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The people along the sand 
All turn and look one way 

They turn their back on the land. 
They look at the sea all day. 

 
[…] 

 
The land may vary more; 

But wherever the truth may be 
The water comes ashore, 

And the people look at the sea. 
 

They cannot look out far. 
They cannot look in deep. 

But when was that ever a bar 
To any watch they keep? 

 
Robert Frost 
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accumulated weariness of all those days and nights of forced marches and insufficient 

sleep, constant peril and anxiety, seemed to roll across me all at once. I was actually too 
exhausted to realize at the moment that my life's purpose had been achieved.” 

Robert E. Peary, The North Pole 
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Summary 
This thesis investigates mesozooplankton abundance, composition and distribution in 

Svalbard waters in relation to hydrography. Sampling was carried out in the archipelago 

of Svalbard mainly during summer and autumn between 2000 and 2004. From cluster 

analysis four species assemblages were distinguished and these reflected differences in 

hydrography and bottom depth. In particular the distribution of the Atlantic Calanus 

finmarchicus relative to that of the Arctic Calanus glacialis was associated with different 

hydrographic regimes. Differences in the species assemblages primarily resulted from 

variations in species densities rather than from taxonomical variation. For species of 

Atlantic and Arctic origin significant relationships with temperature and salinity were 

found. Regression models were used to quantify the influence of water mass 

characteristics on the abundance of the three different Calanus species that co-occur in 

the study area. About 50% of the variability in abundance of each Calanus species could 

be accounted for by variability in temperature and salinity. C. finmarchicus abundance 

was positively related to warmer and more saline waters, as expected from its 

distributional southern core area. Conversely, the Arctic species C. hyperboreus was 

more abundant in colder and fresher waters. The numbers of C. glacialis decreased with 

increasing temperature and salinity in shallow areas, while the opposite trend was found 

in deep locations. Salinity and temperature between 50 - 150 m depth were in most cases 

better predictors for Calanus spp. abundance than near-surface conditions.  

Variability in the vertical distribution of the three Calanus species and Metridia longa 

reflected life history and behavioural adaptations on diel and seasonal scale. Diel vertical 

migration was observed for copepodite stages of M. longa but generally not for Calanus 

spp. The copepodite stage composition indicated a south to north delay in the succession 

of Calanus development and that the descent to overwintering depth had started at time 

of sampling. The vertical distribution patterns of C. finmarchicus and M. longa were 

found to be consistent with the hypothesis that the developmental stages distributed 

according to preferences for light intensity.  

This thesis includes one of few year-round studies on Calanus population dynamics from 

the high Arctic. The three Calanus species co-existed in the studied fjord. The estimated 

length of the life cycle of C. glacialis (1-2 years) and C. finmarchicus (1 year) were in 

    



agreement with previous studies in Svalbard and the Arctic in general. For C. 

hyperboreus a one year life cycle was observed which is among the shortest life cycle 

duration reported for this species. Differences in winter mortality rates for the three 

Calanus populations indicate that these affect the species composition in the study area.  

 

The observed statistical relationships between Calanus abundance and hydrography 

indicate that changes in ocean climate as a consequence of global warming may alter the 

relative composition of the three Calanus species in Svalbard waters. However, lack of 

such relationship between Calanus biomass and hydrography suggests that a changing 

climate may induce a shift in size structure rather than in biomass which may have 

repercussions on the pelagic food web.  
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Introduction  

The archipelago of Svalbard is located in a border-area between Atlantic and Arctic 

climatic and biogeographic zones (Stroemberg 1989). Ecological research in this area has 

mainly focused on the fjords along the western coast such as the Isfjorden area (Digby 

1961, Lie 1965), and more recently Hornsundfjorden (Koszteyn and Kwasniewski 1989, 

Koszteyn et al. 1991, Weslawski et al. 1991) and in particular Kongsfjorden (Hop et al. 

2002, Kwasniewski et al. 2003, Basedow et al. 2004, Hop et al. 2006, Willis et al. 2006). 

Northern and eastern Svalbard waters on the other hand have only occasionally been 

sampled (Mumm et al. 1998, Walkusz et al. 2003).  

The main pathway of Atlantic water into the Arctic Ocean (the West Spitsbergen Current 

WSC, see also ‘The physical environment in the study area’) runs along the western coast 

of Svalbard. A boreal pelagic community characterizes these waters. This community is 

is transported northwards within the WSC and is commonly found as expatriates in the 

Arctic Ocean (Sars 1900, Hirche and Mumm 1992, Mumm et al. 1998, Hop et al. 2006). 

There is high inter-annual variability in the strength of the WSC and consequently in the 

inflow of Atlantic water to the Arctic (Saloranta and Haugan 2001). Observations from 

fjord plankton populations suggest that variability in abundance and biomass are strongly 

related to the variability in the influx of Atlantic water mass (Hop et al. 2002, 

Kwasniewski et al. 2003). Sufficiently strong this inflow alters the species composition 

towards boreal species, whereas Arctic species dominate if the Atlantic influx is 

diminished (Hop et al. 2002, Kwasniewski et al. 2003, Willis et al. 2006). In addition, 

Svalbard waters are often modified by local oceanographic processes (e.g. freshwater 

runoff, wind driven circulation, and cooling). Thus the plankton communities in Svalbard 

waters reflect variations in ocean climate in particular due to two main factors: advective 

input and loss of organisms, and biological responses to regional as well as local 

variations in water characteristics. Depending on the frequency and strength of the 

advective input to Svalbard waters relative to local processes the advective signal should 

be observable on the level of plankton community as a quantifiable relationship between 

boreal and Arctic forms and hydrographic variability. Exploration of this relationship 
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between hydrographic variability and variation in the abundance of dominating copepod 

species was part of the motivation for this study. 

 

Plankton by definition drifts passively with water currents (Hensen 1887) thus their 

spatial and temporal distribution is linked to hydrodynamic processes such as water mass 

distribution and circulation patterns. Plankton is the key element of the pelagic foodweb 

with zooplankton as the main trophic link between primary producers and higher trophic 

levels. Thus plankton plays an important role in integrating hydroclimatic signals into the 

pelagic ecosystem since any effect of hydrographic variability on plankton populations 

will be transferred to the next trophic level (Planque and Taylor 1998, Beaugrand 2005, 

Hays et al. 2005). The relatively short life cycles of many plankton populations make 

them well suited for tracing seasonal to inter-annual changes in environmental conditions 

(Mackas et al. 2004, Hays et al. 2005). In the North Atlantic inter-annual variations in 

zooplankton abundance has for example been related to hydrodynamic variables such as 

the Gulf stream index (Reid et al. 1998, Planque and Taylor 1998), sea surface 

temperature (Conversi et al. 2001, Lindley and Reid 2002), wind direction and intensity 

(Dickson et al. 1988), circulation patterns (Stephens et al. 1998, Reid et al. 2003), and in 

particular to the North Atlantic Oscillation (NAO) index (Planque and Taylor 1998, Reid 

et al. 1998, Greene et al. 2003, Nash and Geffen 2004). 

 

In general one can distinguish between direct and indirect effects of climatic variability 

on zooplankton populations (Ottersen et al. 2001). Direct effects include changes in 

development, growth and survival due to changes in temperature (Campbell et al. 2001, 

Vidal 1980a, Huntley and Lopez 1992, Hirst and Lampitt 1998) as well as changes in the 

distribution and abundance of organisms through changes in circulation patterns and 

water mass distribution (Iles and Sinclair 1982, Stephens et al. 1998, Beare et al. 2002, 

Dalpadado et al. 2003 ). Indirectly ocean climate variability can influence zooplankton 

populations through its effect on ecosystem functions such as the timing and magnitude 

of the spring bloom (Richardson and Schoeman 2004) or through hydrodynamic induced 

changes in the predator community (Reid et al. 2000, Wespestad et al. 2000, Dalpadado 

et al. 2001). The interactions between hydrographic variability and direct and indirect 
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ecosystems responses have been well documented in the Barents Sea (Skjoldal and Rey 

1989, Ottersen and Stenseth 2001). Here variability in zooplankton abundance and 

distribution is suggested to be directly affected by inter-annual variability in the inflow of 

Atlantic water (Helle 2000, Edvardsen et al. 2003, Dalpadado et al. 2003), but also the 

timing of the inflow has an effect on the amount of advected zooplankton (Skjoldal et al. 

1992). In addition, variability in ice cover and stratification processes affect the timing of 

the spring bloom and thus the synchronization between primary and secondary producers 

(Skjoldal et al. 1987). Variability in zooplankton abundance due to variability in ocean 

climate may have repercussions on the recruitment and population size of fish stocks 

(Skjoldal et al. 1992, Astthorsson and Gislason 1998, Helle and Pennington 1999, 

Sundby 2000). 

 

Strong relationships between hydrography and variability in abundance and distribution 

have in particular been observed for copepods of the genus Calanus (Grainger 1963, 

Jaschnov 1961, van Aken et al. 1991, Edvardsen et al. 2003). Calanus spp. dominates the 

mesozooplankton community in Arctic and Atlantic waters in terms of biomass (Sars 

1900, Hirche 1991, Mumm et al. 1998). Therefore I selected these calanoid copepods as 

target species for this thesis (papers II, III and IV). Three Calanus species co-occur in 

the study area: Calanus finmarchicus (Gunnerus, 1765), Calanus glacialis Jaschnov, 

1955 and Calanus hyperboreus Krøyer, 1838. C. finmarchicus is defined as an Atlantic 

species (Jaschnov 1966, Jaschnov 1972, Conover 1988). Its occurrence in the Arctic 

Ocean is typically associated with the inflow of Atlantic water masses (Grainger 1961, 

Grainger 1963, Jaschnov 1972, Mumm et al. 1998) and it may dominate the calanoid 

community in areas of strong Atlantic influence (Thibault et al. 1999, Auel and Hagen 

2002). However, it is regarded as an expatriated species in the Polar Basin and probably 

does not reproduce there (Gran 1902, Tande et al. 1985, Diel 1991, Conover and Huntley 

1991).  

