receptor-gated calcium influx is critical for both LTP and LTD.  

Glutamate is typically not the only neurotransmitter found at excitatory 

synapses. As discussed in detail later, the peptide brain-derived neurotrophic 

factor (BDNF) appears to have a co-neurotransmitter role at glutamate synapses. 

Opioid peptides are also co-stored with glutamate in certain hippocampal 

pathways, where they have important roles in regulating LTP and LTD (Bramham 

et al., 1996). 

Transmission within and between subfields is strongly influenced by 

inhibitory GABAergic interneurons. This inhibition broadly influences synaptic 

integration, neuronal excitability and synchronization, within the hippocampus. 

Specialized interneuron classes have evolved to set the threshold for activation 

(Andersen et al., 1963), shunt excitatory synaptic inputs (Qian and Sejnowski, 

1990), prevent the backpropagation of fast action potentials in the dendrites 

(Buzsaki et al., 1996; Tsubokawa and Ross, 1996), inhibit dendritic Ca2+ 

electrogenesis (Miles et al., 1996), and synchronize sub- and suprathreshold 

membrane potential oscillations in spatially distributed principal cells (Cobb et al., 

1995) (Whittington et al., 1995). Interneurons are also frequently the targets for 

subcortical pathways (Buzsaki, 1984) such as those originating in the medial 

septum (cholinergic and GABAergic), raphe nuclei (serotonergic), and locus 

coeruleus (noradrenergic) (Freund and Antal, 1988). 

The most prominent class of interneurons in the dentate gyrus is the 

basket cell, located at the junction of the granule cell layer and the polymorphic 

cell layer (hilus). The basket cells are an important cell type in the dentate gyrus 

because their axon terminals form a dense plexus within the granule cell layer. 

The basket cells consist of five morphological types that have different dendritic 

arborization and localization (Ribak and Seress, 1983; Ribak, 1992). Some 

interneurons are also present in the molecular layer. One of these interneurons is 
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the axo-axonic cell, which terminates on the axon initial segments of granule 

cells (Freund and Buzsaki, 1996). 

 

Long-term potentiation 

 

LTP is the most studied form of activity-dependent synaptic plasticity in 

the mammalian brain. Although LTP occurs throughout the nervous system, it 

has been studied most extensively in the hippocampus (Bliss and Collingridge, 

1993). As alluded to above, induction of LTP by high-frequency stimulation 

requires calcium influx through NMDA receptors (Bliss and Richter Levin, 1993; 

Malenka and Nicoll, 1999). Postsynaptic calcium levels can also be critically 

modulated by mobilization from intracellular stores and activation of L-type, 

voltage-dependent calcium channels (Kandel, 2001). 

 

Fig 2. Model of LTP induction (H Sebastian Seung, 1999) 

Postsynaptic 

Presynaptic 
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LTP can be separated into at least two temporally distinguished forms that 

require distinct mechanisms for their maintenance (Malenka and Bear, 2004; 

Abraham and Williams, 2003) the early-phase LTP (E-LTP) and late-phase LTP 

(L-LTP). E-LTP can be experimentally induced by a single, high-frequency 

stimulation (HFS). The early phase of LTP is controlled in large part by activation 

of calcium-sensitive protein kinases including protein kinase C (PKC), 

calcium/calmodulin dependent protein kinase II (CaMKII), and protein kinase A 

(PKA) (Otmakhova et al., 2000). Activation of extracellular-signal regulated 

protein kinase (ERK) (English and Sweatt, 1997; 2001), through receptor-

coupled activation of the Ras signaling cascade is also critical. Thus, early LTP is 

maintained through rapid phosphorylation of proteins present at the synapse. 

The preeminent example of this is phosphorylation of the AMPA receptor by 

CaMKII, leading to enhanced single-channel conductance and thus larger 

currents in response to glutamate binding (Lisman and Raghavachari, 2006). 

There is also evidence for lasting increases in glutamate release during LTP. The 

effect appears to be mediated by retrograde signaling. Nitric oxide, neural cell 

adhesion molecules, ephrins, and perhaps BDNF, may rapidly convey 

information from postsynaptic spines to the nerve terminal.  

L-LTP, in contrast to E-LTP, requires new gene expression  and protein 

synthesis and can persist for hours or days (Frey et al., 1988; Bourtchuladze et 

al., 1994; Nguyen et al., 1994). PKA, ERK, CaMKII, CaMKIV act through a range 

of transcriptional regulators to modulate gene expression in LTP. Members of the 

transcription factor family cAMP response-element binding protein (CREB) are 

important components of the switch that converts short-term to long-term 

synaptic plasticity (Dash et al., 1990; Bourtchuladze et al., 1994; Bartsch et al., 

1998). CREB phosphorylation on Ser-133 is necessary for CRE-dependent gene 

expression. However, CREB modulates genes that contribute to late LTP have 

not been defined. LTP also induces a variety of early response genes including 

the zinc-finger transcription factor zif268, and activity-regulated cytoskeleton-

associated protein Arc, (also known as Arg3.1). Evidence prior to this thesis 
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showed the zif268 knockout mice were impaired in late phase LTP and long-term 

memory (Jones et al., 2001) although the targets for zif268 are unknown. Arc is 

intriguing because: 1) the mRNA is rapidly transported from granule cell soma 

into dendrites, and 2) the mRNA appears to be locally translated. (Link et al., 

1995), (Lyford et al., 1995; Waltereit et al., 2001). Using antisense 

oligodeoxynucleotides to block Arc synthesis, (Guzowski et al., 2000) reported 

that Arc is necessary for long-term memory. Preliminary data suggested a 

possible effect of Arc antisense treatment on LTP. While interesting, this data 

was inconclusive in the absence of data from the baseline period prior to HFS.  

Recent studies suggest that late phase LTP involves expansion of the 

synapse and growth of the spine head. This process of spine expansion is linked 

to polymerization of actin within the spine. However, there are no studies 

examining the possible link between activity-dependent gene expression, 

modulation of actin polymerization, and formation of stable LTP. 

As mentioned above, evidence suggests that glutamate and BDNF act 

together at excitatory synapses. BDNF and other neurotrophic factors modulate 

gene expression to promote neuronal differentiation and outgrowth of neuronal 

processes during development. The powerful growth-promoting properties of 

neurotrophic factors, coupled with the discovery of these factors in mature brain, 

immediately suggested a possible link between neurotrophin signaling and 

activity-dependent alterations in adult neural networks. 

Brain-derived neurotrophic factor and LTP  

 
Neurotrophins are a small family of dimeric secretory proteins in 

vertebrate neurons with a broad spectrum of functions. They are generated as 

pro-proteins with a functionality that is distinct from the proteolytically processed 

form. Neurotrophins are required for cell survival and differentiation during 

embryonic development and maintain the structure and function of specific neural 
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systems in the adult brain (Lindsay and Seil, 1994; Lewin and Barde, 1996). The 

neurotrophin family consists of four members, nerve growth factor (NGF), brain-

derived neurotrophin factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 

(NT-4). They are produced as precursor proteins which are cleaved to mature 

proteins of 118-120 amino acids that associate as non-covalent homodimers. 

These closely related molecules act by binding to two distinct classes of 

transmembrane receptors. The p75 neurotrophin receptor (p75NTR) and the Trk 

(tropomyosin-like receptor kinase) family of receptor tyrosine kinases, which 

includes TrkA, TrkB and TrkC (Kaplan and Miller, 2000). The p75 receptor (low-

affinity neurotrophin receptor) is common to all four members of the neurotrophin 

family. The Trk family of receptor tyrosine kinases proteins are the high affinity 

neurotrophin receptor. 

 

Fig 3 Neurotrophin family peptides bind to distinct Trk receptor tyrosine kinases and a common  
low-affinity neurotrophin receptor p75. Proneurotrophins bind selectively to p75. (Kirmo 
Waartiovarra,1998) 

 

The signal transduction pathways known to be activated by Trk receptors 

are those leading to activation of MAP kinase, PI3 kinase and phospholipase C� 

(Kaplan and Miller, 1997). MAP kinase pathways activated by Trk receptors 

activate Erk1 and Erk2 at the terminus stimulating axonal growth, and PI3K 

activates AKT in the terminus as well. Recent work has show that neurotrophins 



 15

have effects on synaptic transmission and that they may be involved in the 

regulation of neuronal plasticity in both developing and mature CNS (Kim et al., 

1994; Lessmann et al., 1994; Kang and Schuman, 1995; Levine et al., 1995; 

Thoenen, 1995; Bonhoeffer, 1996; Lu and Figurov, 1997; Messaoudi et al., 

1998). BDNF which is the most widely distributed neurotrophin in the adult brain 

has been studied extensively, but mostly in cell culture. However, in the mid-

1990s evidence began accumulating that BDNF contributes to activity-dependent 

synaptic plasticity, most notably LTP in the hippocampus (Kang and Schuman, 

1995; Messaoudi et al., 1998; Korte et al., 1995; Patterson et al., 1992; 

Schuman, 1999; Schinder and Poo, 2000; Ying et al., 2002). 

BDNF and its cognate receptor TrkB have emerged as a major regulator 

of synaptic transmission and plasticity at adult synapses in many regions of the 

CNS (Bramham and Messaoudi, 2005). It has been shown pharmacologically 

and genetically that the binding of BDNF to its receptor TrkB  is essential for LTP 

maintenance at Schaffer collateral-CA1 synapses (Korte et al., 1995). LTP at 

these synapses is greatly reduced in BDNF homozygous and heterozygous 

mutant mice and it can be rescued by infusing exogenous BDNF (Korte et al., 

1996; Patterson et al., 1996). Tetanic stimulation enhances the expression of 

BDNF mRNA in the hippocampus (Patterson et al., 1992; Castren et al., 1993); 

Bramham et al., 1996) and activity-dependent release of BDNF protein has also 

been shown by (Goodman et al., 1996). BDNF signaling through TrkB activates 

several intracellular signaling cascades (Segal and Greenberg, 1996; Gooney et 

al., 2004) which may directly elicit Ca2+  release from intracellular stores via IP3 

production, or indirectly modulate Ca2+ influx through voltage-gated Ca2+ 

channels or NMDA receptors (Kovalchuk et al., 2002). 

Local intrahippocampal infusion of BDNF induces long-term potentiation 

(BDNF-LTP) at medial perforant path-granule cell synapses in the adult rat in 

vivo. Ying et al., (2002) went on to show that BDNF-LTP requires activation of 

extracellular signal-regulated kinase (ERK), coupled to ERK-dependent 

phosphorylation of CREB and up regulation of Arc. As observed during HFS-
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induced LTP, Arc mRNA is rapidly induced in postsynaptic granule cells and 

widely transported to dendrites. Local infusion of ERK inhibitors (PD98059, 

U0126) or the RNA synthesis inhibitor actinomycin D blocked BDNF-LTP and the 

associated upregulation of Arc. These results coupled BDNF-LTP to upregulation 

of Arc. However, no causal role for the Arc synthesis in HFS-LTP or BDNF-LTP 

was established and the function of the protein is unknown. In addition, a series 

of in vitro studies showed that BDNF can stimulate protein synthesis in isolated 

dendrites of primary hippocampal neuronal cultures (Aakalu et al., 2001), and 

evidence from acute hippocampal slices suggests that local protein synthesis is 

critical for BDNF-LTP at CA3-CA1 synapses (Kang et al., 1996).  

Dendritic protein synthesis  

A recent surge of studies has demonstrated extrasomatic synthesis of 

proteins in dendrites and axons (Pierce et al., 2000; Steward and Schuman, 

2003; Ju et al., 2004; Feig and Lipton, 1993; Eberwine et al., 2001; Steward and 

Schuman, 2001, Wu and Baer, 1998; Aakalu et al., 2001; Kacharmina et al., 

2000). While axonal synthesis has been seen primarily in developing neurons, 

dendritic mRNA localization and protein synthesis is a common property of 

mature neurons (Steward and Schuman, 2003; Wells and Fallon, 2000a; Klann 

and Dever, 2004). Polyribosomes have been shown to be located near the base 

of many spines in the hippocampal projection neurons (Steward and Levy, 1982). 

A variety of mRNAs as well as components of the translational machinery are 

also present in dendrites (Steward and Schuman, 2001). 

At synaptic sites, activity-dependent translation could serve to modulate 

the structure and function of dendritic branches and spines, perhaps in a 

synapse-specific manner. While numerous of mRNA species have been localized 

to dendrites of cultured neurons, less than a dozen different mRNAs have been 

localized to dendrites of mature neurons (Steward, 1997). Extracellular 

stimulation of dendrites by BDNF, glutamate, dopamine and other factors has 

been shown to regulate the translation of  mRNAs (Steward et al., 1998; Smith et 



 17

al., 2001; Aakalu et al., 2001). Several lines of evidence suggest a critical role for 

local protein synthesis in LTP consolidation. While this notion is generally 

accepted, direct evidence is lacking. 

The majority of dendritic mRNAs are constitutively stored in dendrites in 

large ribonucleoprotein particles also known as RNA storage granules. mRNA for 

the alpha subunit of αCaMKII is the best example of such on mRNA (Steward 

and Levy, 1982; Wells and Fallon, 2000b; Steward, 1997). Arc has captured 

particular interest in the context of synaptic plasticity, as the Arc messenger is 

transported to dendrites during LTP. Arc mRNA can also be localized to specific 

synaptic inputs in response to intensive synaptic activity.  

IEGs are thought to couple changes in synaptic activity to stable changes 

in synaptic efficacy seen in LTP. Mice harboring a constitutive knockout of the 

the zinc-finger transcription factor zif268 show impaired LTP consolidation and 

long-term memory. However, the knockout approach does not reveal the 

dynamic function of the activity induced mRNA and protein during the process of 

LTP induction(Ying et al., 2002) showed that BDNF-LTP is associated with 

induction of Arc but not zif268 mRNA, suggesting the BDNF may selectively 

stimulate mechanisms associated with Arc. In this thesis examined the dynamic 

function of Arc using antisense oligodeoxynucleotides to block synthesis of Arc 

during the induction and maintenance of HFS-LTP and BDNF-LTP  

Translation control 

L-LTP is blocked by both inhibitors of translation and transcription (Frey et 

al., 1991; Nguyen and Kandel, 1997; Kelleher et al., 2004a) This shows that L-

LTP is involved in transcription and translation process. The protein products 

required for the establishment of long-term synaptic plasticity are thought to be 

utilized by activated synapses to stabilize modifications in synaptic strength 

(Kelleher et al., 2004a). While the basic requirement for protein synthesis is 

known, the notion that synaptic activity may control and modulate the level of 
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protein synthesis is new. In recent years, a variety of biochemical mechanisms 

have emerged whereby neural activity affects both global and transcript-specific 

translation of mRNA. This is particularly exciting given the discovery of dendritic 

protein synthesis. We have focused on two key translation factors governing the 

initiation and elongation steps of protein synthesis.  

 
Figure 4. TrkB and translation control in dendritic spines. 
The cartoon depicts some of the major signaling pathway coupling TrkB with regulation of eIF4E 
and eEF2. TrkB activation of PI3K-mTOR and Ras-ERK promotes eIF4E phosphorylation and 
enhances translation initiation. Phosphorylation of eEF2 stalls ribosomes and arrests peptide 
chain elongation. BDNF-TrkB signaling has bidirection effects of eEF2 phosphorylation. In 
isolated synaptodendrosomes, BDNF treatment has no effect on eEF2 phosphorylation state. 
(Soule et al., 2006) 
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Initiation factor 4E 

In eukaryotic cells the rate of translation is regulated mainly at the initiation 

phase (Takei et al., 2001). Eukaryotic initiation factor 4E (eIF4E) plays an 

important role in mRNA translation by binding the 5'-cap structure of the mRNA 

and facilitating the recruitment to the mRNA of other translation factors and the 

40S ribosomal subunit. eIF4E activity is regulated at multiple levels: (1) via 

modulation of its transcription, (2) by phosphorylation of the eIF4E on Ser209 

protein and (3) through its interaction with a family of translational repressor 

proteins (Raught and Gingras, 1999). The mechanisms which regulate 

transcription of the eIF4E gene are not completely understood, but the eIF4E 

promoter was shown to contain two bona fide myc binding sites, both of which 

are required for expression of a heterologous reporter gene (Jones et al., 1996). 

Phosphorylation of eIF4E at Ser209 is induced by two characterized kinases, 

protein kinase C (PKC) and the MAP kinase-interacting protein 1 (MNK1) 

(Sonenberg and Gingras, 1998). MNK1 is a substrate for two distinct MAPKs-

ERK and p38. eIF4E can interact with the scaffold protein eIF4G or with 

repressor proteins called eIF4E-binding proteins (4E-BPs) (Scheper and Proud) 

The activation of mTOR contributes to translational initiation by phosphorylating 

proteins that bind eIF4E, resulting in the dissociation of 4E-BPs from eIF4E and 

subsequent initiation of translation (Beretta et al., 1996). mTOR may also 

regulate translation by direct or indirect phosphorylation of other p70S6K and 

eIF-4G1 (Tang et al., 2001 Gingras et al., 2001). TrkB stimulates translation 

through activation of mTOR and ERK (Takei et al., 2001) Importantly, the 

immunosuppressant drug rapamycin, which inhibits mTOR, blocks both L-LTP 

and BDNF-LTP at CA3-CA1 synapses (Cammalleri et al., 2003; Tang et al., 

2002)  
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Elongation factor-2 

Eukaryotic elongation factor eEF-2 mediates regulatory steps important for 

the overall regulation of mRNA translation in mammalian cells and is activated by 

variety of cellular conditions and factors. eEF2 is a GTP-binding protein that 

mediates the translocation of peptidyl-tRNA from the A site to the P site on the 

ribosome (Moldave, 1985). Phosphorylation of eEF2 on Thr56 by eukaryotic 

elongation factor 2 kinase (eEF2 kinase), a Ca2+/ calmodulin-dependent enzyme, 

causes an inhibition of eEF2 activity and a general reduction of peptide 

elongation (Nairn and Palfrey, 1987; Ryazanov and Davydova, 1989; Redpath 

and Proud, 1993). eEF2 is the sole substrate of this kinase and does not appear 

to be phosphorylated by any other kinase (Mitsui et al., 1993; Redpath and 

Proud, 1993). Three threonin residues located at the NH2 terminus of eEF2 can 

be phosphorylated by eEF2 kinase in vitro (Ovchinnikov et al., 1990; Price et al., 

1991; Redpath and Proud, 1993). Increase in eEF2 phosphorylation on Thr56 

have been reported in living cell exposed to stimuli known to raise intracellular 

Ca2+ levels (Palfrey et al., 1987; Mackie et al., 1989; Hincke and Nairn, 1992). 

Activation of NMDARs is associated with synaptic phosphorylation of eEF2, and, 

surprisingly, enhanced synaptic synthesis of αCaMKII (Scheetz et al., 1988; 

Scheetz et al., 1997, 2000).  

While initiation and elongation are both highly regulated steps in protein 

synthesis, these events have never been examined together in the context of 

synaptic plasticity. Furthermore, little attention has been given to the possible 

subcellular compartmentalization of translation factor activity. In paper II of this 

thesis, I examined regulation of eIF4E and eEF2 during BDNF-LTP in the dentate 

gyrus.  
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Aims of the study 

Aim: 1 To determine whether acute infusion of BDNF mimics late phase LTP.  

Aim: 2 To determine the possible effect of BDNF-LTP on translation factors 

eIF4E and eEF2.  

Aim: 3 To investigate a possible function and mechanism for Arc in HFS-LTP 

and BDNF-LTP. 

Methods 
The methodological details are given in the individual articles.   

 

Results 
A summary of the results from each paper is provided below. 

 

Paper I 

 
As previously reported by our laboratory (Messaoudi et al., 1998; Ying et 

al., 2002). BDNF infusion led to a slowly developing, stable increase in the 

medial perforant path-evoked fEPSP slope and population spike amplitude. Here, 

we investigated a number of basic features regarding BNDF-LTP. Based on tests 

of the minimal current needed to evoked a fEPSP, we conclude that BDNF-LTP, 

like HFS-LTP, is not associated with a change in the excitation of presynaptic 

fibers. Input-output curves were performed to assess changes in excitability (the 

EPSP-spike function). We report that BDNF-LTP, like HFS-LTP, is associated 

with an increase in EPSP-spike coupling in addition to the increase in synaptic 

efficacy. In other experiments, we examined the possibility that BDNF-LTP is 
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affected by application of test pulses. However, we find that omission of test 

pulses during and after BDNF infusion has no effect on the amplitude of BDNF-

LTP. Next we asked whether NMDA receptor activation contributes to BDNF-LTP 

induction. Since BDNF is known to acutely increase glutamate release, it’s 

possible that BDNF infusion induces LTP through a conventional NMDA receptor 

mechanism. However, we find that BDNF-LTP was induced in the presence of 

the NMDA receptor antagonist CPP, a treatment that blocked HFS-LTP in the 

same animal. The effect of BDNF on transcription was studied by using RNA 

synthesis inhibitor actinomycin D (ACD). Our results show that (1) the induction, 

but not the maintenance of BDNF-LTP, is transcription-dependent, and (2) ACD 

blocks the upregulation of the immediate early gene product Arc protein in 

dentate gyrus. Occlusion experiments were performed to test whether HFS-LTP 

and BDNF-LTP share a common mechanism of expression. Our results shows 

that BDNF applied during the early phase (1 hour after HFS-LTP) led to normal 

BDNF-LTP. In contrast BDNF-LTP was completely occluded when BDNF was 

infused in late phase HFS-LTP (4 hour after HFS-LTP). Thus, BDNF-LTP is 

occluded by expression of late, but not early, LTP. We conclude that BDNF can 

trigger a transcription-dependent late phase LTP at MPP synapses of the dentate 

gyrus in the intact brain. 

