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Abstract 

The major inorganic and organic osmolytes responsible for hydrating the oocytes during pre-ovulatory 

meiotic maturation in autumn- and spring-spawning stocks of Atlantic herring are examined. Despite 

the ovulated eggs of spring-spawning herring being 1.6 to 2-fold larger than the autumn-spawning 

stock, the GSI (27 ± 3%) and degree of oocyte hydration (70 - 72% water) were similar. Normalising 

the data with respect to dry mass revealed that the physiological mechanisms underlying the 

maturational influx of water were the same for both classes of egg. Cl-, K+ and Pi together with a small 

pool of free amino acids (FAA) represented the driving forces for oocyte hydration. K+ (autumn and 

spring) and Pi (spring) maintained their concentrations in the ovulated eggs, while all other ions, 

including Cl-, Na+, NH4
+ and Mg2+ were significantly diluted. In contrast the FAA concentration 

increased during the hydration process. Amongst the inorganic ions, Cl- showed the greatest increase in 

the ovulated eggs. The FAA content doubled from 1.5% to 3.3% of dry mass during oocyte hydration 

and accounted for 29% to the calculated ovoplasmic osmolality in the ovulated eggs from both autumn- 

and spring-spawners. This significant osmotic effect of the small pool of FAA was due to the low water 

content of the benthic eggs. The differential movement of the inorganic and organic osmolytes that 

underly oocyte hydration in Atlantic herring are discussed in relation to current models of 

transmembrane ion flux. 
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Introduction 

Oocyte hydration is a cellular event that coincides with meiotic maturation in marine 

or brackish water teleosts prior to ovulation. The two processes are closely, but 

independently regulated by extra- and inter-cellular signalling cascades that involve 

pituitary hormones and follicular steroids, intracellular control of acid hydrolases, and 

the differential proteolysis of yolk proteins (Selman et al. 2001; Carnevali et al. 2006; 

Finn et al. 2007a). Water influx via specialised aquaporins (Fabra et al. 2005; 2006; 

Cerdà et al. 2007) involves the generation of a transient intra-oocytic osmotic 

potential through depolymerisation of mostly VtgAa-derived yolk proteins and/or 

transmembrane ion fluxes (Finn et al. 2002a; Finn 2007a). 

Earlier studies have shown that the degree of hydration differs between species that 

spawn pelagic and benthic eggs, pelagophils and benthophils, respectively (Oshiro & 

Hibiya 1981a, b; Craik & Harvey 1984, 1987; Thorsen & Fyhn 1991; Thorsen et al. 

1996; Finn et al. 2002a; b; Cerdà et al. 2007). In pelagophils oocyte hydration reaches 

levels of >90%, and is primarily driven by organic osmolytes in the form of free 

amino acids (FAA) that are liberated mainly due to the differential proteolysis of 

VtgAa type yolk proteins (Matsubara et al. 1999; Reith et al. 2001; Finn et al. 2002a; 

b; Sawaguchi et al. 2006a; Finn 2007a; b; Finn & Kristoffersen 2007; Kolarevic et al. 

2008).  

Inorganic ions also play an osmotic role in these species, but the ions involved appear 

to vary according to species. In certain pelagophils, K+ but not Na+ is argued to play a 

major osmotic role in the oocyte hydration of plaice (Pleuronectes platessa) (Craik & 

Harvey 1984; Thorsen & Fyhn 1991), lemon sole (Microstomus kitt) (Thorsen and 

Fyhn 1991), Atlantic croaker (Micropogonias undulates) (LaFeur & Thomas, 1991), 

spotted seatrout (Cynoscion nebulosus) (LaFleur & Thomas 1991), black seabass 

(Centopristis striata) (Selman et al. 2001) and gilthead seabream (Sparus aurata) 

(Fabra et al. 2006). In other pelagophils, Cl- plays a greater osmotic role during the 

hydration phase in grey mullet (Mugil cephalus) (Watanabe & Kuo 1986), Baltic and 

Atlantic cod (Gadus morhua) (Thorsen et al. 1996), and Atlantic halibut 

(Hippoglossus hippoglossus) (Finn et al. 2002a). In these latter species K+ also 

increases, but the increase is not equimolar with Cl- until the final stages of hydration. 