C. glacialis and C. hyperboreus are of Arctic origin (Jaschnov 1972, Conover 1988, 

Hirche 1991) and dominate the mesozooplankton community in the Arctic Ocean in 

terms of biomass (Sars 1900, Lee 1974, Dawson 1978, Hirche and Mumm 1992, Thibault 

et al. 1999). C. glacialis has its main distribution in the relatively shallow Arctic shelf 
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seas (Kosobokova et al. 1998, Lischka et al. 2001, Head et al. 2003) whereas C. 

hyperboreus is a more oceanic species penetrating further south into deep Atlantic 

waters, but most likely with the Greenland Sea as a centre of distribution (Hirche 1991, 

Richter 1994).  

The three species overlap in their distribution where Atlantic and Arctic water masses 

meet, such as the Barents Sea (Falk-Petersen et al. 1999), the Labrador Sea (Head et al. 

2003), the North East Polynya (Ashjian et al. 1995), the Nansen Basin (Mumm 1993) and 

in fjords of Greenland and Svalbard (Digby 1954, Madsen et al. 2001, Kwasniewski et al. 

2003, paper III). Where the three species co-occur they can account for up to 75 % of 

the mesozooplankton standing stock (Auel and Hagen 2002). Calanus spp. is a key prey 

for many fish stocks in the North Atlantic (and adjacent shelf seas) such as cod (Gadus 

morhua) (Helle and Pennington 1999, Sundby 2000), capelin (Mallotus villosus) 

(Gjøsæter et al. 2002) and herring (Clupea harengus) (Corten 2001). Also in the Arctic 

pelagic food web Calanus spp. is identified as a key species being the dominant prey 

species for the main predators here (polar cod (Boreogadus saida), Themisto libellula, 

Mertensia ovum; Scott et al. 1999, Falk-Petersen et al. 2002, Auel et al. 2002, Hop et al. 

2006) and Calanus spp. lipid markers can be traced throughout the food web to higher 

trophic levels (Dahl et al. 2000, Falk-Petersen et al. 2004). 

All three species are primarily herbivorous and like many zooplankton species at high 

latitudes they accumulate energetic reserves in form of lipids during periods of high food 

abundance (Lee 1975, Scott et al. 2002). These energy reserves sustain the animals 

during periods of limited food supply (Lee 1974, Sargent and Falk-Petersen 1988), and 

may fuel reproduction and development in early spring, thereby allowing reproduction to 

take place before the phytoplankton spring bloom starts (e.g. Smith and Schnack-Schiel 

1990, Conover and Huntley 1991, Hirche 1996a, Niehoff et al. 2002, Lee et al. 2006). As 

another key adaptation to life at high latitudes Calanus spp. conducts seasonal 

ontogenetic vertical migration (Hirche 1996b, Hirche 1997, Kosobokova 1999). After 

synthesizing large lipid reserves during the productive season (Conover and Huntley 

1991, Scott et al. 2000), the animals descend to deeper water where the winter is spent in 

a non-feeding state with reduced metabolism (Conover and Huntley 1991, Hirche 1996b). 

Life history strategies of Calanus differ between species and populations in a way that 
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seem to reflect adaptation to different environmental conditions (Conover 1988, paper 

IV). 

 

Observations indicate that the Arctic Ocean is in transition to a warmer state with reduced 

ice cover (ACIA 2004, Polyakov et al. 2005, Anisimov et al. 2007). This trend is in part 

attributed to global warming caused by anthropogenic intensification of the global 

greenhouse effect (Johannessen et al. 2004). It is generally agreed that the effects of 

climate change may be more pronounced in the Arctic since decreasing ice and snow 

cover will reduced the albedo and thereby enhance the warming (positive ice-albedo 

feedback; ACIA 2004, Serreze and Francis 2006). However, there is also high natural 

annual, decadal and multi-decadal variability (Saloranta and Haugan 2001, Polyakov et 

al. 2002) in the in- and outflow to and from the Arctic Ocean that is related to large scale 

atmospheric weather patterns such as the North Atlantic Oscillation (NAO) (Dickson et 

al. 2000) and the Arctic Oscillation (AO) (Rigor et al. 2002, Zhang et al. 2003).  

Over the last decades the inflow of Atlantic water into the Arctic has intensified, and 

temperature and salinity is increasing over large areas of the Arctic Ocean (Morison et al. 

1998, Morison et al. 2000, Schauer et al. 2004). Since variations in the inflow of Atlantic 

water to the Arctic correlates with fluctuations in the NAO, the warming trend in the 

Arctic Ocean is interpreted as an advective feature that arises largely outside the Arctic 

Ocean (Swift et al. 1997, Grotefendt et al. 1998, Dickson et al. 2000). Such variations are 

likely to have an effect on the pelagic ecosystem since its members are strongly affected 

by changes in water mass distribution and advection (McGowan 1990, Ottersen and 

Stenseth 2001, Hays et al. 2005).  

Our ability to predict the ecological responses of increased climatic variability in the 

Arctic is limited. To asses the ecological response a profound knowledge of the current 

situation is needed, including knowledge about species composition, life history 

adaptations and distribution patterns. If the observed trend from the temperate regions 

(Beaugrand et al. 2002b) proceed into the Arctic Ocean we might expect a shift towards 

more boreal species also here. How the resident food web is able to cope with such 

changes is uncertain but the implications for the marine ecosystem may be severe. For 

example, it has been suggested that changes in ocean climate have led to changes in the 
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structure of the pelagic ecosystem from arctic to sub-arctic conditions in the northern 

Bering Sea, e.g. to a shift from an ecosystem that favoured benthic communities to an 

ecosystem that is dominated by pelagic fish (Grebmeier et al. 2006b). This shift has been 

attributed to increased bottom water temperatures and a subsequent northward shift in the 

distribution of demersal fish and epifaunal invertebrates. In addition, it has been 

hypothesised that increased water temperature and reduced sea ice cover may increase the 

energy flow to the pelagic system in Arctic shelf seas as opposed to a strong carbon flux 

from ice-algae directly to the benthos in a cold climate with high sea ice cover (Carroll & 

Carroll 2003, Piepenburg 2005). Thus climate warming may enhance pelagic production 

thereby reducing carbon flux to the benthos with detrimental effects for benthic 

communities (Grebmeier et al. 2006a, Grebmeier et al. 2006b). 

Increased knowledge on how the boreal and Arctic components of the pelagic community 

respond to environmental variability is needed to assess effects of global warming in the 

Arctic.  

 

Therefore, the overall objective of this study was to gain new insight into what governs 

mesozooplankton abundance, composition and distribution in Svalbard waters. Specific 

aims were to  

 

• describe the mesozooplankton species composition and abundance in northern 

Svalbard waters (paper I) 

• investigate and quantify how variability in the mesozooplankton distribution 

relates to hydrography in this area (paper I, II) 

• examine the vertical distribution of developmental stages of dominant copepod 

species at different locations in Svalbard waters (paper III)    

• evaluate if congeneric Calanus species of Atlantic and Arctic origin do co-exist in 

an Arctic environment and if so how their population dynamics and life cycle 

strategies differ (paper IV) 

• evaluate the possible effects of climatic changes on the Calanus community in 

Svalbard waters 
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The physical environment in the study area 

The data used in this work were collected in waters around the archipelago of Svalbard 

(Figure 1) and included locations in coastal waters and fjords as well as stations beyond 

the continental shelf and in ice covered Arctic waters. 

 
 

Figure 1. Map of Svalbard together with main current systems in the region and locations of in total 
53 sample sites sampled in 2000 and 2001 (grey dots, paper II), in 2002 (yellow dots, paper I, II, III), 
in 2003 (green dots, paper I, II) and 2004 (red dots, paper I, II). White star marks the sample site in 
Billefjorden (paper IV). Asterisks mark additional locations that were sampled during the study 
period and from which data were included in some figures presented in the synthesis. Red arrows 
indicate warm (Atlantic) currents; black, dashed arrows indicate cold (Arctic) currents. 
Abbreviations are WSC: West Spitsbergen Current; ESC: East Spitsbergen Current; SC: Sørkapp 
Current; CC: Coastal Current; YB: Yermark Branch; SB: Svalbard Branch. 
 

The North Atlantic Current (NAC) mainly drives the ocean circulation in the Nordic Seas 

(Figure 2). In it warm Atlantic waters are transported over the Faeroe - Shetland Ridge 

into the Norwegian Sea (Rudels et al. 1999). This water mass continues northwards along 

the Norwegian coast as the Norwegian Atlantic Current (NwAC). Off northern Norway 

one branch enters the Barents Sea, will eventually cross the Barents Sea and enter the 

Arctic Ocean via the Kara Sea (Rudels et al. 1994). The other branch of the NwAC 

continues northwards as the West Spitsbergen Current (WSC) (Aagaard et al. 1987, 
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Rudels et al. 1999). At the northwestern corner of Svalbard the WSC splits into the 

‘Yermark Branch’, which is largely recirculated to the Greenland Sea, and the ‘Svalbard 

Branch’ (Figure 1), which defines the largest input of Atlantic Water into the Arctic 

Ocean (Manley 1995). It turns eastwards and enters the Arctic Ocean where it follows the 

continental slope (Rudels et al. 1999). Together with the inflow over the Barents Sea 

shelf the inflow of Atlantic water within the WSC constitutes the main inflow of heat to 

the Arctic Ocean (Aagaard and Greisman 1975, Aagaard and Carmack 1989, Saloranta 

and Haugan 2001).  

