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Open Boundary Conditions for the Extended Kalman Filter With a

Quasi-Geostrophic Ocean Model
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Nansen Environmental and Remote Sensing Center, Bergen, Norway

The formulation of consistent boundary conditions for the quasi-geostrophic (QG) model with
an extended Kalman filter in a data assimilation scheme is discussed. To form a well-posed bound-
ary value problem for the QG model, the stream function must be specified at all boundaries and
the vorticity must be specified at the inflow boundaries. The situation becomes significantly more
complicated when proper boundary conditions are to be specified for the error covariance evolution
equation. For closed or periodic boundaries no severe problems occur, but in general cases with
open boundaries, only approximative methods can be used. Here a scheme is presented which
allows for the stream function to be updated on the boundaries, e.g., from the use of measure-
ments located close to the boundaries, or from meanders and eddies approaching the boundaries
from the interior of the domain. Further, the boundary value problem for the error covariance
evolution equation is treated extensively. It is demonstrated that numerical discretization of the
error covariance evolution equation leads to severe numerical difficulties when open boundaries
are used. An approximate numerical scheme that can be used to handle open boundaries with
inflow and outflow is proposed, and examples are given to illustrate the method. Is is shown that
the boundary scheme is consistent and can be used even with data located at inflow boundaries.
However, the approximations used in the scheme may lead to loss of positive definiteness for the
error covariance matrix and an algorithm must be used to ensure positive definiteness for long

time integrations.

INTRODUCTION

As given by Fuvensen [1992] (hereafter called Part I),
the general formulation of the extended Kalman filter with
a multilayer quasi-geostrophic (QG) model was discussed.
Further, data assimilation experiments were performed on
a square domain, using closed boundary conditions. One
of the main topics considered was the instability connected
to the linearization in the error covariance evolution equa-
tion. In this paper the work in Part I is extended to include
open boundaries with inflow and outflow. The use of in-
flow boundaries with the QG model severely complicates
the numerical treatment, but it is also of vital importance
if mesoscale circulation is to be studied, using an extended
Kalman filter to assimilate data in the QG model.

Open and closed boundaries have quite different proper-
ties and are normally treated differently in a way that leads
to a well-posed problem. It should be remembered that an
open boundary with inflow or outflow is an artificial bound-
ary. No knowledge is therefore available about how an open
boundary shall be updated unless external data or informa-
tion can be used.

The general boundary conditions for the QG model have
been discussed in several publications where Charney et al.
[1950] gave the first consistent formulation resulting in a
well-posed problem. Their main result is that the stream
function must be specified on all boundaries to solve a well-
posed Helmholtz problem. Further, the vorticity must be
specified on the inflow boundaries.

When the extended Kalman filter is used for data assim-
ilation with the QG model, two important issues must be
considered.
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1. The Kalman filter will change an inflow boundary if
measurements are located close to the boundary. A bound-
ary scheme which allows for changes in the stream function,
caused by assimilation of measurements located close to the
inflow boundaries, is therefore needed.

2. An implementation of stable and consistent open boun-
dary conditions for the error covariance evolution equation
is required. This is a nontrivial problem as will be illustrated
in the later sections.

Here an approximate but stable method is proposed
which estimates the vorticity on all the boundaries using
the same scheme independent of the type of boundary. It al-
lows for the inflow boundary stream function to be changed
during the time integration, either by wave structures prop-
agation out through the boundary from the interior domain
when a radiation condition is used, or by the assimilation
of measurements using the Kalman filter.

The specific formulation of the boundary value problem
for the error covariance evolution equation in connection
with the QG model has not previously been discussed in
the literature, except for the work by Miller [1986], who
examined the Kalman filter with a one-dimensional linear
barotropic QG model with open boundary conditions for
Rossby wave propagation. However, he did not give any
specific explanation of how the open boundary value prob-
lem for the error covariance evolution was handled. Here the
problem is further complicated by the inclusion of advection
and nonlinear physics.

The use of open inflow boundaries for the QG model in-
troduces additional effects than what would be expected
from the use of the pure ocean model. Here it is shown
that an approximate algorithm can be used for the bound-
ary conditions for the error covariance evolution equation.
Several examples are given to illustrate its properties.

First, the equations for the multilayer QG model are given
in the next section followed by a discussion of the boundary
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conditions and the boundary vorticity schemes for the QG
model. Then the formulation of consistent boundary con-
ditions for the error covariance evolution is treated, and an
approximate but stable scheme is proposed. Some examples
where the proposed scheme is applied in a data assimilation
experiment with open boundaries are then discussed, and
finally the conclusions are given.

EQUATIONS FOR THE LAYERED MODEL

The ocean model is multilayered and describes conserva-
tion of potential vorticity {; in each layer on an f plane. The
mean layer thicknesses are D, and the density in each layer
is p;, where [ denotes layer number; [ = 1 in the upper layer.
¥, is the stream function in layer [. The horizontal length
scale Ry is the internal Rossby radius of deformation of the
upper layer, given by Rj = [(p2 — p1)gD1]/ [pof*], where g
is the gravitational acceleration, pog is averaged density and
f is the Coriolis parameter. The characteristic horizontal
velocity is denoted U, yielding a time scale T = Rq/U. The
pressure scale is pg fURy4, and the stream function scale is
URg4. The nondimensional quasi-geostrophic equations [see
Pedlosky, 1987] are

(% +ula% + Uz(%)(l =0,
where n, is the number of layers and the velocities are the
geostrophic approximations

l= 17’”‘21 (1)
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The vorticity in each layer is given by
¢ =V + fry 5 (W2 — ¥y), (3a)
(=Y — fr (W — W) +
Jrio(Wipn — ¥y), for I =2,n, — 1, (3b)
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which constitutes a set of Helmholtz equations for ¥ when ¢
is known. The Laplacian is V2 = §%/8%z + 8%/8%y, and the
constants fr; ; and fr; , are “nondimensional Froude num-
bers”
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The bottom topography term is
1 h

= £ 6
U Dl (6)

with € as the Rossby number and A as bottom topography.
The QG model was further discussed in Part 1.