Furthermore, in contrast to other pelagophils studied, grey mullet has a high Na+ 
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content, although its content does not change during oocyte hydration (Watanabe & 

Kuo 1986). 

In marine benthophils oocyte hydration is more modest, and may or may not involve 

limited proteolysis of VtgAa-type yolk proteins (Finn et al. 2002b; LaFleur et al. 

2005). For species such as common mummichog (Fundulus heteroclitus), corkwing 

(Crenilabrus melops) or ayu (Plecoglossus altivelis) limited yolk proteolysis occurs 

resulting in the liberation of a small pool of FAA (Greeley et al. 1986; McPherson et 

al. 1989; Finn et al. 2002b; Chen et al. 2003; LaFleur et al. 2005; Raldúa et al. 2006). 

In other marine benthophils, such as ballan wrasse (Labrus bergylta), and cuckoo 

wrasse (Labrus mixtus) no such depolymerisation of yolk proteins is observed (Finn 

et al. 2002b). Oocyte hydration in such species appears to be driven by the differential 

movement of inorganic ions across the plasma membrane. In common mummichog, 

K+ is regarded to be the major inorganic osmolyte with Na+ playing a lesser role in the 

hydration process (Greeley et al. 1991). In contrast Na+ has been shown to be the 

dominant cationic osmolyte in ayu (Chen et al. 2003). Few studies, however, have 

examined the simultaneous changes in multiple ions and organic osmolytes during 

oocyte hydration in teleosts. The present study provides such data for Atlantic 

herring, a clupeocephalan marine benthophil. 

As a group, the Clupeiformes are intriguing since they were amongst the earliest 

extant fishes to reinvade the oceans during teleost evolution (Finn & Kristoffersen 

2007). About 150 fossil species of Clupeiformes have been described, with marine 

forms that date back to the early Cretaceous (Maissey 1996). They are basal members 

of the larger rank Clupeocephala, which includes the sister-group Ostariophysi 

(Lecointre & Nelson 1996; Nelson 2006). This latter group (mainly carps, characins, 

loaches and catfishes) did not reinvade the oceans, but with ~8000 species among 68 

families, is the most species abundant group of freshwater teleosts (>98% live in 

freshwater). We have previously argued that oocyte hydration was a key event in the 

adaptive evolution of the Acanthomorpha to a marine life (Finn & Kristoffersen 

2007). The aim of the present study was therefore to understand how more ancestral 

marine benthophils solved the problem of hydrating their eggs prior to oviposition in 

the hyper-osmotic spawning environment of the ocean. 
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Materials and methods 

Samples 

Sampling of adult females (N = 19) was conducted using gill nets during the autumn 

(September – October) and spring (March) spawning seasons in coastal waters near 

Bergen, Norway. Females were euthenised (blow to the head) and transported on ice 

to the Institute of Biology, University of Bergen where biometric data (fork length 

and total length; ± 1 mm), and gravimetric data (female whole body, liver and ovary 

wet masses; ± 0.1 g) were determined. Gonadosomatic index (GSI) was calculated as 

the ovarian fraction of the female wet body mass. Transport to the laboratory lasted 

<12 hr, a procedure that does not compromise egg viability. We have found that wild-

caught Atlantic herring kept on ice maintain fertilisable eggs up to 24 hr post mortem.  