 

Figure 2. Map over the Nordic Seas together with the main current systems in the region (modified 
after Blindheim and Østerhus 2005), average winter (yellow dashed-dotted line) and summer 
(orange dashed-dotted line) sea ice margins (Johannessen et al. 2004). Red arrows indicate warm 
(Atlantic) water currents; black, dashed arrows indicate cold (Arctic) water currents. Abbreviations 
are: NAC: North Atlantic Current; NwAC: Norwegian Atlantic Current; NCC: North Cape 
Current; WSC: West Spitsbergen Current; ESC: East Spitsbergen Current; ECG: East Greenland 
Current. Square indicates section that is presented in Figure 1.  
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Variable meteorological conditions affect the strength of the North Atlantic currents and 

its continuations, and the inter-annual variability in the Atlantic inflow to the Arctic is 

substantial (Saloranta and Haugan 2001, Ingvaldsen et al. 2002, Furevik and Nilsen 

2005). The main outflow from the Arctic Ocean occurs on the western side of the Fram 

Strait where Arctic water combines with recirculated water from the WSC and flows 

southwards as the East Greenland Current (EGC) (Figure 2) (Aagaard and Carmack 

1989, Schlichtholz and Houssais 1999a, Rudels et al. 1999, Blindheim and Østerhus 

2005). The EGC is also the main export path of sea ice from the Arctic Ocean (Saloranta 

and Haugan 2001).  

 

Shelf- slope interaction  

Due to the presence of the warm Atlantic waters within the WSC the marine climate 

along the western and northern coast of Svalbard is relatively warm as indicated by 

mostly ice-free conditions. Waters east of Svalbard on the other hand are of more Arctic 

characteristic due to the East Spitsbergen Current (ESC) that exits the Arctic Ocean 

between Nordaustlandet and Frans Josef Land and transports cold Arctic water into the 

northern Barents Sea (Figure 2, Pfirman et al. 1994). The ESC combines with cold waters 

from Storfjorden to form the Sørkapp Current (SC) that surrounds the southern tip of the 

Svalbard archipelago and continues northwards as the Coastal Current (CC) with 

relatively cold and fresh waters (Figure 1, Loeng 1991). The CC runs parallel to the 

WSC, which results in an Arctic front west of Svalbard that is steered by the bathymetry 

and normally isolates the Atlantic water in the WSC form cooler coastal waters 

(Saloranta and Svendsen 2001). Prevailing currents and wind systems (Svendsen et al. 

2002, Cottier et al. 2007) as well as instabilities in the front between the WSC and CC 

(Saloranta and Svendsen 2001, Svendsen et al. 2002) and topographical steering 

(Saloranta and Svendsen 2001) drive the exchange of water masses between the slope 

and the shelf. Episodic intrusions of Atlantic water onto the shelf are common while 

remnants of shelf water within the WSC are rarely observed (Saloranta and Svendsen 

2001, Cottier et al. 2005). Fjords along the western coast of Svalbard are thus partially 

affected by the cold waters of the CC and by the warm and more saline WSC (Koszteyn 

and Kwasniewski 1989, Saloranta and Svendsen 2001, Cottier et al. 2005). 
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Results and discussion 
 
Mesozooplankton composition, distribution and the relationship to hydrographic 

variability 

The mesozooplankton community in Svalbard waters was numerical dominated by 

cosmopolitan species (Figure 3, Table 1, paper I). This dominance was in particular due 

to the high abundance of the copepod Oithona similis, but also copepods of the genus 

Pseudocalanus and Microcalanus occurred at most location in high numbers (paper I). 

This is in agreement with previous observations in Svalbard waters and in the Eurasian 

Arctic (Mumm et al. 1998, Walkusz et al. 2003). Atlantic species dominated within the 

core area of the inflowing Atlantic water (paper I). The dominance of Atlantic species 

compared to Arctic species diminished towards the north and in southern Hinlopen, 

where cooler and fresher Arctic waters prevailed. Arctic species were also more common 

in the inner fjords along the west and north coast (Billefjorden, Rijpfjorden, 

Smeerenburgfjorden, Figure 3, paper I).  
 
Table 1: List of species with Arctic, subarctic-boreal or wide spread distribution  
Arctic species: cold water species that are endemic to Arctic waters or closely confined to the Arctic 
and adjacent waters. Atlantic species: cold temperate species that are distributed over the North 
Atlantic and in subarctic areas. Wide-spread and cosmopolitan species: species that occur over a 
wide geographic range in both cold and warm water regions and that have no value as biogeographic 
indicator species (Grice 1962). Numbers refer to references: 1. Jaschnov (1972), 2. Conover (1988), 3. 
Grainger (1963), 4. Grice (1962), 5. Raymont (1983), 6. Brodskii (1967), 7. Dunbar (1964), 8. Richter 
(1994), 9. Ekman (1953), 10. Grainger (1965), 11. Kramp (1947), 12. Dunbar (1962), 13. Conover and 
Huntley (1991), 14. Gallienne and Robins (2001), 15. Alvariño (1965). 
 

Arctic Atlantic Wide spread, cosmopolitan 
Calanus glacialis1,2 Calanus finmarchicus1, 2, 3 Oithona similis 4, 13, 14 
Calanus hyperboreus 2,3 Pareuchaeta norvegica 10 Microcalanus spp.4,6* 
Metridia longa 4,5 Oithona atlantica 5 Pseudocalanus spp.4, 6* 
Chiridius obtusifrons 6 Heterorhabdus norvegicus 6 Gaidius tenuispinus 4, 6 
Themisto libellula 7 Cyclopina schneideri 10 Scaphocalanus magnus  4, 6 
Tricona (Oncaea) borealis 5, 8 Thysanoessa longicaudata 7 Scolecithricella minor 6 
Mertensia ovum 9 Thysanoessa inermis 7 Microsetella norvegica 5 
 Aglantha digitale 11  Eukrohnia hamata 15 
 Sagitta elegans 12 Clione limacine 9 
  Limacina helicina 5 
*three species of Pseudocalanus (P. elongatus, P. acuspes, P. minutus) and two species of 
Microcalanus ( M. pygmaeus, M. pusillus) are observed in Arctic and Svalbard waters (Grice 
1962 , Mumm 1991, Koszteyn et al 1991). M. pygmaeus and P. minutus are found to be more 
confined to Arctic and subarctic areas (Koszteyn et al 1991). However, since I did not 
distinguished between species of Pseudocalanus and Microcalanus these species are included in 
the wide-spread group following Grice (1962) and Brodskii (1967).  
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Figure 3: Left panel: relative composition of Atlantic, Arctic and cosmopolitan species around 
Svalbard sampled in 2002, 2003 (upper panel) and 2004 (lower panel). Numbers refer to percentage 
represented by cosmopolitan species. Right panel: relative composition of Atlantic and Arctic species, 
numbers refer to percentage represented by Atlantic species. For definition of cosmopolitan, Atlantic 
and Arctic species see Table 1. Dashed lines indicate location of ice edge during sampling period 
(September) in each year. Size of pies reflects log transformed abundance (ind. m-3) 
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Differences in hydrography and bottom depth largely determined the horizontal 

distribution patterns of the zooplankton (paper I). Temperature and salinity co-varied 

with variation in the zooplankton species composition between assemblages of distinct 

geographic and hydrographic integrity (paper I). Differences in the community structure 

were primarily caused by variations in species densities rather than differences in the 

taxonomic composition (paper I).  

 

 
Figure 4: TS diagram of vertical CTD profiles taken at eight selected stations around Svalbard. Each 
line represents one of the CTD plots in Figure 5, numbers in circles refer to station and CTD plots in 
Figure 5. The lines are superimposed over water mass domains as defined by Cottier et al. 2005 for 
Kongsfjorden and the adjacent shelf. Atlantic water (AW): T>3oC, S>34.65, D>27.92; Transformed 
Atlantic water (TAW) T: 1 to 3oC, S >34.65; Arctic Water (ArW) T:-1.5 to 1oC, S: 34.3-34.8; Surface 
water (SW) T >1oC, S<34.0, Intermediate water (IW) T>1.0oC, S: 34-34.65; the watermass with 
T<0oC and S<34.7 is defined as Polar Surface water (PSW) (modified after Rudels et al. 2000) . 
Isopycnals are in 0.5 intervals, dashed line indicates freezing point.  
 

Water mass characteristics varied substantially around Svalbard (Figure 4). Along the 

west coast the Atlantic water prevailed. North and east of Svalbard a fresh surface layer 

was usually observed in the upper 50 m and water masses were modified through mixing 

processes between Atlantic and Arctic water (Figure 4). Coldest and freshest water 

masses were observed in southern Hinlopen and in the inner basins of Rijpfjorden and 

Billefjorden (Figure 4, 5). 
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This variability in water mass characteristics around Svalbard was well reflected by the 

Calanus species composition, in particular by the abundance of C. finmarchicus and C. 

glacialis relative to each other. C. finmarchicus was the most common species along the 

western and northern coast of Svalbard where the influence of Atlantic waters masses 

was high (Figure 5). Although its abundance and dominance decreased towards the 

northern oceanic realm it was nevertheless found to dominate within the perennial sea ice 

zone as far north as 82° 30’N (station 3 in Figure 5, paper I). C. glacialis, on the other 

hand, was more common on the north-eastern shelf (Rijpfjorden, Hinlopen) and in the 

southern Hinlopen Strait where Arctic waters dominated (stations 5, 7 & 8 in Figure 5, 

paper I). It was also found in high abundance in fjords on the west coast (Kongsfjorden, 

Smeerenburgfjorden, Billefjorden) (station 6 in Figure 5). These are Arctic glacial fjords 

of which the inner parts are characterized by relatively cold and fresh water masses 

(Svendsen et al. 2002, Figure 5, paper IV), thus providing more ‘Arctic-like’ conditions 

than otherwise encountered along the west coast (Figure 4, 5). The observed distribution 

of C. glacialis confirms its status as an Arctic shelf species with a preference for cold 

waters (Jaschnov 1972, Conover and Huntley 1991, paper IV). Thus the horizontal 

distribution of C. finmarchicus and C. glacialis and their dominance in different 

hydrographic regimes agree with observations from the Fram Strait (van Aken et al. 