 

Paper II 

 
We first examined the possibility that BDNF-LTP involves dual regulation 

of the initiation and elongation steps of protein synthesis, using phosphorylation 

of eIF4E and eEF2 as molecular markers. BDNF infusion was carried out as in 

previous study (paper I) and cytochrome C, which has a similar molecular weight 

and charge as BDNF was used as control infusion. The brains were collected 15 

minutes and 3 hours after the termination of the 25 minute BDNF/control infusion. 

Translation factors phosphorylation state was determined by Western blot 

analysis of the homogenized microdissected dentate gyrus. The levels of 
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phosphorylated eIF4E (ser209) were significantly elevated 15 minutes after the 

termination of BDNF infusion and the total protein eIF4E was also elevated. At 

the same time point phosphorylation eEF-2 (Thr56) was significantly elevated, but 

no change was observed in total protein. No significant increase was seen 3 

hours after termination of BDNF infusion on either protein. The effects of local 

BDNF infusion on translation factors activity were specific to the dentate gyrus as 

no significant changes were detected in the CA1 and CA3 regions. Next we 

examined the effect of blocking BDNF-LTP using the MEK inhibitor U0126. We 

reported that ERK signaling is necessary for rapid phosphorylation of eIF4E and 

eEF2 following BDNF-LTP induction.  

Immunohistochemistry was used to localized p-eIF4E and total eIF4E 

protein. Significantly enhanced staining was observed within the granule cell 

layer in the BDNF-treated dentate gyrus, whereas other hippocampal regions 

showed no change. Cyt C infusion had no effect on p-eIF4E and eIF4E staining. 

However the immunohistochemical method was not sensitive enough to detect 

dendritic staining.  

In order to isolate possible differential regulation of eIF4E and eEF2 at 

synaptic sites, we turned to the in vitro synaptodendrosomes (SDs) preparation. 

Synaptodendrosomes are a biochemical fraction highly enriched in pinched off 

spines attached to pinched-off resealed axon terminals. SDs prepared from 

homogenized dentate gyrus were treated with BDNF or Cyt C, run in matched-

pair design. A significant increase on phospho-eIF4E was detected after 5 

minutes of incubation, but no change was observed in phospho-eEF-2. The lack 

of eEF2 phosphorylation is not due to lack of eEF2 activity in SDs or an anomaly 

of the method, since eEF2 phosphorylation was readily evoked by potassium 

depolarization. Thus, BDNF selectively phosphorylates eIF4E at synapses. 

Furthermore, eIF4E phosphorylation was paralleled by enhanced expression of 

CaMKII, indicating rapid local synthesis of the protein. These data support 

demonstrate dynamic ERK-dependent regulation of the eIF4E and eEF2 during 

BDNF-LTP in vivo. Furthermore, BDNF appears to selectively promote initiation 
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at synapses, whereas both initiation and elongation are modulated outside of the 

synaptodendritic compartment.  

 

Paper III 

 
Arc is an immediate early gene known to be rapidly transported to 

dendrites. Here we ask if Arc has a role in HFS-LTP and BDNF-LTP and begin to 

characterize that role. Using in situ hybridization and immunohistochemistry on 

brains collected at various time points (5 min, 30 min, 2 h, 3 h, and 4 h) after 

application of HFS, we report that HFS-LTP is associated with a rapid (5 min) 

and sustained elevation of Arc mRNA and protein that reached a plateau at 2-3 

hours post-HFS. These results determined our selection of time points for 

application of Arc AS. LTP was transiently inhibited when Arc AS was applied 5 

min before or 15 min after HFS, with peak depression at 1h and recovery by 3 h 

and Arc protein shows the same pattern of recovery. In contrast, Arc AS 

application at 2 h, but not 4 h, after HFS permanently reversed LTP. Scrambled 

AS had no effect at any time point. Importantly, treatment with a second AS 

sequence targeting a non-overlapping region of the Arc coding region produced a 

similar striking reversal of LTP. These data suggest early Arc protein has a role 

in early expression of LTP, while late or sustained Arc protein is necessary for 

consolidation of LTP. 

To evaluate Arc protein knockdown quantitative immunoblot analysis was 

carried out 2 h after Arc AS infusion which occurred 2 h post HFS. The Arc 

protein knockdown was about 55 ± 10% when compared to scrambled-treated 

control. Expression of several relevant control proteins, including 

calcium/calmodulin-dependent protein kinase II (αCaMKII), the scaffolding 

protein (PSD-95), β-actin, and a series of actin-binding proteins, were 

unchanged. We then explored the idea that Arc regulates the local 

polymerization of F-actin. Using fluorescent phalloidin, we detected enhanced 

staining of F-actin specifically within the termination zone of the medial perforant 
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pathway in the middle molecular layer. This nascent band of F-actin was 

abolished upon treatment with Arc AS. Stabilization of actin by jasplakinolide 

prevented the reversal of LTP by Arc AS. Finally, 2 h after LTP Arc AS 

decreased hyperphosphorylation of cofilin, a major regulator of actin dynamics 

known to sever actin filaments unless phosphorylated.  

In the BDNF-LTP paradigm, Arc AS given prior to BDNF blocked induction 

of BDNF-LTP and the associated upregulation of Arc protein. As seen during 

HFS-LTP, infusion of Arc AS 2 h, but not 4 h, after BDNF infusion led to a 

permanent reversal of BDNF-LTP.  

In summary these data suggest that dendritic synthesis of Arc supports 

consolidation of LTP through stabilization of F-actin. Translation must be 

sustained for~2h to support maintenance of the increase in synaptic strength and 

actin polymerization. These events appear causally related since the stabilization 

of actin polymerization prevents Arc AS effects on synaptic plasticity. 

Furthermore, Arc-dependent consolidation can be directly activated brief BDNF 

infusion.  

   

Discussion 
 

BDNF-LTP properties 
 

Research in recent years have shown that BDNF is an important 

modulator of synaptic transmission and plasticity in the adult brain (Bramham 

and Messaoudi, 2005) The versatility of BDNF is emphasized by its contribution 

to range of adaptive neuronal responses including LTP and LTD, certain forms of 

short-term synaptic plasticity, as well as homeostatic regulation of intrinsic 

neuronal excitability (Asztely et al., 2000; Maffei, 2002; Ikegaya et al., 2002). 

Application of BDNF in the adult hippocampus can trigger a long-lasting increase 

in synaptic efficacy dubbed BDNF-induced LTP. This persistent potentiation was 
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first shown at CA3-CA1 synapses in response to bath perfusion of hippocampal 

slices with BDNF (Kang and Schuman, 1995; Kang et al., 1996). BDNF-LTP was 

shown at medial perforant path granule cell synapses of the dentate gyrus in 

vivo, in the insular cortex in vitro, and in the visual cortex in vitro and in vivo 

(Messaoudi et al., 1998; Jiang et al., 2001; Ying et al., 2002; Escobar et al., 

2003). We also discovered that BDNF-LTP is, like HFS-LTP, associated with 

enhanced EPSP-spike coupling in addition to enhanced synaptic efficacy (Bliss 

and Lomo, 1973; Lu et al., 2000). The fact that BDNF is capable of acutely 

increasing glutamate release raises the possibility that BDNF indirectly induces 

NMDAR-dependent potentiation. We address this issue in paper I where, BDNF 

was infused into the dentate gyrus following systematic administration of the 

competitive NMDA receptor antagonist (CPP). While HFS-LTP was abolished, 

BDNF infusion induced robust potentiation during NMDA receptor blockade. 

BDNF-LTP at CA3-CA1 synapses in hippocampal slices is similarly NMDA 

receptor-independent (Kang and Schuman, 1995).  

 

BDNF-LTP is occluded during late phase LTP 
 

Several studies have given evidence that BDNF released during or shortly 

after HFS-LTP plays an obligatory role in the generation of this L-LTP in the CA1 

region of the hippocampal. In this study we examined the effect of BDNF infusion 

at time points corresponding to early and L-LTP. BDNF applied during early LTP 

induced robust potentiation indicating a distinct mechanism of expression. In our 

work we could see a complete occlusion when BDNF was applied during late 

LTP. Conversely, at CA3-CA1 synapses in vitro, (Kang et al., 1997) showed that 

prior induction of BDNF-LTP occludes expression of late, but not early, HFS-LTP. 

This time-dependent pattern of occlusion suggests that exogenous BDNF 

specifically activates mechanisms common to L-LTP. Consistent with previous 

work (Frey et al., 1995), it also suggests a rapid switch in the mechanism of 

expression between early and late phase LTP. We also examine this further the 

distinction between transcription-dependent (late) and transcription-independent 



 27

(early) LTP by infusing of the transcription inhibitor actinomycin D (ACD) 1 h 

before or immediately before BDNF infusion. Since previous work has shown that 

ACD blocks development of late HFS-LTP, leaving E-LTP intact (Frey et al., 

1995); (Nguyen and Kandel, 1996). In contrast, BDNF-LTP is almost completely 

transcription-dependent, consistent with selective role for BDNF in late phase 

LTP. 

 

BDNF-LTP induction requires rapid ERK activation and de 

novo gene expression 

 
ERK signaling leading to CREB activation is required for L-LTP and 

hippocampal-dependent memory formation. (Ying et al., 2002) has shown that 

local infusion of the MEK (MAPK or ERK kinase) inhibitors PD98059 and U0126 

completely blocks BDNF-LTP induction but had no effect on established BDNF-

LTP. Thus, MEK-ERK activation is required for the induction, but not the 

maintenance of, BDNF-LTP. Furthermore, BDNF-LTP induction is transcription-

dependent and associated with ERK-dependent phosphorylation of CREB on 

serine 133, which is required for CRE-driven gene expression. Taken together 

this shows that BDNF-LTP in dentate gyrus is transcription-dependent, occludes 

with L-LTP, and is associated with ERK-dependent upregulation of Arc. Paper III 

of this thesis extends this line of work to show that Arc synthesis is necessary for 

the induction and time-dependent consolidation of BDNF-LTP.  

 

Arc function and mechanism in LTP. 
 

The Arc AS study suggests that Arc synthesis defines a critical window in 

LTP consolidation. Surprisingly, early Arc synthesis contributes to the early 

expression LTP but is not obligate in LTP consolidation. By contrast, late Arc 

synthesis (2 hours post-HFS) is required for LTP consolidation.  The rapid 

reversal of LTP combined with the rapid knockdown of Arc mRNA and protein 
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suggests that LTP consolidation requires sustained synthesis of Arc. Our 

analysis of Arc function concentrated on the consolidation mechanism 2 h after 

LTP induction. Rapid knockdown of Arc was associated with dephosphorylation 

of hyperphosphorylated cofilin and loss of a nascent band of F-actin in the medial 

perforant pathway, while pharmacological stabilization of F-actin blocked the 

ability of Arc AS to reverse LTP. Thus Arc function appears to couple two central 

tenets of LTP consolidation: gene expression and local actin polymerization. 

Electron microscopic analysis has revealed upregulation Arc and F-actin 

specific to spines of medial perforant path synapses during LTP (Moga et al., 

2004; Fukazawa et al., 2003; Rodriguez et al., 2005) It is nonetheless evident 

from many studies that Arc protein is upregulated throughout the dendritic arbor 

of granule cells. The function of the widespread increase in Arc is enigmatic. 

However, recent studies performed in cultured hippocampal neurons have 

revealed a role for Arc in homeostatic synaptic scaling of AMPA receptor 

transmission via its ability to activate a specific AMPA receptor endocytic 

pathway (Chowdhury et al., 1998; Rial Verde et al., 2006; Shepherd et al., 2006). 

Perhaps global increases in Arc serve to scale-down (depress) AMPA receptor 

transmission as a means of stabilizing overall neuronal excitability.   

Guzowski (2000) have previously used Arc AS treatment to reveal a role 

for Arc in memory consolidation. Although LTP was examined in that paper also, 

the results were inconclusive. Rats treated with Arc AS prior to HFS exhibited 

LTP lasting several days, but the potentiation was smaller and decay to baseline 

sooner than in control-infused rats. However, the results are difficult to interpret 

in the absence of data from baseline recording period prior to LTP induction. In 

the present report the specificity and validity of AS effects were corroborated in 

several ways. First, reversal of LTP maintenance was strikingly dependent on the 

timing of AS application relative to synaptic activation. Second, similar reversal of 

LTP was obtained with AS sequences targeting non-overlapping regions of the 

Arc mRNA. Third, LTP reversal was coupled to rapid knockdown of Arc mRNA 

and protein. Finally, Arc knockdown was coupled to a biologically compelling 

mechanism regulation of F-actin. 
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Previous studies have also shown that BDNF-LTP enhances Arc mRNA 

and protein as compared to zif268 at the same time points (Ying et al., 2002).The 

requirement for new transcription indicated that Arc synthesis stems from 

translation of newly induced, rather than preexisting, mRNA. Here we have 

shown that treatment with Arc AS prior to BDNF infusion had no effect on 

baseline synaptic transmission but blocks BDNF-LTP and the associated 

upregulation of Arc protein, indicating a requirement for Arc induction. 

Furthermore, Arc AS applied 2 h after BDNF rapidly reversed ongoing BDNF-

LTP, while the same treatment 4 h after BDNF infusion had no effect.  These 

results demonstrate that Arc-dependent synaptic strengthening and consolidation 

is directly activated by local BDNF application.   

Arc is likely to interact with other newly synthesized proteins in LTP 

consolidation. A recent microarray screen identified a panel of genes that are co-

upregulated with Arc during BDNF-LTP and HFS-LTP. In situ hybridization shows 

that these genes are upregulated specifically in dentate granule cells. 

Interestingly, these genes include neuritin and neuronal activity regulated 

petraxin (NARP), two proteins implicated in synapse development and AMPA 

receptor clustering, respectively.  

 

BDNF-LTP and translational control  

 

Paper II demonstrated transient phosphorylation of eIF4E and eEF2 as 

well as enhancement expression eIF4E protein coincided with the onset of 

BDNF-LTP. Pharmacological inhibition MEK-ERK signaling blocked all of these 

changes in parallel with BDNF-LTP induction. Thus, ERK appears to have a 

central coordinating role in BDNF-LTP, regulating Arc expression and both the 

initiation and elongation steps of protein synthesis.  

BDNF stimulates cap-dependent translation through TrkB-coupling 

activation of the mTOR and Ras-ERK pathways (Takei et al., 2001, 2004; Schratt 

et al., 2004). Activation of mTOR leads to phosphorylation of eIF4E binding 

proteins and release of eIF4E. This process inhibits the association of eIF4E with 
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eIF4G and thus the formation of the eIF4F complex Pause et al., 1994; (Mader et 

al., 1995; Haghighat et al., 1995). Phosphorylation modulates eIF4E activity, as 

the phosphorylated form of eIF4E binds more tightly to the cap structure and has 

an enhanced affinity for eIF4G (Minich et al., 1994). eIF4E binds to the cap and 

is phosphorylated by the ERK substrate MAPK integrating kinase (MNK) 

(Pyronnet et al., 1999). The two pathways which phosphorylate eIF4E are both 

required for BDNF-induced enhancement of protein synthesis in neurons or 

tissue slices (Kang et al., 1996; Takei et al., 2001; 2004; Tang et al., 2002; 

Kelleher et al., 2004b). 

 

Recent work has given evidence that LTP is associated with decreases as 

well as increases in protein synthesis (Fazeli et al., 1993); (Chotiner et al., 2003). 

In this study we have reported that BDNF-LTP activates translation initiation in 

dentate gyrus. The elongation process as well as initiation, is a regulatory step 

for protein synthesis (Ryazanov et al., 1991; Proud), 2000), and phosphorylation 

of elongation affects the activities and the overall elongation rate (Chang and 

Traugh, 1997; Proud, 2000; Traugh, 2001; Browne and Proud 2002). eEF2 

phosphorylation observed during LTP may therefore contribute to translation 

arrest (Chotiner et al., 2003). Peptide chain elongation is highly energy 

consuming and decreases in ATP levels lead to phosphorylation of eEF2 

(Horman et al., 2002; Browne et al., 2004). In this study we discover that in vivo 

BDNF-LTP is associated with a transient ERK- dependent phosphorylation of 

eEF2 in whole dentate gyrus. Surprisingly, BDNF treatment of 

synaptodendrosomes does not alter eEF2 phosphorylation state but does lead to 

rapid eIF4E phosphorylation and enhanced translation of dendritic mRNAs such 

as Arc, �-CaMKII, and Lim domain kinase 1 (LIMK1) (Kanhema et al., 2006; Yin 

et al., 2002; Schratt et al., 2004). Thus, BDNF appears to affect translation in a 

compartment-specific manner, enhancing initiation at synapses while promoting 

elongation arrest at non-synaptic sites. In contrast, NMDA treatment of 

synaptoneurosomes enhances eEF2 phosphorylation and suppresses global 

protein synthesis while increasing �-CaMKII expression (Scheetz et al., 2000). 
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Further work is therefore needed to resolve how activity-dependent translation of 

specific transcripts is maintained in the context of synaptic eEF2 phosphorylation.   

Previously, (Havik et al., 2003) showed that α-CaMKII mRNA levels are 

rapidly elevated in synaptodendrosomes following LTP induction in awake rats. 

No changes in mRNA levels were observed in whole dentate gyrus 

homogenates, indicating relocalization of pre-existing αCaMKII mRNA into 

dendritic spines. α-CaMKII protein levels were also increased in 

synaptodendrosomes, but it could not be determined whether this was due to 

local synthesis in spines or transport from distant sites. Using a purely in vitro 

synaptodendrosomes approach, which eliminates protein transport as a 

mechanism, we show that BDNF application rapidly increases expression of α-

CaMKII protein.  

 

Model 
 

A cartoon of Arc-dependent consolidation of LTP is shown in FIG 5. In this 

model, postsynaptic BDNF signaling through TrkB receptors is critical for initial 

translation activation involving liberation of mRNA from storage granules, fine-

positioning of the translation apparatus (mRNA, ribosomes, and translation 

factors), as well as biochemical activation of translation through 

hyperphosphorylation of eIF4E and probably through mRNA-specific 

derepression. Spines or dendritic branches activated in this way may effectively 

capture and translate local mRNA pools. A sequential mechanism is envisioned 

whereby translation of pre-existing transcripts such �CaMKII is followed by 

translation of dendritically transported mRNAs such as Arc. During Arc-

dependent consolidation, sustained translation of Arc is necessary for cofilin 

phosphorylation, local F-actin expansion, and formation of stable LTP.  
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Figure 5. Model of Arc-dependent LTP consolidation in the dentate gyrus. In this model, 
translation of pre-existing transcripts such �CaMKII is followed by translation of dendritically 
transported Arc mRNA. Sustained translation of Arc is required for cofilin phosphorylation, local 
F-actin expansion and spine enlargement underlying stable LTP. Postsynaptic TrkB signaling at 
glutamate synapses activates local translation and induces upregulation of Arc mRNA. (Soule et 
al., 2006) 
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Conclusions and future directions 
 

The work identifies Arc as critical mediator of LTP consolidation and given 

insight into a novel mechanism involving regulation of actin dynamics.  

Exogenous BDNF-LTP has proven useful as tool for dissecting mechanisms of 

synaptic strengthening. Further work is needed in a number of areas. To name 

only a few issues: 1) The mechanism of Arc coupling to cofilin and F-actin 

function, 2) The role of endogenous BDNF in these mechanisms, 3) The impact 

of eIF4E and eEF2 on global and transcript-specific translation. It is hoped that a 

better understanding of synaptic consolidation will lead to better treatment 

strategies for conditions associated with impaired synaptic plasticity and dentate 

gyrus function, including Alzheimer’s disease and major depression.  
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Brain-Derived Neurotrophic Factor Triggers Transcription-
Dependent, Late Phase Long-Term Potentiation In Vivo
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Acute intrahippocampal infusion of brain-derived neurotrophic
factor (BDNF) leads to long-term potentiation (BDNF-LTP) of
synaptic transmission at medial perforant path3granule cell
synapses in the rat dentate gyrus. Endogenous BDNF is impli-
cated in the maintenance of high-frequency stimulation-induced
LTP (HFS-LTP). However, the relationship between exogenous
BDNF-LTP and HFS-LTP is unclear. First, we found that BDNF-
LTP, like HFS-LTP, is associated with enhancement in both syn-
aptic strength and granule cell excitability (EPSP–spike coupling).
Second, treatment with a competitive NMDA receptor (NMDAR)
antagonist blocked HFS-LTP but had no effect on the develop-
ment or magnitude of BDNF-LTP. Thus, NMDAR activation is not
required for the induction or expression of BDNF-LTP. Formation
of stable, late phase HFS-LTP requires mRNA synthesis and is
coupled to upregulation of the immediate early gene activity-
regulated cytoskeleton-associated protein (Arc). Local infusion of
the transcription inhibitor actinomycin D (ACD) 1 hr before or

immediately before BDNF infusion inhibited BDNF-LTP and up-
regulation of Arc protein expression. ACD applied 2 hr after BDNF
infusion had no effect, defining a critical time window of
transcription-dependent synaptic strengthening. Finally, the func-
tional role of BDNF-LTP was assessed in occlusion experiments
with HFS-LTP. HFS-LTP was induced, and BDNF was infused at
time points corresponding to early phase (1 hr) or late phase (4 hr)
HFS-LTP. BDNF applied during the early phase led to normal
BDNF-LTP. In contrast, BDNF-LTP was completely occluded dur-
ing the late phase. The results strongly support a role for BDNF in
triggering transcription-dependent, late phase LTP in the intact
adult brain.

