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Summary. During the last few years a considerable amount of research has been
conducted to study multiscale properties of images via partial differential equations.
In this context we can roughly divide the methodology into three different formu-
lations, namely the scale space formulation, the regularization formulation and the
inverse scale space formulation. In this work we propose an inverse scale space for-
mulation for matrix valued images using the operator-algebraic approach recently
introduced in [6, 7]. We perform numerical experiments on synthetic tensor fields
and on real diffusion tensor data from DT-MRI of a human brain.

1 Introduction

In many applications there is a need for a multiscale representation of images. Partial
differential equations (PDEs) provide a flexible framework for this purpose [19, 27, 8].
Traditionally, PDEs have been used via two intrinsically related approaches, namely
by parabolic equations of diffusive nature and elliptic equations corresponding to
the minimum of energy functionals. In between these two approaches we find the
inverse scale space approach, which we will address in this paper. Inverse scale space
methods have earlier been studied to some details in the context of scalar valued
images [22, 5, 18, 14]. In this paper we extend the so-called relaxed inverse scale
space flow to matrix valued images via the operator algebraic framework recently
introduced in the papers [6, 7].

In this paper we consider a matrix field as a mapping F : Ω ⊂ IRd −→ Mn(IR),
from a d-dimensional image domain into the set of n × n-matrices with real en-
tries, F (x) = (fp,q(x))p,q=1,...,n . Essential for us is the subset of symmetric matri-
ces Symn(IR). The set of positive (semi-) definite matrices, denoted by Sym++

n (IR)
(resp., Sym+

n (IR)), consists of all symmetric matrices A with 〈v, Av〉 := v�Av >
0 (resp., ≥ 0) for v ∈ IRn \ {0} .

Matrix fields play a vital role in many applications: In image processing itself in
form of the concept of the structure-tensor [12], in civil engineering where tensors
are widely used to describe anisotropic behaviour, such as strain-stress or permittiv-
ity tensors. But most importantly in this setting: medical imaging. Diffusion tensor
magnetic resonance imaging (DT-MRI) [1] constitutes a modern and widely used
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image acquisition technique that measures a 3×3 matrix field with positive definite
matrices. To each voxel a so-called diffusion tensor is assigned describing diffusive
properties of water molecules; thus it is intimately related to the geometry and or-
ganization of the tissue under examination. Hence the matrix field obtained is a
valuable source of in vivo information about the underlying tissue structure e.g. in
the human brain [20, 2]. This information can for example be used for the construc-
tion of maps of the tissue-connectivity [29, 30, 17], or for construction of anisotropy
measures like the fractional anisotropy (FA), the relative anisotropy (RA) and the
barycentric index [28]. The fractional anisotropy is a measure which is routinely
used by the medical practitioners.

The indicated variety of applications requires the development of appropriate
tools for the processing and analysis of matrix-valued data. Comprehensive survey
articles on the analysis of DT-MRI matrix fields using various techniques can be
found in [27]. The work here concentrates on the the multistage representation of
matrix fields via the inverse scale space methodology.

In the context of scalar images we can write a standard parabolic flow as

ut = −p(u),

u(x, 0) = f,
(1)

and the corresponding elliptic flow as

ut = −p(u) + λ(f − u),

u(x, 0) = f,
(2)

with appropriate boundary conditions and f is the initial data. The symbol p(u)
denotes an differential operator involving u, usually stemming from a regularization
functional. In the literature

p(u) = −Δu

and

p(u) = −div

( ∇u

|∇u|
)

are used as canonical linear and nonlinear operators respectively. In applications,
often the nonlinear operators are preferable, since linear operators tend to over-
smooth the edges in the images [21, 19, 8].

As indicated by the names of the two flows, the parabolic PDE (1) develops the
initial condition towards the mean value of u as time increases, while the elliptic
PDE (2) governs a evolution from the initial condition towards a nontrivial steady-
state. In order to make the two flows meaningful, a parameter estimation must be
done. In the context of the parabolic flow a stopping condition must be imposed,
and in the context of the elliptic flow the weighting factor λ must be chosen. Finding
the optimal parameter λ∗ or t∗ is in general difficult, however, approximations are
usually easier to obtain.