1991, Ashjian et al. 1995), the Canadian archipelago (Grainger 1963) and the Barents Sea 

(Jaschnov 1972, Tande et al. 1985, Melle and Skjoldal 1998) that describe C. 

finmarchicus and C. glacialis as indicator species for Atlantic and Arctic waters, 

respectively. C. hyperboreus was also most abundant in Arctic waters (station 3 in Figure 

5,) but it was comparatively rare around Svalbard (Figure 5, paper I, II). Similar 

observations were made by Søreide et al. (submitted) in northern Svalbard waters. 

However, a large part of the sampling area was outside of this species main distributional 

area (Conover 1988; Mumm 1993; Hirche 1997). At most of the stations sampled in this 

study it represented numerically less than 10% of all Calanus species. Only at the deeper 

locations within the marginal ice zone it represented a larger proportion (station 3 in 

Figure 5). 
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Figure 5: Vertical profiles of temperature (red lines) and salinity (dotted blue lines) at 8 selected 
stations around Svalbard. Pie charts show relative abundance of the three Calanus species at each 
location. Red shaded area marks temperature >1oC, blue shaded area marks salinity >34.65.  
Temperature and salinity above these values indicate Transformed Atlantic and Atlantic water 
masses (see also Figure 4, Cottier et al. 2005)   
 

A number of studies have dealt with the influence of climate variability on Arctic and 

North Atlantic zooplankton populations and in particular on Calanus populations 

(Pershing et al. 2004, Skjoldal et al. 1992, Helle 2000, Dalpadado et al. 2003). So far 

there has been made little effort to quantify these relationships using statistical models. 

This was the motivation for the analyses in paper II where regression models were used 

to analyse the relationship between the variability in Calanus abundance and variability 

in temperature and salinity.  
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Figure 6. Distribution of water mass and Calanus spp. in the North Atlantic. 
a) Annual mean of water temperature at 150 m in 2001 (NOAA Atlas NESDIS 45 World Ocean 
Database 2001). Main current systems are indicated by arrows; black arrows indicate warm 
(Atlantic) water currents; grey dotted arrows indicate cold (Arctic) water currents. WSC= West 
Spitsbergen Current; EGC= East Greenland Current; ESC= East Spitsbergen Current (see also 
Figure 2). Also shown is the relative abundance of b) C. finmarchicus, c) C. glacialis d) C. 
hyperboreus in the study area. The maps where created from data used in papers I, II, III and from 
additionally sampled stations (120 records), unpublished data from the northern Barents Sea and 
Kongsfjorden (89 records, courtesy of Stig Falk- Petersen, Norwegian Polar Institute), and published 
records of the abundance of all three Calanus species from 139 stations from the Greenland Sea, 
Barents Sea, Northern Norwegian Sea, Svalbard waters and the Polar Ocean (Diel 1991; Hirche 
1991; Mumm 1991; Hirche et al. 1994; Ashjian et al. 1995; Ashjian et al. 1997; Mumm et al. 1998; 
Dale et al. 1999; Thibault et al. 1999; Smith et al. 2003, Basedow et al. 2004). Data from shallow (< 
100 m) stations were excluded to reduce any bias that may arise from only sampling the upper layers 
of the ocean. The relative abundance of the three Calanus species was then computed for each 
geographical position (as indicated by white dots in b, c and d), and distribution maps were created 
by interpolating between stations over a 5 nm grid using the minimum variance unbiased estimate 
method (MVUE). 
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Significant relationships between Calanus abundance and salinity and temperature were 

revealed using linear regression models (paper II). This suggests that the abundance of 

the different Calanus species is affected by water mass characteristics. In these 

regressions, Calanus abundance was expressed as a function of temperature and salinity 

and around 50% of the variability in Calanus abundance could be accounted for by the 

variations in temperature and salinity (paper II). Thus I conclude that the biogeography 

of these species are tightly connected to hydrography (Figure 6, paper II).  

 

Another way to analyse the relationship between environmental parameters and 

biological variance is the use of ordination techniques such as principle component 

analysis (PCA) or redundancy analysis (RDA) (Legendre and Legendre 1998). RDA, a 

constrained form of PCA, is related to multiple regression analysis, but while in 

regression only one response variable can be related to one or several explanatory  

 

Box 1: Redundancy Analysis  
 
Redundancy Analysis (RDA), a multivariate form of regression analysis, was performed 
on the data used in paper II to relate the variability in the abundance of the three 
Calanus species to environmental variables. In contrast to the regression analysis in 
paper II which analyses each species for separately, this method analyses the 
relationship between the entire Calanus population and the environment. The analysis 
was conducted with CANOCO 5.5 for Windows (ter Braak and Smilauer 2002). The 
abundance of the three Calanus species and a number of potential explanatory 
environmental variables (average temperature and salinity 0-300 m, average fluorescence 
0-100 m, date of sampling, bottom depth, longitude and latitude, and a categorical 
variable, which could be either “shelf” for stations with bottom depth < 500 m, or 
“oceanic” for stations with bottom depth >500 m) were analysed simultaneously to 
determine which of these explanatory variables best explained the variance in the 
Calanus data. Calanus abundance data were log transformed prior to analysis for stations. 
Stations sampled with multiple hauls were pooled. Those environmental variables that 
best and significantly (Monte Carlo permutation test with 999 random permutations) 
explained the variability in the three Calanus species distribution were chosen (Table 2).  
Ordination techniques and rules of interpretation of RDA ordination plots are 
summarized by ter Braak (1995) and ter Braak and Smilauer (2002). The species and 
explanatory variables are shown as arrows in the RDA ordination plots, and are 
standardized and centred, and point in the direction of maximum change. The angle 
between the arrows indicates their correlation, i.e. they are uncorrelated if they are 
perpendicular to each other and highly correlated if the angle is small (positive 
correlation) or large (negative correlation) (Figure 7).  
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variables, a RDA analyses simultaneously several response variables (Legendre and 

Legendre 1998). 

This allows testing a number of environmental parameters simultaneously to find those 

that best ‘explain’ the observed variance in the species composition. Applying a RDA on 

the data used in paper II (Box 1) showed that over 50% of the variability in the data 

could be accounted for by the chosen environmental variables (Figure 7, Table 2). The 

RDA showed a clear separation between samples taken in oceanic locations (bottom 

depth > 500 m) and samples taken on the comparatively shallow locations above the 

continental shelf and slope (bottom depth < 500 m; Figure 7). This categorical variable, 

which could be either “shelf” or “oceanic”, accounted for more of the observed 

variability in the dataset than any of the other variables (Table 2). This suggests that the 

classification into shelf and oceanic groups (paper II) seems reasonable in a statistical 

sense. Variability in the Calanus abundance was also strongly correlated with 

temperature and salinity (Table 2, Figure 7), which suggests that the most important 

variables were chosen for the linear regression models.  

 

 
Figure 7. Biplot of redundancy analysis (RDA) (axes I and II) relating the abundance of all three 
Calanus species (black arrows) to environmental variables (red arrows and stars). Temperature and 
salinity are averaged over 0-300 m (see Box 1 for details). The plot explains 59.3 % of the total 
variability in the data, and the chosen significant environmental variables (red arrows and stars) 
account for 100% (in brackets) of this explained variability.  
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Table 2. Ranking of environmental variables as resulted from the RDA (see Box 2) that significantly 
influenced abundance of Calanus in the study area. The environmental variable that best explained 
Calanus variability is ranked first; additional variables are ranked on the basis of additional fits. 
 

Environmental variable Explained 
variance 

p F 

    
Categorical depth variable 32.4% 0.001 23.9 
Temperature 21.4% 0.001 22.7 
Salinity 5.6% 0.001 6.55 

 
 
There were no statistical significant relationships between the variability in the 

abundance of the three Calanus species and algal biomass as measured by fluorescence at 

the time of sampling. Only in one case (C. glacialis in shallow waters) could a statistical 

significant relationship be demonstrated (linear regression, p<0.05, Table 3). However, 

this relationship was an inverse correlation suggesting that perhaps C. glacialis had a 

negative effect on algal biomass rather than that the abundance of C. glacialis was 

dependent on the available amount of phytoplankton. As Calanus spp. are relative long 

lived with a generation time of more than one year (Conover 1988, paper IV) I find it 

unlikely that a point measurement of food abundance is a good variable to explain 

variation in abundance. The data were collected in early autumn when fluorescence levels 

were low at most stations and showed little horizontal variability. Vertical gradients in 

algal biomass may however have affected the vertical distribution of Calanus spp. 

(Figure 2 in paper III).   
 