Key words: long-term potentiation (LTP); synaptic plasticity;
neurotrophin; brain-derived neurotrophic factor (BDNF); dentate
gyrus; hippocampus; activity-regulated cytoskeleton-associated
protein (Arc); gene expression

The neurotrophin family of secretory proteins play a diverse and
broad role in regulating neuronal structure and function in the
developing and adult nervous system (Thoenen, 1995; Bibel and
Barde, 2000). Brain-derived neurotrophic factor (BDNF) is the
most widely distributed neurotrophin in the adult brain. Al-
though BDNF actions have been studied extensively in cell cul-
ture, the functions of BDNF in the adult brain have not been
clearly defined. Growing evidence suggests that BDNF is impor-
tant in activity-dependent synaptic plasticity, particularly in the
context of long-term potentiation induced by high-frequency
stimulation (HFS-LTP) (Schuman, 1999; Schinder and Poo, 2000;
Binder et al., 2001; Bramham et al., 2002).

The role of endogenous BDNF in HFS-LTP has only been
extensively studied at Schaffer collateral3CA1 synapses in the in
vitro hippocampal slice preparation. Maintenance of HFS-LTP
consists of at least two phases: an early, labile phase dependent on
covalent modifications of existing proteins; and a late, stable
phase requiring new mRNA and protein synthesis (Krug et al.,
1984; Matthies et al., 1990; Bliss and Collingridge, 1993; Frey et
al., 1996; Nguyen and Kandel, 1996). LTP maintenance is im-
paired by treatment with antibodies that inhibit activation of the

BDNF receptor TrkB, or by deletion of the BDNF or TrkB genes
(Figurov et al., 1996; Kang et al., 1997; Korte et al., 1998; Chen et
al., 1999; Minichiello et al., 1999; Xu et al., 2000; Kossel et al.,
2001; Patterson et al., 2001). Depending on the stimulation pa-
rameters used, relatively selective impairment in the ability to
generate late, transcription-dependent LTP is seen (Kang et al.,
1997; Korte et al., 1998; Minichiello et al., 1999; Patterson et al.,
2001).

Exogenously applied BDNF has an impressive range of rapid,
short-acting effects, including modulation of axon guidance, syn-
aptic transmission, and membrane depolarization (Song and Poo,
1999; Schinder and Poo, 2000). In addition to these short-term
effects, Kang and Schuman (1995, 1996) and Kang et al. (1997)
found that bath perfusion of hippocampal slices with BDNF
induces a long-lasting enhancement of synaptic strength in the
CA1 region. For reasons still unresolved, possibly related to the
method of BDNF application (Kang et al., 1996), this finding has
not yet been replicated (Patterson et al., 1996; Frerking et al.,
1998; Schinder and Poo, 2000). However, when microinfused into
the adult dentate gyrus in vivo, BDNF induces a lasting strength-
ening of transmission at perforant path3granule cell synapses
(Messaoudi et al., 1998; Ying et al., 2002). We have termed this
effect BDNF-induced LTP (BDNF-LTP).

The mechanism of BDNF action in synaptic plasticity is little
understood. If BDNF participates in triggering late HFS-LTP, it
should regulate new protein synthesis. New proteins could derive
from translation of existing mRNA, from new transcription, or
both. Kang and Schuman (1996) and Aakalu et al. (2001) have
provided evidence that BDNF stimulates protein synthesis in
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dendrites from existing mRNA. However, the role of transcrip-
tion in BDNF-LTP has not been examined. Moreover, the phys-
iological relevance of exogenous BDNF-LTP and its relationship,
if any, to mechanisms of HFS-LTP in the intact adult brain is
unclear.

Here we provide evidence that (1) induction of BDNF-LTP, in
contrast to HFS-LTP, does not require NMDA receptor
(NMDAR) activation; (2) BDNF-LTP, like HFS-LTP, is associ-
ated with enhanced granule cell excitability [EPSP–spike (E–S)
coupling] in addition to enhanced synaptic transmission; (3)
BDNF-LTP, like late HFS-LTP, requires rapid new transcription
coupled to upregulation of the immediate early gene activity-
regulated cytoskeleton-associated protein (Arc); and (4) BDNF-
LTP is occluded during late phase but not early phase HFS-LTP.
Together these results suggest a functional role for BDNF as a
trigger of transcription-dependent, late phase LTP in vivo.

MATERIALS AND METHODS
The electrophysiological and infusion methods used are the same as
those described previously with minor modifications (Messaoudi et al.,
1998; Ying et al., 2002).

Surgery and electrode and cannula placement. Eighty-four Mol: SD rats
(Møllegaards Avls-Laboratorium) weighing between 250 and 350 gm
were anesthetized with urethane (1.5 gm/kg, i.p.) and placed in a
stereotaxic apparatus. Rectal temperature was maintained at 37°C by a
servo-heating pad. Electrophysiological methods for obtaining selective
stimulation of the medial perforant path have been detailed previously
(Bramham et al., 1991). Stereotaxic coordinates relative to Bregma were
7.9 mm posterior, 4.2 mm lateral for stimulation, 3.9 mm posterior, and
2.2 mm lateral for recording. The arrangement of the cannula–electrode
assembly is depicted in Figure 1 A. An outer (guide) cannula (24 gauge;
Plastics One, Roanoke, VA) was beveled sharp at the tip to facilitate
tissue penetration. A Teflon-coated stainless steel wire-recording elec-
trode (coated diameter, 112 �m) was glued to the cannula shaft and cut
so the tip extended 1 mm from the end of the cannula. A bipolar
stimulating electrode was lowered into the dorsomedial aspect of the
angular bundle for stimulation of the medial perforant path. After a
small slit was made in the dura, the guide cannula and attached recording
electrode were slowly lowered into the dorsal hippocampus until a
positive-going field EPSP (fEPSP) of maximum slope was obtained in the
dentate hilus. The final depth of the recording electrode ranged between
200 and 300 �m below the level of the maximum negative-going fEPSP
sink recorded in the middle third of the dentate molecular layer. An
inner infusion cannula (31 gauge) was then inserted so that it protruded
300 �m below the end of the guide. The tip of the infusion cannula was
located in the deep stratum lacunosum-moleculare of field CA1, 700 �m
above the hilar recording site and 300–400 �m above the medial per-
forant synapses.

The infusion cannula was connected via PE50 polyethylene tubing to
a 5 �l Hamilton (Reno, NV) syringe. Solutions were delivered by an
infusion pump at a rate of 80 nl /min. Two micrograms of BDNF were
delivered in a volume of 2 �l over 25 min. Dose–response analysis
showed that this was the lowest dose giving maximal BDNF-LTP (Mes-
saoudi et al., 1998).

Electrophysiology. Biphasic rectangular pulses of 150 �sec duration
were applied every 30 sec throughout the experiment. The stimulation
intensity for test pulses was set to elicit a population spike of one-third of
the maximal amplitude. After a 15 min period of stable responses, an
input–output curve was collected, followed by baseline recording (20
min), BDNF infusion (25 min), and postinfusion recording (2–7 hr).
Input–output curves were constructed from responses (mean of four
sweeps) obtained at eight stimulus intensities. The stimulus intensity was
increased in 100 �A increments starting 100 �A below the population
spike threshold. In some experiments, HFS-LTP was induced using a
paradigm that evokes LTP lasting 1–5 d and associated with BDNF and
TrkB mRNA upregulation (Bramham et al., 1996). HFS consisted of
eight pulses at 400 Hz, repeated four times, at 10 sec intervals. Three
session of HFS were given at intervals of 5 min. The stimulus intensity
for HFS was the same as for test pulses.

Tissue microdissection and sample preparation. At the end of electro-
physiological recording, rats were decapitated, and the brain was rapidly

removed and rinsed with oxygenated ice-cold artificial CSF (in mM: NaCl
124.0, NaHOC3 25.0, D-glucose 10.0, KCl 3.4, KH2PO4 1.2, MgSO4 1.0,
and CaCL2 2.5, pH 7.4). The dentate gyrus and hippocampal CA1 and
CA3 regions were rapidly dissected on a glass dish kept on ice. Tissues
were hand-homogenized with 15 strokes in 300 �l of freshly made SDS
sample buffer containing 10% glycerol, 2.3% SDS, 0.01% bromophenol
blue, and 0.5% �-mercaptoethanol in 62.5 mM Tris-HCl, pH 6.8 at room
temperature. Homogenates were boiled for 5 min, aliquoted into Eppen-
dorf tubes, and stored at –80°C until use.

SDS-PAGE and Arc immunoblotting. Protein levels in homogenate
samples were determined using the Lowry method. Equal amounts of
protein were loaded onto SDS-PAGE gels (10%) and run overnight at a
constant current of 10 mA. Separated proteins were transferred to a
nitrocellulose membrane using a constant voltage of 30 V. Membranes
were blocked in 3% BSA on a gyro-rocker at 4°C overnight or for 1 hr at
room temperature. Primary antibody recognizing the Arc N terminus
(1:50; Santa Cruz Biotechnology, Santa Cruz, CA) was diluted in Tris-
buffered saline containing 0.1% Tween 20 (TBST) and 3% BSA. Mem-
branes were incubated in primary antibody for 2 hr at room temperature
or at 4°C overnight with constant shaking, washed three times in TBST,
and incubated for 1 hr with HRP-labeled anti-rabbit IgG (1:10,000 in
TBST; Santa Cruz Biotechnology). Blots were washed in TBST and
developed using enhanced chemiluminescence. Autoradiographs were
scanned on a laser densitometer and quantitated using Phoretics 1D Plus
software. Western blots were developed to be linear in the range used for
densitometry. Optical density values obtained from the treated hip-
pocampus were normalized relative to values in the nontreated hip-
pocampus for each hippocampal subfield. Statistical analyses were based
on paired and unpaired t tests for between- and within-group compari-
sons, respectively.

BDNF immunocytochemistry. BDNF immunocytochemistry was used
to the study the distribution and clearance of exogenous BDNF during
BDNF-LTP. Cytochrome c, which has a molecular weight and charge
similar to those of BDNF, was used as a protein control. Cytochrome c
has no effect on basal synaptic transmission or on several signal trans-
duction pathways that have been studied (Messaoudi et al., 1998; Ying et
al., 2002).

Animals were deeply anesthetized with an overdose of chloral hydrate
and pentobarbital before killing. They were then transcardially exsangui-
nated with �50 ml of heparinized saline containing 1 mM sodium
orthovanadate followed by fixation with 4% paraformaldehyde in first
acetate, pH 6.5, and then borate, pH 9.5, buffers. All solutions were kept
on wet ice throughout the perfusion procedure and were perfused at a
rate of �1 l /hr. After perfusion fixation, brains were removed and placed
in 30% sucrose in borate buffer at 4°C until they sank (�5–7 d). Brains
were frozen and sectioned coronally on a sliding microtome at 40 �m
after sinking. Sections were stored at –20°C in cryoprotectant solution
(Watson et al., 1986) until immunostained. Free-floating series of sec-
tions (1:12) were immunostained as described previously (Morse et al.,
1993) for BDNF with the addition of a pretreatment in 0.1 mM sodium
periodate in TBS to reduce endogenous peroxidase activity. Sections
were blocked with goat serum and then placed in primary antibody
solution (BDNF rabbit polyclonal; Amgen, Thousand Oaks, CA) over-
night at 4°C. Staining with BDNF antibody at dilutions of �1:10,000
often reduces the endogenous staining, making it easier to see the
distribution of exogenously administered protein. A titer of 1:20,000 was
used for BDNF-infused brains, and 1:10,000 was used for cytochrome
c-infused brains. Sections were washed and incubated with biotinylated
secondary antibody (goat anti-rabbit, 1:1500; Vector Laboratories, Bur-
lingame, CA). After washing again, staining was completed using an
avidin–biotin–peroxidase complex reaction (Vectastain Elite ABC kit;
Vector Laboratories). The peroxidase was visualized using a diamino-
benzidine chromagen and nickel sulfate intensification. The specificity of
the antibody for BDNF relative to other neurotrophins has been docu-
mented previously (Morse et al., 1993).

Drugs. Human recombinant met-BDNF (a gift from Amgen-Regeneron
Partners) was obtained as a concentrated stock solution in PBS (150 mM
NaCl, 10 mM sodium phosphate buffer, pH 7.0, and 0.004% Tween 20).
(RS)-3–2(2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; Tocris
Cookson Ltd., Bristol, UK) was dissolved in saline and injected intraperi-
toneally at a dose of 10 mg/kg 2 hr before the end of BDNF infusion.
Actinomycin D (ACD) and recombinant cytochrome c from yeast (Sigma,
St. Louis, MO) were dissolved in PBS. All drugs were aliquoted in small
volumes and stored at �80°C until use.

Response analysis and statistics. Signals from the dentate hilus were
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amplified, filtered (1 Hz to 3 kHz), digitized (25 kHz for field potentials),
and stored to computer disk. Acquisition and analysis of field potentials
were accomplished using DataWave Technologies (Longmont, CO)
WorkBench software. The maximum slope of the fEPSP and the ampli-
tude of the population spike measured from its negative-going apex to
the tangent line joining the first two positive peaks were measured, and
averages of four consecutive responses were obtained. ANOVA for
repeated measures followed by a post hoc Scheffé test was used for
statistical analysis of group effects, and a t test for dependent samples was
used for analysis of individual effects (Statistica package; StatSoft Inc.,
Tulsa, OK). Statistics were based on values obtained during baseline and
2 hr after terminating infusion, unless otherwise indicated. p � 0.05 was
chosen as the level of statistical significance.

RESULTS
BDNF tissue distribution and clearance
Exogenous BDNF diffuses relatively slowly in tissue, and the
kinetics of BDNF tissue clearance is not well known (Biffo et al.,
1995; Croll et al., 1998). If BDNF is retained in tissue for long
periods, this might contribute to the increase in synaptic trans-
mission seen in BDNF-LTP. We therefore sought to determine
the spatial distribution and time course of BDNF clearance.
Figure 1A shows the cannula assembly with the infusion site
located in stratum lacunosum-moleculare CA1, immediately
above the hippocampal fissure, �300 �m above the medial per-
forant path. Rats were transcardially perfused with fixative solu-
tion at 15 min or 1, 3, 6, or 24 hr after BDNF (2 �g, 2 �l, 25 min)
infusion, and coronal sections were immunostained for BDNF.

At 15 min, BDNF immunostaining was observed in the dentate
gyrus in six of six experiments, indicating a rapid delivery of

BDNF (Fig. 1B). BDNF spread radially from the site of infusion
and along the cannula tract in the CA1 region, with variable
spread to CA3. Typically, the borders of the BDNF stain were
sharply demarcated, indicating an abrupt arrest of BDNF diffu-
sion or detection. At 1 hr, BDNF was cleared from the dentate
gyrus in two of two experiments (Fig. 1C). At 3 and 6 hr, no
BDNF staining could be detected in the dentate gyrus in two of
three brains at each time point; the remaining brain showed
moderate staining in the dentate gyrus. No staining was observed
24 hr (n � 2) after BDNF infusion. Staining of endogenous
BDNF, for instance, in mossy fibers, appeared to be identical in
ipsilateral (infused) and contralateral hippocampus, although no
attempt was made to quantify this relationship. BDNF-LTP lasts
for at least 15 hr in anesthetized rats, and induction of the
potentiation requires rapid activation of extracellular signal-
regulated protein kinase (ERK) (Messaoudi et al., 1998; Ying et
al., 2002). The rapid delivery (�15 min) and clearance (�1 hr) of
BDNF are consistent with the electrophysiological and biochem-
ical effects and demonstrate that BDNF-LTP does not involve the
continuous presence of exogenous BDNF.

BDNF enhances both synaptic transmission and
E–S coupling
HFS-LTP is associated with two changes: (1) an increase in
synaptic strength and (2) an increased excitability of the postsyn-
aptic neuron for a given excitatory input (Bliss and Lomo, 1973;
Abraham et al., 1987; Lu et al., 2000). The latter phenomenon,
termed E–S coupling, has not been examined in BDNF-LTP.
BDNF infusion resulted in a rapid increase in the fEPSP slope
and population spike amplitude (Fig. 2A; n � 6), corroborating
earlier work (Messaoudi et al., 1998). Input–output curves were
collected immediately before baseline recording and 2 hr after
BDNF infusion (Fig. 2B). E–S plots derived from the input–
output curves show a marked leftward shift, indicating an increase
in granule cell excitability to medial perforant path input (Fig.
2C). Thus BDNF-LTP, like HFS-LTP, is associated with a par-
allel increase in fEPSP strength and granule cell excitability.

Next we asked whether BDNF-LTP is associated with an in-
crease in the excitability of presynaptic fibers. Although presynap-
tic fiber excitability is not affected during HFS-LTP, this has not
been investigated in BDNF-LTP (Bliss and Lomo, 1973). BDNF
regulation of presynaptic ion channel function is clearly a possibil-
ity, because BDNF has been shown to modulate a voltage-
dependent sodium channel (Kafitz et al., 1999) and the potassium-
channel Kir3 (Rogalski et al., 2000). We therefore determined the
minimum stimulus current needed to consistently (in �90% of
trials) evoke an fEPSP. There was no difference in the mean
current threshold based on eight rats recorded before (40 � 12 �A)
and 2 hr after (46 � 13 �A) BDNF infusion. We conclude that
BDNF-LTP, like HFS-LTP, does not involve a change in presyn-
aptic excitability.

BDNF-LTP is NMDA receptor-independent
HFS-LTP at medial perforant path3granule cell synapses re-
quires NMDAR activation (Errington et al., 1987; Bramham et
al., 1991). BDNF has been shown to facilitate presynaptic trans-
mission in cultured hippocampal neurons (Lessmann et al., 1994)
and to increase potassium-evoked glutamate release from synap-
tosomes prepared from adult dentate gyrus (Gooney and Lynch,
2001) and neocortex (Jovanovic et al., 2000). This raises the
possibility that BDNF may induce LTP indirectly by acutely
releasing glutamate and activating NMDARs. We therefore ex-

Figure 1. Tissue distribution and clearance of infused BDNF. BDNF (2
�g/2 �l, 25 min) was infused into stratum lacunosum-moleculare CA1,
immediately above the hippocampal fissure, �300 �m above the medial
perforant path3granule cell synapses. Cytochrome c (Cyt C) was infused
as a protein control. Brains were obtained at 15 min or 1, 3, 6, or 24 hr
after infusion, and coronal sections were immunostained for BDNF. A,
Schematic depiction of cannula–electrode assembly in the hippocampus.
B, C, BDNF immunostaining obtained at 15 min and 1 hr after BDNF
infusion, respectively. BDNF was rapidly delivered and cleared from the
dentate gyrus. D, Cyt C 15 min control. B–D were taken through the area
of the cannula tract. The BDNF antibody titer for the BDNF-infused
brains was 1:20,000 (minimizing endogenous staining and facilitating de-
tection of exogenous protein). The antibody titer for Cyt C-infused brains
was 1:10,000 (therefore darker staining of mossy fibers). Scale bar, 1 mm.
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amined the induction and expression of BDNF-LTP under con-
ditions of NMDAR blockade. The competitive NMDAR antag-
onist CPP was injected intraperitoneally at a dose of 10 mg/kg.
Under these conditions, NMDAR activation and LTP induction
are blocked for at least 8 hr (Abraham and Mason, 1988; Villar-
real et al., 2002). As shown in Figure 3A, BDNF induced a robust
potentiation of the fEPSP slope and population spike amplitude
in the CPP-treated animals ( p � 0.05; n � 6). The magnitude and
time course of potentiation were not significantly different from
those of controls receiving BDNF alone (Fig. 3D) ( p � 0.05). In
another series of experiments (n � 4), the effect of CPP on HFS-
and BDNF-induced LTP was determined in the same animal.
Although HFS-LTP was completed abolished, infusion of BDNF
20 min after HFS resulted in full BDNF-LTP (Fig. 3B,C). We
conclude that NMDAR activation is not required for the induc-
tion or expression of BDNF-LTP.

BDNF-LTP does not require low-frequency
test stimulation
The protocol for BDNF-LTP includes delivery of low-frequency
test stimuli (one per 30 sec) throughout the experiment. We
therefore asked whether this test stimulation is required. Low-
frequency stimulation may provide an activity-dependent signal
(i.e., intracellular calcium rise) acting in concert with stimulation
of TrkB receptors. To investigate this issue, test stimulation was
omitted during the period of BDNF infusion and for either 2 hr
(n � 5) or 6 hr (n � 4) thereafter, whereupon six test responses
were collected. Significant increases in the fEPSP and population
spike were seen at both time points, indicating that BDNF-LTP is
not dependent on test stimulation (Fig. 4).