By a proper modification of the flow (2) we get the relaxed inverse scale space
flow

ut = −p(u) + λ(f − u + v),

vt = α(f − u),

u(x, 0) = mean(f),

v(x, 0) = 0,

(3)
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with α ≤ λ
5

as a relaxation parameter. This relaxed inverse scale space flow was
first introduced by Gilboa et. al, and has been studied by several authors [5, 14].
Contrary to the standard scale space formulation, here interpreted as the flow 1,
the relaxed inverse flow produces a family of images evolving from a very smooth
initial condition mean(f) towards the data f . For a more detailed explanation of
the inverse scale space methods, see eg. [5, 14].

Attempts to extend the PDE methodology used for scalar images to the the
setting of matrix fields with positive (semi-)definite matrices have been made in
[11, 24, 26, 23, 4, 25, 10]. Matrix field regularisation as suggested in [9] is based
on differential geometric considerations. Recently, Christiansen et.al generalized the
vector TV model of Blomgren and Chan in a straight forward manner to yield a
regularization method for matrix valued images [3, 10]. This approach is interesting
in the sense that during the flow, the diffusion tensor is by construction positive
definite, which is usually required in DT-MRI applications.

A different and more general approach was presented in [6, 7]. There they intro-
duced an operator algebraic approach for the construction of matrix-valued PDEs for
matrix fields. They show that it is possible to transfer the characteristic behaviour
of scalar operators to matrix operators as well. Important scalar models like motion
by mean curvature, self-snakes, the Perona-Malik model and the ROF model are
generalized to matrix valued models. And by different choices of matrix products,
they preserve intrinsic matrix properties like for example positive definiteness. In
[6, 7] various instances of the parabolic equation (1) are studied within this context.
The setup provides a coupling of the different matrix channels treating diagonal and
off-diagonal elements in a proper manner. This appropriate channel interaction is a
key issue in the processing of matrix fields. As a proof-of-concept we demonstrate
in this paper that the same operator-algebraic framework can be sucessfully used to
obtain a relaxed inverse scale space flow (3) for matrix fields.

This chapter is organised as follows. The next section is devoted to the basic op-
erations of the operator algebraic framework and we show how it can be used for the
purpose of generalizing the inverse scale space methods to a matrix-valued setting.
We discuss numerical implementation issues in section 4 Section 4 also contains a
validation of our matrix-valued inverse scale space methodology by performing nu-
merical computations on synthetic diffusion tensor fields and real DT-MRI fields.
Summarizing remarks in section 5 concludes the chapter.

2 Inverse Methods for Matrix Valued Images

In this section we give a sufficiently detailed description of how we generalize the
relaxed inverse scale space method from a scalar setting to a matrix setting. Al-
though the operator-algebraic framework has been described in [6, 7] we repeat its
necessary parts here for the sake of completeness.

The definition of a function of a symmetric matrix is well established in linear
algebra [13]:

g(U) := V �diag(g(λ1), . . . , g(λn))V

where U := V �diag(λ1, . . . , λn)V is the spectral decomposition of U and g is a
real function applicable to the set of real eigenvalues of U . The usual product of
two symmetric matrices is in general no longer symmetric unless they commute.
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Hence a suitable ‘symmetric‘ multiplication has to be found. Among the numerous
possibilities we mention two choices. The so-called Jordan product is given by

A •J B :=
1

2
(AB + BA).

The preconditioner product, named after its usage in numerical linear algebra as a
way to precondition symmetric linear systems, is defined as

A •P B :=
√

AB
√

A .

with a positive semidefinite A.
In the numerical experiments in this chapter we use the Jordan product, from

now on simply denoted by “•“.
The rather obvious matrix-valued version of a difference quotient for a matrix

fields U gives rise to a component-wise definition of spatial or temporal partial
derivatives [6, 7]

∂ωU(ω0) = lim
h→0

U(ω0 + h) − U(ω0)

h
= (∂ωuij(ω0))ij . (4)

It is close at hand that other linear operators like the arithmetic mean or convolution
with a kernel are also interpreted component-wise in the matrix setting.