 
Table 3. Regression analyses of log-transformed Calanus abundance (as ind. m-3 for each species, 
averaged from the surface down to 300 m or bottom depth, whichever was less) against fluorescence 
(as mV, averaged over upper 100 m). The data are from 41 stations (latitude > 78°54'N, longitude < 
22°22’E, Julian day 237-269). Repeated samples were pooled within each station before this analysis. 
The dataset was split in samples taken over “shelf” waters (bottom depth <500 m) and over “deep” 
water (bottom depth> 500 m). ns= not significant (p>0.05) 
 

 ___________Shelf____________ __________Deep_________ 
 Intercept Slope p Intercept Slope p 
C. finmarchicus 5.08 0.07 ns 4.03 0.26 ns 
C. glacialis 5.40 -1.70 <0.05* 1.99 -0.06 ns 
C. hyperboreus 2.33 -0.65 ns 1.08 0.05 ns 

* R2 = 0.36 
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The strong relationships between plankton abundance and physical variables in the study 

area corroborate the view that variability in zooplankton abundance and composition may 

arise mainly from variations in the distribution of water masses. Such variability will 

primarily reflect the prevailing circulation system, which in the study area is largely 

driven by variations in the WSC (Aagaard et al. 1987, Saloranta and Haugan 2001, Zhang 

et al. 2004). This notion is supported by geographical distribution patterns of the three 

Calanus species (Figure 6). Variations in the relative abundance of all three species were 

largely consistent with the prevailing water mass distribution as indicated by average 

water temperature at 150 m in the study area (Figure 6 a). C. finmarchicus dominated in 

the main inflow area of warmest water masses i.e. in the northern Norwegian Sea, 

southern Greenland Sea, along the west coast, and to the northeast of Svalbard, while C. 

glacialis and C. hyperboreus were more common where colder water prevailed, i.e. north 

of 83˚ N, in the western Fram Strait, and east of 45˚ E in the northern Barents Sea. 

 

Hydrographic variability is recognized as a major force structuring marine populations 

(Legendre and Demers 1984, Mann and Lazier 1996, Steele 1998) on meso- to large-

scale and regional forces have been shown to be important for the structure of local 

zooplankton communities (e.g. Aksnes et al. 1997, Eiane et al. 1998). Outside the Arctic 

seas zooplankton distribution has been linked both to temperature and salinity and to 

large-scale circulation indices, such as the NAO, for both Calanus (Fromentin and 

Planque 1996; Heath et al. 1999) and many other species (Beaugrand et al. 2002b). 

Climate related variability in water mass distribution has been shown to influence the 

dispersal and transport of species (e.g. Arashkevich et al. 2002, Beare et al. 2002, 

Gislason and Astthorsson 2004) and can thereby alter population dynamics and species 

composition (Pershing et al. 2005, Planque and Fromentin 1996, Beaugrand and Reid 

2003). 

In Svalbard waters Willis et al. (2006) demonstrated that changes in the zooplankton 

community structure in Kongsfjorden were associated with the advection of water masses 

from the adjacent shelf. Further south the Atlantic inflow to the Barents Sea is subject to 

strong inter-annual variability (Loeng et al. 1997), which results in high variations in the 

abundance of C. finmarchicus (Sakshaug 1997, Helle and Pennington 1999, Dalpadado et 
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al. 2003). Similarly, Søreide et al. (2003) found that environmental variables, with water 

mass distribution being most important, can account for 80% of the variability in 

macrozooplankton distribution in the Barents Sea. Pedersen (1995a) estimated the 

advected biomass of C. finmarchicus to be 6-10 times higher than the endemic production 

in the Barents Sea while Edvardsen et al. (2003) report advection of C. finmarchicus into 

the Barents Sea to be four times more important than the local production of this species. 

Tande et al. (2000) however did not find clear relationships between inter-annual 

variability in copepod abundance (including C. finmarchicus) in the Barents Sea and 

water temperature. That study was however largely based on zooplankton sampled in the 

upper 50 m. I found that the variation in salinity and temperature at intermediate depth 

(50- 150 m) accounted for more of the variation in the abundance of the three Calanus 

species than the temperature and salinity in the upper 50 m (Figure 3 in paper II) and 

that consistent geographically patterns in community structure north of Svalbard were 

only observed below 50 m (paper I). As the hydrographic properties of deep water are 

more conservative than the atmospherically influenced surface water, the deep water 

properties more clearly reflect the geographical origin of the water mass. 

 

Potential significance of advection on the C. finmarchicus distribution 

In the North Atlantic the strongest relationship between ocean climate variability and 

zooplankton has been established for shelf populations of C. finmarchicus (Colebrook 

1978, Miller et al. 1998, Heath et al. 1999) and advection of C. finmarchicus from the 

North Atlantic basins to the shelf seas (in particular that of overwintering populations) is 

identified as an important process for sustaining shelf populations (Heath et al. 1999; 

Harms et al. 2000; Speirs et al. 2006). Thus shelf populations that rely on advective input 

from oceanic stocks may be more susceptible to changes in circulation patterns. In waters 

around Svalbard the association between zooplankton abundance and hydrography was 

not limited to shelf populations, indeed co-variation between C. finmarchicus abundance 

and temperature and salinity was even stronger in the open ocean (paper II). This may 

not be surprising since the C. finmarchicus population in the oceanic areas north of 

Svalbard are most likely expatriates from North Atlantic populations (Smith and 

Schnack-Schiel 1990, Mumm 1993) with presumed limited ability for reproduction 
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(Tande et al. 1985, Diel 1991, Conover and Huntley 1991). Thus their distribution is 

largely reflecting transport within the major current systems. The impact of Atlantic 

inflow on shelf and fjord populations is more variable (Cottier et al. 2005, Nilsen et al. 

2006) and despite occasional intrusion of Atlantic water from the shelf slope that can 

refuel the Atlantic part of the community (Svendsen et al. 2002, Basedow et al. 2004, 

Berge et al. 2005) fjord populations are found to be partly self-sustained (paper IV). 

Local processes may therefore largely balance the importance of transport on the shelf 

(Scott et al. 2000).  

 

 
Box 2: Modelling the role of advection and local production in zooplankton 
population dynamics 
 
Aksnes and Blindheim (1996) proposed a simple model to asses the advective influence 
on local populations in a habitat volume V (m3): 

biNeNNdb
dt
dN

+−−= )(      (eq.1) 

Here N is the abundance of the local population (ind m-3), Nb the abundance of the 
neighboring population (ind m-3), b the birth rate of the local population (y-1), d the 
death rate of the local population (y-1), e the emigration rate of the local population (y-1), 
i the immigration rate of the neighboring population (y-1) 
If emigration and immigration are dominated by physical transport rather then by 
swimming  which is a likely assumption for plankton (Hensen 1898), then 
 

e = i = Av/V      (eq.2) 
 

where A is the boundary area (m2), v the current speed (ms-1) across the boundary area 
and V the habitat Volume (m3).   
 
Substituting eq.2 into eq.1 yields:  
  

)()( NN
V
AvNdb

dt
dN

b −+−=     (eq.3) 

 
This relates the dynamics of a local population to the biological rates (b-d), water 
movement (v) and the spatial scale (A, V) of the habitat in question.  
If the physical-spatial term Av/V (‘advective renewal rate’) is greater than the biological 
rates b and d then the population dynamics are dominated primarily by the physical 
environment rather than by the two local biological processes (e.g. b/(Av/V) <1). 
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Box 2 continued 
 
Advective renewal rate 
The advective renewal rate was estimated for a box of a spatial scale of 70 km width, 
240 km length and 500 m depth (Figure B1). This area is based on the extension of 
Atlantic water north of Svalbard that is transported in this region within the Svalbard 
branch of the WSC (Figure 3 in Manley 1995). This area roughly corresponds to the off 
shelf area sampled in paper II (Figure 1). 
 
The advective renewal rate was computed based on an average current speed in this 
region of 0.25 ms-1 (Schauer et al. 2004), a lower current speed estimate of 0.1 ms-1 
(Quadfasel et al. 1987, Schlichtholz and Houssais 1999b) and a maximum estimate of 
0.55 ms-1 (Osinski et al. 2003).  
 

Figure B1: A schematic illustration of the 
habitat volume the advective renewal rate 
was calculated for (eq. 2) in relation to the 
geographical position of Svalbard and the 
extension of the WSC and its branches 
(SB= Svalbard branch, YB= Yermark 
Branch).  
 

 
Local production 
Birth rate b was estimated from life time fecundities (number of eggs produced per 
female, B) under the assumption that C. finmarchicus has a generation time of one year 
(T = 1 year) at high latitudes. Life time fecundity estimates for C. finmarchicus vary 
from 200-300 eggs per female (Marshall and Orr 1955) to 500-900 (Diel and Tande 
1992, Plourde and Runge 1993, Hirche 1990) and up a maximum estimates of 3100 
(Hirche 1990). This corresponds to Aksnes and Blindheim (1996) who estimated that 
the average life time fecundity of C. finmarchicus is in the order of 100-1000 eggs.  
A sex ratio of 1:1 was assumed and the mortality was set to zero (d=0) which gives the 
maximal rate of increase of  the population (rmax):  
 

b-d= b-0=b= rmax = ln(B/2)/T (year-1)                                         (eq.4) 
 

The factor 2 appears as a consequence of the chosen sex ratio. 
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An assessment of the importance of advection in comparison to local production of C. 

finmarchicus in the study area is described in Box 2. In addition to the current velocities 

the advective influence on a population depends on the spatial scale of the distribution of 

the population (Aksnes and Blindheim 1996) and the scale used here reflects the study 

area of paper I and II and also the approximate distribution of Atlantics water north of 

Svalbard (Manley 1995).  

The ratio between the estimated local production and the advective influence obtained in 

this manner indicates that population dynamics of C. finmarchicus in the study area 

should be dominated by transport rather than by local biological dynamics (Figure 8). 

Current speeds in the WSC are highest during winter and early autumn and vary between 

ca 0.1- 0.5 ms-1 (Quadfasel et al. 1987, Schlichtholz and Houssais 1999b, Osinski et al. 

2003, Schauer et al. 2004, Hop et al. 2006). The model predicts that only at current 

speeds <0.05 ms-1 (Figure 8) population dynamics may be dominated by local production 

but even then only at high assumed reproductive rates. Velocity within the WSC 

decreases from east to west and can be <0.05 ms-1 towards the boundary of the 

southwards flow in the Fram Strait (Fahrbach et al. 2001, Schauer et al. 2004, Hop et al. 