BOUNDARY CONDITIONS FOR THE QG MODEL

As an introduction to the further discussion, note the
following rather obvious points:

1. In the QG model the potential vorticity is advected
along the streamlines (which are lines with constant stream
function values).

2. A closed boundary will have a constant stream function
along the boundary; i.e., closed boundaries can be stream-
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lines. Variation of the stream function along a boundary
determines whether there is inflow or outflow, dependent
on the sign of the derivative of the stream function along
the boundary.

3. The fact that the stream function is constant along
the streamlines significantly simplifies the specification of
proper boundary conditions for the QG model. Unless ex-
ternal specifications of the boundary stream function (e.g.,
estimating boundary conditions from a large-scale model),
or radiation conditions are used, the boundary stream func-
tion will always remain constant in time.

The simplest case is to use closed boundaries. Then
the normal velocities at the boundaries are zero, and also
very small at the grid points next to the boundaries. A
one-dimensional advection scheme can then be used for the
grid points next to the boundaries and the specification of
boundary vorticity is avoided.

The vorticity next to an outflow boundary can be up-
dated using an upstream scheme and the specification of the
boundary vorticity is avoided. The accuracy of this scheme
is not crucial because most of the errors are advected out of
the domain.

As stated above, the vorticity at the inflow boundaries
must be specified in order to formulate a well-posed prob-
lem. In most cases there will not be any external data
available for the vorticity at the inflow boundaries. It must
therefore be specified based on assumptions about the struc-
ture of the stream function outside the boundary. A certain
accuracy when calculating the vorticity at the inflow bound-
aries is important because the vorticity is advected directly
into the model domain where it will influence the solution.

It would simplify the treatment of the boundaries if the
same advection scheme could be used for all the internal grid
points. If a 9-point advection formula is used, the vorticity
must be specified on all boundaries, both open and closed,
because the boundary vorticity is used when the vorticity at
grid points next to the boundaries are updated. A method
that can be used to specify the boundary vorticity with good
enough accuracy on all types of boundaries and in a way
that is stable on inflow boundaries is then needed. This is
nontrivial because the relative vorticity term V2W requires
knowledge of stream function values outside the numeri-
cal grid to specify the boundary vorticity when a centered
difference scheme is used. Further, the use of stream func-
tion values in the interior domain to extrapolate the inflow
boundary vorticity, is unstable in many cases. Note, how-
ever, that such a method can be used in connection with a
radiation condition for the stream function, as will be illus-
trated.

In the previous works by Haugan et al. [1989, 1991] and
Ikeda et al. [1989] where inflow boundaries were used, this
was in connection with a jet propagating through the do-
main. In these works the inflow vorticity was specified once,
using an assumption on the stream function outside the
boundary, and thereafter kept constant during the run. This
is a valid assumption as long as the stream function does
not change at the grid points next to the boundary, and it is
therefore not possible to handle meanders in the jet which
approach the inflow boundary and change the boundary vor-
ticity.

The goal of this section is to find a method for estimating
the boundary vorticity, where the method is independent of
the type of boundary. With such a scheme, the boundary
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vorticity is estimated at all boundaries, and the same ad-
vection operator can be used for all the internal grid points.
Further, the stream function is allowed to change at the
boundaries. First, a simple radiation condition is presented
and then two boundary vorticity schemes are discussed.

Radiation Condition

A radiation condition is based on the assumption that
waves in the computational domain are propagating toward
the boundaries with a given phase velocity. For a one-
dimensional domain, these waves can be described by an
advection equation

ov ov

ot oz
where c is the phase velocity of the wave. A simple radia-
tion condition has been used for the QG model, where the
waves are assumed to propagate normal to the open bound-
aries with the phase velocity of the fastest growing wave
predicted by linear stability theory [see Ikeda and Lygre,
1989]. The boundary stream function is then updated using
an upstream difference scheme for (7).

=0, (7)

First Boundary Vorticity Scheme

The first scheme is based on the standard assumption that
the inflow boundary vorticity is specified once and thereafter
used in all later time steps. This will of course imply a loss of
flexibility because the inflow boundaries must be kept con-
stant in time. They can not be updated by external data
through the Kalman filter equations, or by radiation condi-
tions. An advantage is that no instabilities occur and the
accuracy is high, as long as no meanders or eddies approach
the inflow boundary.