Figure 2. BDNF infusion elicits enhanced synaptic transmission and
enhanced E–S coupling at medial perforant path3granule cell synapses.
A, Time course plots showing BDNF-LTP of the evoked fEPSP and
population spike (Pop Spike). BDNF was infused during the period
indicated by the hatched bar. Values are group means � SEM) ex-
pressed as percentage of baseline (n � 6). B, Representative input–
output curves obtained during baseline and 2 hr after BDNF infusion.
Values are means of four responses. C, E–S plot based on values
shown in B. The lef tward shift in the E–S curve indicates an increase
in granule cell excitability to synaptic input. The regression coefficient
was 0.95 in both plots.

Figure 3. BDNF-LTP does not require NMDAR activation. A, Group
mean changes in the fEPSP slope and population spike (Pop Spike)
amplitude. CPP was injected intraperitoneally (10 mg/kg) 2 hr before
BDNF infusion (hatched bar; n � 6). B, Representative plot showing the
effect of HFS (arrow) plus BDNF (bar) in the presence of CPP.
NMDAR blockade abolished HFS-LTP, but had no effect on BDNF-
LTP. C, Field potentials (average of four sweeps) obtained at the times
indicated in B. Calibration: 3 mV, 2 msec. D, Mean fEPSP slope
obtained 2 hr after BDNF infusion in the CPP-treated specimens and
nontreated controls.
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BDNF-LTP is transcription-dependent
The development of late HFS-LTP requires new gene transcrip-
tion. A possible role for transcription in BDNF-LTP was inves-
tigated using local infusion of the RNA synthesis inhibitor ACD.
Figure 5 shows the effect of ACD application at various time
points relative to BDNF infusion. Infusion of BDNF alone
induced stable potentiation of the fEPSP and population spike
(Fig. 5A; only the fEPSP is shown). Infusion of ACD (4 �g in 1 �l;
n � 6) 1 hr before BDNF completely abolished the BDNF-LTP.
ACD alone had no effect on baseline synaptic transmission in the
interval before BDNF infusion (Fig. 5C) or in a separate group of
animals receiving ACD alone and recorded for �7 hr (Fig. 5B)
(n � 5).

However, it is possible that ACD blocks an ongoing transcrip-
tional process (housekeeping function) that, although not critical
for basal synaptic transmission, allows synapses to respond to
BDNF. To obviate this issue, ACD was applied immediately
before BDNF. A rapid potentiation was observed during the first
hour after BDNF infusion, followed by a sharp decline to a stable
plateau level (Fig. 5D) (n � 6). In this paradigm, the initial
response to BDNF is intact, but the sustained response is strongly
inhibited. The mean increases of the fEPSP slope and population
spike amplitude measured 2 hr after BDNF infusion were 12.6
and 17.27%, respectively. Although inhibited relative to control,
the residual potentiation remained significantly elevated above
baseline ( p � 0.05). Finally, ACD was applied 2 hr after BDNF
infusion during established BDNF-LTP. As shown in Figure 5E,
the increase in the fEPSP slope and population spike amplitude
observed 2 hr after ACD infusion was not significantly different

Figure 5. BDNF-LTP requires rapid transcription. The RNA synthesis
inhibitor ACD was applied at various time points relative to infusion of
BDNF. A–E, Group time course plots. A, BDNF alone (n � 5). B, ACD
alone (n � 5). ACD was given 1 hr before BDNF (C; n � 6), immediately
before BDNF (D; n � 6), or 2 hr after BDNF (E; n � 5). The periods of
ACD infusion (4 �g, 1 �l; black bar) and BDNF infusion (hatched bar)
are indicated. F, Summary bar graph of fEPSP changes. All values are
group means � SEM expressed as percentage of baseline. Values for the
bar graph were obtained 2 hr after BDNF infusion in the ACD pretreat-
ment group and 4 hr after BDNF (or ACD alone) infusion in the other
groups. *Significantly different from BDNF group. The residual potenti-
ation in the ACD � BDNF group was significantly elevated above base-
line. Pop Spike, Population spike.

Figure 4. BDNF-LTP does not require low-frequency test stimulation.
The normal paradigm for monitoring responses involves delivery of
low-frequency test responses throughout the experiment at a rate of one
per 30 sec. Here, test stimulation was omitted during BDNF infusion
(hatched bar) and for 6 hr after infusion. At the end of this time, six
responses were collected. Changes in the fEPSP and population spike
(Pop Spike) are shown. Values are means � SEM of four experiments
expressed as percentage of baseline. Note that potentiation is seen in
response to the first stimulus applied after infusion. The magnitude of the
fEPSP increase (41.6 � 4.1%) was not significantly different from that of
controls (47.6 � 5%; n � 5) receiving continuous test stimulation.
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from those of time-matched controls receiving BDNF alone (n �
5) ( p � 0.05). Together the results suggest that the induction but
not the maintenance of BDNF-LTP requires new transcription.
The effects are summarized in Figure 5F.

The immediately early gene Arc is required for generation of
late HFS-LTP and long-term memory (Guzowski et al., 2000).
We have shown recently that BDNF-LTP is accompanied by
upregulation of Arc mRNA and protein in the dentate gyrus
(Ying et al., 2002). Here we assessed the effect of ACD on Arc
upregulation (Fig. 6) (n � 5). Arc protein levels were measured
by Western blot analysis of homogenates obtained from micro-
dissected dentate gyrus and CA1 and CA3 regions. ACD blocked
a threefold upregulation of Arc protein expression in dentate
gyrus in parallel with blockade of BDNF-LTP. ACD had no
effect on basal levels of Arc expression in CA1 and CA3. These
results strengthen the correlation between Arc and BDNF-LTP
and demonstrate that Arc protein derives predominantly from
transcription of new Arc mRNA rather than from translation of
preexisting transcripts.

BDNF-LTP is occluded during late phase but not early
phase HFS-LTP
A major outstanding issue is whether BDNF-LTP is physiologi-
cally relevant. Does exogenous BDNF reflect the actions of en-
dogenous BDNF? If BDNF-LTP and HFS-LTP have a common
mechanism, the expression of one should occlude expression of
the other. To be able to draw conclusions from occlusion exper-
iments, it is critical to establish saturation of the phenomenon on
which the occlusion test is based. HFS-LTP is suitable for this
purpose, because saturation is rapidly achieved and easily as-

sessed, whereas BDNF-LTP is unsuitable in our view because of
the slow time course of the potentiation.

HFS-LTP was induced using parameters (three sessions of 400
Hz stimulation) that generate LTP lasting days (Bramham et al.,
1996). After 30 min of recording, the stimulus intensity was
lowered to reset the fEPSP slope to baseline, keeping the re-
sponse on the rising phase of the input–output curve. As shown
in Figure 7A (n � 6), a second round of HFS produced no further
increase, demonstrating saturation of HFS-LTP. By contrast,
infusion of BDNF-LTP at this time (1 hr after the first HFS) led
to an increase in the fEPSP slope and population spike. The
kinetics of the increase and the magnitude of the increase were
not significantly different from those of the control (Fig. 7C). The
lack of occlusion indicates that BDNF-LTP does not contribute
to expression of early HFS-LTP.

Figure 6. ACD blocks Arc upregulation associated with BDNF-LTP.
Western blot assays of Arc were run on aliquoted samples from micro-
dissected dentate gyrus (DG) and hippocampal regions CA1 and CA3
after BDNF-LTP in vivo. A, Group mean � SEM changes in Arc immu-
noreactivity levels based on densitometric analysis. Optical density values
are expressed as a ratio between the treated and nontreated (control) side
for each region. BDNF-LTP is associated with enhanced Arc expression
at 3 hr (n � 7) but not 15 min (n � 8; data not shown). ACD infusion 1
hr before BDNF blocked BDNF-LTP and the associated increase in Arc
expression (n � 5). No changes in Arc expression were detected in the
CA1 or CA3 regions. B, Representative immunoblot from the ACD-
pretreated group. Infusions were made into the left hippocampus.

Figure 7. BDNF-LTP is occluded by late phase but not early phase
HFS-LTP. A, LTP was induced by three sessions of HFS (400 Hz) and
recorded for 30 min. The stimulus intensity was then lowered to reset the
fEPSP slope to baseline. A second session of HFS produced no further
increase, demonstrating saturation of HFS-LTP. BDNF infusion (hatched
bar) 60 min after the first HFS led to increased synaptic transmission (n �
6). B, HFS-LTP was induced and recorded for 240 min and then reset to
baseline as in A. BDNF infusion 260 min after HFS had no effect on
fEPSP slope or population spike (Pop Spike) amplitude for the duration of
recording (n � 6). Values are group means � SEM expressed as percent-
age of baseline. C, Summary of fEPSP slope increases obtained in group
receiving BDNF after baseline recording (BDNF ), 60 min after HFS
(BDNF, early phase LTP), or 260 min after HFS (BDNF, late phase LTP).
*Significantly different from BDNF group. The magnitude of LTP in the
BDNF group and BDNF, early phase LTP group was not statistically
different ( p � 0.05).
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BDNF may nonetheless take part in late LTP based on a
transcription-dependent mechanism. Occlusion experiments were
performed 260 min after HFS, which by all accounts falls within
the period of mRNA synthesis-dependent LTP. As shown in
Figure 7B (n � 6), BDNF-LTP was completely occluded under
these conditions. These results show that exogenous BDNF-LTP
selectively occludes with late HFS-LTP.

DISCUSSION
The present in vivo study demonstrates that exogenous BDNF
triggers a long-term increase in synaptic strength (BDNF-LTP),
which requires rapid transcriptional activation and which oc-
cludes with late but not early HFS-LTP. Endogenous BDNF has
multiple actions in the regulation of synapse function and plas-
ticity (Schinder and Poo, 2000; Bramham et al., 2002). Endoge-
nous BDNF has been shown to contribute to the generation of
stable HFS-LTP (Kang et al., 1997; Korte et al., 1998; Chen et al.,
1999; Minichiello et al., 1999; Xu et al., 2000; Patterson et al.,
2001). Late HFS-LTP and long-term memory both depend on
activation of ERK and induction of the immediate early gene Arc
(Atkins et al., 1998; Impey et al., 1998; Davis et al., 2000;
Guzowski et al., 2000; Rosenblum et al., 2002). We have shown
recently that BDNF-LTP similarly requires ERK activation cou-
pled to ERK-dependent activation of the nuclear transcription
factor calcium/cAMP responsive-element binding protein and
upregulation of Arc mRNA and protein (Ying et al., 2002). As
seen with HFS-LTP (Lyford et al., 1995; Link et al., 1995;
Valentine et al., 2000), Arc mRNA is selectively induced in
dentate granule cells and delivered to dendritic processes. In the
present work, local inhibition of transcription blocked BDNF-
LTP and the attendant increase in Arc protein expression. By
applying ACD at different time points relative to BDNF infusion,
we have identified a window of critical transcription, which par-
allels the window of ERK activation. Taken together, these data
strongly support a role for BDNF as a trigger for transcription-
dependent synaptic strengthening. Signal-transducing TrkB re-
ceptors are located on axon terminals and in the postsynaptic
density of glutamatergic synapses (Drake et al., 1999; Aoki et al.,
2000). Without excluding presynaptic effects, these data clearly
point to a role for postsynaptic modifications in dentate granule
cells.

In these experiments, BDNF is infused immediately above the
dentate gyrus, some 300 �m above the medial perforant path
synapses. BDNF infusion at this site results in selective activation
of signal transduction pathways in the dentate gyrus; no biochem-
ical effects have so far been observed in microdissected CA1 or
CA3 tissue (Kanhema et al., 2001; Ying et al., 2002). Using
BDNF immunostaining, we show that exogenous BDNF is rap-
idly delivered and cleared from the dentate gyrus. BDNF is
clearly being delivered to the CA1 region, and the lack of effect on
signal transduction is interesting in this regard. It could be related
to differences in activity-dependent gene expression between the
CA1 region and dentate gyrus (French et al., 2001). However,
there are salient methodological points to this issue. Because the
cannula is placed into deep-field CA1 (stratum lacunosum-
moleculare), differences can be expected with regard to the con-
centration and kinetics of BDNF as it travels upward along the
cannula tract as well as possible trauma and pressure effects.
Experiments combining recording of Schaffer collateral–CA1
responses with infusion of BDNF above the synaptic region are
needed to resolve this issue.

The physiological relevance of exogenous BDNF application

may be questioned. The fact that BDNF-LTP occludes selectively
with late phase LTP and activates a common set of critical
intracellular events in the intact adult brain attests to the physi-
ological relevance of the phenomenon. The similarity between
HFS-LTP and BDNF-LTP is further evidenced by the fact that
both are associated with a parallel increase in synaptic strength
and E–S coupling.

ACD has commonly been used to draw the distinction between
transcription-dependent (late) and transcription-independent
(early) LTP. Previous work has shown that ACD blocks develop-
ment of late HFS-LTP, leaving early LTP intact (Frey et al., 1996;
Nguyen and Kandel, 1996). In contrast, BDNF-LTP is almost
completely transcription-dependent, consistent with a selective
role for BDNF in late phase LTP. When ACD is applied imme-
diately before BDNF, a normal initial response to BDNF is
followed by a drop to a small but stable plateau level. There are
two plausible explanations for the residual potentiation. First, it
could reflect an mRNA synthesis-independent process, such as
post-transcriptional regulation of protein synthesis or protein
phosphorylation, and evidence for both actions exists (discussed
below). Alternatively, the residual potentiation could reflect in-
complete inhibition of transcription by ACD. For example, if
ACD takes effect after BDNF, this would allow time for initiation
of a small, transcription-dependent potentiation. We cannot rule
out this scenario, although ACD was shown to act rapidly and
potently (1 hr pretreatment blocked BDNF-LTP).

In the CA1 region of the hippocampus, BDNF-LTP appears to
involve protein synthesis from dendritically localized mRNA
(Kang and Schuman, 1996). Using slices in which the synaptic
neuropil was isolated (connections with the CA3 and CA1 cell
bodies were severed), Kang and Schuman (1996) showed that
BDNF induces LTP that was blocked by protein synthesis inhib-
itors. However, a role for transcription has not been investigated
in CA1. In this context, it should be pointed out that activation of
the translation machinery in dendrites may go hand in hand with
the arrival of Arc transcripts, effectively driving Arc protein
synthesis at synaptic sites (Ying et al., 2002). Supporting this
view, BDNF has been shown recently to stimulate post-
transcriptional synthesis of Arc in isolated synaptoneurosomes
(Yin et al., 2002). This mechanism may well be accentuated in the
context of elevated Arc mRNA. The present work using the
transcription inhibitor ACD shows that Arc protein expression in
BDNF-LTP derives predominantly from new mRNA synthesis
rather than from translation of preexisting mRNA. BDNF can
modulate translation through multiple signaling cascades, and the
contribution of these pathways to dendritic protein synthesis and
synaptic plasticity are only beginning to be resolved (Steward and
Schuman, 2001; Takei et al., 2001). BDNF-LTP and late HFS-
LTP in the CA1 field are both blocked by inhibition of mamma-
lian target of rapamycin, a key regulator of translation initiation
(Tang et al., 2002). In the dentate gyrus, BDNF-LTP is coupled
to ERK-dependent activation of elongation factor-2, an impor-
tant regulator of peptide chain elongation (Kanhema et al., 2001).

The selective occlusion of the BDNF response during late LTP
suggests a rapid transition (switch) in the mechanism of LTP
expression taking place between 1 and 4 hr after HFS. Frey et al.
(1995) reached a similar conclusion based on occlusion experi-
ments using two sessions of HFS. They found that early LTP was
occluded at 1 hr after HFS (as would be expected) but could
again be induced at 4 hr. Our results are consistent with these
findings and implicate BDNF as a trigger for the conversion
between early and late LTP.
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The mechanism of occlusion remains to be identified. Although
Arc synthesis is required in late HFS-LTP, there is no evidence
that it is sufficient. Work by Chowdhury et al. (1998) suggests that
Arc acts as a physical tether for calcium/calmodulin-dependent
protein kinase II (CaMKII), anchoring it to the cytoskeleton
within or in close proximity to the postsynaptic density. Arc and
CaMKII are both synthesized from dendritically localized
mRNA (Lyford et al., 1995; Steward and Schuman, 2001), and
recent work shows that BDNF-LTP is associated with CaMKII
activation (Kanhema et al., 2001). The exact functional relation-
ship between Arc and CaMKII will be important to define.
Taken together, the data suggest that BDNF stimulates synaptic
consolidation through transcription-dependent and -independent
mechanisms in which Arc may play a key role.

The critical period of BDNF release and TrkB receptor acti-
vation in LTP remains to be defined. Hartmann et al. (2001)
found that HFS triggers immediate release of BDNF–green flu-
orescent protein from postsynaptic sites in hippocampal cell cul-
tures. Evidence for rapid release has also been obtained after
LTP-inducing stimuli in hippocampal slices (Kossel et al., 2001).
Other evidence suggests an important function for more sus-
tained or delayed events. TrkB activation in the dentate gyrus is
enhanced 40 min after HFS (Gooney and Lynch, 2001), and late
LTP is impaired by application of a BDNF scavenger, TrkB-Fc,
30–60 min after HFS (Kang et al., 1997). A sustained or delayed
activation of TrkB by endogenous BDNF is most consistent with
our data, because BDNF-LTP was not occluded 1 hr after HFS.

BDNF has been shown to act presynaptically to enhance glu-
tamate release, raising the possibility that BDNF might, by re-
leasing glutamate, trigger classic NMDAR-dependent LTP (Jo-
vanovic et al., 2000; Gooney and Lynch, 2001). This is not the
case, however, because CPP abolished HFS-LTP but had no
effect on BDNF-LTP. Our results confirm a previous study by
Kang and Schuman (1995) in the CA1 region in vitro and extend
it to the dentate gyrus in vivo. This result does not rule out a
contribution of other glutamate receptor types in BDNF-LTP
induction. The role of glutamatergic transmission in BDNF re-
lease is another issue. Release of endogenous BDNF during HFS
depends on activation of postsynaptic ionotropic glutamate re-
ceptors (Hartmann et al., 2001). Using exogenous application, we
are bypassing this initial release event.

In cultured hippocampal neurons, BDNF elicits a transient
potentiation of excitatory synaptic transmission (Gottschalk et al.,
1998; Lessmann and Heumann, 1998; Li et al., 1998; Crozier et
al., 1999). This effect is inhibited by NMDAR antagonists and is
mediated at least in part by enhanced conductance of postsynap-
tic NMDAR-2B-containing receptors (Levine et al., 1998; Cro-
zier et al., 1999). Although the NMDAR-2B mechanism is im-
portant in the developing hippocampus, the fact that BDNF-LTP
is undiminished during NMDAR blockade argues against this
mechanism occurring in the adult dentate gyrus. On the other
hand, there is evidence that NMDAR-2B is upregulated later (2
d) in the process of HFS-LTP (Williams et al., 1998).

BDNF is a versatile molecule acting in the short and long term
to regulate a diverse range of functions in the developing and
adult nervous systems. In the context of synaptic plasticity, the
question has been asked of whether BDNF serves a housekeeping
function, maintaining the machinery that makes synapses modi-
fiable, or an active, instructive role in triggering synaptic change
(Schinder and Poo, 2000). The present study supports a direct,
instructive role for BDNF in transcription-dependent, late phase
LTP. Furthermore, the phenomenon of exogenous BDNF-LTP

provides a valuable tool for elucidating the molecular basis of
BDNF action specific to the consolidation process.
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Abstract

Protein synthesis underlying activity-dependent synaptic

plasticity is controlled at the level of mRNA translation. We

examined the dynamics and spatial regulation of two key

translation factors, eukaryotic initiation factor 4E (eIF4E) and

elongation factor-2 (eEF2), during long-term potentiation

(LTP) induced by local infusion of brain-derived neurotrophic

factor (BDNF) into the dentate gyrus of anesthetized rats.

BDNF-induced LTP led to rapid, transient phosphorylation of

eIF4E and eEF2, and enhanced expression of eIF4E protein

in dentate gyrus homogenates. Infusion of the extracellular

signal-regulated kinase (ERK) inhibitor U0126 blocked

BDNF-LTP and modulation of the translation factor activity

and expression. Quantitative immunohistochemical analysis

revealed enhanced staining of phospho-eIF4E and total eIF4E

in dentate granule cells. The in vitro synaptodendrosome

preparation was used to isolate the synaptic effects of BDNF

in the dentate gyrus. BDNF treatment of synaptodendrosomes

elicited rapid, transient phosphorylation of eIF4E paralleled

by enhanced expression of a-calcium/calmodulin-dependent

protein kinase II. In contrast, BDNF had no effect on eEF2

phosphorylation state in synaptodendrosomes. The results

demonstrate rapid ERK-dependent regulation of the initiation

and elongation steps of protein synthesis during BDNF-LTP

in vivo. Furthermore, the results suggest a compartment-

specific regulation in which initiation is selectively enhanced

by BDNF at synapses, while both initiation and elongation are

modulated at non-synaptic sites.

Keywords: dentate gyrus, hippocampus, neurotrophic fac-

tors, synaptic plasticity, translation control.