2006). Current speeds are also weaker during summer (May-July) and can be <0.1 ms-1 

(Hop et al. 2006). Thus during summer when production reaches its peak, local 

production may be relatively more important.  

Zooplankton species are able to adjust their vertical position within the water column and 

do so on diel to seasonal time scales (Cushing 1951, Longhurst 1976, paper III, IV). 

This may lead to temporal variability in the importance of advection on a population. By 

conducting seasonal vertical migration during autumn Calanus populations move from 

the surface waters into deeper layers, which often have a different temperature regime, 

circulation patterns and currents speeds (Ekman 1905, Backhaus et al. 1994, Kaartvedt 

1996, Schauer et al. 2004). It has been suggested that seasonal vertical migration is 

essential for the maintenance of a basin-wide, self-sustaining population of C. 

finmarchicus in the eastern North Atlantic (Backhaus et al. 1994, Bryant et al. 1998). In 

the Barents Sea differences in the strength but also in the timing of the inflow of Atlantic 

water was found to affect the abundance of C. finmarchicus (Skjoldal and Rey 1989).  
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Figure 8. The relative importance of local production and advective renewal rate (b/(Av/V) where b 
was calculated from Eq. 4 in Box 2 and Av/V is the advective renewal rate defined in Eq. 3 of Box 2) 
against life time fecundity of C. finmarchicus. Advective renewal rate has been calculated based on 
currents speeds of 0.05, 0.1, 0.25 and 0.55 ms-1 for a volume habitat of 8400 km3 (see Box 2 for 
details). 
 
This is because the C. finmarchicus population in the Atlantic domain will mainly be 

located at overwintering depth below 600 m during autumn and winter (Østvedt 1955, 

Hirche 1991, Kaartvedt 1996, Halvorsen et al. 2003). Thus abundance is low in the upper 

water layers which are brought into the Barents Sea. Atlantic water entering the Barents 

Sea in spring and summer on the other hand contains higher abundance of C. 

finmarchicus which are accumulated at the surface during the productive season (Skjoldal 

and Rey 1989, Conover 1988). It is likely that a similar mechanism regulates the 

advection of C. finmarchicus into Svalbard waters. Current velocities within the WSC are 

strongest in the upper 500 m (Osinski et al. 2003, Schauer et al. 2004) which is above the 

main overwintering depth of C. finmarchicus in most for the North Atlantic basins 

(Østvedt 1955, Hirche 1991, Kaartvedt 1996). Thus advection of C. finmarchicus within 

the WSC may be strongest during spring and summer when the population is located 

close to the surface. This implies that the copepods are advected northwards during their 

early life stages and have to cope with changing environmental condition during their 

development as they drift northwards. Torgersen and Huse (2005) suggested that 

planktonic species that live in an advective and variable system may be pre-adapted to 

cope with temporal fluctuations in the physical and biological environment and thus may 

be relatively robust to climatic changes.  
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Hirche (1991) found that part of the C. finmarchicus population in the north Atlantic 

remained in surface water during winter. Similar observations have been made in the 

Norwegian Sea (Bathmann et al. 1990) and in the Barents Sea (Pedersen et al. 1995b). 

Since current velocities in the WSC and physical processes that drive advection (such as 

storm activity over the North Atlantic) tend to be strongest during the winter season 

(Dickson et al. 2000) it can not be ruled out that advection of older stages of C. 

finmarchicus during winter may also be important. Pedersen (1995a) calculated that 

around 8 x103 tons of carbon (C) of C. finmarchicus may be advected into the Barents 

Sea during January and concluded that, although it is far less compared to what may be 

advected during summer (660-1320 x103 tons C during May and June), it may 

nevertheless be an important component seeding the reproductive stock.   

 

Plankton communities are not solely shaped by the transport of water masses, but also by 

local, ecological dynamics. Presumably, the most important factors determining local 

population dynamics through their effect on growth, reproduction or mortality are food 

availability, temperature and predation (Vidal 1980a, Hirche et al. 1997, Campbell et al. 

2001, Hirst and Kiorboe 2002, Bagoien et al. 2001). Within the bounds defined by the 

ecological niche of organisms an increase in temperature typically enhances productivity 

by increasing growth rate and development rate (Huntley and Lopez 1992, Hirst and 

Kiorboe 2002, Campbell et al. 2001, Leandro et al. 2006) and thereby decreasing the 

population loss from eggs to diapause stages. Thus the increasing trend in C. 

finmarchicus abundance (and in C. glacialis in open water) with temperature may 

alternatively be explained as temperature enhanced productivity. However, increased 

productivity in warmer water can not explain the observed reduction in C. glacialis (on 

the shelf) and C. hyperboreus abundance with temperature. I find it therefore unlikely 

that temperature enhanced productivity alone should account for the observed 

relationships between Calanus abundance and the hydrographic parameters.  

 

C. glacialis and C. hyperboreus are subjected to a different advective regime than C. 

finmarchicus. C. glacialis may be advected from the Arctic shelf seas, e.g. the northern 

Barents Sea, and within the East Spitsbergen Current and Coastal Current to the western 
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coast of Svalbard (Pedersen et al. 1995c, Karnovsky et al. 2003, Willis et al. 2006). C. 

hyperboreus populations may be advected from the Arctic Ocean into Svalbard waters 

within Arctic waters flowing in between Svalbard and Frans-Josef Land and continuing 

in the East Spitsbergen Current (Loeng 1989). Both species are also more successful in 

reproducing in colder water and under seasonal food limitations than C. finmarchicus 

(Tande et al. 1985, but see discussion below). Thus for the C. glacialis and C. 

hyperboreus populations in the study area local production may play an important role in 

sustaining the populations in Svalbard waters. Future studies should aim at clarifying the 

role of local production for these species. 

 

Conclusion: The mesozooplankton community in Svalbard waters was dominated by 

wide spread species. Variation in the community structure was related to variation in 

hydrography and bottom depth and was primarily caused by variation in species 

abundance rather than by taxonomical variation. For species of Atlantic and Arctic 

origin significant relationships with temperature and salinity were found and these 

relationships tended to be stronger for water mass characteristics deeper in the water 

column than for characteristics of the surface water. For the study area advection 

appeared to be more important than local production for sustaining the C. finmarchicus 

population. 

 

Vertical distribution and migration  

While planktonic organisms have limited abilities to control their position in the 

horizontal scale they can affect their vertical distribution to a large extend by their own 

mobility (Longhurst 1976). Vertical gradients in light presumably play an important role 

for the vertical distribution of zooplankton. The attenuation of light in water restricts the 

depth range for primary production and thus the distribution of food within the water 

column (Sverdrup 1953). At the same time the light level restricts the efficiency of visual 

predators with increasing depth. Therefore the distribution of light in the water column 

may affect growth and mortality of zooplankton population. Thus to optimise their fitness 

zooplankton have to choose the optimal vertical position in the water column by 

balancing feeding conditions against predation risk. Several recent studies suggest that 
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optical properties are important in shaping abundances and vertical distributions in 

plankton and fish populations (Aksnes et al. 2004, Sørnes and Aksnes 2006, Sørnes et al. 

2007, Aksnes 2007). I observed a positive linear relationship between the vertical range 

of the depth distribution and the mean depth for the copepodite stages of C. finmarchicus 

and M. longa (paper III). Although not a proof, this is consistent with the hypothesis that 

individuals of a species or developmental stages have a preference for ambient light of 

the water column.  

Diel and seasonal migration are considered to be adaptive strategies to cope with vertical 

gradients in food availability (Unstad and Tande 1991, Hirche 1996b) and predation risk 

(Lampert 1989, Dale et al. 1999, Bagoien et al. 2001, Fiksen 2000) and changes in light 

condition are regarded as the most important proximate cue to trigger diel and seasonal 

vertical migrations (Haney 1988, Miller et al. 1991, Ringelberg and Van Gool 2003). 

At high latitudes there is, in contrast to lower latitudes, high seasonal but low diel 

variability in the light regime. Thus there are large gradients in food abundance on a 

seasonal scale but the diel variability in predation risk within the water column is 

relatively small. Consequently, seasonal vertical migrations should be more important 

than diel vertical migration (DVM) for zooplankton in the Arctic (Kosobokova 1978, 

Longhurst et al. 1984, Falkenhaug et al. 1997, paper III). There are a number of studies 

on DVM behaviour of copepods at high latitudes but the data remain inconclusive on 

whether copepods perform DVM here or not. The absence of night (or day) leaves the 

zooplankton without a temporal refuge for feeding thus eliminating the advantage of 

DVM and this should depress DVM behaviour in zooplankton populations. This is 

supported by some observations such as those by Hays (1995b) who reports DVM in C. 

hyperboreus in temperate areas but not in Arctic waters. Digby (1960) concluded that diel 

changes in light intensity in Svalbard waters were too small to induce extensive migration 

in zooplankton. For Calanus DVM has not been observed in high Arctic locations such as 

the Nansen Basin (Gröndahl and Hernroth 1986, Mumm 1993) and Svalbard 

(Blachowiak-Samolyk et al. 2006, paper III), neither further south in the Barents Sea 

(Bogorov 1946) or in northern Norwegian coastal waters Falkenhaug et al. 1997). Dale 

and Kaartvedt (2000) however found the decrease in surface illumination high enough to 

reduce night time predation risk at the surface even during midnight sun in the 
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Norwegian and Greenland Sea. For distinct copepodite stages of C. finmarchicus DVM 

was observed in the Norwegian Sea and northern Norwegian coastal waters (Tande 1988, 

Dale and Kaartvedt 2000).  