The set of spatial partial derivatives forms the spatial gradient for matrix fields
∇U ∈ (Symn(IR))d

∇U(x) =
[
∂x1U(x), ∂x2U(x), · · · , ∂xdU(x)

]T
. (5)

Note that this gradient is an element of the module (Symn(IR))d rather than a
higher order tensor as one might expect from a differential geometric point of view.
We refer to a function with values in (Symn(IR))d as a module field. Similarly, the
generalized divergence defined by

div (A(x))� :=
d∑

i=1

∂xiAi(x)

for a module field A(x) :=
(
A1(x), . . . , Ad(x)

)
is again not a higher order tensor but

simply a symmetric matrix. The definition of a Laplacian for a matrix field U is
straight forward:

ΔU :=
d∑

i=1

∂
2
xi

U

Finally, there is a notion of p-length in the module (Symn(IR))d realized for a ‘fat
vector‘ W = (W1, . . . , Wd) ∈ (Symn(IR))d by

|W |p := p
√

|W1|p + · · · + |Wd|p ∈ Sym+
n (IR).

The most essential term in equations (1), (2) and (3) is p(u). In its most basic
(linear) form we have

p(u) = −
d∑

i=1

∂xi∂xiu = −Δu . (6)
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Using the operator algebraic framework p(u) can be readily generalized to an oper-
ator acting on a matrix by

PΔ(U) = −ΔU. (7)

However, the linear model is not very interesting for most practical purposes. The
canonical nonlinear model where the Laplacian is replaced with the nonlinear term

p(u) = −div

( ∇u

|∇u|
)

(8)

can similarly be generalized to a matrix valued setting by

PTV (U) = −div

(
1

|∇U | • ∇U

)
, (9)

where |∇U | stands for the 2-length of ∇U , that is, |∇U | := |∇U |2 =
√∑d

i=1 |Ui|2
and “•“ denotes either the Jordan or the preconditioning product. The diffusivity
can be interpreted as the inverse of |∇U |:

G =
1

|∇U | = |∇U |−1
(10)

since we have

|∇U |−1 •J |∇U | = |∇U |−1 •P |∇U | = |∇U |−1 · |∇U | = I . (11)

Having defined the regularization operator P (U) (where P equals e.g PΔ or PTV ) for
a matrix valued image U , we rewrite the relaxed inverse scale space flow to matrix
valued images by

Ut = −P (U) + λ(F − U + V ),

Vt = α(F − U),

U(x, 0) = simp(F )

V (x, 0) = 0,

(12)

with α ≤ λ/5 and U, F and V being matrix fields mapping R to Symn(IR). Temporal
derivatives are denoted for brevity as Ut and Vt. The expression simp(F ) stands for
a simplified version of F . In the simplest case simp(F ) might be the arithmetic mean
of the matrix field F ,

simp(F ) =

∫
Ω

F (x) d x

or alternatively the solution (x, t) �→ W (x, t) of another evolution process such as
linear, Perona-Malik- or TV- diffusion. The initialization flow can for example start
with initial value F and stop at a certain time τ :

simp(F ) = W (·, τ) .

From the scalar system (3) we know that with increasing time u flows from
simp(f) towards f . Analogously, in the matrix valued setting, the flow (12) evolves
from the simplified field simp(F ) towards the matrix field F .
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3 Numerical Implementation

In this section we include details on the numerical implementation of the method.
We discretize the equation system (12) by standard finite differences. We employ the
same numerical scheme as in [6]. Super- and sub-indexes denotes temporal and spa-
tial discretization respectively. For the temporal derivative we use an Euler explicit
scheme, i.e.