J. Neurochem. (2006) 99, 1328–1337.

Stable activity-dependent changes in synaptic strength, as
observed in long-term potentiation (LTP) and depression
(LTD), are thought to underlie memory storage and other
adaptive mechanisms such as mood stability and drug addic-
tion (Bliss and Collingridge 1993; Hyman et al. 2006; Kuipers
and Bramham 2006). Activity-dependent changes in synaptic
strength require one or more period of new protein synthesis.
Recent work has shown that protein synthesis underlying
synaptic plasticity is critically controlled at the level of mRNA
translation (for a review seeKlann andDever 2004;Richter and
Sonenberg 2005; Soule et al. 2006). In combination with
mRNAtransport and localization, control ofmRNAtranslation
determines the timing and subcellular location of protein
synthesis. In neurons this has been exquisitely exemplified by
local translationofmRNAindendrites (Wu et al. 1998;Aakalu
et al. 2001; Steward and Schuman 2003; Tsokas et al. 2005).
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The initiation and elongation steps of protein synthesis are
both highly regulated events. Two of the key translation factors
involved are eukaryotic initiation factor 4E (eIF4E) and
eukaryotic elongation factor 2 (eEF2). eIF4E binds to the 7-
methyl-guanosine residue that caps the 5¢ end of nuclear–
encoded RNAs. Interaction of eIF4E with ribosomal-associated
translation factors is required for translation intiation. Phos-
phorylation of eIF4E on Ser209 is correlated with enhanced
rates of translation, whereas hypophosphorylation is associated
with decreased translation (Gingras et al. 2004). eEF2 is a GTP-
binding protein that mediates translocation of peptidyl-tRNAs
from the A-site to the P site on the ribosome. Phosphorylation
of eEF2 on Thr56 inhibits eEF2-ribosome binding and arrests
elongation (Nairn and Palfrey 1987; Ryazanov et al. 1988).
While EF2 phosphorylation is associated with reduction in
global protein synthesis, some transcripts appear to be selec-
tively translated under these conditions (Scheetz et al. 2000;
Chotiner et al. 2003). Recent studies have established a critical
role for cap-dependent translation initiation in synaptic plasticity
(Kelleher et al. 2004; Banko et al. 2005). However, the
coordination and spatial control of translation initiation and
elongation during synaptic plasticity are little understood.

The secretory peptide brain-derived neurotrophic factor
(BDNF) has emerged as major regulator of synaptic plasticity
in the hippocampus of adult animals (Blum and Konnerth
2005; Bramham and Messaoudi 2005). In the dentate gyrus of
intact rats, local infusion of BDNF triggers a long-term
potentiation (BDNF-LTP) that requires new gene expression
and protein synthesis (Messaoudi et al. 2002; Ying et al.
2002; Messaoudi et al. 2006). Here, we examined the
dynamics and spatial regulation of eIF4E and eEF2 following
BDNF-LTP induction in the dentate gyrus in vivo. Phos-
phorylation of eIF4E on Ser209 and phosphorylation of eEF2
on Thr56 was examined by quantitative immunoblotting and
immunohistochemistry following in vivo treatment, while the
isolated synaptic actions of BDNF were investigated in vitro
using synaptodendrosomes (SDs), a subcellular fraction
enriched in pinched-off re-sealed terminals attached to re-
sealed dendritic spine structures (Rao and Steward 1991;
Weiler and Greenough 1993; Havik et al. 2003). The results
demonstrate rapid, parallel extracellular signal-regulated
protein kinase (ERK), ERK-dependent phosphorylation of
eIF4E and eEF2 during BDNF-LTP in vivo. In synaptoden-
drosomes, BDNF selectively stimulates eIF4E phosphoryla-
tion, without affecting net eEF2 phosphorylation. Thus,
BDNF regulates the translation initiation and elongation steps
of protein synthesis in a compartment-specific manner.

Materials and methods

Electrophysiology and intrahippocampal infusion

The methods have been detailed elsewhere (Messaoudi et al. 2002;
Yin et al. 2002). Briefly, adult male Sprague-Dawley rats were

anesthetized with urethane and electrodes were positioned for

seletive unilateral stimulation of the medial perforant path and

recording of evoked field potentials from the dentate gyrus. Test

pulses were applied every 30 s. BDNF was infused immediately

above the dorsal dentate gyrus, into deep stratum-lacunosum

moleculare of field cornu ammonis (CA) 1, approximately 300 lm
from the nearest medial perforant path-granule synapses.

Tissue microdissection and sample preparation

At the end of electrophysiological recording rats were decapitated

and the dentate gyrus and hippocampal CA1 and CA3 regions were

rapidly dissected on ice. Tissues were hand-homogenized in sodium

dodecyl sulfate (SDS) sample buffer. Homogenates were boiled for

5 min, aliquoted, and stored at ) 80�C until use.

Preparation and stimulation of synaptodendrosomes (SDs)

Dentate gyrus from urethane anesthetized rats was frozen and stored

at ) 80�C. Sets of six dentate gyri were thawed 5 min on ice and

5 min at room temperature prior to homogenization in ice-cold

homogenization buffer (HB) containing (in mM): sucrose (320),

Tris-HCl pH 7.4 (20), EGTA (2), MgCl2 (2), dithiothreitol (DTT)

2.5 and NaF (0.25 lM). Homogenization was performed manually

with 10–12 gentle strokes in a tissue grinder with a clearance of

0.1–0.15 mm (Thomas Scientific, Swedesboro, NJ, USA). Calcium

influx and changes in magnesium levels during preparation of

synaptic fractions is a concern as it may affect basal phosphoryla-

tion. In attempt to obtain more physiological conditions we used

buffer containing 2 mM EGTA and 2 mM MgCl2. Significantly lower

basal levels of CaMKII phosphorylation were obtained compared to

buffer containing EGTA and EDTA.

The homogenate was passed through a nylon filter (30 lm pore-

size MACS filter) and mixed with a 50% OptiPrep solution to

make a 35% solution. This was placed in the bottom of a Beckman

centrifugation tube, onto which OptiPrep solutions of (25%, 15%,

12.5% and 9%) were layered. After centrifugation for 24 min at

10 000 g in an ultracentrifuge (Beckman LE-80K Ultracentrifuge,

SW41Ti rotor), the SD containing fraction in the 9–12.5% interface

was collected, diluted 2–4 times in 1 x PBS and loaded on top of a

Sucrose-Percoll step gradient (6, 10, 15, 20 and 23). The gradients

were made by diluting Percoll in HB. After centrifugation for

9 min at 32 000 g, the SDs were collected from the 15/20%

interface and from the 20% fraction (often a double band). The

synaptodendrosome fraction was then diluted in HB and centri-

fuged at 6000 g for 1–2 min. The resulting pellet was washed once

by resuspension in HEPES-buffered artificial cerebrospinal

fluid (ACSF), centrifuged at 6000 g for 1–2 min, and stored

at )80�C.
The synaptodendrosomes pellet was thawed on ice for 30 min

and diluted in pre-warmed (37�C) oxygenated ACSF to give a

protein concentration between 2 and 9 mg/mL (approximately 1 : 3

dilution). SD samples were continuously oxygenated in an eppen-

dorf tube and treated with BDNF or cytochrome C, the latter serving

as a time-matched control. The reactions were stopped (5 x SDS

buffer) and samples were boiled for 5 min. A concentration of

200 ng/mL BDNF was selected for the main body of experiments

based on dose–response effects on phosphorylation events (present

work), Tropomyosin-related receptor kinase B (TrkB) activation,

and protein synthesis (Takei et al. 2001).
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Drugs and antibodies

Recombinant BDNF and cytochrome C from yeast (Sigma,

St Louis, MO, USA) was dissolved in phosphate-buffered saline

(PBS). The ERK kinase inhibitor U0126 (gift of James Trzaskos,

DuPont Pharmaceuticals, Wilmington, DE, USA), was dissolved in

dimethylsulfoxide (DMSO) and diluted in PBS to a final concen-

tration of 30 lM inhibitor containing 0.3% DMSO. Primary

antibodies used for immunoblotting were as follows: total eIF4E

(1 : 1000, Cell Signaling polyclonal 5853), Ser209 phosphorylated

eIF4E (1 : 1000, Cell Signaling polyclonal), total eEF2 (G118,

1 : 500), Thr56 phospho-eEF2 (CC81, 1 : 300), total aCaMKII (1:

2000, Affinity BioReagents mouse monoclonal 6G9), Thr286

phospho-aCaMKII (1 : 5000, Promega rabbit polyclonal V111A),

and b-actin (1 : 5000 Sigma mouse monoclonal AC-15).

SDS–PAGE and Western Blotting

Protein levels in homogenate samples were determined using the

Lowry method. Equal amounts of protein were separated on sodium

dodecyl sulfate–polyacrylamide gel (SDS–PAGE) gels (peEF2 and

total eEF2 on 8%, pCaMKII and totalaCaKII on 10%, and peIF4E and

total eIF4E on 12%) and run overnight at constant 10 mA. Separated

proteins were transferred to nitrocellulose membranes (Hybond-C,

Biorad, Rjukan,Norway) using a constant voltage of 30Vovernight or

100 V for 1 h. Membranes were blocked on a gyro-rocker for 1 h at

room temperature (RT) (21–23�C). Blocking buffer (BB) consisted of
TBST (Tris-buffered saline/0.1% Tween-20) and 5% Bovine Serum

Albumin (BSA). For pCaMKII and total aCaMKII, membranes were

blocked 1 h at 37�C. eIF4E, eEF-2 and aCaMKII were analyzed by

sequential immunoblotting with primary antibodies specifically

recognizing the phosphorylated (P) or total proteins. The primary

antibodies were dissolved in BB containing 3% BSA and the blots

were incubated for 2 h at RT (for total proteins) or at 4�C overnight

(phospho-proteins) with constant shaking. Following three washes

with TBST, blots were incubated for 1 h in horseradish peroxidase-

conjugated secondary antibody dissolved in TBST. The blots were

thenwashed again and visualized using enhanced chemiluminescence

(ECL, Amersham Pharmacia Biotech, Norway). Blots treated with

phospho-specific antibody were stripped with 100 mM 2-mercapto-

ethanol, 2% SDS and 62.5 mM Tris-HCL, pH 6.7 at 60�C for 1 h and

reprobed. with antibody recognizing total protein. Autoradiographs

were quantitated using Phoretics ID plus software.Western blots were

developed to be linear in the range used for densitometry. In the in vivo
studies, optical density values obtained from the treated hippocampus

were normalized relative to values in the contralateral hippocampal

subfield. In the in vitro studies, the BDNF and cytochrome C-treated

samples were analyzed as matched pairs. Statistical analyses were

based on paired t-tests.

Immunohistochemical staining and analysis

At the end of the experiments, rats were deeply anesthetized and

then perfused intracardially with saline followed by ice cold 4%

paraformaldehyde in 1 · PBS, pH 7.4. Brains were removed,

postfixed overnight in 4% paraformaldehyde/PBS at 4�C, and

equilibrated in 25% sucrose in PBS until the brains sank. Brains

were sectioned coronally at a thickness of 30 lm and stored in 1 ·
PBS at 4�C. For antigen retrieval, free-floating sections were heat

treated at 95�C for 45 min in citric acid solution (10 mM, pH ¼
6.0). After antigen retrieval, sections were blocked for 1 h at room

temperate in blocking buffer (3% normal goat serum + 0.5%

BSA + 0.1% TritonX-100 in PBS). Primary antibodies recognizing

eIF4E (1 : 500) and p-eIF4E (1 : 25) were diluted in blocking

buffer and incubated overnight at 4�C. Negative control incubations
were performed by substituting non-immune serum for the primary

antibody. After primary antibody incubation the sections were

washed with 1 · PBS several times and incubated in biotinylated

goat anti-rabbit IgG secondary antibody (Vector Laboratories,

Burlingame, CA, USA) at a dilution of 1 : 200 in blocking buffer

for 1 h at RT. The sections were washed and incubated in Vector

ABC kit (Vector Laboratories) for 1 h and final color was developed

using 3,3¢-diaminobenzidine with nickel as the chromogen. Sections

were mounted on poly-L-lysine slides, dehydrated through alcohols

to xylene, and coverslipped with DPX.

For quantitative immunostaining, seven sets of 12 serial coronal

sections were collected along the dorsal hippocampus in the region

1.15 mm rostral and caudal to the infusion site. Phospho-eIF4E and

total eIF4E staining and analysis were performed on 7 sections (one

from each set). Images (10 · magnification) were captured on a

Nikon DS-OM digital camera using a DS-L1 camera control unit

(Inter Instruments AS, Hovik, Norway) and analyzed using NIH

IMAGE J software (Scion, Frederick, MD, USA). Mean optical

density values corrected for background were determined across the

entire granule cell layer from each section. Differences between

treated and contralateral control values were determined by one-way

ANOVA and a post hoc Bonferroni test.

Results

Rapid and transient phosphorylation of eIF4E and eEF2

during BDNF-LTP in vivo

BDNF-LTP was induced by infusion of BDNF (2 lg in 2 lL)
into stratum lacunosum-moleculare of CA1, approximately
300 lmabove themedial perforant path synapses. Increases in
themedial perforant path-evokedfield excitatory post-synaptic
potentials (fEPSPs) reached statistical significance at 15 min
and climbed gradually to a stable plateau at 2–3 h after BDNF
infusion (Fig. 1a). Accordingly, experiments were terminated
at 15 min or 3 h after BDNF infusion in order to monitor the
induction and maintenance phases of BDNF-LTP (Fig. 1b).
Infusion of cytochrome C, which has a similar molecular
weight and charge as BDNF, had no significant effect on
synaptic efficacy during 3 h of recording (Fig. 1b). Homo-
genates from microdissected dentate gyrus and hippocampal
regions CA1 and CA3were subjected to quantitative immuno-
blotting and comparisons were made between the treated and
non-treated serine contralateral control regions. Levels of 209
phosphorylated eIF4E were significantly elevated 2.2-fold in
the BDNF-infused dentate gyrus 15 min after infusion, but
returned to control levels at 3 h (Fig. 1c). Interestingly, this
early increase in phosphorylation was paralleled by a signi-
ficant 2.3-fold increase in total eIF4E levels (Fig. 1d). Changes
in phospho-eIF4E were normalized to total eIF4E levels and
thus reflect a genuine state of hyperphosphorylation.
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The effects of BDNF infusion on eEF2-threonine56
phosphorylation and total eEF2 levels are shown in Figs 1(e
and f). Phospho-eEF2 levels were significantly elevated 2.3
fold at 15 min after BDNF infusion. Phospho-eEF2 levels
remained elevated at 3 h, although the 1.5- fold increase was
not significant. No changes in total eEF2 levels were seen at
either time point. The effects of local BDNF infusion on
translation factor activity were specific to the dentate gyrus as
no significant changes were detected in the CA1 and CA3
regions (sample blots are shown in Fig. 1). Infusion of the
cytochrome C had no effect on phosphorylation or expres-
sion of eIF4E or eEF2 levels (Fig. 1g). BDNF and Cyt C
infusion also had no effect on b -actin expression, which
served as a loading control (Fig. 1h).

Rapid modulation of eIF4E and eEF2 requires ERK

signaling

We have previously reported that BDNF-LTP requires rapid
ERK signaling coupled to calcium/cyclic AMP response-
element binding protein (CREB) activation and up-regulation
of the immediate early gene (Messaoudi et al. 2002; Ying
et al. 2002). BDNF can also signal through TrkB-ERK to
regulate phosphorylation of eIF4E (Takei et al. 2001;
Kelleher et al. 2004). Here, we examined a possible role of
ERK activation in regulating both eIF4E and eEF2 during
BDNF-induced synaptic plasticity in vivo. As shown in
Fig. 2, intrahippocampal coinfusion of the ERK kinase
inhibitor U0126 (30 lM, n ¼ 8) with BDNF blocked
BDNF-LTP induction and the associated increases in phos-
pho-eIF4E, phospho-eEF2, and total eFI4E observed 15 min
post-infusion. At 3 h post-infusion, no differences were
detected between rats receiving BDNF alone or BDNF in the
presence of U0126.

Immunohistochemical localization of phospho-eIF4E and

total eIF4E in the dentate gyrus following BDNF-LTP

in vivo

Next we sought to anatomically localize the changes in
translation factor activity and expression 15 min after BDNF
infusion. The analysis focused on phosphorylated and total
eIF4E as these antibodies yielded clear and specific immuno-
staining. Immunohistochemical staining was performed on
seven coronal sections collected in the region 1.15 mm

(c) (d) 

(e) (f) 

(g) (h) 

(b) (a) Fig. 1 Rapid and transient phosphorylation of eIF4E and eEF2 during

BDNF-LTP in the dentate gyrus of anesthetized rats. (a) Time course

plot showing changes in medial perforant path-granule cell-evoked

fEPSPs expressed in percent of baseline. Values are group means ±

SEM (n ¼ 5). Test pulses were applied at a rate of 1 every 30 s. BDNF

(2 lg/2 lL) was unilaterally infused 300 lm above the medial perfor-

ant-granule cell synapses, during the period indicated by the solid bar.

(b) Magnitude of fEPSP change in groups of rats killed at 15 min (n ¼
8) and 3 h (n ¼ 7) after BDNF or Cytochrome C (Cyt C) infusion.

*Significant difference from baseline (p < 0.05). Western blot assays

were performed on aliquoted samples from microdissected dentate

gyrus (DG), and hippocampal regions CA1 and CA3. Bar graphs show

group mean (± SEM) changes in p-eIF4E (c) and total eIF4E levels (d)

based on densitometric analysis. Optical density values are expressed

as a ratio between the treated and non-treated (control) side for each

hippocampal subfield. Changes in phosphorylation are normalized

relative to total phosphoprotein. Significant increases in eIF4E phos-

phorylation and eIF4E expression specific to the dentate gyrus were

detected 15 min after BDNF infusion. *Significant difference from

control (p < 0.05). Representative immunoblots are shown in the lower

panels. (e) Significant increases in eEF2 phosphorylation were

detected 15 min (n ¼ 8), but not 3 h (n ¼ 7) after BDNF infusion. (f)

No change in total eEF2 levels. (g) Cytochrome C (Cyt C) infusion had

no significant effect on translation factor phosphorylation or expres-

sion. Bar graphs shows effects 15 min after Cyt C infusion. (h)

Immunoblots of b-actin expression 15 min after BDNF or Cyt C infu-

sion.
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rostral and caudal to the infusion site. Increases in phospho-
eIF4E and total eIF4E were observed in BDNF-infused
dentate gyrus, but not cytochrome C-treated dentate gyrus, in
4 of 4 rats (Fig. 3a and c). No changes in immunostaining
were observed outside of the dentate gyrus. Within the
dentate gyrus enhanced staining was evident in the cyto-
plasmic margins of granule cell somata (Fig. 3b and d).
Enhanced phospho-eIF4E and total eIF4E staining was also
inconsistently observed across the dentate molecular layer up
to the hippocampal fissure, but the expression appeared to be
near the detection threshold of the method. Similar results
were obtained at a range of antibody titers, and no staining
was observed in control experiments in which primary

antibody was substituted with non-immune serum. Quanti-
tative densitometric analysis of the immunostaining demon-
strated statistically significant increases in phosho-eIF4E and
total eIF4E in the granule cell layer of the BDNF-infused
dentate gyrus compared to contralateral control (Fig. 3e and
f). No significant differences between sides were detected
following cytochrome C infusion.

BDNF elicits a rapid and transient phosphorylation

eIF4E, but not eEF2, in isolated synaptodendrosomes

Translation factors and other components of the transla-
tional machinery are found in somata, dendrites, and
spines, but not in axon terminals of adult synapses (Tiedge
and Brosius 1996; Pierce et al. 2000). The simultaneous
phosphorylation of eIF4E and eEF2 suggests a coordinate
process of enhanced initiation and reduced peptide chain
elongation. We considered that these seemingly opposing
biochemical mechanisms might be spatially segregated in
neurons. Specifically, we hypothesized that BDNF signal-
ing selectively promotes translation initiation in dendritic
spines, while initiation and elongation are both modulated
at non- synaptic sites. Whole dentate gyrus homogenates
and light microscopic immunocytochemistry is incapable of
resolving mechanisms at the level of dendritic spines. In
order to isolate the direct effects of BDNF at the level of
the dendritic spines, we turned to the in vitro synaptoden-
drosome (SD) preparation. The SD preparation is a
subcellular fraction containing axon terminals attached to
pinched-off spine-like elements containing a postsynaptic
density (PSD) characteristic of excitatory synapses. SDs are
highly enriched in PSD-95 protein and depleted of cell
body and nuclear markers (Havik et al. 2003). As observed
during BDNF-LTP in vivo, BDNF-treatment of SDs
resulted in rapid (5 min) and transient phosphorylation of
eIF4E compared to the cytochrome C-treated control
(Fig. 4a). However, no significant changes in total eIF4E
were detected in BDNF-treated SDs (Fig. 4b). Furthermore,
in contrast to the western blot and immunohistochemical
data from the in vivo studies, phospho-eEF2 levels in SDs
were unchanged following BDNF treatment (Fig. 4c).
Potassium depolarization of SDs was used as a positive
control for eEF2 modulation. As shown in Fig. 4(d),
high-potassium (50 mM) treatment evoked a significant
1.6-fold increase in phospho-eEF2 in synaptodendrosomes
(Fig. 4d). A small but significant increase in total eEF2
protein was also detected 5 min after BDNF incubation
(Fig. 4e).