C. finmarchicus, C. glacialis and C. hyperboreus are also observed to conduct DVM in 

the Canadian archipelago (Sameoto 1984, Runge and Ingram 1991, Fortier et al. 2001). 

 

 
Figure 9: Vertical distribution of copepodite stages of the three Calanus species (ind. m-3) as observed 
in 1) oceanic waters north of Svalbard at the marginal ice edge (‘Ice’), 2) in Hinlopen, 3)on the shelf 
north-east of Svalbard and 4) in Kongsfjorden (‘KF’) in September 2004. Location of each station is 
indicated by numbers in the inserted map.  
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Other studies indicate that there is temporal variability in the DVM behaviour of 

zooplankton in the Arctic, since some species were found to display DVM during autumn 

but were non-migratory during summer (Kosobokova 1978, Fischer and Visbeck 1993, 

Cottier et al. 2006). This is in contrast to my findings, which did not reveal DVM 

behaviour in Calanus during autumn (paper III). At the end of the productive season 

(late summer/ early autumn) older and larger copepodites of Calanus spp. were generally 

located deeper in the water column indicating that seasonal migration (the descent to 

overwintering depth) had started (Figure 3 in paper III). Fiksen and Carlotti (1998) 

suggested that DVM in herbivorous species such as C. finmarchcius in a highly seasonal 

environment will be constrained by the need to gain enough energy for the winter. Their 

model predicts that copepods risk staying close to the surface to feed in the period just 

before the decent to overwintering depth. This may explain the lack of DVM observed in 

Svalbard waters at the end of the productive season (paper III).  

DVM was however observed for older developmental stages of Metridia longa while 

young stages of M. longa remained in deep waters both day and night (paper III). M. 

longa is a omnivorous species (Haq 1967) that does not go into diapause (Grønvik and 

Hopkins 1984, Båmstedt et al. 1985) and it is regularly reported to conduct DVM 

(Bogorov 1946, Gröndahl and Hernroth 1986, Hays 1995a, Falkenhaug et al. 1997). 

More opportunistic species which switch to other food resources when primary 

production is low and feed throughout the winter may be less constrained by the short 

productive season. These species may not need to spend as much time in the food rich 

surface layers but can allocate more resources to predator avoidance behaviour such as 

DVM (e.g. Diel 1991, Hagen 1999, Stevens et al. 2004). A mortality index indicated that 

non-migrating Calanus spp. suffered higher mortality than migrating M. longa (paper 

III). Since these observations were made during autumn, diel changes in light intensity 

may have been large enough to reduce predation risk at night at the surface. Thus during 

this period migrating animals may have a selective advantage over non-migratory 

animals that remain in surface waters to feed.  

 

The onset of seasonal migration as indicated by the depth distribution of Calanus 

copepodite stages (Figure 3 in paper III) points to some constrains for the analysis in 
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paper I and II, since it implies that a part of the Calanus population may have been 

located below sampling depth at the deeper stations. This raises the question how 

representative the results are for other areas or season. Observations show that while the 

population was distributed throughout the water column in the shallow locations, at deep 

locations highest abundance was observed in the surface layer (Figure 9, Figure 2 in 

paper III). This also implies that even in the deeper locations most of the population was 

sampled in spite of not sampling the whole water column. The deeper locations were all 

located further north than the shallow locations. The larger proportion of younger stages 

at these locations (paper III) may therefore indicate a delayed development with latitude. 

This delay in development may reflect slower development in the colder northern waters 

(Corkett et al. 1986, Campbell et al. 2001) and also the succession in the onset of the 

spring bloom with the retreating ice edge. The difference in the timing of ice break up 

and onset of the phytoplankton bloom from south-western to north-eastern Svalbard 

waters can be up to four months (Hegseth 1998, Reigstad et al. 2002). Thus part of the 

variation in population development and abundance may be explained by differences in 

food availability and life history strategies.  

 

Conclusion: Variability in abundance of the three Calanus species and M. longa on the 

vertical scale reflected life history and behavioural adaptations on diel and seasonal 

scale. The older copepodite stages of Calanus were located deeper in the water column 

indicating that the descent to overwintering depth had started. Peak abundance in the 

upper water column in the more northern stations however indicated a south to north 

delay in the succession of Calanus development. Positive correlations between the mean 

depth and the spread of C. finmarchicus and M. longa throughout the water column were 

consistent with the hypothesis that optical properties may have affected the vertical 

distribution. DVM was observed for older copepodite stages of M. longa but not for 

Calanus spp. This DVM behaviour in M. longa may account for the lower mortality rate 

indicated for this species compared to the non-migratory Calanus species.    
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Life cycles and population dynamics of co-existing Calanus species  

C. finmarchicus, C. glacialis and C. hyperboreus have evolved different life history 

strategies to cope with the environmental conditions in their main area of distribution, 

(Tande et al. 1985, Hirche 1997). Conover (1988) suggested that differences in the 

seasonal timing of reproduction (reviewed in paper IV) may be important to understand 

co-occurrence in Calanus spp. All three species show plasticity in the timing of 

reproduction. It is suggested that C. finmarchicus requires external energy supply to start 

reproduction (Diel and Tande 1992, Hirche et al. 1997) thus the timing of spawning for 

this species seems to depend on the onset of the spring bloom. C. finmarchicus can 

complete up to three generations per year in the southern parts of its distribution area 

(Conover 1988, Hirche 1996a) where temperatures are higher and the productive season 

starts earlier and lasts longer than further north where the generation time is found to be 

prolonged to a one-year life cycle (Grainger 1961, Tande et al. 1985, Melle and Skjoldal 

1998, paper IV). C. glacialis and C. hyperboreus seem to be able to spawn 

independently of food abundance (Smith 1990, Diel 1991, Hirche and Niehoff 1996) but 

show also geographical variations in the length of their life cycles (Conover 1988). This 

might be due to difference in food availability at different locations during the growing 

season (Tande et al. 1985, Conover 1988, Hirche 1997, Melle and Skjoldal 1998) but also 

due to temperature dependent differences in development time (Corkett et al. 1986, 

Campbell et al. 2001).  

Co-existing populations of Calanus spp. are observed on the shelf (Walkusz et al. 2003, 

Figure 5, paper I) and in fjords of Svalbard (e.g. Hornsundfjorden; Koszteyn and 

Kwasniewski 1989, Weslawski et al. 1991), Billefjorden (paper IV), Kongsfjorden 

(Kwasniewski et al. 2003, paper III). The distribution on the shelf is affected by 

advective transport but some fjord populations are assumed to be self-sustained 

(Kwasniewski et al. 2003). The generation time of C. finmarchicus and C. glacialis in 

Billefjorden corresponded to observations from other high latitude locations while for C.  

hyperboreus observations indicate a relatively short life cycle (paper IV). Environmental 

conditions in Billefjorden (low temperatures, seasonal ice cover, late spring bloom) 

resembled the Arctic shelf seas which presumably is a benefit for C. glacialis. The much 
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lower mortality rates observed for this species here compared to the other two species 

(paper IV) is consistent with this assertion.  

It has been suggested that C. finmarchicus is not able to reproduce under high Arctic 

conditions (Tande et al. 1985). However, observations in paper IV indicated that C. 

finmarchicus did reproduce and maintained a population in Billefjorden. C. finmarchicus 

is capable of reproducing in waters below –1˚C (Hirche et al. 1997), and Diel (1991) and 

Hirche et al. (1997) suggested that it may reproduce under Arctic conditions as long as 

food is not limiting development and egg production. Søreide et al. (submitted) however 

suggest that the main constraint for C. finmarchicus in Arctic waters are low temperatures 

and not food since it was found to utilize both ice algae and phytoplankton successfully.  

Unlike the Polar Basin, Billefjorden is ice-free every summer (July to September) making 

the onset of annual primary production regular. This regularity might be important for C. 

finmarchicus to maintain a population at this location. It is also likely that such 

predictability is the reason that C. hyperboreus obtained a shorter life cycle in 

Billefjorden than commonly observed in the high Arctic (paper IV) since a multiyear life 

cycle is regarded as an adaptation to cope with high variations in food supply not only on 

a seasonal scale but which may vary substantially between years due to variations in ice 

cover (Conover 1988).  

 

Conclusion: The three Calanus species co-existed in Billefjorden. The estimate length of 

the life cycle of C. glacialis and C. finmarchicus was in agreement with previous studies 

in Svalbard and the Arctic. Observation of the stage development of C. hyperboreus 

suggest that it has a one year life cycle which is among the shortest life cycle durations 

reported for this species. Ice free conditions during summer may provide more stable 

conditions to complete the life cycle in one year in contrast to areas with more permanent 

ice cover.  
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Possible effects of global warming on the Calanus community and the pelagic food 

web 

An increase in air and water temperature in the Arctic has been observed over the past 

decades and temperatures are predicted to increase further over the next hundred years 

(Furevik et al. 2002, ACIA 2004). This warming has led to a decline in the sea ice extend 

throughout the last half of the twentieth century (Stroeve et al. 2007) and models predict 

further reductions that will eventually result in a sea-ice free summer in the Arctic Ocean 

(Johannessen et al. 2004, ACIA 2004, Polyakov et al. 2005, Zhang and Walsh 2006). 

This is likely to have an effect on the Arctic pelagic ecosystems since pelagic primary 

production is strongly related to the seasonality in ice cover and light. Thus the reduction 

in sea ice extent may open up new areas for phytoplankton production, in particular along 

the southern margin of the Arctic Ocean. In addition, increased air and water temperature 

may affect the timing of ice break up in spring and freeze up in autumn as well as 

stratification processes. A prolonged productive season may be a probable consequence 

since an earlier ice retreat may promote the onset of the spring bloom (Rysgaard et al. 