In the general case, the inflow vorticity must be stored
throughout the integration of the model. However, if the
inflow boundary is determined from a jet that is normal to
the boundary, an alternative scheme can be used, because
the cross-boundary variation of the stream function van-
ishes. It is based on the assumption that the contribution
to the vorticity from cross-boundary variation of the stream
function is small, i.e.,

0w
Ox2

~o, ®)
=0

where z is interpreted as the component normal to the
boundary. The relative vorticity at all boundary points is
then approximated solely from the variation of the stream
function along the boundary, plus the contribution from the
interaction terms between the layers and the bottom to-
pography. The consequences of this assumption are that
the flow must be normal to the boundary and at the same
time it can not have any curvature at the boundary. Under
these constraints equation (8) will be valid and the relative
vorticity term may be calculated without references to the
stream function outside the grid. With the specification of
the stream function at the inflow boundaries the vorticity
is also specified because it only refers to stream function
values at the boundary points.

In the case of a jet which is normal to the boundary, this
scheme is exact and identical to the specification of a con-
stant boundary vorticity, as discussed above. In addition, it
is possible to use a radiation condition to update the stream
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function on the inflow boundary.

The scheme can actually be used for all boundaries in the
ocean model. At a closed boundary, ¥ is constant and all
derivatives along the boundary are equal to zero. With the
assumption in equation (8) the relative vorticity becomes
zero and is neglected at the closed boundaries. This repre-
sents no constraint on the flow tangential to the boundary
because no restriction has been applied to the first deriva-
tive of ¥ normal to the boundary. The errors resulting
from using this scheme on the closed boundaries are neg-
ligible because the contribution from the boundary vortic-
ity in the advection scheme is small. The vorticity at the
outflow boundaries is advected out of the domain, and the
influence on the internal domain has been negligible in the
case studies presented in this paper.

Second Boundary Vorticity Scheme

The probably best approximation of the boundary vor-
ticity is obtained by using a one-sided finite difference for-
mula for the second derivative in the direction normal to the
boundary. A second-order formula in Az should be used to
give the same accuracy as in the internal domain, and it is
given as

d>v

2
dzo

_ 2Wg — 5¥y + 4y —

it Ys L oag?).  (9)

If this formula is used for the inflow boundaries, it will
lead to instabilities. The reason for this is that the inter-
nal stream function, which is partially determined from the
boundary vorticity which has propagated into the domain,
is recursively used to determine the new boundary vortic-
ity. Fortunately, this instability can be avoided if a radia-
tion condition is used for the stream function on the inflow
boundaries.

Ezamples

The boundary vorticity schemes will now be illustrated
using a simple example, where a barotropic cyclone on a
sloping bottom is interacting with a jet propagating through
a domain. This case is based on the examples from Ikeda
and Lygre [1989], who studied eddy—jet interactions with
the QG model.

The following parameters have been used in all the model
runs: The internal Rossby radius is Ry = 5835 m, and the
nondimensional grid spacing is Az = 0.5. The velocity scale
U = 0.3 ms™ ', and the nondimensional time step is cal-
culated from the stability condition; typically, At = 0.5.
The total depth is 300.0 m and an upper layer of 50.0 m
and a lower layer of 250.0 m have been used with a den-
sity difference of Ap = 1.0 kg m™3. This results in Froude
numbers fr; , = 1.0 and fry; = 0.2, and using a Cori-
olis parameter f = 1.25 x 10~*, the Rossby number be-
comes € = U/fRq =~ 0.41. These parameters are typical for
mesoscale processes in the Norwegian coastal waters. The
QG model has proven to give good results in this parameter
regime as discussed by Haugan et al. [1991] and Ikeda et
al. [1989], even though the Rossby number is quite large.

First, a base case is created, where the initial upper layer
stream function is defined by a jet with a Gaussian velocity
profile that propagates through the domain, and is interact-
ing with a barotropic cyclonic eddy. A 75 X 41 grid is used.
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The jet is initialized as

y ¥ —5 2
U =— 0.8/ exp [— ( ) dy',
0 2 (10)

¥, =0.0,

and then the barotropic cyclone is added in both layers,

V/(z —12.5)2 + (y — 8.5)2
2 b)
(11)

for [ =1,2. The bottom topography is assumed to be

U, =V, — 2exp

25 m, for < 5.00,
h(z) = —%(.’L‘ —12.5) m, for 5.0 < z < 20.0, (12)
—25 m, for x > 20.0.

This causes the eddy to propagate along the bottom slope
and into the jet. The boundaries at y = 0 and y = 20
are treated as closed and the stream function is constant in
time. At the outflow boundary x = 37, a radiation condition
is used for the stream function.

Now four cases are run, where the purpose is to demon-
strate how the vorticity can be updated on an inflow bound-
ary when the stream function at the boundary or close to
the boundary is altered, e.g., by using the Kalman filter, or,
as in the cases given here, when structures are propagating
towards the inflow boundary. The cases are:

Case Ol. The first boundary scheme with the assump-
tion (8) is used, with no radiation condition on the inflow
boundary.

Case O2. The first boundary scheme with the assumption
(8) is used, including a radiation condition on the inflow
boundary.

Case O3. The second boundary scheme, where the vari-
ation normal to the boundary is calculated using the one-
sided difference formula (9), and with no radiation condition
on the inflow boundary.

Case O4. The second boundary scheme, where the vari-
ation normal to the boundary is calculated using the one-
sided difference formula (9), including a radiation condition
on the inflow boundary. All case studies performed in this
paper are listed in Table 1.

In case O1 (Figure 1) the anticyclone on the inside of the
jet is trapped in the corner between the inflow boundary and
the closed boundary, and it is obvious that it strongly affects
the stream function field close to the inflow boundary. In
real life the anticyclone should propagate out of the domain,
through the open inflow boundary.