∂U

∂t
≈ Un+1

i,j,k − Un
i,j,k

Δt
. (13)

To simplify the notation we sometimes omit one of the indexes. Thus we denote
Un

i,j,k as Ui,j,k, or Un
i,j,k as Un. The arithmetic mean of the diffusivity in the direction

determined by the index is defined as

Gi± 1
2 ,j,k =

Gi±1,j,k + Gi,j,k

2
. (14)

As a numerical approximation to P we employ P̃ given by

P̃ (U) =
1

Δx

(
Gi+ 1

2 ,j,k • Ui+1,j,k − Ui,j,k

Δx
− Gi− 1

2 ,j,k • Ui,j,k − Ui−1,j,k

Δx

)
,

+
1

Δy

(
Gi,j+ 1

2 ,k • Ui,j+1,k − Ui,j,k

Δy
− Gi,j− 1

2 ,k • Ui,j,k − Ui,j−1,k

Δy

)
,

+
1

Δz

(
Gi,j,k+ 1

2
• Ui,j,k+1 − Ui,j,k

Δz
− Gi,j,k− 1

2
• Ui,j,k − Ui,j,k−1

Δz

)
.

This leads to the following numerical schemes for the equation system (12)

Un+1 = Un − Δt
(
P̃ (Un) + λ(F − Un + V n)

)
,

V n+1 = V n − αΔt(F − Un),

U0 = simp(F ),

V 0 = 0. (15)

We will use the numerical schemes introduced above to perform numerical experi-
ments on matrix fields in the next section.

4 Numerical Experiments

Numerical experiments on artificial and real DT-MRI data will confirm that the
inverse scale space concept can be transfered to the matrix fields via the operator-
algebraic framework. For all the numerical experiments we initialize the algorithm
with an over-smoothed version of the noisy matrix field F , U(x, 0) = simp(F ) ,
as described in section 2. From the simplified matrix field U(x, 0) the matrix field
U(x, t) evolves towards the noisy matrix field F . All the processed matrix fields are
3D matrix fields, however, we display only one 2D-slice of the data set.

All computations are done on a computer with a 2 Opteron 270 Dual-core pro-
cessor and 8 GB of memory. The implementation is done in matlab with some parts
implemented in C using mex files [15].
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A simple synthetic field

In the first numerical experiment we apply the proposed methodology on a simple
three-dimensional tensor field with spatial dimensions 16 × 16 × 5. All five layers
in this data set are equal, and Figure 1(a) shows one slice of the tensor field. The
tensor field consists of two regions, one with principal diffusion direction along the
east-west and one along the north-south direction. Each matrix in the regions have
one single large eigenvalue of 1, and two small eigenvalues of 0.25. Thus the regions
are highly anisotropic.

(a) (b) (c)

Fig. 1. (a) A simple synthetic field with two regions. (b) Normal distributed noise
with zero mean and variance of 0.2 is added to the clean tensor field. (c). The noisy
tensor field is evolved, using a simple forward model, into an over-smoothed tensor
field.

The clean tensor field has matrix elements in the range from 0 to 1, and we add
normal distributed noise with zero mean and variance of 0.2, see Figure 1(b). This
tensor field is then evolved, using a simple forward model, into an over-smoothed
tensor field, see Figure 1(c). The noisy tensor field and the over-smoothed tensor
field is then respectively used as the input parameters F and simp(F ) in (12).

In Figure. 2 we observe that more and more information is added to U as time
progresses. After a while the field is almost identical to the noise-free field. And as
antisipated, a while after this, the noise reappears in the field U . Eventually, U → F
as t → ∞, which also is to be expected.

A more complex synthetic example

In the next example we have a more complex synthetic three-dimensional tensor field
with spatial dimensions 32 × 32 × 5. As in the previous example all five layers are
equal, and Figure 3(a) shows one slice of the tensor field. The tensor field consists
of four regions, the outermost region is empty with each matrix equal to the null
matrix. The second outermost region is circle shaped. Each matrix in this region has
two large eigenvalues of 1 and a single small one of 0.25. The two innermost regions
are more anisotropic. Each matrix in these regions have one single large eigenvalue
of 1 and two smaller ones of 0.25.
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(a) (b)

(c) (d)

Fig. 2. The relaxed inverse scale space flow in a matrix setting. (a) After 300
iterations the over-smoothed tensor field has started to align along the directions
in the true solution. (b) After 1950 iterations we are close to the true solution. (c)
After 5000 iterations noise is beginning to appear in the matrix field. (d) After 20000
iterations U is close to the noisy data F.