Vitellogenic oocytes (Vtg ooc; N = 10-15 per tube), pre-hydrated oocytes (PH ooc; N 

= 15-20 per tube) and ovulated eggs (OV eggs; N = 15-25 per tube) were individually 

dissected from two, four, and eight autumn-caught females, respectively. OV eggs (N 

= 12-17 per tube) were also individually dissected from five spring-caught females 

(Table 1). All dissections of oocytes and eggs occurred following ovary excision in a 

cold room (6ºC). Oocyte and egg samples were analysed for wet mass (Sartorius top 

balance, ± 0.1 mg) after removal of excess ovarian fluid, immediately frozen in liquid 

nitrogen, and stored at -80ºC until lyophilisation or extraction. Separate samples (N = 

30-40) were placed in FO medium (Finn et al. 2002b) for major (d1) and minor (d2) 

diameter measurements using a calibrated binocular microscope. Oocyte and egg 

volumes (V) were calculated according to Alderdice et al. (1979a) using the following 

formula: 

V = 4/3 π (d2/2)2 (d1/2) 

Mean diameters (D) were estimated from the volumes using the following formula: 

D = 2(3V/4π)1/3 

After lyophilisation, sample dry mass was determined for 2 - 8 tubes from each 

female (Cahn 25 Automatic Electrobalance, ± 1 µg). Oocyte and egg stages were 
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classified by size, visual inspection of the degree of yolk transparency and retention in 

ovarian follicles. Ovulated eggs were free-running within the ovarian lumen. 

 

Sample treatment for ion and FAA analyses 

Frozen samples were extracted directly in their Eppendorf tubes using a 1:1 mix (v/v) 

of ice-cold acetonitrile (AcN) and glass distilled, ion exchanged (Millipore Milli-Q) 

water (ddH2O). After sonication (15 min) samples were allowed to extract under 

rotation (Hetomix) for 24 hr at 4°C. Samples were then centrifuged (10 000x g, 5 min, 

4°C) and the supernatant appropriately diluted in ddH2O for ion analyses and borate 

buffer for amino acid analyses (see below).  

 

Inorganic ion analyses 

Inorganic ions were analysed using a Dionex DX-120 Ion Chromatograph set up for 

cation and anion analyses (CS12A & AS9-HC columns including pre-columns) with 

CSRS and ASRS Ultra II suppressors. Samples were automatically processed using a 

Gilson 221 XL Liquid Handler and a Gilson 402 Syringe pump. Chromeleon (version 

6.60) software from Dionex was used for data acquisition and integration. The eluents 

(flow of 1.0 mL min-1) were 10 mM H2SO4 for cations and 9 mM Na2CO3 for anions. 

External standards (Dionex five anion standard, part # 37157 and Dionex six cation-II 

standard; part # 46070) were run at four concentration levels prior to- and subsequent 

to each run, with ddH2O as blank. All samples, standards and blanks were analysed in 

duplicate. The supernatants were appropriately diluted in ddH2O before analyses 

depending on the sample. The analytical reproducibility based on repetitive analyses 

of standards was <1.5% for all ions except phosphate (Pi) at 100 µM, which showed a 

slightly higher variability (≈2.5%). 

 

Amino acid and protein analyses 

Free amino acids (FAA) were determined by reversed phase liquid chromatography 

by a Gilson HPLC automated with an ASTED robot using fluorometric detection 

(orthophtal-dialdehyde, OPA and 9-fluorenyl-methoxy-carbonyl, FMOC reagents). A 
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Varian Inertsil 3 ODS-3 (3 µm), 150 x 3 mm column, thermostated at 30ºC, and 

ChromSep guard column SS 10 x 2 mm, were used. The mobile phase was a mixture 

of solution A (10 mM phosphate buffer, pH 6.6) and solution B (volume mixture of 

solution A:AcN:methanol = 2:3:5). Column flow increased from 0.5 mL min-1 (start 

of run) to 0.7 mL min-1 (end of run), starting at 100 % solution A and ending at 100 % 

solution B. Gilson Unipoint Software, version 2.10 was used for sample integration. 