BDNF enhances synaptic synthesis and activation of

CaMKII

What impact does compartmental regulation of the transla-
tional machinery have on the expression of proteins control-
ling synaptic strength and structure? To begin to address this
issue we examined expression of a-calcium/calmodulin-

(c) (d)

(b)(a)

Fig. 2 Regulation of eIF4E and eEF2 activity during BDNF-LTP is

ERK-dependent. (a) Time course plot showing changes in medial

perforant path-granule cell evoked fEPSPs expressed in percent of

baseline. Values are group means ± SEM (n ¼ 5). Test pulses were

applied at a rate of 1 every 30 s. BDNF (2 lg/2 lL) was infused

300 lm above the medial perforant-granule cell synapses, during the

period indicated by the open bar. Infusion of 1 lL U0126 (30 lm;

filled bar) was followed immediately by infusion of 2 lg BDNF in 2 lL

U0126 (hatched bar). Values are means ± SEM expressed in percent

of baseline. (b) Bar graph showing changes in fEPSP slope 15 min

and 3 h after infusion. *Significant difference from baseline

(p < 0.05). Western blot assays were performed on aliquoted sam-

ples from microdissected dentate gyrus. Bar graphs show group

mean (± SEM) changes 15 min (c) and 3 h (d) after infusion. Optical

density values are expressed as a ratio between the treated and

non-treated (control) dentate gyrus. Representative immunoblots are

shown in the lower panels. BDNF-LTP induction and the associated

increases in p-eIF4E, total eIF4E, and p-eEF2 were abolished in

U0126-infused rats. N ¼ 4–8. b-actin levels were unchanged fol-

lowing BDNF-LTP induction.

1332 T. Kanhema et al.

Journal Compilation � 2006 International Society for Neurochemistry, J. Neurochem. (2006) 99, 1328–1337
� 2006 The Authors



dependent protein kinase II (aCaMKII) using an antibody
that recognizes both phosphorylated and unphosphorylated
forms of the enzyme. mRNA encoding aCaMKII is stored in
dendrites and local translation of this message affects the size
of the PSD and development of late LTP (Miller et al. 2002;
Havik et al. 2003). Havik et al. previously reported that
synapse-specific increases in aCaMKII mRNA and protein
are masked in homogenates from whole dentate gyrus. We
therefore compared the effects of BDNF infusion in vivo with

treatment of isolated SDs in vitro. Levels of total CaMKII
were unchanged in dentate gyrus, CA1 and CA3 tissue
samples collected 15 min and 3 h after BDNF infusion
in vivo (Fig. 5a, left panel). In contrast, BDNF-treatment of
dentate gyrus SDs led to a significant 45% increase in
CaMKII expression paralleling the rapid phosphorylation
of eIF4E (Fig. 5a, right panel). Finally, CaMKII autopho-
sphorylation was assessed using an antibody that detects
phosphorylation of a-CaMKII at threonine 286. CaMKII was

(c) (d)

(e) (f)

(b)(a)

* *

Fig. 3 Immunohistochemical localization of

phosphorylated and total eIF4E in the den-

tate gyrus following in vivo BDNF-LTP.

Coronal sections were collected 15 min

after BDNF infusion or Cyt C infusion.

Panels (a) and (c) show phospho-eIF4E

and total eIF4E immunostaining of treated

and contralateral, control (CON) hippo-

campus. Panels (b) and (d) show corres-

ponding high magnification (20 ·) images of

the inner blade of the dentate gyrus in the

region extending from the granule cell layer

to the hippocampal fissure (the region indi-

cated by a white box). Scale bar is 50 lm in

(a) and 100 lm in (b). Enhanced p-IF4E

and total eIF4E labeling was observed in

the granule cell layer. Quantitative analysis

of the immunostaining in the granule cell

layer is shown in panels (e) and (f). Bar

graphs shows densitometric values in trea-

ted dentate gyrus normalized relative to

contralateral control. *Significantly different

from contralateral control (n ¼ 4; p < 0.05).
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transiently activated during BDNF-LTP in vivo and following
BDNF incubation of SDs in vitro (Fig. 5b).

Discussion

In the present study transient phosphorylation of eIF4E
and eEF2 as well as enhanced expression eIF4E protein
coincided with the onset of BDNF-LTP. Like BDNF-LTP
induction, regulation of eIF4E and eEF2 requires ERK
signalling. Quantitative immunohistochemical staining con-
firmed the Western blot data on phosphorylated and total
eIF4E expression and revealed sharply enhanced staining
in granule cell somata. The present work thus demon-
strates dynamic, ERK-dependent regulation of both the
initiation and elongation steps of protein synthesis during
long-term synaptic plasticity in vivo. The synaptodendro-
some preparation gave important insight into the synaptic
actions of BDNF which could not be resolved by light
microscopy. In synaptodendrosomes, BDNF elicited rapid
and transient phosphorylation of eIF4E and this was
associated with enhanced expression and activation of

CaMKII. However, in contrast to observations in whole
dentate gyrus, BDNF treatment of synaptodendrosomes
had no effect on eEF2 phosphorylation state. As a positive
control, we show that eEF2 is phosphorylated in response
to potassium depolarization. Thus, BDNF appears to
selectively facilitate initiation at synapses, while both
initiation and elongation are modulated at non-synaptic
sites.

BDNF stimulates cap-dependent translation through TrkB-
coupled activation of the mammalian target of rapamycin
(mTOR) and Ras-ERK pathways (Takei et al. 2001, 2004;
Schratt et al., 2004). Activation of mTOR leads to phos-
phorylation of eIF4E binding protein and release of eIF4E.
eIF4E binds to the cap structure and is phosphorylated by the
ERK substrate mitogen-activated protein kinase integrating
kinase (MNK) (Flynn et al. 1997; Pyronnet et al. 1999).
Both of these pathways are required for BDNF-induced
enhancement of protein synthesis in neurons or isolated
dendrites in vitro (Kang and Schuman 1996; Takei et al.
2001, 2004; Tang et al. 2002; Kelleher et al. 2004). The
present data extends these findings to ERK-dependent

(c) (d) (e)

(b)(a)

Fig. 4 BDNF elicits rapid and transient phosphorylation of eIF4E, but

not eEF2, in isolated synaptodendrosomes. Bar graphs show changes

in p-eIF4E (a) and total eIF4E (b) expression following BDNF treat-

ment of synaptodendrosomes obtained by subcellular fractionation of

microdissected dentate gyrus. Western blots were performed on

matched pairs of BDNF and cytochrome C-treated samples. Optical

density values are group means (± SEM) expressed as the ratio of

BDNF/Cyt C (n ¼ 5). Significant increases in p-eIF4E were detected

at 5 min (p < 0.05). No significant changes were detected at the

15 min or 30 min time points (pooled data shown). Changes in

phosphorylation are normalized relative to total phosphoprotein.

Representative immunoblots are shown below. (c) p-eEF2 levels were

unchanged following BDNF treatment. (d) High-potassium (50 mM)

treatment of synaptodendrosomes elicited significant increases in

p-eEF2 levels relative to time-matched, non-treated synaptodendro-

somes (n ¼ 4; p < 0.05). (e) Total eEF2 levels were weakly but sig-

nificantly elevated at 5 min (p < 0.05). n ¼ 13 at 5 min; n ¼ 10 at

15–30 min. Representative eEF2 and b-actin immunoblots are shown

below.
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regulation of eIF4E phosphorylation and expression during
BDNF-induced synaptic plasticity in vivo.

LTP is associated with decreases as well as increases in
protein synthesis (Fazeli et al. 1993; Chotiner et al. 2003).
eEF2 phosphorylation observed during LTP may therefore
contribute to translation arrest (Chotiner et al. 2003). Peptide
chain elongation is highly energy consuming and decreases

in ATP levels lead to phosphorylation of eEF2 (Horman
et al. 2002; Browne et al. 2004). Transient arrest of elonga-
tion at non-synaptic sites might serve to conserve metabolic
energy or inhibit translation of mRNA during transport.
Paradoxically, however, certain transcripts undergo main-
tained or enhanced translation under conditions of reduced
global protein synthesis and eEF2 phosphorylation. This is
the case for Arc and aCaMKII mRNA, both of which are
critical for stable LTP formation (Scheetz et al. 2000;
Chotiner et al. 2003; Soule et al. 2006). Interestingly,
consolidation of taste memory is associated with enhanced
phosphorylation of eEF2 in conjunction with enhanced
synaptic expression of aCaMKII in the taste cortex (Bele-
lovsky et al. 2005). Thus, BDNF-LTP and memory consol-
idation are both coupled to transient eEF2 phosphorylation.
In the taste learning paradigm increases in eEF2 phosphory-
lation are found in synaptoneurosomes as well as cortex
tissue homogenates. Synaptic phosphorylation of eEF2 may
be elicited by NMDA receptor activation (Scheetz et al.
2000), which is not involved in BDNF-LTP induction
(Messaoudi et al. 2002). In primary cortical neurons, BDNF
induces dephosphorylation of eEF2 and increases elongation
rates (Inamura et al. 2005). Serotonin similarly reduces eEF2
phosphorylation in Aplysia synaptosomes. In this case,
serotonin appears to offset an increase in eEF2 phosphory-
lation triggered by calcium influx (Carroll et al. 2004). Thus,
the direction of eEF2 phosphorylation is controlled by
multiple transmitters and is highly context-dependent. Taken
together, this suggests an important role for eEF2 in
transcript-specific and compartment-specific control of pro-
tein synthesis.

Previously we reported increases in a-CaMKII protein
expression in synaptodendrosomes, but not in whole hom-
ogenates, following high-frequency stimulation (HFS)-
induced LTP in awake rats (Havik et al. 2003). Because
the synaptodendrosomes were obtained after in vivo LTP,
transport of protein from non-synaptic sites could not be
ruled out. The increase in aCaMKII expression observed in
the present study following in vitro treatment of synaptoden-
drosomes with BDNF cannot be due to protein transport. As
a-CaMKII mRNA is enriched in synaptodendrosomes and
absent from axon terminals, glia, and interneurons (Jones
et al. 1994; Sik et al. 1998; Zhang et al. 1999; Havik et al.
2003), any de novo synthesis of aCaMKII must be occuring
in or near dendritic spines. aCaMKII mRNA and ribosomes
are thought to translocate from dendritic shafts into spines
during LTP (Ostroff et al. 2002; Havik et al. 2003). In cell
cultures, BDNF treatment increases the spine content of
eIF4E and induces the association of this translation factor
with the granule-rich cytoskeletal fraction (Smart et al.
2003). Local regulation of aCaMKII expression by BDNF
is therefore likely to involve activity-regulated positioning of
the translation apparatus in addition to biochemical regula-
tion of translation factors.

(b)

(a)

Fig. 5 BDNF stimulates local expression and activation of aCaMKII.

(a) Changes in total aCaMKII expression following in vivo BDNF-LTP

(left panel) or BDNF treatment of synaptodendrosomes (SDs) (right

panel). In the in vivo experiments Western blot assays were performed

using homogenates from microdissected dentate gyrus and CA sub-

fields. Bar graphs show group mean (± SEM) changes based on

densitometric analysis. Optical density values are expressed as a ratio

between the treated and non-treated, contralateral tissue. In the SD

experiments, Western blots were performed on matched pairs of

BDNF and cytochrome C-treated samples. Optical density values are

group means (± SEM) expressed as the ratio BDNF-treated/control.

BDNF led to rapid increase in total aCaMKII expression 5 min after

incubation. *Significant difference from control (n ¼ 17; p < 0.05).

(b) Corresponding analysis of phospho-CaMKII. Significant increases

in CaMKII phosphorylation were detected 15 min (n ¼ 8), but not 3 h

(n ¼ 7), after BDNF infusion in vivo. In SDs, phospho-CaMKII levels

were elevated at 5 min (n ¼ 17), returning to control levels at 15 min

(15 min and 30 min values were pooled; n ¼ 12). Changes in phos-

phorylation were normalized relative to total phosphoprotein.
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Current data suggests a model in which BDNF controls
synaptic consolidation through dual regulation of transcrip-
tion and translation (Bramham and Messaoudi 2005; Soule
et al. 2006; Wibrand et al. 2006). Development of stable
LTP in response to high-frequency stimulation (HFS-LTP)
requires a period of sustained BDNF release and TrkB
activation (Kang et al. 1997; Aicardi et al. 2004; Gooney
et al. 2004). BDNF-LTP and stable HFS-LTP require ERK
activation, transcription, and translation of Arc mRNA
(Messaoudi et al. 2002; Ying et al. 2002; Soule et al.
2006). BDNF induces phosphorylation of eIF4E and enhan-
ces translation of a dendritic mRNA pool that includes
áCaMKII and Arc (Aakalu et al. 2001; Yin et al. 2002;
Schratt et al. 2004). Selective enhancement of translation
initiation could therefore serve to capture mRNA liberated
from RNA storage granules (i.e., aCaMKII) as well as newly
induced Arc mRNA in transit along dendrites.

It will be important in future studies to determine the
impact of eIF4E and eEF2 phosphorylation on translation of
subpopulations of mRNA found in spines, dendrites, and
somata. Activation of eIF4E is expected to increase the
translation of mRNAs containing strong secondary structure
in their untranslated region. Many of these mRNAs encode
proteins involved in cellular transformation and growth
(Richter and Sonenberg 2005). The increase in eIF4E
expression may also be important for understanding trans-
lation control mechanisms in synaptic plasticity. Because the
availability of eIF4E protein can be rate-limiting for trans-
lation, increases in eIF4E expression during BDNF-LTP may
serve to maintain translational capacity during periods of
intensive cap-dependent translation.

Finally, in view of the BDNF hypothesis of major
depression (Castren 2004; Kuipers and Bramham 2006), it
interesting to note that the same pattern of enhanced eIF4E
and eEF2 phosphorylation observed here during BDNF-LTP
is also observed in the dentate gyrus following chronic
antidepressant drug treatment.
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Abstract 

 

Although gene expression is considered necessary for LTP consolidation, causal roles 

for specific activity-induced mRNAs have not been defined. Here we probed the 

dynamic function of activity-induced Arc/Arg3.1 mRNA using brief, local infusions 

of antisense (AS) oligodeoxynucleotides at multiple time points during dentate gyrus 

LTP in vivo. Surprisingly, early Arc synthesis is necessary for early expression of 

LTP, while sustained synthesis is required to generate stably modified synapses. Late 

inhibition of Arc synthesis, two hours after LTP induction, rapidly reverses 

hyperphosphorylation of actin depolymerization factor/cofilin and abolishes local 

expansion of F-actin at synaptic sites. Infusion of the F-actin stabilizing drug, 

jasplakinolide, during LTP maintenance blocks the ability of AS to reverse LTP. 

Furthermore, this process of Arc-dependent synaptic consolidation is directly 

activated by BDNF infusion, thus identifying a molecular effector for BDNF in LTP 

consolidation. These results couple activity-induced expression of Arc to expansion of 

the actin cytoskeleton underlying enduring LTP.
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Introduction 

 

Activity-dependent changes in synaptic strength are implicated in a range of adaptive 

brain responses including memory formation, mood stability, and drug addiction 

(Hyman et al., 2006;Nestler and Carlezon, Jr., 2006;Morris, 2006;Kuipers and 

Bramham, 2006). The formation of long-term changes in synaptic strength and 

behavior depends on at least one period of new gene expression. New gene expression 

and protein synthesis is required to convert transient early-phase LTP to stable late-

phase LTP (Bliss and Collingridge, 1993;Nguyen and Kandel, 1996;Frey et al., 1996).  

However, these traditional phases are operationally defined based on the sensitivity of 

LTP to broad spectrum inhibitors of gene expression and protein synthesis. Causal 

roles for activity-induced genes in LTP consolidation have not been defined.  

Alterations in gene expression in response to changes in neuronal activity are 

common, and, as emphasized by several authors (Sanes and Lichtman, 

1999;Routtenberg and Rekart, 2005), it is likely that many regulated genes have no 

role or only a subsidiary role in generating LTP. Although gene deletion studies give 

insight into overall gene function, these methods cannot resolve the dynamic actions 

of induced mRNAs during LTP. 

LTP is associated with the induction of a variety of immediate early genes. 

Knockouts of several of these genes, including zinc-finger transcription factor 

zif268/egr1, tissue plasminogen activator, and activity-regulated cytoskeleton-

associated protein (Arc; aka Arg3.1) have defects in LTP maintenance and/or memory 

consolidation (Huang et al., 1996;Jones et al., 2001;Plath et al., 2006). A specialized 

role of Arc in synaptic plasticity is implied by the fact that Arc mRNA is rapidly 
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transported to dendritic processes where it undergoes local translation (Link et al., 

1995;Lyford et al., 1995;Steward and Worley, 2001). 

The present study investigated the dynamic function of activity-induced Arc 

using brief, local infusions of antisense oligodeoxynucleotides (ODNs) to inhibit Arc 

synthesis during LTP in the dentate gyrus of anesthetized rats. We show that Arc 

synthesis defines a novel time-window in LTP maintenance, during which early Arc 

synthesis is necessary for expression of LTP, while sustained synthesis is required to 

generate stably modified synapses. Arc is known to co-sediment with crude F-actin 

and localize to the postsynaptic density (PSD) of excitatory synapses (Lyford et al., 

1995;Husi et al., 2000;Donai et al., 2003;Plath et al., 2006). Recent work suggests that 

development of stable LTP involves actin polymerization-dependent expansion of the 

PSD and dendritic spine (Fukazawa et al., 2003;Matsuzaki et al., 2004;Zito et al., 

2004). Here, we report that late inhibition of Arc synthesis, 2 hours after LTP 

induction, rapidly reverses expansion of F-actin at synaptic sites and reverses 

hyperphosphorylation of cofilin, a major regulator of actin dynamics. These results 

couple activity-induced expression of a single gene, Arc, to expansion of the actin 

cytoskeleton underlying LTP consolidation. Several lines of evidence suggest that 

stable LTP is critically regulated by brain-derived neurotrophic factor (BDNF) 

(Bramham and Messaoudi, 2005). We find that Arc synthesis is necessary for the 

induction and time-dependent consolidation of LTP elicited by BDNF application, 

thus identifying a molecular effector for BDNF in LTP consolidation 
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Materials and Methods   

 

Electrophysiology and Intrahippocampal Infusion 

Data were obtained from 179 male Sprague-Dawley urethane-anesthetized (1.4-

1.8 g/kg i.p.) rats weighing 250-320 g. Stereotaxic coordinates relative to Bregma 

were 7.9 mm posterior, 4.2 mm lateral for stimulation, 3.9 mm posterior, and 2.2 mm 

lateral for recording. An outer (guide) cannula (24 ga, PlasticsOne, Roanoke, 

Virginia) was beveled sharp at the tip to facilitate tissue penetration. A Teflon-coated 

stainless steel wire-recording electrode (coated diameter=112 µm) was glued 

(cyanoacrylate, Mega-G base, Mega Metal, Oslo) to the shaft of the outer cannula.  

The electrode was then cut so that it extended 900 µm from the end of the cannula.  A 

concentric bipolar stimulating electrode (tip separation 500 µm; SNEX 100, Rhodes 

Medical Instruments) was lowered into the dorsomedial aspect of the angular bundle 

for stimulation of the medial perforant path. After making a small slit in the dura, the 

guide cannula and attached recording electrode was slowly lowered into the dorsal 

hippocampus until a positive-going fEPSP of maximum slope was obtained in the 

dentate hilus. The final depth of the recording electrode ranged between 200-300 µm 

below the level of the maximum negative-going fEPSP sink recorded in the middle-

third of the dentate molecular layer. An inner infusion cannula (31 ga) was then 

inserted so that it protruded 300 µm below the end of the guide. The tip of the 

infusion cannula was located in deep stratum lacunosum-moleculare of field CA1, 

700 µm above the hilar recording site and 300-400 µm above the medial perforant 

synapses 

Biphasic rectangular pulses of 150 µs duration were applied every 30 s 

throughout the experiment. The stimulation intensity for test pulses was set to elicit a 
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population spike amplitude of 30 % of the maximal response. The infusion cannula 

was connected via PE50 polyethylene tubing to a 5-µl Hamilton syringe. Solutions 

were delivered by an infusion pump at a rate of 80 nl/min. BDNF-LTP was induced 

by infusing BDNF (2 �g in 2 µl PBS) for 25 min. The paradigm for HFS-LTP 

induction consisted of eight pulses at 400 Hz, repeated four times, at 10s sec intervals.  

Three sessions of HFS were given at intervals of 5 min. 

Signals from the dentate hilus were amplified, filtered (1 Hz-10 kHz), and 

digitized (25 kHz). Acquisition and analysis of field potentials were accomplished 

using DataWave Technologies WorkBench software (Longmont, CO). The maximum 

slope of the fEPSP and the amplitude of the population spike measured from its 

negative going apex to the tangent line joining the first two positive peaks were 

measured, and averages of four consecutive responses were obtained. Analysis of 

variance (ANOVA) for repeated measures followed by a post hoc Scheffé test was 

used for statistical analysis of group effects. Statistics were based on values obtained 

during the 5 minutes at end of baseline and at the end of post-infusion recording.  