The clean tensor field has matrix elements in the range from 0 to 1, and we add
normal distributed noise with zero mean and variance of 0.2, see Figure 3(b). This
tensor field is then evolved, using a simple forward model (ROF model with λ = 0),
into an over-smoothed tensor field, see Figure 3(c). The noisy tensor field and the
over-smoothed tensor field are then used as the input parameters F and simp(F )
respectively in (12).

As in the previous example we observe that more and more information is added
to U as time increases, see Fig. (4). As anticipated the evolution from a degraded
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(a) (b) (c)

Fig. 3. (a) A more complex synthetic field with four regions. (b) Normal distributed
noise with zero mean and variance of 0.2 is added to the clean tensor field. (c). The
noisy tensor field is evolved, using a simple forward model, into an over-smoothed
tensor field.

image over a somewhat denoised version to a variant close to the polluted version is
observed.

By these experiment we have demonstrated that at least qualitatively the relaxed
inverse scale space flow in the matrix setting indeed behaves as expected from the
scalar setting. The diffusion tensors field evolves from an essentially isotropic tensor
field at t = 0, through a state of a structured anisotropic tensor field, and finally
towards a noisy unstructured anisotropic tensor field.

Real Brain DTI

In the last numerical experiment we apply the proposed methodology on a real dif-
fusion tensor MRI tensor field. To be able to display a slice of the complex human
brain tensor field as a whole, we use a color-coded FA plot instead of the ellip-
soid representation used in the previous experiments, see Figure 5(a). However, the
calculations are performed, as before, on the underlying matrix field.

The data used is a full 3D matrix valued data set with spatial dimensions
110× 126× 65. The human subject data were acquired using a 3.0 T scanner (Mag-
netom Trio, Siemens Medical Solutions, Erlangen, Germany) with a 8-element head
coil array and a gradient subsystem with the maximum gradient strength of 40
mT·m−1 and maximum slew rate of 200 mT·m−1·ms−1. The DTI data were based
on spin-echo single shot EPI acquired utilizing generalized auto calibrating partially
parallel acquisitions (GRAPPA) technique with acceleration factor of 2, and 64 ref-
erence lines. The DTI acquisition consisted of one baseline EPI, S0, and six diffusion
weighted images S1, . . . , S6 (b-factor of 1000 s·mm−2) along the same gradient di-
rections as in the previous example. Each acquisition had the following parameters:
TE / TR / averages was 91 ms / 10000 ms / 2, FOV was 256 mm×256 mm, slice
thickness / gap was 2 mm / 0 mm, acquisition matrix was 192×192 pixels and
partial Fourier encoding was 75%.

Since we are working with real data we do not have access to an exact ”true”
solution. Instead we used a high quality reference dataset for comparison, see Fig-
ure 5(b). This dataset was obtained by registering and averaging 18 acquisitions.
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(a) (b)

(c) (d)

Fig. 4. The relaxed inverse scale space flow in a matrix setting. (a) After 500
iterations the over-smoothed tensor field has started to align along the directions
in the true solution. (b) After 2430 iterations we are close to the true solution. (c)
After 5000 iterations noise is beginning to appear in the matrix field. (d) After 20000
iterations U is close to the noisy data F.

The noisy dataset used as F in (12) is a 4 averaged acquisitions consuming about
20% of the acquisition time, compared to the higher-quality one. This dataset is then
evolved into an over-smoothed dataset and used as the initial parameter simp(F ),
see Figure 5(c).

From the experiment, see Figure 6 we clearly see that the inverse scale space
methodology is well suited for the construction of multiscale representations of
DTMRI fields of the human brain. The visualizations are made by the software
DTIStudio, which is developed by Mori et.al [16].
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(a) (b) (c)

Fig. 5. Color coded FA plots of one slice of real DTI (a) The noisy input image. (b)
High quality reference solution where 18 measurements are registered and averaged.
(c). The noisy tensor field evolved into an over-smoothed tensor field.

5 Conclusions

In this paper we have employed the operator-algebraic framework of Burgeth et.al
to make a straight forward generalization of the so-called relaxed inverse scale space
flow to matrix images. We have performed numerical experiments which indicates
that the matrix flow qualitatively resembles the scalar flow.
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