Blanks and external standards (mixture of 20 amino acids at 25 µM (125 µM for Pro 

and Lys) made from Sigma LAA21-IKT kit containing Tau, or Pierce amino acid 

standard H at 25 µM) were run for every eighth sample. Based on previous tests the 

yield for Gln as standard was estimated as 94% of the equivalent amount of Tau. The 

supernatants were appropriately diluted in borate buffer (100 mM; pH 10.4) prior to 

analyses. The analytical reproducibility based on repetitive analyses of standards was 

<1% for all amino acids except Pro (4%). 

Protein content was determined in quadruplicate with the Lowry technique following 

precipitation and washing with trichloro-acetic acid as described by Finn et al. 

(2002a). 

 

Statistical treatment of the data 

Statistical differences at the 5% level were determined via ANOVA or the Student t-

test according to the procedures of Sokal & Rohlf (2000). 

 

Results  

Gravimetry and biometry 

Based on the GSI and the presence of oocytes or eggs, two populations of Atlantic 

herring were observed during the autumn sampling season (Fig. 1). Females that had 

low GSI (5.9 ± 1.8%), and Vtg ooc were classified as spring-spawners undergoing 

vitellogenesis. The second population consisted of mature females with either post-

vitellogenic pre-hydrated oocytes (PH ooc) or ovulated eggs (OV eggs). These latter 

females were classified as autumn-spawners.  
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Table 1. Biometric and gravimetric data for females, oocytes and eggs from autumn (A) and 

spring (S) spawning Atlantic herring (Clupea harengus). For gravimetric data, n refers to the 

number of replicate tubes of oocytes or eggs analysed from each female, and (∑ni) for the 

total number of oocytes or eggs dissected. For mean diameter data, ni refers to the number of 

individual oocytes or eggs measured. GSI for female 14 was not recorded due to leakage of 

free-running eggs. Vtg ooc: vitellogenic oocytes; PH ooc: pre-hydrated oocytes; OV egg: 

ovulated egg. 

 

The largest eggs were obtained in March from the spring-spawning population of 

Atlantic herring (mean wet mass: 1.24 ± 0.13 mg ind-1; mean diameter: 1.30 ± 0.05 

mm), and were 1.6 to 2-fold (mean 1.7-fold) the size of the OV eggs from autumn-

spawners (mean wet mass: 0.73 ± 0.07 mg ind-1; mean diameter: 1.10 ± 0.05 mm, 

Table 1). The larger size of the spring-sampled OV eggs was not due to greater 

hydration or GSI (Fig. 1, 2). The higher GSI of both autumn- and spring-collected 

females with OV eggs, compared to autumn-collected females with PH ooc, was 

caused by the higher water load of the hydrated eggs rather than greater reproductive 

investment. Relative water contents did not differ significantly between Vtg ooc (58.2 

± 0.9%) and PH ooc (59.2 ± 0.7%) in the autumn-collected females.  
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Figure 1. Relationship between volume and wet mass of oocytes and eggs of autumn- and spring-

spawning Atlantic herring (Clupea harengus). Least squares linear regression equation (± 95% 

confidence intervals): y = 0.0157 (± 0.0490) + 0.9224 (± 0.0582) x; r2 = 0.985. Inset: Gonadosomatic 

index (GSI) of sampled females with significant differences denoted by unequal letters. Values are 

means ± SD. A: autumn-spawners; S: spring-spawners; Vtg ooc: vitellogenic oocytes; PH ooc: pre-

hydrated oocytes; OV egg: ovulated egg. 

 

The mass fraction of water increased to 72.2 ± 1.04 % in OV eggs of autumn-

spawners, and was 70.7 ± 0.62 % in OV eggs of spring-spawners (Fig. 2). Although 

these values only represent a variation of 1.5%, the difference was significant (t = 

3.096; df = 11). Regression analysis of oocyte and egg volume versus wet mass 

showed that oocytes and eggs had a mean specific gravity of ~1.068 kg L-1, i.e. denser 

than seawater (1.027 kg L-1 at 10°C; 35 ppt seawater). 
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Figure 2. Relative water contents of vitellogenic oocytes (Vtg ooc), pre-hydrated oocytes (PH ooc) and 

ovulated eggs (OV egg) in Atlantic herring (Clupea harengus) as a function of oocyte diameter. Values 

are means ± SD. A: autumn-spawners; S: spring-spawners. 