In case O2 (Figure 2) the same vorticity scheme as in
case O1 has been used, but a radiation condition has now
been applied at the inflow boundary. This makes it possible
for the eddy to propagate through the inflow boundary, and
it disappears from the domain. The bad structures that
were caused by the eddy at the inflow boundary are also
removed. Note that the axis of the jet (thick line) is also
changing slightly at the boundary, i.e., the boundary stream
function is changing and the boundary vorticity is updated
accordingly. By using this scheme it is now possible to alter
the stream function on the inflow boundaries.

In case O3 (Figure 3) the second boundary scheme has
been used, where the cross-boundary variation of the stream
function is calculated by the one-sided difference formula
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(9). This scheme proves to be unstable, although the one-
sided difference formula gives a better estimate of the cross
boundary variation than just setting it to zero as in the first
scheme. In this case the boundary vorticity is propagating
into the domain where it affects the stream function, which
is repeatedly used to estimate the new boundary vorticity.
Errors in the boundary vorticity will then accumulate and
cause the instability to grow. In the cases shown here a
Shapiro filter of order 8 has been used every time step (see
the discussion in Part I). The filter is damping the instability
because the strong gradients close to the inflow boundary
are smoothed, and the instability will grow faster without
the use of the Shapiro filter.

In case O4 (Figure 4) the second boundary scheme has
been used together with a radiation condition for the stream
function. In this case the scheme is stable and the results
are quite similar to case O2, except that the anticyclone
seems to use longer time to escape the domain. It is hard
to say if the results from this case are worse or better than
the results in case O2.

The accuracy of these schemes should also be tested for
closed and outflow boundaries, to compare their perfor-
mance on more general cases, but that will not be done
in this paper. The main conclusion from these examples
is that both schemes can be used together with a radia-
tion condition which updates the stream function on the
inflow boundary. This result also suggests that the schemes
should work in the case when the boundary stream function
is changed by the assimilation of measurements.

ERROR COVARIANCE EVOLUTION EQUATION

The evolution of the error covariances is calculated using
the tangent linear operator of the model. For a linear model
this is equivalent to using the model advection matrix. For a
nonlinear model the linearized advection operator taken at
the current state estimate gives the tangent linear operator.

The discretized QG model was in Part I given on the form

L¢k+1 = f("/’k)

Here the matrix L is the elliptic operator resulting from dis-
cretizing the system of Helmholtz equations (3), and with
one on the diagonal in rows which corresponds to boundary
points. The nonlinear vector function f(1,) contains in el-
ements corresponding to internal grid points the advected
potential vorticity with the bottom topography term sub-
tracted. In elements corresponding to the boundary points,
it contains the boundary conditions for the stream function.

(13)

The error covariance equation for the QG model was

LPoi LT = FyPoFE + LQu LT (14)

The tangent linear operator, or transition matrix F} is the

Jacobi matrix of the vector function (), taken at the

current stream function estimate. The part of Fj that cor-

responds to internal grid points can be written as
or(4)

Fp = [T(y)L" + W(L”d’ +mn) ;
.

where 1)}, is the analyzed stream function estimate at time
tg. The matrix I'(¢) is the nonlinear advection operator
used in the QG model, and it generates the updated covari-
ance vorticity for the internal grid points. The matrix L" is
the Helmholtz operator and generates the potential vortic-

(15)
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TABLE 1. Case Studies
Ocean Model Runs

Cross-Bnd. Variation Radiation Cond.

Case O1 Neglected No
Case 02 Neglected Yes
Case 03 One sided No
Case 04 One sided Yes
Error Covariance Runs
Case E1 Uniform error field
Case E2 Low errors on closed and outflow boundaries
Case E3 Low errors on all boundaries

Data Assimilation Experiments
Stream through a channel, jet initialized
Stream along coast, no jet initialized

Experiment A
Experiment B

The case studies consists of four cases (O1-O4) where the
inflow boundary vorticity schemes (8) and (9) are demonstrated
for the ocean model, with and without radiation conditions on the
inflow boundary. Three cases (E1-E3) have been run to verify
the inflow boundary method for the error covariance equation.
Finally, two data assimilation experiments (A and B) have been
run to examine the proposed method in practical use.

ity. The double prime denotes that it contains schemes for
the boundary vorticity at rows corresponding to boundary
points. This operator was discussed in detail in Part I. The
first term describes pure evolution of the error covariance
vorticity in the model estimated velocity field, i.e., first L"
is operated on the covariance functions to generate the co-
variance vorticities, and these are then advected using the
operator I'(%p). The second term contains the additional
effects of the nonlinearity in the QG model, like the local
error growth discussed in Part I. The matrix Q)i is the error
covariance matrix for the system noise.

The error covariance evolution equation (14) can be writ-
ten as

Piy1 = LT F(L7 FoPe)” + Qrpr. (16)

This equation is solved by performing the following steps:

1. Calculate the matrix-matrix multiplication P, = F} Py.
The matrix P, then contains the advected covariance vor-
ticity.

2. Solve the elliptic systems LP, = P,.
intermediate covariance functions.

This results in

3. Calculate the matrix-matrix multiplication P, =
F, P. The advected vorticity of the intermediate covari-
ance functions is then contained in P..

4. Solve the elliptic systems LP; = P.. This results in the
error covariance matrix in time step tx41 before the system
noise is added.