1999, Carmack et al. 2006, Wu et al. 2007) while a delayed the freeze-up may prolong 

the productive season in autumn as long as light is available. Carmack et al. (2006) 

pointed out that reduced ice cover will also subject larger areas of open water for longer 

time to wind convection and thereby affect vertical stratification and distribution of 

nutrients, which are important factors determining the onset of the spring bloom onset 

and the productivity. In the Bering Sea the pelagic spring bloom was found to be delayed 

in warm years of early ice retreat (before mid March) due to insufficient sun light and late 

thermal stratification. In colder years of late ice retreat however, the pelagic spring bloom 

occurred early since it was triggered by an ice associated bloom and supported by a stable 

stratification due to ice melt (Hunt et al. 2002). 

 

If an earlier ice break up is followed by an early spring bloom this would most likely be 

advantageous for C. finmarchicus, since this species presumably needs the energy input 

of the bloom for reproductive success (Hirche et al. 1997). Recruitment is therefore likely 

to increase provided that the pre-bloom spawning observed now (paper IV) will occur 

under more favourable conditions. However, the reproductive success of the Calanus 
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population would also depend on their capability to synchronize diapause termination 

with an earlier productive season. Otherwise a mismatch between an early phytoplankton 

peak and occurrence of the herbivorous offspring might occur, resulting in low copepod 

production as suggested for ice-free conditions in Disko Bay (Hansen et al. 2003).  

Changes in water temperature and ice cover may also shift the distribution and the 

generation time of species. Temperature in particular has a direct impact on development 

rate and generation time (Campbell et al. 2001), growth rates (Vidal 1980a, Vidal 1980b, 

Huntley and Lopez 1992a), body size (Hirst and Lampitt 1998) and reproduction (Hirche 

et al. 1997, Mauchline 1998). Increased water temperature and primary production may 

provide more favourable conditions for C. finmarchicus in more northern waters enabling 

it to reproduce successfully in areas where it was excluded before. In addition, it may 

also be able to adopt a shorter life cycle in Svalbard waters comparable to what is 

currently observed further south in the Norwegian Sea and along the Norwegian coast 

(Conover 1988, Hirche 1996a). This is supported by studies from the eastern Barents Sea 

that concluded that C. finmarchicus has a one-year life cycle in cold years but may 

produce two generations in warm years (Zelikman 1982 cited in Matishov et al. 2000).   

 

Extrapolations of the results from paper I indicate that an increase in temperature in the 

study area may lead to an increase in the total zooplankton abundance. C. finmarchicus in 

particular showed a strong positive correlation with temperature (paper II) especially in 

the open ocean. The regression model in paper II predicts that C. finmarchicus 

abundance will increase with 120% at a temperature increase of one degree. The actual 

mechanisms behind such an increase are most likely multifaceted, involving a direct 

effect of warming that leads to increased local production as discussed above. On the 

other hand, warming resulting from a larger amount of warm water being advected into 

an area is likely to bring a higher number of individuals into this area. 

In Svalbard waters in particular the inflow of Atlantic water within the WSC is predicted 

to increase (Walczowski and Piechura 2006). This may increase the amount of advected 

plankton from the Atlantic and the Arctic shelf seas to the Arctic Ocean. Olli et al. (2007) 

suggest that the copepod biomass in the central Arctic Ocean is largely due to lateral 

advection of allochthonous copepod populations (such as C. glacialis and C. 
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hyperboreus) from the more productive shelf areas rather than due to local, 

autochthonous production. Thus increased advection into the Arctic may also affect the 

pelagic production in the polar basin. In addition, an increased pelagic production and a 

prolonged productive season in the central Arctic Ocean season due to reduced ice cover 

may also benefit the autochthonous pelagic production.   

 

 
Figure 10: Predicted changes in the abundance of the three Calanus species (coloured lines) and in 
total Calanus biomass (black dotted line) with changes in temperature (upper panel) and salinity 
(lower panel) in oceanic waters (left panel) and on the shelf (right panel). Calculations are based on 
regression models (paper II).  
 
Models predict a warming of the Nordic Seas of 1-2 degrees until 2080 (Furevik et al. 

2002). By using the empirical relationships between Calanus abundance and temperature 

and salinity (paper II) as predictive tools I investigated the effect such a warming may 

have on the Calanus population. Figure 10 illustrates the changes in abundance of each 

species and in total Calanus biomass with increasing temperature and salinity in oceanic 

and shelf waters. While an increase in temperature or salinity leads to a large increase in 

the C. finmarchicus abundance, the total Calanus biomass increases only slightly and  
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even decreases in shelf waters. In oceanic waters C. glacialis is also predicted to increase, 

but its abundance there is low (paper II). C. hyperboreus would also decrease in 

abundance and since this is the largest of the three species this should result in a decrease 

of the total Calanus biomass. However, in oceanic waters this biomass decrease is 

counteracted by a large increase in C. finmarchicus abundance. On the shelf both C. 

glacialis and C. hyperboreus decrease with increasing temperature and salinity. This 

decrease of the lipid rich Arctic species is large enough to cause a decrease in total 

biomass that is not balanced by the increase in C. finmarchicus. 

The model also indicates that the changes will differ between oceanic and shelf waters. 

Assuming that advection is stronger in the open water (paper II) the large increase in C. 

finmarchicus here is likely to reflect increased inflow of Atlantic water. Taking observed 

abundance in 2004 as a starting point, a temperature increase of 1 or 2 degrees would 

shift the Calanus community composition in Svalbard waters to a stronger dominance of 

C. finmarchicus (Figure 11). A decrease in water temperature of 1 degree on the other 

hand would lead to a dominance of C. glacialis on the shelf and increases the importance 

of C. hyperboreus in the open water (Figure 11). The differences between the colder and 

warmer climate scenario is mainly reflected in the relative composition of the Calanus 

species. In 2004 C. finmarchicus represented on average 53% of all Calanus species at 

the selected stations. In the colder scenario (-1oC) it only represents 33% whereas in the 

warmer scenarios it dominates the Calanus community with 73% (+1oC) and up to 86% 

(+2oC). Since total biomass changes are minor, the implication for the ecosystem may 

mainly be associated with a shift in size structure. A shift in the size of the dominant 

zooplankton species in the system can have direct effects on the amount of biological 

energy available for the next trophic level since the lipid content of C. glacialis and C. 

hyperboreus is 10, respectively 25 times higher than in C. finmarchicus (mean lipid 

content for stage CV in C. finmarchicus, C. glacialis, and C. hyperboreus is 0.04, 0.38, 

and 1.03 mg ind-1, respectively; Scott et al. 2000, Scott et al. 2002).  

As planktivorous species tend to be size selective (Yen 1983, Greene and Landry 1985, 

Munk 1997, Puvanendran et al. 2004) it is likely that this change in mean size and energy 

content will have consequences for the pelagic food web. Beaugrand et al. (2003) related 

the survival of larval cod to changes in the mean size of calanoid copepods in the North 
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Sea. Here the smaller C. helgolandicus progressively substituted C. finmarchicus, 

probably as a consequence of a major shift in the zooplankton community structure 

detected in the North East Atlantic which has been attributed to increased temperatures 

(Beaugrand et al. 2002a, Beaugrand 2003, Beaugrand 2004).  

This diminution of the mean size of available prey for juvenile cod is regarded as one of 

the main factors contributing to poor cod recruitment since the mid 80s (Beaugrand et al. 

2003). In Arctic-Atlantic waters little auk (Alle alle) and polar cod (Boreogadus saida) 

are among the main predators of Calanus spp. (Bradstreet et al. 1986, Weslawski et al. 

1999). As little auks are size-selective planktivores with a strong preference for larger 

prey items, a shift towards the small boreal species is proposed to lead to a reduction in 

available feeding grounds and reduced population size of little auks (Weslawski et al. 

1999, Karnovsky et al. 2003). Polar cod is a visual predator (Bradstreet et al. 1986) and a 

decrease in prey size may affect its efficiency to catch prey. This may however be 

counterbalanced by feeding in a higher density of smaller prey. Polar cod is a generalist 

that tends to switch its food preferences to what is locally available and even adult fishes 

are often found to feed on smaller prey items (Bradstreet et al. 1986, Lønne and 

Gulliksen 1989).  

Consequently, Falk-Petersen et al. (2006) proposed that a shift in the zooplankton 

community structure towards the smaller C. finmarchicus may lead to a change in the 

pelagic ecosystem structure where piscivorous predators are favoured rather than 

planktivorous seabirds that profit from a zooplankton community dominated by larger 

species such as C. glacialis and C. hyperboreus. Observations made in the north-western 

Pacific seem to support this notion. Here changes in the size spectra of the zooplankton 

community have been attributed to variations in ocean climate (Kitaysky and Golubova 

2000). High production of mesozooplankton in warm years is assumed to profit fish 

recruitment which probably imcreased the reproductive success of piscivorous seabirds. 

During cold years high abundance of marcozooplankton provided better feeding 

conditions for planktivore seabirds which were more abundant during these periods 

(Kitaysky and Golubova 2000). 
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Conclusion: Projections made from the results of this thesis suggest that predicted 

climate change may affect the Calanus community in Svalbard waters by altering the 

abundance of the three Calanus species differently and thereby changing the relative 

species composition. The abundance of C. finmarchicus is expected to increase, whereas 

C. hyperboreus and C. glacialis are likely to decrease. Thus the Calanus community will 

shift towards a dominance of the small Atlantic species. Total Calanus biomass however 

is less affected. Thus the effect of ocean climate changes on the Calanus species 

composition may first and foremost be associated with a shift in size structure. This may 

have implication for the structure of the pelagic food web since the members of the next 

trophic level have different preferences for prey of different size.  
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