 

Osmolytes 

Due to the synchronous nature of oogenesis in Atlantic herring, oocytes and eggs 

were not obtainable from the same female. In order to clarify the quantitative changes 

that occurred during oocyte hydration, total solute data (nmol ind-1) are presented for 

pooled autumn-sampled PH ooc and OV eggs that did not differ significantly in dry 

mass, while the ovoplasmic concentration and data normalised to dry mass are 

presented for all females (Fig. 3). For the autumn-sampled Atlantic herring, an 

increase was found (in nmol ind-1) for Cl- (19.3), K+ (16.4) and Pi (6.3) (Fig. 3a). No 

significant changes were noted for Na+, NH4
+, or Ca2+, while a significant decline was 

observed for Mg2+ (0.6), and SO4
2- was undetectable. The larger OV eggs of spring-

sampled Atlantic herring contained significantly greater amounts of the major 

inorganic osmolytes Cl-, K+, Pi, and Na+. Levels of NH4
+ were also significantly 

elevated in these latter OV eggs.  
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Figure 3. Changes in the inorganic ion and free amino acid (FAA) pools during oocyte hydration in 

Atlantic herring (Clupea harengus). Values are means ± SD. Panel (a): Quantitative changes in solute 

content determined in autumn-sampled pre-hydrated (PH ooc) and ovulated eggs (OV egg) of equal dry 

mass (Table 1: females 3, 4, 6, 8, 9, 11, 13 and 14), and spring-sampled OV eggs (Table 1: females 15, 

16, 18 and 19). Panel (b): Fractional solute content of all oocytes and eggs. Panel (c): Solute 

concentrations calculated from total solute content (nmol ind-1) and water content (mg ind-1) of all 

oocytes and eggs. Significant differences are denoted by unequal letters. A: autumn-spawners; S: 

spring-spawners. EAA: indispensable amino acids; NEAA: dispensable amino acids. 

 

When normalised to dry mass, no significant differences were noted between the 

inorganic ion contents of the OV eggs of autumn- or spring-sampled Atlantic herring, 

except for Ca2+, which decreased (Fig. 3b). Compared to the PH ooc, both classes of 

OV egg (autumn and spring) contained significantly greater amounts of Cl-, K+, Pi, 

and Na+, but lower amounts of Mg2+. In terms of ovoplasmic concentration, however, 

only K+ (autumn and spring) and Pi (spring) maintained their levels in the hydrated 

eggs, while Cl-, Na+, NH4
+ and Mg2+ were significantly diluted (Fig. 3c). 

Total FAA content doubled (∆ 31 ± 2 nmol ind-1) in autumn-sampled OV eggs 

compared to the PH ooc, and were further significantly increased in spring-sampled 

OV eggs (Fig. 3a). Similar to the situation for inorganic ions, normalised FAA 

contents of autumn- and spring-sampled OV eggs were not significantly different 

(Fig. 3b). Contrary to data for the inorganic osmolytes, the concentrations of FAA 
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were significantly increased in both autumn- and spring-collected OV eggs compared 

to the PH ooc (Fig. 3c). Each FAA, except Arg and Glu, increased significantly 

during oocyte hydration of autumn- and spring-sampled OV eggs, although some 

variation was noted for Thr, Val, Lys, and Pro (Fig. 4). 

 

Figure 4. Free amino acid (FAA) profiles for pre-hydrated oocytes (PH ooc) and ovulated eggs (OV 

eggs) of Atlantic herring (Clupea harengus) normalised as % of dry mass. Values are means ± SD. 

Indispensable amino acids (EAA) are His, Thr, Arg, Val, Met, Trp, Phe, Ile, Leu, Lys. Dispensable 

amino acids (NEAA) are Asp, Glu, Cys, Asn, Ser, Gln, Gly, Ala, Tyr, and Pro. Tau is an amino acid 

analogue not found in proteins. Significant differences are denoted by unequal letters. A: autumn-

spawners; S: spring-spawners. 