5. Add the system noise, Pyy1 = Pg + Qk+1-

The first step requires the covariance vorticity to be speci-
fied on the inflow boundaries to formulate a well-posed prob-
lem. This can be done using the one-sided difference formula
(9). Note that the condition (8) which assumes that the
cross-boundary variation is zero, can not be used, because
this assumption is positively wrong for the covariance func-
tions. However, scheme (9) gives a consistent estimate of
the boundary covariance vorticity.

In step two, an intermediate covariance matrix is solved
for, and boundary conditions for all the intermediate covari-
ance functions are required. This is a nontrivial problem,
when inflow boundaries are present, because it requires in-
formation about the covariance function outside the inflow
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boundary. Figure 5 illustrates how a covariance function
at a grid point close to the inflow boundary, in a uniform
flow, leads to an intermediate covariance function that is
advected with the flow. It is the estimate of the inflow
boundary conditions of this intermediate covariance func-
tion which causes the problems. Note that this problem
arises because the equations are discrete in time.

In step three, the vorticity of the intermediate covariance
functions must be specified at the inflow boundaries. This
can also be done using the scheme (9).

In the fourth step, the final covariance functions are
solved for and boundary conditions are required on all
boundaries. It is natural to use the boundary values from
the previous time step for the inflow and closed boundaries.
On the outflow boundaries, a radiation condition might be
used.

Estimate of the Intermediate Boundary Covariance

An approximate method is needed to estimate boundary
conditions for the intermediate covariance functions. The
boundary scheme must use an estimate of the covariance
function outside the inflow boundary, to calculate an ap-
proximation for the intermediate covariance functions on the
boundary. The estimate of the covariance function outside
the inflow boundary can be calculated using an extrapola-
tion method. A Taylor expansion about the boundary point
(denoted with subscript 0),

2
P-1=po— Z—i 0Am+ %% OAm2+O(Am3), (17)

has been used, where the p_; is the covariance value in a
grid point located a distance Az outside the boundary in
negative x direction. A one-dimensional formula is used
to illustrate the scheme, but a multidimensional case, such
as the multilayer QG model, does not introduce any addi-
tional problems. The derivatives must be estimated using
finite difference approximations. Several extrapolation for-
mulas can be generated by choosing different alternative
difference approximations for the first and second deriva-
tives. Here both centered and one-sided second-order for-
mulas have been tested. For the first derivative these are
the centered formula

dp P1—p-1 2
bl A 18
and the one-sided formula
dp —1.5p0 + 2p1 — 0.5p2 2
—| = Az”). 19
s o Ao + O(Az”) (19)
For the second derivative the centered formula is
d*p P1—2po +p-1 2
— | === +0(A 20
| = TR0, @)

and the one-sided formula is given by (9).

If the one-sided formulas, (18) and (9), are used for the
first and second derivatives, the expansion (17) yields

p_1 = 3.5p0 — 4.5p1 + 2.5p2 — 0.5p3 + O(Az®).  (21)

Another scheme results if the centered formula (18) is used
for the first derivative and the one-sided formula (9) is used
for the second derivative, i.e.,

p-1 = 4po — 6p1 +4ps — ps + O(Az?). (22)
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Fig. 1. The stream function (left column), and the potential vorticity (right column) for case O1.

If the one-sided formula (19) is used for the first deriva-
tive and the centered formula (20) is used for the second
derivative the following scheme is found,

p-1=3po —3p1 +p2+ O(A$3), (23)

and if only centered formulas are used, that gives a linear
extrapolation formula.

All the three formulas (21-23) can be used, and they give
rather similar results. However, formula (22) has proven
to give slightly higher accuracy than the two others in the
uniform and steady flow cases to be discussed in the next
section. Formula (22) can also be derived by setting the
centered and the one-sided formulas for the second order
derivative equal to each other and solving for p_;.
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Fig. 2. The stream function (left column), and the potential vorticity (right column) for case O2.

When p_; is known, the boundary conditions for the in-
termediate covariance functions can be estimated by advect-
ing the covariance functions into the boundary points.

If this scheme is used also to estimate the boundary val-
ues for the final covariance functions in step 4, an instability
occurs. Instead an assumption of an error covariance which
is constant in time on the inflow boundaries has been used.

This results in an approximate but stable method with ac-
ceptable accuracy for the error covariance evolution close
to the inflow boundaries. In summary, the error covariance
equation is stepped forward in the following way.

First, the boundary values of the covariance functions
are stored for later use. The matrix-matrix multiplication
P, = Fi Py, is calculated with the boundary error covari-
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Fig. 3. The stream function (left column), and the potential vorticity (right column) for case O3.

ance vorticity estimated using the one-sided difference for-
mula (9). The elliptic systems LP, = P, are solved with the
boundary values for the intermediate covariance functions
estimated in the following way: First an estimate of the co-
variance functions at locations outside the boundaries is cal-
culated using an extrapolation formula. Next, the boundary
values are approximated by advecting the covariance func-
tions in the model velocity field, using the same advection
formula that is used in the ocean model. The matrix-matrix
multiplication P, = FkaT is then calculated where the in-
termediate covariance vorticity on the boundaries is esti-
mated using the one-sided difference formula (9). The ellip-
tic systems LP; = P, are solved using the stored boundary
conditions from the first step above.