 

Oligodeoxynucleotides 

Chimeric ODNs containing phosphorothioate linkages between the three bases on the 

5' and 3' ends and phosphodiester internal linkages were synthesized, HPLC purified, 

ultrafiltrated, and sterilized (Biognostik, Gottingen, Germany). The main Arc AS 

ODN used was directed against a 20-mer sequence (bases 209-228) covering the Arc 

startsite. Scrambled Arc ODN containing the same base composition in randomized 

order served as control. A second AS ODN targeting a non-overlapping region of the 

Arc coding region (bases 943-960) was designed and manufactured by Biognostik®, 

Germany. ODNs did not contain motifs such as G-quartets, kinase domains, or zinc-



 7 

fingers and search of the EMBL databases revealed no potential off-target genes (with 

significant homology and open secondary structure).   

 

Drugs and antibodies. 

Human recombinant met-BDNF (a gift from Amgen-Regeneron Partners) was 

obtained as a concentrated stock solution (1.0 mg/ml) in phosphate-buffered saline 

(PBS: 150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.0, 0.004% Tween-20). 

Jasplakinolide and Y27632 (Calbiochem) were dissolved in DMSO and 0.9% saline 

respectively and stored frozen. Cycloheximide and anisomycin (Sigma) were 

dissolved in saline. The anisomycin solution was adjusted to pH 7.4  

 Primary antibodies used for immunoblotting were as follows: N-terminal 

domain of Arc (E-19: sc 6382 goat polyclonal IgG, 1:100 Santa Cruz), �-actin (clone 

AC-15 mouse monoclonal 1:5000 Sigma), �-CaMKII (clone 6G9, mouse monoclonal, 

1:2000, Affinity BioReagents), PSD-95 (mouse IgG1, 1:500 BD Transduction 

Laboratories), phoshpho-cofilin (Ser 3) (sc-12912, 1:1000, Santa Cruz), gelsolin (C-

20, 1:200, Santa Cruz), profilin-1 (N-20, 1:200 Santa Cruz), �-spectrin (AB992, 

1:200, Chemicon International) and cofilin              

 

Tissue Microdissection and Sample Preparation 

At the end of electrophysiological recording rats were decapitated and the brain was 

removed and rinsed with oxygenated ice-cold artificial cerebrospinal fluid (ACSF in 

mM: NaCl 124.0, NaHOC3 25.0, D-glucose 10.0, KCl 3.4, KH2PO4 1.2, MgSO4 1.0, 

CaCL2 2.5, pH 7.4). The hippocampus was then removed and the dentate gyrus was 

resected on ice.  The entire procedure took less than 5 minutes. Tissues were hand-

homogenized with 15 strokes in 300 µl of Dynal lysis/binding buffer. 
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SDS-PAG and Western Blotting 

Protein levels in homogenate samples were determined using the Lowry method. 

Equal amounts of protein were loaded onto SDS-PAGE gels (10%) and run overnight 

at constant 10 mA. Separated proteins were transferred to a nitrocellulose membrane 

(Hybond-C, Amersham) at a constant voltage of 30 V overnight or 100 V for one 

hour. Membranes were blocked on a gyro-rocker for 1 hour at room temperature (RT). 

Blocking buffer (BB) consisted of TBST (Tris-buffered saline/0.1% Tween-20) and 

5% BSA. For CaMKII, membranes were blocked 1 hour at 37°C. The primary 

antibodies were dissolved in BB containing 3% BSA and the blots incubated for 2 

hours at RT or 4°C overnight with constant shaking. Following three washes with 

TBST, blots were incubated for 1 hour in horseradish peroxidase-conjugated 

secondary antibody dissolved in TBST. The blots were washed three times with TBST 

and proteins were visualized using enhanced chemiluminescence (ECL Western 

Blotting Analysis System, Amersham pharmacia biotech, Norway). Blots were 

stripped with 100 mM 2-mercaptoethanol, 2% SDS and 62.5 mM Tris-HCL, pH 6.7 at 

60°C for 1 hour and reprobed with another antibody detecting the protein of interest. 

Optical density values obtained from the AS-treated dentate gyrus were normalized 

relative to values in the scrambled-treated or contralateral dentate gyrus Statistical 

analyses were based on unpaired or paired t-tests as appropriate. 
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Preparation of sections  

Animals were transcardiacally perfused with 4% paraformaldehyde in 0.1M 

phosphate buffer (PB). Brains were dissected and post-fixed in the fixative overnight 

at 4°C and subsequently washed in PB containing 8% dextrose and 0.1% sodium 

azide. Coronal vibratome sections (50 µm-thick) were stored in 0.1% sodium azide in 

PB at 4°C. The same sections were used for in situ hybridization and 

immunohistochemistry.  

 

In Situ Hybridization 

RNA probes were prepared from a cDNA insert matching the first 2975 nucleotides of 

the Arc mRNA (GenBank accession number NM_019361) cloned into the pCR®II-

TOPO® vector (Invitrogen). Antisense and sense probes were transcribed from 

linearized plasmids using T7 and SP6 polymerase in the presence of DIG labeling mix 

according to the manufacturer’s instructions (Roche). 

Floating sections were placed in PBS for 5 minutes, permeabilized with 

proteinase K (10ug/ml) for 5 min at 37°C, and post-fixed (5 min with 4% PFA/PBS). 

After fixation sections were treated with 0.25% acetic anhydride in 0.1M TEA (pH 8) 

for 10 min, washed twice in 2 x SSC, and placed for 10 minutes in a prehybridization 

buffer. Probes were applied to the sections and hybridization was performed in a 

humidified chamber at 60°C for at least 16 hours. Sections were washed twice with 2 

x SSC at RT for 30 min, once with 50% formamide in 2xSSC at 65°C, rinsed in 2 x 

SSC at 37°C, incubated with 20�g/ml RNase A at 37°C for 30 min and incubated in 

RNase A buffer for at 65°C for 30 min. After blocking in 2% blocking reagent for one 

hour at RT, alkaline coupled anti-DIG antibody (1:2000, Roche) was applied. 

Visualization was done with the chromogenic substrates NBT and BCIP (Roche). 
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Pictures were taken on a Nikon Eclipse 80i microscope coupled to a Nikon DS-5M 

camera. 

Immunohistochemistry 

Sections were first treated with PB containing 100 mM glycine (Sigma), then 

washed in PBT (0.1% Tween 20 in PB), incubated in 0,3% H2O2 diluted in PBT, 

permeabilized for 20 minutes with 0.5% Triton X-100 diluted in PBT, rinsed and 

immersed for 30 minutes in blocking buffer (4% BSA, 5% horse serum in PBT). They 

were then incubated overnight at 4°C with the primary antibody diluted in blocking 

buffer. After three washes in PBT, biotinylated secondary antibody was applied for 1 

hour at RT. Sections were then washed in PBT, incubated in Streptavidin-HRP diluted 

in PBT, washed in TBS and finally processed for DAB staining.  

Primary antibodies were Arc E19 (sc-6382, Santa Cruz) and Arc H300 (sc-

15325, Santa Cruz). Secondary antibodies were biotin-conjugated donkey anti-goat or 

anti-rabbit Ig (Amersham Biosciences). Streptavidin-conjugated HRP was obtained 

from Amersham Biosciences; diaminobenzidine (Sigma, 1mg/ml) was diluted in 0.1M 

Tris-buffer saline containing approximately 0.03% H2O2. 

 

Phalloidin staining 

Sections were incubated in PBT containing 100 mM glycine (Sigma), washed with 

PBT, permeabilized in PBT containing 0.5% Triton X-100 and rinsed three times for 

10 minutes. They were then incubated for at least 30 minutes with phalloidin-FITC 

(0.1 µg/ml, Sigma) diluted in PBT containing 4% BSA and 2% horse serum. After 

several washes, sections were mounted in Vectashield. Pictures were acquired on a 

Zeiss AxioImager microscope. Fluorescence intensity was measured in 15 µm steps 
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across the molecular layer using ImageJ software (NIH). Optical density values from 

10 neighboring pixels were averaged and normalized relative to a reference area. 

 

 

Results 

 

Arc antisense ODN reverses ongoing LTP  

Arc AS ODN targeting the Arc startsite (bases 209-228) was used to inhibit Arc 

synthesis during LTP induction at medial perforant path-granule cell synapses in 

anesthetized rats. In order to select optimal time points for AS delivery we first 

examined expression of Arc mRNA and protein (Fig. 1). LTP was induced by spaced 

stimulation consisting of three sessions of high-frequency stimulation (HFS; 400 Hz, 

8-pulses) with 5 minutes between sessions. LTP was associated with a rapid and 

sustained elevation of Arc mRNA and protein, as assessed by in situ hybridization 

histochemistry and immunohistochemistry performed at various time points (5 min, 

30 min, 2 h, 3 h, and 4 h) after application of HFS (Fig. 1). At 5 and 30 min post-HFS, 

Arc mRNA and protein staining were already increased in the granule cell layer and 

into the dendritic field (molecular layer) of the dentate gyrus. At 2 hours post-HFS, 

Arc mRNA and protein expression reached a plateau where it remained at 3 and 4 

hours, the intense staining filling the entire molecular layer. 

Based on the large increases in Arc mRNA and protein at 2 h post-HFS, we 

selected this time point for application of Arc AS. Infusions (1 µl, 12.5 min) were 

made into deep stratum lacunosum-moleculare of CA1, approximately 300 microns 

from the nearest medial perforant path synapses in the upper blade of the dentate 

gyrus. As shown in Figure 2A, Arc AS applied 2 hours after HFS led to a rapid and 
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profound reversal of ongoing LTP. Potentiated field excitatory postsynaptic potentials 

(fEPSPs) declined to a stable baseline level within 60 minutes where they remained 

for the duration of recording (at least 2 hours). In striking contrast, infusion of Arc AS 

4 hours after HFS (Fig. 2B) had no effect on LTP maintenance, demonstrating the 

time-sensitivity of the AS effect. Infusion of control, scrambled Arc ODN at the 

critical 2 hour time point was also without effect (Fig. 2C). In addition, Arc AS 

treatment in the absence of HFS had no effect on basal synaptic efficacy (Fig. 2D). In 

order to rule out non-specific effects and possible specific off-target effects of the AS 

sequence, we examined the effects of a second AS sequence targeting a non-

overlapping 18 nucleotide region of the Arc coding region (bases 943-960). Infusion 

of this AS sequence two hours after HFS similarly resulted in rapid inhibition of LTP 

(Fig. 2E). The convergent physiological effects of non-overlapping AS sequences 

indicated inhibition of Arc synthesis as the mechanism of action. 

The efficacy and specificity and of the Arc protein knockdown was assessed 

by quantitative immunoblot analysis. Arc AS was infused 2 hours post-HFS and 

homogenates of microdissected dentate gyrus were collected 2 hours later. Arc protein 

expression in the AS-treated group was significantly reduced to 55+10% of SC-

treated control (Fig. 2G). A panel of proteins was chosen to evaluate the specificity of 

the Arc knockdown. mRNA encoding the alpha-subunit of calcium/calmodulin-

dependent protein kinase II (�-CaMKII) is stored in dendrites and local translation of 

this message affects the size of the postsynaptic density (PSD) and development of 

late LTP (Miller et al., 2002;Havik et al., 2003). The scaffolding protein PSD-95 is 

part of the core PSD complex of excitatory synapses, where it colocalizes with Arc 

and CaMKII (Lyford et al., 1995;Husi et al., 2000;Moga et al., 2004). �-actin serves 

as a loading control, but is also of interest because Arc co-sediments with crude F-
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actin (Lyford et al., 1995). AS treatment 2 hours post-HFS had no effect on the 

expression of these proteins relative to SC-treated control (Fig. 2G). Thus, reversal of 

LTP by Arc AS is coupled to specific knockdown of Arc protein expression. 

These results indicate that Arc synthesis at two hours, but not four hours, post-

HFS is required for consolidation of LTP. Next we sought to determine the onset and 

possible early contribution of Arc synthesis to LTP. When Arc AS was applied 90 or 

15 min before HFS, non-decremental LTP of fEPSPs was obtained (Fig. 3A and 3B).  

The lack of effect of AS infusion at these time points suggested that the concentration 

of AS ODN dropped below a critical level needed to target the massive LTP-induced 

increases in Arc mRNA. Corroborating this notion, LTP was rapidly and transiently 

inhibited when AS was applied 5 minutes before or 15 minutes after HFS (Fig. 3C 

and 3D). In rats receiving AS 5 min pre-HFS, fEPSP slope values started to decline 

within 5 minutes of HFS, reached a maximum trough at about 1 hour, and returned to 

the original level of enhancement by 3 hours post-HFS (Fig. 3C and 3F). Arc protein 

expression was similarly elevated at 3 hours, but not 1 hour, post-HFS (Fig. 3F). SC-

treated rats had non-decremental LTP and the size of the fEPSP increase recorded 

immediately after HFS and 3 hours post-HFS was not significant differently from the 

AS group (Fig. 3C and 3E; p>0.05).  Infusion of Arc AS 15 min after HFS similarly 

produced a rapid reversal of LTP expression followed by return to the original level of 

potentiation (Fig. 3D). Taken together the results suggest that early Arc synthesis is 

necessary for early expression, but not for consolidation of LTP. Sustained or late 

synthesis of Arc is necessary for LTP consolidation.   
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LTP reversal is coupled to rapid knockdown of induced Arc mRNA and protein 

in dentate granule cells.  

In view of the critical role for late Arc synthesis we focused our further 

analysis on the 2 hour time point after HFS. In situ hybridization and 

immunohistochemistry were performed to further evaluate the speed, cellular 

localization, and mechanism of the Arc knockdown.  Figure 4 shows changes in Arc 

mRNA and protein expression in experiments in which Arc AS or scrambled Arc 

ODN was infused 2 hours post-HFS and brains were collected 1 hour later. This time 

was selected because LTP in all rats had reversed to a steady level by 1 hour. In SC-

infused rats, HFS resulted in robust induction of Arc mRNA and protein in the 

granule cell layer and throughout the molecular layer of the dentate gyrus. As shown 

in Figure 4A and 4B, the LTP-associated increase in Arc mRNA and protein 

expression was strongly diminished in time-matched, AS-treated rats. The knockdown 

occurred in both blades of fascia dentate, but was generally stronger in the molecular 

layer of the upper blade near the infusion site. The loss of Arc mRNA indicated 

effective AS-mediated degradation of newly induced Arc transcripts in granule cell 

dendrites. In contrast, expression of dendritically stored �-CaMKII mRNA was 

unaffected by Arc AS treatment (Fig. 4C). We conclude that AS treatment rapidly 

inhibits Arc synthesis from upregulated mRNA on a time course corresponding to the 

reversal of LTP. 

Western blotting was used to compare changes in Arc expression from the 

earliest time of LTP reversal (30 min post-AS) to the end of recording (2 h post-AS). 

The Arc knockdown was smaller at 30 minutes (83%) than it was at two hours (55%), 

indicating a progressive reduction in Arc protein levels (Fig. 4E). However, the 

amount of Arc knockdown is expected to be underestimated in Western analysis 
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performed in homogenates of whole dentate gyrus, particularly at early time points 

after infusion. This is because Arc is elevated throughout the dorsal dentate gyrus 

following LTP induction, whereas AS concentrations are maximal near the site of 

infusion. Indeed, in situ hybridization showed that Arc mRNA expression one hour 

after AS infusion was not reduced at distances greater than 500 µm rostral to the 

recording site in the mid-dorsal dentate gyrus. 

 

Late Arc synthesis is required for stabilization of F-actin during LTP.  

Recent work suggests that development of stable LTP involves actin polymerization-

dependent remodeling of dendritic spines (Fukazawa et al., 2003;Matsuzaki et al., 

2004;Zito et al., 2004). We explored a role for late Arc synthesis in this process using 

fluorescently labeled phalloidin to visualize changes in F-actin content. In agreement 

with Fukazawa et al., (2003), LTP was accompanied by enhanced phalloidin staining  

within a narrow band corresponding to the termination zone of medial perforant path 

synapses in the middle molecular layer of the dentate gyrus (Fig. 5A). This band of 

phalloidin staining appeared with 5 minutes of HFS and remained constant during 4 

hours of recording (time course shown in Fig. S1). Rats receiving SC-infusions 2 

hours post-HFS exhibited a clear band of phalloidin staining that was absent in time-

matched AS-treated rats (Fig. 5A; lower right panels). Densitometric analysis of the 

staining confirmed a peak corresponding to the middle molecular layer in SC-treated 

controls that was lacking in AS-treated animals (Fig. 5B). This suggested that late Arc 

synthesis is necessary for consolidation of LTP and stabilization of F-actin at synaptic 

sites. 

We next asked whether F-actin stabilization mediates Arc-dependent 

consolidation. We predicted that drug-induced stabilization of F-actin during LTP 
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maintenance would substitute for Arc and therefore occlude (block) the effect of Arc 

AS treatment. Fig. 5D shows the results of experiments in which the F-actin stabilizer, 

jasplakinolide, was briefly infused during LTP maintenance 1 hour before Arc AS 

treatment. Remarkably, jasplakinolide had no effect on LTP maintenance yet 

completely abolished the ability of AS to reverse LTP. Jasplakinolide also had no 

effect on LTP maintenance during a 2.5 hour recording period in the absence of AS 

application (not shown).   

 

Arc synthesis maintains cofilin phosphorylation during LTP.    

Next we began to examine mechanisms that may couple Arc synthesis to regulation of 

F-actin. Cofilin is a member of a highly conserved family of actin-associated proteins 

that enhance actin filament severing and increase the off-rate of actin monomers 

(Sarmiere and Bamburg, 2004). Phosphorylation of cofilin on Ser-3 inhibits cofilin 

activity and promotes F-actin formation. Previous work showed that cofilin 

phosphorylation is critical for F-actin formation underlying late LTP  (Fukazawa et 

al., 2003). Here, we examined the role of ongoing Arc synthesis in the regulation of 

cofilin activity. LTP was associated with marked hyperphosphorylation of cofilin, 

while infusion of Arc AS 2 hours after LTP induction resulted in rapid 

dephosphorlyation of cofilin (Fig. 6A and 6B). Expression of total cofilin and other 

actin-binding proteins connected to actin function in spines, including, gelsolin, �-

spectrin, and profilin, did not change significantly following LTP induction or AS-

induced reversal of LTP (Fig. 6B).   
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BDNF triggers Arc-dependent synaptic consolidation 

BDNF has emerged as major regulator of excitatory synaptic transmission and 

plasticity in the CNS (Blum and Konnerth, 2005;Bramham and Messaoudi, 2005). 

Development of transcription-dependent late phase LTP following spaced HFS 

requires activation of TrkB receptor tyrosine kinases and is associated with a period of 

sustained BDNF release (Kang et al., 1997;Aicardi et al., 2004). However, the 

molecular effector mechanisms by which BDNF regulates LTP consolidation are 

unknown. Exogenous application of BDNF induces a long-term potentiation (BDNF-

LTP) that mimics many features of late phase LTP. In the dentate gyrus, BDNF is 

transcription-dependent and associated with induction, dendritic transport, and 

translation of Arc mRNA (Messaoudi et al., 2002;Ying et al., 2002). Here, we used 

Arc antisense infusion to explore a possible causal role for Arc in BDNF-LTP.   

Rats infused with scrambled Arc-ODN prior to BDNF infusion exhibited a 

stable fEPSP increase equivalent in magnitude to that seen in rats receiving BDNF 

alone (Fig. 7A). Pretreatment with Arc AS completely blocked BDNF-LTP induction, 

while having no effect on baseline synaptic efficacy (Fig. 7B). Inhibitors of RNA 

synthesis or extracellular signal-regulated kinase (ERK) block BDNF-LTP induction, 

but have no effect when applied during the maintenance phase of the potentiation 

(Messaoudi et al., 2002;Ying et al., 2002)  In striking contrast,  application of Arc AS 

2 hours after BDNF infusion led to a rapid reversal of ongoing BDNF-LTP (Fig. 7C). 

As seen during HFS-LTP maintenance, fEPSP slope values returned completely to 

baseline levels within 1 hour of AS treatment and remained at baseline for the 

duration of recording. Local infusion of scrambled Arc ODN 2 hours after BDNF 

infusion (Fig. 7D, or treatment with Arc AS 4 hours after BDNF infusion (Fig. 7E), 



 18 

had no effect on the magnitude of potentiation during 2 hours of subsequent 

recording. The effects of Arc AS on BDNF-LTP are summarized in (Fig. 7F). 

The blockade of BDNF-LTP induction was associated with specific 

knockdown of Arc expression on immunoblots (Fig. 7G). Arc protein expression and 

cofilin phosphorylation was then examined in tissue obtained after reversal of BDNF-

LTP by Arc AS infusion. Arc AS treatment two hours after BDNF infusion 

significantly reduced Arc expression and phospho-cofilin levels relative to SC-treated 

control (Fig. 7H). Expression of cofilin (Fig. 7H) and other actin binding proteins 

(gelsolin, �-spectrin and profilin), was unchanged. The results suggest that Arc 

synthesis is required for both the induction and time-dependent consolidation of 

BDNF-LTP. 