 

 

 

 

 

Figure 5. Composite views of the major solutes 

that contribute to the osmolality of pre-hydrated 

oocytes (PH ooc) and ovulated eggs (OV eggs) 

in autumn- (A) and spring- (S) spawning 

Atlantic herring (Clupea harengus). Calculated 

osmolality is based on total solute content (nmol 

ind-1) and water content (mg ind-1) and an 

osmotic coefficient of 0.9 for monovalent ions. 
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Fractional protein content did not differ significantly (t = 0.37; df = 11) between the 

PH ooc and OV eggs with values of 62.5 ± 4.2 and 61.5 ± 2.4% of dry mass, 

respectively. 

 

Discussion 

In the present study, we have for the first time determined the changes in the major 

osmolytes responsible for oocyte hydration in Atlantic herring. Although PH ooc 

were not obtained for the spring-spawning stock of Atlantic herring, the dry mass-

normalised data for spring-sampled OV eggs showed that the underlying mechanisms 

of oocyte hydration were the same. Both autumn- and spring-spawning Atlantic 

herring had similar degrees of egg hydration (70 – 72 %) despite their 1.6- to 2-fold 

difference in size. The greater size of the spring- compared to the autumn-collected 

OV eggs is corroborated by previous reports (Farran 1938; Baxter 1959; Hempel & 

Blaxter, 1967). The current findings of equivalent GSI in the autumn- and spring-

spawners with OV eggs are further in line with the notion that an atretic reduction in 

fecundity occurs during over-wintering in this species (Óskarsson et al. 2002; Kurita 

et al. 2003). 

The fractional content of normalised osmolyte data revealed that the major changes 

that took place during oocyte hydration were an increase in FAA content followed by 

Cl-, K+ and Pi. From a physiological perspective, however, Cl- (28.4%) and FAA 

(28.6%) were the dominant osmolytes followed by K+ (18.6%), Na+ (12.1%), Pi 

(9.5%) and NH4
+ (2.5%) that contributed to the osmotic potential of the OV eggs (Fig. 

5B). Assuming an osmotic coefficient of 0.9 for monovalent inorganic ions 

(Washburn 1926-1930; 2003), the osmolality of autumn-sampled PH ooc was 404 

mOsmol kg-1 oocyte water, while that of autumn- and spring-sampled OV eggs was 

376 and 379 mOsmol kg-1 oocyte water, respectively.  

The degrees of hydration for the OV eggs agree with the data of Kurita et al. (2003), 

while the calculated osmolalities are lower than previously published data for the yolk 

osmolality of unfertilised eggs of Atlantic herring (425 - 460 mOsm; (Hølleland & 

Fyhn 1986). Our data, however, are close to the yolk osmolalities of Pacific herring 

held in 35 ppt seawater (390 mOsm; Alderdice et al. 1979b), and represent slightly 
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hyper-osmotic values in relation to the blood plasma previously determined for 

Atlantic herring (325 mOsm; Herbert & Steffensen 2006). Our current data are closer 

to the 30 minute post-exercise values of 400 mOsm determined for Atlantic herring 

by Herbert & Steffensen (2006). All data, however, show that the ovoplasm and 

extracellular fluids of the adults are strongly hypo-osmotic to the spawning 

environment, a condition also reported for other marine teleosts (Lasker & Theilacker 

1962; Davenport et al. 1981; Riis-Vestergaard 1982; Kjørsvik et al. 1984; Watanabe 

& Kuo 1986; Mangor-Jensen 1987; Finn et al. 2002a). 