Symmetrization Algorithm

This is a nonsymmetrical update of the form APy B where
A =~ B, and the resulting covariance matrix is only approxi-
mately symmetric. An algorithm must therefore be used to
ensure symmetry. The symmetrization algorithm is based
on the fact that all the columns in the updated covariance
matrix P, corresponding to boundary points, contain co-
variance functions calculated from the exact covariance val-
ues that were stored from the previous time step. These
columns are therefore copied to the corresponding rows of
Py. After this process, all the columns and rows in P; that
correspond to boundary points, contain the correct covari-
ance functions. The covariance values in the interior domain
are estimated using an averaging between the mirror values
about the diagonal in P;. Finally, the system noise is added,
Pry1 = Pa+ Qg+a-

Test Runs for the Error Covariance Boundary Scheme

The following three runs are performed to examine the
stability and accuracy of the boundary scheme for the er-
ror covariance equation. A uniform flow in the z direction
is specified through a two-layer 25 x 13 domain, on a flat

bottom. The boundary z = 0 is an inflow boundary, z = 12
is an outflow boundary and the two boundaries y = 0 and
y = 6 are closed boundaries. At the closed boundaries free
slip conditions are used, and this implies that the bound-
ary conditions for the intermediate covariance function also
must be updated there. The same method has been used
for all types of boundaries.

Only the first term in the tangent linear operator (15) has
been used in the following runs. However, for the cases in
this section, with zero vorticity and a flat bottom, the sec-
ond correction term is equal to zero. There are no concep-
tual problems involved in using both terms of the transition
matrix with the proposed boundary scheme.

The three cases (denoted E1, E2, and E3) are all describ-
ing pure error covariance evolution in the uniform velocity
field and no data are assimilated. The difference of the cases
is the choice of the initial error variance field. The covari-
ance functions are those used in Part I.

In case K1 the initial error variance is identical to one, all
over the domain, and in Figure 6 the evolution of the error
covariances is illustrated when using the proposed boundary
scheme. When t = 20, i.e., after 40 time steps the error
variance field is almost unchanged from the initial field. The
evolution has been slightly influenced by diffusion in the
advection scheme, and there is a slight error increase close to
the inflow boundary and a small error decrease close to the
outflow boundary. This is caused by the approximations in
the boundary scheme, and further integration of the model
will not change the solution at ¢ = 20 which has reached a
steady state. Note also that the values at the boundaries are
unchanged. The shape and the amplitude of the covariance
function close to the inflow boundary are almost unchanged
after the time integration. In this example it is obvious that
the boundary scheme gives a valid approximation for error
covariance evolution.

In case E2, a slightly different example has been run,
where the initial error variance is set close to zero both at
the closed boundaries and at the outflow boundary. The re-
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Fig. 4. The stream function (left column), and the potential vorticity (right column) for case O4.

sulting error variance field and error covariance function is
shown in Figure 7. The error variance approaches a steady
state where the errors are gradually decreasing towards the
outflow and closed boundaries which are kept constant. The
slight increase of the error right inside the inflow boundary
which was found in the previous example can also be seen
here, and it is also reflected in the amplitude of the covari-

ance function. The errors should actually propagate out
through the outflow boundary but that requires a radiation
condition to be used for the covariance functions.

A case E3 has been run to illustrate how the estimated
errors at the inflow boundary are propagating into the do-
main. In this case the initial errors are given low values
at all the inflow, outflow, and closed boundaries (see Fig-
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Fig. 5. (left) A covariance function close to the inflow boundary, and (right) the intermediate covariance function.
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Fig. 6. Results from case E1. In the left column the error variance is shown at ¢ = 0 and ¢ = 20. In the right
column the covariance for the stream function in grid point (1,2,7) (corresponds to z = 0.5 and y = 3.0 in the
upper layer) is shown for t = 0 and ¢t = 20. The contour interval is 0.1 in all plots.

ure 8). The low errors on the inflow boundary indicates
that the solution on the inflow boundary is well known, and
this information is propagating through the domain in the
model velocity field. This indicates that the choice of the
error variance on the inflow boundaries is crucial for the
data assimilation process due to the influence it has in the
interior domain.

In a data assimilation experiment one would assume a
finite error variance at the inflow boundary and keep it con-
stant in time. This is equivalent to saying that the solution
on the inflow boundary contains errors, and this error is
propagating into the domain.
neous inflow stream function is then reduced downstream,
when measurements are assimilated.

The influence of the erro-

A case was also run where the same boundary values
were used both for the intermediate and the final covari-
ance functions, i.e., the boundary covariance values were
kept constant during a time step. However, for significant
inflow this approach did not work. It introduced an error

growth inside the inflow boundary with amplitudes reach-
ing 50 times the initialized error field. These errors then
propagated into the domain with the flow and corrupted
the error estimates in the internal domain. Note that this
method is numerically stable, and it is a pure boundary ef-
fect that causes the error growth. In some cases when there
is good data coverage close to the inflow boundary, these
can be used to control the boundary effect, but in general a
more sophisticated method must be used.