Broad spectrum protein synthesis inhibitors have been used to define the 

traditional phases of LTP. In general, treatment with protein synthesis inhibitors 

before HFS cause a slowing decaying LTP, while treatment during LTP maintenance 

has no effect. We have replicated these effect on LTP in the dentate gyrus using 

systemic injection of the protein synthesis inhibitors cycloheximide and anisomycin 

(Fig. S2). In contrast to the sharp reversal of LTP obtained following specific 

inhibition of Arc synthesis, protein synthesis inhibitors injected 30 min or 90 min 

post-HFS had no effect on LTP maintenance. Among myriad pitfalls associated with 

the use of broad spectrum inhibitors is the fact that translation of some mRNAs is 

maintained or even enhanced (Hughes et al., 1997;Klann and Dever, 

2004;Routtenberg and Rekart, 2005). Arc may be one such mRNA. Several studies of 

synaptic plasticity have reported maintained or enhanced synthesis of dendritically 

localized mRNAs (Arc, �-CaMKII, EF1A) in the presence of protein synthesis 

inhibitors (Steward and Halpain, 1999;Huang et al., 2005) or during global translation 
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arrest (Scheetz et al., 2000;Chotiner et al., 2003).  As shown in Fig. S2, injection of 

anisomycin early in the window or Arc synthesis (30 min post-HFS) failed to block 

the LTP-associated increase in Arc protein expression. 

 

 

Discussion   

 

This study demonstrates a dynamic, causal role for activity-induced Arc synthesis in 

LTP maintenance in the dentate gyrus. The time-window of Arc function, 

commencing immediately after HFS and lasting between 2 and 4 hours, is 

unexpectedly protracted and sharply defined. Surprisingly, early Arc synthesis is 

necessary for expression of LTP, while late synthesis is required for LTP 

consolidation. Importantly, the study provides a casual link between two central tenets 

of LTP consolidation: gene expression and local actin polymerization.  

 Evidence indicates that persistent LTP occurs when small stubby dendritic spines 

are converted into large mushroom-shaped spines through a mechanism dependent on 

local actin polymerization (Weeks et al., 2001;Fukazawa et al., 2003;Harris et al., 

2003;Matsuzaki et al., 2004). Expansion of the PSD and spine head may depend on a 

number of F-actin functions including tethering of receptors and signaling complexes, 

trafficking of receptors, and positioning of organelles such as polyribosomes (Kim 

and Lisman, 1999;Halpain, 2000;Zhou et al., 2001;Matsuzaki et al., 2004;Zito et al., 

2004;Carlisle and Kennedy, 2005). Our analysis of Arc function concentrated on the 

consolidation mechanism 2 hours after LTP induction, at which time Arc AS infusion 

stably reversed LTP and knocked down newly induced Arc mRNA and protein. 

Infusion of AS induced dephosphorylation of hyperphosphorylated cofilin while 
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abolishing the nascent band of F-actin at medial perforant path synapses. Furthermore, 

application of the F-actin-stabilizer jasplakinolide blocked the AS-induced reversal of 

LTP. These findings indicate that Arc synthesis controls LTP consolidation through 

expansion or stabilization of F-actin. 

LTP maintenance has been previously divided into early and late phases based on 

the effects of general protein synthesis inhibitors.  Such inhibitors perturb cell 

metabolism and may fail to block translation of certain transcripts including several 

dendritically localized mRNAs (Steward and Halpain, 1999;Huang et al., 

2005;Routtenberg and Rekart, 2005). The present study shows that LTP can be 

rapidly reversed by blocking the ongoing synthesis of a single protein, Arc, 2 hours 

after LTP induction. This finding underscores the importance of evaluating the 

function of single mRNA species in LTP consolidation and suggests that protein 

synthesis inhibitors do not reveal the true kinetics of the process. 

Several lines of evidence suggests that late LTP expression is mediated by 

sustained activation of the atypical protein kinase C (PKC) isoform PKC� (Ling et al., 

2006). It was recently found that pharmacological inhibition of PKC� rapidly reverses 

LTP 1 day after its induction (Pastalkova et al., 2006). Interestingly, treatment with 

the F-actin destabilizing agent latrunculin B blocks new synthesis of PKM� and 

attenuates LTP maintenance (Kelly et al., 2006). Taken together with the present 

findings, this suggests a sequential mechanism of LTP maintenance in the dentate 

gyrus in which Arc-dependent consolidation couples to PKC�-dependent expression 

at the level of actin polymerization.  

In an earlier study of Guzowski et al (2000) intrahippocampal injection of AS 90 

min before HFS was reported to decrease the amplitude and stability of LTP over a 5 

day period. This contrasts with the robust, rapid function of Arc reported here.  
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However, the effect of AS in the Guzowski et al. (2000) study is difficult to assess in 

the absence of data from baseline electrophysiological recordings prior to HFS. In the 

present report the specificity and validity of AS effects were corroborated in several 

ways. First, reversal of LTP maintenance was strikingly dependent on the timing of 

AS application relative to synaptic activation. Second, similar reversal of LTP was 

obtained with AS sequences targeting non-overlapping regions of the Arc mRNA. 

Third, LTP reversal was coupled to rapid knockdown of Arc mRNA and protein.  

Finally, Arc knockdown was coupled to a biologically compelling mechanism—

regulation of F-actin.   

Electron microscopic analysis has revealed upregulation Arc and F-actin 

specific to spines of medial perforant path synapses during LTP (Fukazawa et al., 

2003;Moga et al., 2004;Rodriguez et al., 2005). It is nonetheless evident from many 

studies that Arc protein is upregulated throughout the dendritic arbor of granule cells. 

The function of the widespread increase in Arc is enigmatic. However, recent studies 

performed in cultured hippocampal neurons have revealed a role for Arc in 

homeostatic synaptic scaling of AMPA-type glutamate receptors (AMPAR) via its 

ability to activate a specific AMPAR endocytic pathway (Rial Verde et al., 

2006;Chowdhury et al., 2006;Shepherd et al., 2006). The global increase in Arc may 

therefore serve to scale down (depress) AMPAR transmission in non-potentiated 

synapses as a means of stabilizing overall excitability. 

The mechanisms coupling Arc synthesis to phosphorylation of cofilin remain 

to be determined. Arc and cofilin are both PSD proteins. Arc also co-

immunoprecipates with PSD-95, co-sediments with crude (but not pure) F-actin, and 

contains spectrin homology repeats suggestive of a structural role (Lyford et al., 

1995;Husi et al., 2000;Donai et al., 2003).  Phosphorylation of cofilin on serine 3 is 
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regulated by multiple kinases and phosphatases (Arber et al., 1998;Yang et al., 

1998;Meng et al., 2002). One of the major cofilin kinases in neurons, Lim domain 

kinase (LIMK), is regulated by the Rho GTPase effectors Rho kinase (ROCK) and 

p21-activated kinase (PAK). The fact that LTP maintenance is not inhibited by local 

infusion of the ROCK inhibitor Y27632 (A.Tiron and C.R.Bramham, unpublished) 

places emphasis on PAK, which both activates LIMK1 and inhibits activity of the 

cofilin phosphatase slingshot (Sarmiere and Bamburg, 2004).   

In Arc knockout mice LTP is initially enhanced and then falls quickly to 

baseline (Plath et al., 2006). The loss of stable LTP resembles the effect of Arc 

antisense, while the superinduction of LTP resembles observations in LIMK1 

knockout mice which exhibit large numbers of small, actin-poor spines. Given the 

role of Arc in regulation of actin polymerization we predict Arc knockouts also have 

small spines that cannot undergo actin-dependent enlargement to mushroom-shaped 

spines.  

Endogenous BDNF signaling at glutamate synapses is critical for formation of 

late phase LTP (Bramham and Messaoudi, 2005). However, the molecular effector 

mechanisms by which BDNF promotes LTP consolidation are unknown. Exogenous 

BDNF-LTP provides a way to isolate these effect. BDNF-LTP in the dentate gyrus is 

transcription-dependent, it occludes with late LTP, and it is associated with ERK-

dependent upregulation of Arc. In the present study we show that BDNF-LTP is 

completely abolished by Arc AS treatment prior to BDNF infusion, and rapidly 

reversed by AS treatment at 2 hours (but not 4 hours) after BDNF infusion. As with 

HFS-LTP, Arc AS treatment selectively inhibited Arc expression and suppressed 

phosphorylation of cofilin. We therefore conclude that Arc is necessary for the 
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induction and time-dependent consolidation of BDNF-LTP. These results identify Arc 

as a molecular effector for BDNF in LTP consolidation.  

 Rather than acting alone, Arc is likely to be part of a coordinated 

transcriptional and translational response. A panel of genes that are co-upregulated 

with Arc during BDNF-LTP and HFS-LTP was recently identified (Wibrand et al., 

2006). Several of these genes (Narp, neuritin, Nedd4 WW-binding protein-4) have 

functions in AMPAR clustering, excitatory synaptogenesis, and axonal guidance. 

BDNF signaling also modulates the local dendritic translation of Arc, �-CaMKII, 

LIMKI and other plasticity-associated mRNAs (Aakalu et al., 2001;Yin et al., 

2002;Schratt et al., 2004;Ju et al., 2004). Although light microscopic in situ 

hybridization shows that Arc mRNA is transported to proximal dendrites within 5 

minutes of HFS (15 minutes from first session of HFS), the possible contribution of 

pre-existing Arc mRNA in early LTP expression warrants attention. Arc and �-

CaMKII mRNA are stored in the same Pur-� containing RNA transport granules in 

dendrites (Kanai et al., 2004), and BDNF treatment facilitates synthesis of both 

proteins in isolated synaptic preparations derived from adult rats (Yin et al., 

2002;Kanhema et al., 2006).   

Arc is expressed in many cortical and limbic structures during behavioral 

training and is necessary for long-term memory in a variety of hippocampus-

dependent and hippocampus-independent memory tasks (Guzowski et al., 

1999;Guzowski et al., 2000;Plath et al., 2006). Arc mRNA levels are elevated for  

hours following LTP induction or exploration of a novel environment, whereas Arc 

mRNA increases in the hippocampal region CA1 and many other brain areas is only 

short-lived (minutes) (Kelly and Deadwyler, 2003;Ramirez-Amaya et al., 

2005;Guzowski et al., 2006). Recent work suggests that the dentate gyrus allows fine 
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spatiotemporal separation of novel and complex cues, thereby disambiguating stimuli 

to allow sparse encoding of information (Kesner et al., 2004;Lee et al., 2005). It is 

tempting to speculate that the protracted phase of Arc-dependent consolidation 

reflects the time-dependent function of the dentate gyrus in disambiguating and 

encoding information in the entorhinal-hippocampal circuitry. 
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Figure legends 

 

Figure 1. Time course of changes in Arc mRNA and protein expression following 

LTP induction in the dentate gyrus.  Arc in situ hybridization histochemistry (ISH) 

and immunohistochemistry (IHC) were performed at five time points (in minutes) 

after high-frequency stimulation of the medial perforant pathway.  The high-

frequency stimulation consisted of 3 sessions of 400 Hz bursts separated by 5 minutes 

(10 minutes total duration). Control (CON) shows staining in contralateral, 

unstimulated dentate gyrus.  Representative images from 4-5 experiments at each time 

point.  
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Figure 2.   Arc antisense infusion two hours after high-frequency stimulation blocks 

LTP consolidation.  Time course plots show changes in the medial perforant path-

evoked fEPSP slope expressed in percent of baseline. Values are means + SEM.  HFS 

is indicated by the arrow.  Infusion of Arc antisense and scrambled ODN are  

indicated by solid and open bars, respectively.    

(A) LTP maintenance was rapidly and persistently inhibited following local infusion 

(1 µl, 0.5 mM, 12.5 min) of Arc AS ODN at 2 hours post-HFS.  

(B)  Arc AS ODN infusion 4 hours post-HFS had no effect on LTP maintenance. 

(C) Infusion of  scrambled (SC) Arc ODN 2 hours post-HFS had no effect on LTP 

maintenance.   

(D) Arc AS infusion had no effect on basal synaptic efficacy.  

(E)  Infusion of a second AS sequence (AS2) targeting a non-overlapping region of 

the Arc mRNA similarly reversed ongoing LTP (n=5).   

(F)  Magnitude of fEPSP slope changes. n=5-8 in all groups.  *Significantly different 

from baseline P<0.05.    

(G)  LTP reversal is coupled to specific knockdown of Arc protein.  Quantification of 

Western blots from dentate gyrus homogenates.  Tissue was collected at the end of the 

experiments shown in (A) and (C).  Expression of Arc, but not �-actin, �CaMKII, or 

PSD-95, were significantly reduced in AS-treated rats (*P<0.05). Representative 

immunoblots.  + (infused dentate gyrus); - (contralateral, non-infused dentate gyrus).  
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Figure. 3.  Arc antisense transiently inhibits early LTP expression.    

(A-B) Nondecremental LTP of fEPSPs was induced when Arc AS was infusion 90 

min (A) or 15 min (B) pre-HFS.   

(C-D) Infusion of Arc AS 5 min pre-HFS (C) or 15 min after HFS (D) resulted in 

transient suppression of LTP.  

(E) Nondecremental LTP was observed in SC-treated controls.   

(F)  Bar graphs show changes in fEPSP and Arc protein expression in rats infused 

with Arc AS 5 minutes pre-HFS.    Values for both were unchanged at 1 hour 

(reversal) and significantly elevated at 3 hours (recovery) post-HFS (P<0.05).  fEPSP 

is expressed in percent of baseline.   Arc protein immunoreactivity on Western blots is 

expressed as percent of contralateral control. N=6-8 in all groups.   Representative 

Western blots shown in right panel.
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Figure 4.  LTP reversal is coupled to rapid knockdown of upregulated Arc mRNA and 

protein expression.  Arc antisense (AS) or scrambled (SC) ODN was infused into the 

dentate gyrus 2 hours after HFS and the brain was fixed by transcardial perfusion 1 

hour later.   

(A) Coronal sections processed for in situ hybridization using a digoxigenin-labeled 

Arc riboprobe show robust upregulation of Arc mRNA in granule cell somata and 

dendrites in SC-treated controls.  Arc mRNA expression was strongly inhibited 

following Arc AS treatment.  The lower right panels show high magnification images 

of AS-treated and SC-treated dentate gyrus.  CON=contralateral non-treated dentate 

gyrus.  These are representative images based on 5 experiments in each treatment 

group.  Images were obtained from the mid-dorsal dentate gyrus within approximately 

300 �m of the recording site.     

(B) Immunohistochemical staining similarly shows enhanced expression of Arc 

protein in SC-treated dentate gyrus and rapid knockdown following AS treatment.   

(C) �CaMKII mRNA expression in Arc AS-treated and contralateral dentate gyrus.    

(D) Changes in fEPSP slope in rats receiving AS or SC infusion 2 hours post-HFS 

followed by recordings of 30 minute or 120 minutes at time of tissue collection. 

(E) Left panel: Bar graph shows changes in Arc protein expression relative to the 

time-matched SC-treated control group. Inhibition of Arc expression was rapid and 

progressive. *Significantly different from control (P<0.05).  Right panel: 

Corresponding Western blots.   
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Figure 5.  Late Arc synthesis is required to stabilize F-actin during LTP.   Arc 

antisense (AS) or scrambled (SC) ODN was locally infused 2 hours after HFS and the 

brain was fixed by transcardial perfusion 1 hour later.   Coronal sections were stained 

with phalloidin-FITC.    

(A) Upper left  panel:  A band of phalloidin staining specific to the termination zone 

of the medial perforant path was observed in the dentate gyrus SC-treated rats. Upper 

right panel: CON=contralateral, unstimulated dentate gyrus. Lower left panel: Arc AS 

treatment abolished the band of enhanced phalloidin staining.  Lower right panels: 

Comparison of phalloidin staining in infusion of scrambled or Arc AS ODN.  OML, 

outer molecular layer; MML, middle molecular layer; IML, inner molecular layer;  

GCL, granule cell layer. Arrowheads mark phalloidin staining in the MML. The white 

bar marks the hippocampal fissure.  Representative images based on four AS-treated 

and five SC-treated rats.   The time course of phallodin labelleing is shown in 

Supplemental Fig. 1. 

(B) Left panel: Profile of phallodin-FITC fluorescence intensity ratio 

(ipsilateral/contralateral) in  rats receiving SC (gray) or AS (black) infusion. 

Fluorescence intensity of the phalloidin-FITC signal was measured in 15 �m steps 

along the shortest line (rectangle in panel A) extending from 20 �m above the granule 

cell layer border to the hippocampal fissure.  Optical density values from 10 

neighboring pixels were averaged. Florescence values at each pixel were normalized 

relative to a reference area in CA1 (small box in panel A).  Values obtained at 3 sites 

along the dentate gyrus inner blade were averaged. All sections were from within 300 

�m of the recording site.   Right panel: Mean (+SEM) changes in fluorescence 

intensity in the MML.    
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(C) Palloidin staining following 2 hours of 400 Hz, 8-pulse bursts applied at 10 

second intervals.  A bright, sharply demarcated band appears in the middle molecular 

layer of the dentate gyrus.  

(D) Infusion of the F-actin stabilizing agent jasplakinolide blocks the inhibitory effect 

of Arc AS on LTP maintenance.  Jasplakinolide (Jasp; 1 �M) and Arc AS were 

infused at the times indicated following HFS.   Pre-treatment with Jasp did not affect 

ongoing LTP abolished the effect of Arc AS on LTP maintenance. fEPSP slope 

measurements of 6 consecutive responses obtained immediately before and 10 

minutes after Jasp or Arc infusion were not significantly different ( P<0.05).   

 

 

Figure 6.  Arc synthesis is necessary to maintain hyperhosphorylation of cofilin 

during LTP.    

(A)   Western blots were performed in dentate gyrus homogenates prepared 2   hours 

after HFS, and 2 hours after infusion of AS or SC Arc ODN during LTP.   Cofilin 

phosphorylation was significantly enhanced during LTP and this increase was 

inhibited by Arc AS treatment (*P<0.05; n=6-7 in all groups).   Expression of total 

cofilin and other actin-associated proteins was unchanged.   

(B) Representative immunoblots.  + (ODN infused dentate gyrus); - (contralateral, 

non-infused dentate gyrus).   
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Figure 7.  BDNF induces Arc-dependent synaptic strengthening.   

Time course plots show changes (means + SEM) in the medial perforant path-evoked 

fEPSP slope expressed in percent of baseline.  Arc AS oligodeoxynucleotide or 

scrambled (SC) Arc sequence were infused 90 minutes before BDNF.   

(A) Robust BDNF-LTP was induced in SC-treated rats (n=5; P>0.05).   

(B) Arc AS pre-treatment abolished BDNF-LTP (n=6; P<0.05).   There was no 

significant difference in fEPSP slope values obtained immediately before and 2 hours 

after BDNF infusion (P>0.05).   

(C)  Arc AS infusion at 2 hours rapidly reverses ongoing BDNF-LTP (n=5; P<0.05).  

(D) Infusion of scrambled (SC) Arc ODN at 2 hours has no significant effect on 

ongoing BDNF-LTP (n=5; P>0.05).  

(E) Arc AS infusion at 4 hours had no significant effect on BDNF-LTP maintenance 

(n=6; P>0.05).   

(F)  Magnitude of fEPSP slope and population spike changes.  N=5-7 in all groups.  

*P<0.05.    

(G) Quantification of Western blots from dentate gyrus homogenates.  Tissue was 

collected at the end of the experiments shown in A and B.  Expression of Arc, but not 

�-actin, �-CaMKII, or PSD-95, were significantly reduced in AS-treated rats 

(*P<0.05).  Representative immunoblots below.  + (infused dentate gyrus); - 

(contralateral, non-infused dentate gyrus). 

(H)  Dentate gyrus was microdissected at the end experiments shown in panels (C) 

and (D) and homogenate samples were analyzed by quantitative Western blot.  Mean 

(+SEM)  changes are expressed as AS-treated versus SC-treated dentate gyrus.  
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(*P<0.05; n=6-7 in all groups).  Representative immunoblots are shown below. + 

(infused dentate gyrus); - (contralateral, non-infused dentate gyrus).  

 

  

Supplemental Material  

 

Supplemental Figure 1. Time course of phallodin-FITC staining during LTP in the rat 

dentate gyrus. CON= Unstimulated, contralateral dentate gyrus.  Images show 

phalloidin staining at various time points (in minutes) after HFS of the medial 

perforant pathway. Arrows mark borders of phalloidin band in the middle molecular 

layer.  

 

Supplemental Figure 2.  Effect of broad spectrum protein synthesis inhibitors on LTP 

maintenance.   

(A) Systemic (i.p.) injection of cycloheximide (CHX; 25 mg/kg) 90 min prior to HFS 

resulted in LTP that decayed to baseline within 3-4 hours (n=3).    

(B) Systemic injection of CHX 90 min post-HFS had no effect on LTP maintenance 

(n=4). 

(C-D) Systemic injection of CHX or anisomycin (ANI; 100 mg/kg) 30 min after HFS 

had no effect on LTP maintenance (n=3 for each inhibitor).  

 (E) Injection of anisomycin 30 minutes post-HFS failed to block the increase in Arc 

protein immunostaining during LTP maintenance.    

 



Jon - need separate images here.  Delete the 2 hours experiment. 
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