Table 2. The molar charge of cations (Na+, K+, NH4
+, Mg2+, Ca2+), anions (Cl-, H2PO4) and 

free amino acids between pH 5-6 for pre-hydrated oocytes (PH ooc) and ovulated eggs (OV 

egg) of autumn (A) and spring (S) spawning Atlantic herring (Clupea harengus). Values are 

calculated from solute concentrations (Fig. 3c and 4). At pH 5 - 6, free Pi is present as 

H2PO4
-, while other ions are fully dissociated. 

 

Normalising the data with respect to dry mass showed that the major osmolytes that 

could drive hydration of the oocytes in both classes (autumn and spring) of Atlantic 

herring were FAA, Cl-, K+ and Pi. Conversely, Na+, NH4
+, and Mg2+ were not 

effective osmolytes since each was strongly diluted by the inflow of water. Despite 

the largest increase noted for Cl- in the autumn-sampled females, in relative terms Cl- 

increased 1.4-fold, while K+ increased 1.6-fold, and Pi increased 1.5-fold. Only K+ 

and Pi (spring eggs) remained undiluted following hydration, while all other ions, 

including Cl- were diluted. An explanation for this arises from the doubling of FAA 
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content, which represents the only pool of osmolytes that showed increased 

concentration in the OV eggs. At a physiological pH of 5 - 6, which has been reported 

for maturing oocytes of marine teleosts (Matsubara et al. 2003), only certain FAA are 

charged. To determine whether our measurements represent physiologically relevant 

values, the charge equivalence of the oocytes and eggs was calculated (Table 2). 

These data show that the total pool of charged solutes in the OV eggs is close to 

electroneutrality at a pH of 5 – 6. 

 

Figure 6. Comparison of the major solutes normalised to dry mass in the oocytes and eggs of the 

marine benthophil Atlantic herring (Clupea harengus) and a marine pelagophil Atlantic halibut 

(Hippoglossus hippoglossus) after Finn et al. (2002a). See legend to Fig. 1 for the description of 

acronyms. 

The doubling of the FAA pool during oocyte hydration only represented a fractional 

increase of 1.8% of dry mass. This is considerably less than observed in pelagophils 
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(Fig. 6). Nevertheless, the modest increase in FAA in Atlantic herring still contributed 

29% to the osmotic pool of egg solutes (Fig. 5). This significant contribution to the 

ovoplasmic osmolality in Atlantic herring OV eggs is due to the lower water content 

of the benthic eggs (70 - 72%) compared to pelagic eggs (>90%). The increase in the 

FAA pool further suggests that limited proteolysis of yolk proteins occurs in this 

species. With a protein content of 62% of dry mass, the increase in the FAA pool in 

the autumn-sampled OV eggs would imply hydrolysis of a small fraction of the yolk 

protein pool (<2.5%). 

The increased Pi content in the OV eggs is likely to derive from dephosphorylation of 

phosvitin (Pv). Evidence for this notion derives from our unpublished observations 

that Pv bands disappear from the protein profiles of hydrating Atlantic herring 

oocytes, and the current observations of a concomitant rise in free Ser (Fig. 4). Recent 

studies have also demonstrated that acid phosphatases catalyse the dephosphorylation 

of Pv in barfin flounder (Sawaguchi et al. 2006b), while other studies have shown a 

synchronous rise in Pi and Ser during the disappearance of Pv bands in Atlantic 

halibut (Finn 2007a). Ion channels for the inward movement of Pi in hydrating 

oocytes may thus not be necessary, but in addition to the previously proposed gap-

junctional transport (Wallace et al. 1992; Cerdà et al. 1993; 2007) are the likely basis 

for the increased contents of K+ and Cl-. 

Two ATP-dependent electrogenic ion pumps are known to be activated during oocyte 

maturation in pelagophil and benthophil marine teleosts: An acidifying V-class proton 

pump (vH+) (Selman et al. 2001; Raldúa et al. 2006) and a Na+,K+-ATPase (NKA) 

(LaFleur and Thomas 1991; Wallace et al. 1992). The vH+ is associated with the 

acidification of vacuolar endosomes/lysosmes in plants and animals in order to initiate 

receptor-ligand events, membrane trafficking and luminal activation of degradative 

enzymes within the lysosomal vesicle. Other physiological roles include regulation of 

pH, volume homeostasis, organic solute transport, cell migration, cell proliferation 

and differentiation (Beyenbach & Wieczorek 2006; Hurtado-Lorenzo et al. 2006). 