DATA ASSIMILATION EXPERIMENT

A final test of the schemes for the boundary stream func-
tion and vorticity, and the boundary scheme which has been
proposed for the error covariance evolution equation, will
now be given. A simple reference case where a jet is propa-
gating through a domain and where the dynamics are gener-
ated by the interaction between the jet and an eddy is used
to generate measurements. The same physical parameters
are used for the ocean model and the initial conditions as
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Fig. 7. Same as Figure 6 but for case E2 with zero error variance on the closed and outflow boundaries.
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Fig. 8. Same as Figure 6 but for case E3 with low errors on the inflow boundary in addition to the closed and

outflow boundaries.

was described in the test runs for the QG model, except
that the locations of the eddy and the jet axis are redefined.
The eddy is now initialized with the center at (4.5,4.5), and
the initial jet axis is at y = 5.0. A smaller grid has also
been used, (27 x 27 in two layers). There are 1458 unknown
stream function values, and the total number of unknowns
in the error covariance matrix is 2, 125, 764, which requires
about 8.5 megabyte of storage in single precision. The bot-

tom is sloping with increasing depth in the positive z direc-
tion, and the barotropic cyclone propagates along the bot-
tom slope and perturbs the baroclinic jet. The first scheme,
where the cross-boundary variation is neglected, has been
used for the relative vorticity on the boundaries. This was
a natural choice because the jet propagates almost normal
to the boundary. Further, a radiation condition was used
for the boundaries z 0 and z 13. A time series of
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Fig. 9. Reference run: From left; stream function in layer one, vorticity in layer one, stream function in layer two,
and vorticity in layer two. The contour intervals are 0.5 for both the stream function and the vorticity.

the stream function from the reference run is shown in Fig-
ure 9. It is seen how the barotropic eddy generates a strong
perturbation in the upper layer jet. Note that the axis of
the jet moves about 3 unit lengths on the inflow boundary.
Measurements are taken at time intervals Atons = 2.5, in
20 grid points in the upper layer. This corresponds to an
extremely good data coverage, and as will be seen from the
next data assimilation examples, the convergence towards
the reference solution is rather fast. Note that the purpose
of this experiment is to verify that the proposed boundary
scheme is stable and that it works for the error covariance
evolution. For this reason measurements have also been
assumed to exist on the inflow boundary. Since the bound-
aries y = 0 and y = 13 are closed, this corresponds to flow
through a channel, and the mass transport is then defined
by the difference in the stream function values between the

closed boundaries.
The initial error covariance matrix and the system noise
is defined from the equation

U(l15i17j1712ai25j2)2 = E(ilajl)E(izajz)
_ 2
oy (I ) e (- rt) o
h

which was also used in Part I.

Assimilation Ezperiment A

A test case is now generated where the initial stream
function only includes the straight jet in the upper layer.
The measurements will then have to regenerate the eddy and
the perturbation in the jet. The resulting stream function,
potential vorticity, and error variance field from this data
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Fig. 10. Assimilation experiment A: Upper layer stream function, vorticity, and error variance field. The contour
intervals are 0.5 for the stream function and the vorticity, and 0.1 for the error variances. The asterisks denote
the locations of the measurements.

assimilation run is shown in the Figures 10 and 11 for the the sense that the mesoscale structures are resolved, and
upper and lower layer, respectively. such an efficient data assimilation process is expected. The

The reference stream function in both the upper and  vorticity fields are also quite similar to the reference case
lower layer is almost regenerated after only a few updates and this suggests that the boundary vorticity scheme gives
with the Kalman filter. The data coverage is very good in  a realistic approximation for boundary vorticity in this case.
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Fig. 11. Assimilation experiment A: Lower layer stream function, vorticity, and error variance field. The contour
intervals are 0.5 for the stream function and the vorticity, and 0.1 for the error variances.

The initial error variance field is given with low values on  constant in time. The measurements will then only be able
the closed boundaries where the stream function is assumed to influence the general circulation in each layer and not
to be known. These boundaries will not be influenced signif- the mean fluid transport. In this example the error vari-
icantly by the measurements. This is equivalent to assuming  ances are decreasing faster in the part of the domain with
that the fluid transport through the channel is known and  the strongest circulation. This is caused by the spreading
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of information (low error variances), from the measurement
locations by the dynamics.

The lower layer stream function is influenced by the mea-
surements in the upper layer because a certain correlation
is assumed between the layers. A value of r, = 0.5 was
used in the formula for the error covariance functions (24).
The results show no trace of the upper layer jet in the lower
layer stream function. The main reason for this is that a
zero transport through the channel in the lower layer was
imposed on the dynamics. However, the barotropic eddy is
regenerated after only a few data updates.

Note that the initial error variance on the outflow bound-
ary was also given a low value. This was done for numerical
reasons. The boundary scheme seemed to be more sensitive
to strong gradients in the error field close to the boundary,
and because the errors in the internal domain are decreasing,
a low value was given to the error on the outflow boundary.

Assimilation Ezperiment B

Here the previous case is extended to use an open bound-
ary at y = 13. The experiment then simulates an open
ocean along a closed coastal boundary. It is assumed that
no knowledge about the circulation in the domain is avail-
able. In the upper layer a constant reference value, given
from the measurements near the closed boundary, is used for
the stream function all over the domain, and in the lower
layer it is set to zero. In this experiment the data assimila-
tion algorithm has to reproduce the correct fluid transport
through the domain in addition to the circulation pattern.
The results from the simulation are given in Figures 12 and
13. The same initial error covariance field has been used as
in experiment A. From the upper layer stream function field
it can be seen that the circulation soon becomes quite simi-
lar to the reference case, but it requires a few more updates
than in the previous experiment. There are no measure-
ments on or close to the two boundaries at £ = 13 and
y = 13, and because the initial error variance is quite low at
those boundaries they are not much influenced by the mea-
surements. However, because a radiation condition is used
for the stream function, this helps to correct the boundaries
by advecting information from the interior domain toward
the boundary.