The neutralising influx of Cl- is also associated with the electrogenic activity of vH+, 

but current models implicate separate channels such as the CFTR or ClC family for 

this purpose (Jentsch et al. 2005; Jentsch 2007; Suzuki et al. 2006). To our 

knowledge, no information exists for the cellular or sub-cellular localisation of the 
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vH+, CFTR or ClCs in developing oocytes and eggs of teleosts, although variants of 

each type of channel are expressed in the plasma membrane and endosomal/lysosomal 

membranes of other organisms (Beyenbach & Wieczorek 2006; Di et al. 2006; 

Hurtado-Lorenzo et al. 2006; Swanson 2006; Suzuki et al. 2006; Jentsch 2007). 

Earlier studies have shown that the vesicular formation of yolk in teleosts and other 

animals represents a specialisation of the endosomal-lysosomal pathway (Busson-

Mabillot 1984; Wall & Maleka 1985; Wall & Patel 1987; Sire et al. 1994; Fagotto 

1995), and the maturational acidification involving vH+ is crucial to this process 

(Selman et al. 2001; Matsubara et al. 2003; Carnevali et al. 2006; Raldúa et al. 2006). 

Our current data for the increase in Cl- as the major inorganic osmolyte involved in 

hydrating the oocytes of Atlantic herring supports the notion that chloride channels 

are likely regulators of the hydration process. 

Current models for the transmembrane conductance of Cl- argue that cationic proton 

gradients from vH+ activity are the major driving forces for Cl- influx (Di et al. 2006; 

Swanson 2006; Jentsch 2007). However, for electroneutral, equimolar translocation of 

Cl-, our data for the increase in Cl- during oocyte hydration of autumn-spawning 

Atlantic herring (∆19.3 nmol • ind-1) would necessitate an equal amount of H+ for this 

purpose. Since the pH of teleost PH ooc is reported to be ~6, but decreases almost a 

full unit to ~5.1 during oocyte maturation/hydration (Matsubara et al. 2003), it is 

possible to calculate the total H+ influx necessary to elicit this acidification from our 

data. The total water content of autumn-spawning PH ooc of Atlantic herring in the 

present study was 333 ± 26 µg • ind-1, while that of the OV egg was 515 ± 40 µg • ind-1 

(Table 1). Hence only 3.8 pmol H+ would suffice to illicit this pH reduction. Although 

such an influx in H+ represents an almost 12-fold increase in the H+ content, it only 

represents 0.02% of the observed change in Cl- content. This analysis suggests that for 

equimolar H+/Cl- transport to occur, >99.98% of the pumped protons would have to 

be buffered. A more likely scenario is the ClC-mediated back-transport of H+ in 

exchange for Cl- augmented by a plasma membrane H+/K+ exchanger (Jentsch 2007). 

This latter electroneutral cation exchanger possibly in conjunction with a NKA that is 

activated early in the oocyte maturational cycle of pelagophil and benthophil teleosts 

(LaFleur & Thomas 1991; Wallace et al. 1992) could explain the observed influx of 

K+ and dilution of Na+ in the hydrating oocytes of Atlantic herring in the present 

study and of several teleosts in other studies (see introduction). However, the earlier 
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observations of an ouabain-sensitve NKA in pelagophils (LaFleur & Thomas 1991), 

but an ouabain-insensitve NKA in benthophils (Wallace et al. 1992), and the delayed 

increase in K+ compared to Cl- in certain teleosts (Watanabe & Kuo 1986; Finn et al. 

2002a) suggest that ion transport mechanisms and stoichiometry involved in oocyte 

hydration of marine teleosts are more complex. 
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