The lower layer stream function has in this case got a
significant transport through the domain and the circula-
tion pattern is very similar to what was found in the upper
layer. This departs from the reference case and is caused by
the assumed covariance between the upper and lower layer.
This covariance actually determines statistically how baro-
clinic or barotropic the ocean is, and in this case it would
probably be better to set the vertical correlation to zero be-
cause the jet is purely baroclinic. Then the data would not
influence the stream function in the lower layer directly, and
the model itself would have to spin up the lower layer eddy
activity.

The error variance field contains some noisy structures
close to the boundaries in this case, and there are also some
problems in maintaining the positive definiteness of the er-
ror covariance matrix. After about ¢ = 35, some occurrences
of a few small negative elements appeared on the diagonal.
These are caused by the nonsymmetrical update which is
used in connection with the approximate boundary scheme.
Such an update may lead to loss of positive definiteness af-
ter some time, and suggest that a better symmetrization
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algorithm which also ensures positive definiteness should be
used. At present, the problem is solved by adding a small
constant to all the diagonal elements every time a negative
value occurs.

SUMMARY

The extended Kalman filter has been implemented
for data assimilation with a nonlinear multilayer quasi-
geostrophic (QG) ocean circulation model. The QG model
was chosen because it is one of the simplest nonlinear mod-
els which gives a realistic description of the mesoscale ocean
circulation. It includes barotropic and baroclinic instability
mechanisms, and it has proven to give realistic results for
the circulation on the Norwegian continental shelf [Ikeda et
al., 1989; Haugan et al., 1991; James, 1991]. Two other
properties also made this choice of model attractive. First,
the fast inertial gravity waves have been filtered away, and
this allows the use of long time steps compared to the prim-
itive equation models, and initialization shocks or shocks
generated by the assimilation of measurements are avoided.
Second, the model contains only one unknown variable for
each grid point, and this limits the size of the state vector
and also the size of the error covariance matrix when the
extended Kalman filter is used.

If the extended Kalman filter shall be a convenient tool
for data assimilation, it must be possible to use it with both
open and closed boundary conditions. However, this poses
severe problems both for the QG model, and the error co-
variance evolution equation. The QG model must handle
the problem with boundaries that are updated by measure-
ments or by structures approaching the boundaries, and the
error covariance equation must use an approximate bound-
ary scheme for the open boundaries.

A discussion was given on the problem of specifying
proper open boundary conditions for the QG model and
the corresponding error covariance equation when the QG
model is used with the extended Kalman filter for data as-
similation.

First, a scheme was proposed for estimating the bound-
ary vorticity in the ocean model. This scheme allowed the
boundary stream function to be changed by measurements
or a radiation condition. It was shown that a scheme, where
the cross-boundary variation in the stream function was
neglected, worked fine for problems where the inflow was
nearly normal to the boundary. Another approach could
also be used where the cross-boundary variation was approx-
imated by a one-sided difference formula when a radiation
condition was used simultaneously. The accuracy of the in-
flow boundary vorticity will not always be crucial in a data
assimilation problem. If an approximate boundary vorticity
is used, the errors of this approximation can be corrected
inside the domain by the assimilation of measurements.

The problem of how to specify proper boundary values for
the error covariance evolution equation was then discussed.
It was found that an approximate scheme had to be used,
because covariance values located outside the inflow bound-
aries had to be estimated by some kind of extrapolation
when the intermediate covariance functions, which results
from the first multiplications of the tangent linear opera-
tor with the covariance matrix, are calculated. The scheme
seemed to give a good approximation for the pure error evo-
lution experiments. An advantage of the proposed scheme
is that it can be used for both open and closed boundaries,
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Fig. 12. Assimilation case B: Upper layer stream function, vorticity, and error variance field. The contour intervals
are 0.5 for the stream function and the vorticity, and 0.1 for the error variances. The asterisks denote the locations

of the measurements.

and therefore simplifies the numerical treatment consider-
ably, both for the ocean model and the error covariance
equation.

Two data assimilation experiments with synthetic data
were used to illustrate the open boundary scheme. These

cases proved that the open boundary scheme worked, al-
though they pointed out a problem with loss of positive
definiteness, caused by the use of a nonsymmetrical update
in the approximate boundary scheme. It was therefore nec-
essary to apply a symmetrization algorithm, which ensured
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Fig. 13. Assimilation case B: Lower layer stream function, vorticity, and error variance field. The contour intervals
are 0.5 for the stream function and the vorticity, and 0.1 for the error variances.

the symmetry of the covariance matrix, and for long time
integrations an algorithm had to be used to keep the error
covariance matrix positive definite. Here a very simple al-
gorithm was used where a positive constant was added to
the diagonal elements in the error covariance matrix.

This work also pointed at two other problems connected
to data assimilation. First, how to estimate the total fluid
transport through a domain or channel when using the QG
model; and second, the vertical projection of surface in-
formation. It was shown that the data assimilation process
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was able to regenerate the transport through a domain from
data. The effect of vertical influence of the surface data
has been determined by assuming a certain covariance be-
tween the upper and the lower layer. This is equivalent to
assuming a statistical knowledge of how barotropic or baro-
clinic the ocean is in the domain of interest. With the large
amount of surface information available from remote sensing
satellites, this is an issue of great importance, and a more
extensive treatment of the subject should be performed. A
discussion of the vertical projection of surface information
has been given by Haines [1991], in connection with a QG
model.
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